Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information

Cascade cyclization of 1,2,7,8-tetraones and total synthesis of (±)-nesteretal A

Tomoka Dentani⁺, Ayano Kawachi⁺, Misaki Kato, Tomoyuki Yoshimura, and Jun-ichi Matsuo*

Contents	
Scheme S1. Isomerization of 6a to 5a	S3
General	S4
Synthesis of 4a	S4
Synthesis of 4b	S5
The cyclization of 4a under kinetic conditions (cat. BTMG, -78 °C)	S5
Characterization data of 5a and 6a	S6
The cyclization of 4a under thermodynamic conditions	S7
L-Proline-catalyzed enantioselective cyclization of 4a	S8
Acetylation of (-)-5a and 6a	S8
Synthesis of 12	S9
Synthesis of 13	S10
Synthesis of 14	S11
Synthesis of 15	S11

Synthesis of 16	S12
Synthesis of (±)-Nesteretal A (1)	S13
X-ray Crystallography of 5a'	S14
Figure S1. DFT calculations of 4a , 5a , and 6a	S15
Determination of the absolute configuration of (-)-5a	S20
References	S32
¹ H and ¹³ C NMR of new compounds	S33
Chiral HPLC data of 5a'	S51
Chiral HPLC data of monobenzylated 13	S53

Scheme S1. Isomerization of 6a to 5a.

General

All melting points were determined on Yanagimoto micro melting point apparatus. Infrared spectra (IR) were recorded on Horiba IR-710. ¹H NMR spectra were recorded on a JEOL JNM ECA600 (600 MHz), JEOL JNM ECZ 600 (600 MHz), or a JEOL JNM ECS400 (400 MHz) spectrometer at room temperature; chemical shifts (δ) are reported in parts per million relative to tetramethylsilane. Splitting pattern are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. ¹³C NMR spectra were recorded on a JEOL JNM ECA600 (150 MHz), JEOL JNM ECZ 600 (150 MHz), or JEOL JNM ECS400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in parts per million relative to tetramethylsilane with the solvent resonance as the internal standard CDCl₃. HRMS data were recorded on JEOL JMS-T100TD. Elemental analysis was performed with J-Science Lab Micro Coder JM-10. X-ray crystallographic analysis was performed on Rigaku R-AXIS RAPIDII-S. UV spectrum was recorded on Shimadzu UV-2600i spectrometer. ECD spectrum was obtained on JASCO J-820 spectrometer. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica gel column chromatography was carried out on silica gel 60 N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 µm). All reactions were carried out under nitrogen atmosphere in a dried glassware with magnetic stirring. 1-Propynylmagnesium bromide (0.5 M solution in THF) was purchased from Aldrich. The aldol cyclization of 1,2,7,8-tetraones should be carried out under shielding lights.

Synthesis of 1,8-diphenyloctan-1,2,7,8-tetraone (4a)

To a stirred mixture of 1,8-diphenylocta-1,7-diyne¹ (224 mg, 0.87 mmol) in acetonitrile (4.5 mL), tetrachloromethane (4.5 mL), and water (6.8 mL) were added NaIO₄ (1.5 g, 7.1 mmol) and RuO₂ (5.1 mg, 0.038 mmol) successively at room temperature. After stirring the resulting mixture for 15 min at room temperature, H₂O (30 mL) was added, and the mixture was extracted with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated. The crude product was purified by chromatography on silica gel (silica gel:20 g, eluent: benzene) to afford 1,8-diphenyloctan-1,2,7,8-tetraone (**4a**) (168 mg, 0.52 mmol, 60%) as a yellow oil.

¹H NMR (600 MHz, CDCl₃): δ 7.99 (4H, d, *J* = 7.2 Hz), 7.65 (2H, t, *J* = 7.2 Hz), 7.50 (4H, t, J = 7.2 Hz), 2.95 (4H, m), 1.81 (4H, m); ¹³C NMR (100 MHz, CDCl₃): δ 202.6, 192.1, 134.6, 131.9, 130.2, 128.9, 38.3, 22.3; IR (CHCl₃) cm⁻¹: 1714, 1674; Anal. calcd for C₂₀H₁₈O₄: C, 74.52; H, 5.63, found C, 74.21, H, 5.33.

Synthesis of decan-2,3,8,9-tetraone (4b)

To a stirred mixture of deca-2,8-diyne² (50 mg, 3.73 mmol) in CH₂Cl₂ (1.5 mL) and H₂O (0.3 mL) were added NaHCO₃ (2.4 mg, 0.029 mmol), MgSO₄ (11.1 mg, 0.092 mmol), and PhI(OAc)₂ (721.5 mg, 2.24 mmol) at room temperature. Then, RuCl₃ (0.16 mg, 0.75 μ mol) in H₂O (0.1 mL) was added at room temperature, and the resulting mixture was stirred at 30 °C for 1 min. The mixture was extracted with AcOEt, and the organic layer was washed with H₂O, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by chromatography on silica gel (hexane/AcOEt = 5:1) to afford decan-2,3,8,9-tetraone (**4b**) (31.4 mg, 0.158 mmol, 42%) as a yellow powder.

Mp: 79.5-81.0 °C (recryst. from Hexane/AcOEt); ¹H NMR (600 MHz, CDCl₃): δ 2.77 (4H, m), 2.34 (6H, s), 1.62 (4H, m); ; ¹³C NMR (100 MHz, CDCl₃): δ 198.8, 197.4, 35.3, 23.6, 22.3; IR (CHCl₃) cm⁻¹: 1714, 1356; Anal. calcd for C₁₀H₁₄O₄: C, 60.59; H, 7.12, found C, 60.29, H, 7.21.

The cyclization of 4a under kinetic conditions

To a stirred solution of **4a** (20 mg, 62 μ mol) in CH₃CN (0.4 mL) was added a solution of BTMG (1.1 mg, 6.2 μ mol) in CH₃CN (0.2 mL) at -23 °C, and the mixture was stirred at -23 °C for 1 h. The reaction was quenched by the addition of saturated aqueous NH₄Cl solution, and the resulting mixture was extracted with AcOEt (three times). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated. The yields of **5a** (13%) and **6a** (71%) was determined by ¹H NMR spectra by using 1,3,5-trimethoxybenzene as an internal standard. Compounds **5a** and **6a** were isolated by purification with column chromatography on silica gel.

(1R*,3R*,5S*)-5-Benzoyl-3-hydroxy-3-phenyl-4-oxabicyclo[3.3.0]octan-2-one (5a)

5a

White solid; mp: 117.0-119.5 ° C (recryst from CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.22 (2H, d, J = 7.6 Hz), 7.60-7.39 (8H, m), 3.95 (1H, t, J = 6.3 Hz, H₁), 2.77 (1H, brs, H_a), 2.69-2.65 (1H, m, H₆), 2.13-2.09 (2H, m, H₈, H₈), 2.05-1.97 (2H, m, H_b, H_c), 1.86-1.76 (1H, m, H₇); ¹³C NMR (150 MHz, CDCl₃): δ 207.6 (C2), 200.3 (C9), 136.5, 134.8, 133.0, 130.3, 129.4, 128.3, 128.3, 126.3, 100.4 (C3), 96.1 (C5), 51.1 (C1), 40.6 (C6), 30.2 (C8), 26.5 (C7); IR (CHCl₃) cm⁻¹: 3558, 1768 (C=O), 1678 (PhCO); HRMS (DART) *m/z* calcd for C₂₀H₁₇O₃ [(M-OH)⁺]: 305.11777, found 305.11819.

Colorless oil: ¹H NMR (400 MHz, CDCl₃): δ 7.69-7.67 (4H, m), 7.48-7.42 (6H, m), 2.99 (1H, brs, H_a), 2.77 (1H, brs, H₆), 2.34 (1H, d, J = 14.4 Hz, H₃), 2.22 (1H, d, J = 14.8 Hz, H₅), 2.07 (1H, dt, J = 4.8, 13.9 Hz, H₃), 1.88 (1H, tt, J = 4.6, 14.0 Hz, H₅), 1.78 (1H, d, J = 14.0 Hz, H₄), 1.66 (1H, tt, J = 4.4, 13.8 Hz, H₄); ¹³C NMR (100 MHz, CDCl₃): δ 202.0 (C7), 134.5, 130.0, 129.4, 128.8, 128.6, 128.4, 127.1, 126.2, 102.7 (C8 or C2), 102.4 (C8 or C2), 88.2 (C1), 50.3 (C6), 30.9 (C3), 22.5 (C5), 18.2 (C4); IR (CHCl₃) cm⁻¹: 3566, 1774; HRMS (DART) *m/z* calcd for C₂₀H₁₇O₃ [(M-OH)⁺]: 305.11777, found 305.11819.

The cyclization of 4a under thermodynamic conditions

To a stirred solution of **4a** (20 mg, 62 μ mol) in DMF (0.4 mL) was added a solution of DBU (0.9 mg, 6.2 μ mol) in DMF (0.2 mL) at 100 °C, and the mixture was stirred at 100 °C for 5 min. The reaction was quenched by the addition of saturated aqueous NH₄Cl solution, and the resulting mixture was extracted with AcOEt (three times). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated. The yields of **5a** (54%) and **6a** (24%) was determined by ¹H NMR by using 1,3,5-trimethoxybenzene as an internal standard. The recovery of **4a** (2%) was also detected by ¹H NMR.

(1R*,3R*,5S*)-5-acetyl-3-hydroxy-3-methyl-4-oxabicyclo[3.3.0]octan-2-one (5b)

66% yield; white solid; mp 111.0-114.5° C (recryst from CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 3.31 (1H, d, J = 10.8 Hz, H_a), 3.13 (1H, brs, H_b), 2.37 (3H, s, H_c), 2.20-2.08 (2H, m, H_d and H_c), 2.02-1.95 (1H, m, H_f), 1.86-1.82 (1H, m, H_g), 1.75-1.70 (1H, m, H_h), 1.50 (3H, s, Hi), 1.49-1.45 (1H, m, H_j); ¹³C NMR (150 MHz, CDCl₃): δ 210.9 (C9), 209.9 (C2), 99.3 (C3), 95.6 (C5), 49.4 (C1), 38.7 (C6), 30.7 (C8), 26.1 (C10), 25.3 (C7), 20.7 (C11); IR (CHCl₃) cm⁻¹: 3586, 1766, 1712, 1214, HRMS (DART) m/z calcd for C₁₀H₁₃O₃ [(M-OH)⁺]: 181.08647, found 181.08666.

We could not purify compound **6b** by column chromatography on silica gel and preparative TLC on silica gel. Its presence and yield was deduced by ¹H NMR analysis with reference to the data of compound **6a**.

L-Proline-catalyzed enantioselective cyclization of 4a

The mixture of **4a** (30 mg, 93 µmol) and L-proline (5.4 mg, 47 µmol) in dichloromethane (0.3 mL) was stirred at 25°C for 7 days. The reaction was quenched by adding water, and the resulting mixture was extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The yields of **5a** (50%), **6a** (9%), and recovered **4a** (2%) were determined by ¹H NMR analysis of the crude product by using 1,3,5-trimethoxybenzene (15.6 mg) as an internal standard. $[\alpha]_D^{21} = -34.8^\circ$ (*c* 0.145, CHCl₃) for (-)-**5a** (68% ee).

Acetylation of (-)-5a and 6a

To a stirred solution of **5a** and **6a** (17.7 mg, 0.055 mmol, **5a/6a** = 85:15) in Ac₂O (0.1 mL, 1.06 mmol) was added a solution of Sc(OTf)₃ (1.8 mg, 3.6 µmol) in CH₃CN (0.05 mL) at 0 °C. The mixture was stirred at 0 °C for 3 h, and the reaction was quenched by adding a saturated aqueous solution of NaHCO₃. The resulting mixture was extracted with ether. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by preparative TLC (CH₂Cl₂ and hexane/ethyl acetate = 5:1) to afford **5a**' (12.8 mg, 0.04 mmol) as a colorless solid and **6a**' (1.9 mg, 6.2 µmol).

Mp: 153.0-155.0 °C (recryst. from CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.15 (2H, d, J = 7.2 Hz), 7.73-7.71 (2H, m), 7.55-7.41 (6H, m), 4.00 (1H, dd, J = 11.6, 2.8 Hz), 2.68 (1H, dd, J = 13.2, 6.0 Hz), 2.20-2.10 (2H, m), 1.94-1.85 (2H, m), 1.75-1.64 (1H, m), 1.59 (3H, s); ¹³C NMR (100 MHz, CDCl₃) : δ 208.4, 200.8, 170.7, 135.5, 134.6, 132.6, 129.9, 129.5, 128.3, 128.0, 126.2, 101.1, 100.1, 54.4, 42.2, 31.4, 26.9, 19.9; IR (CHCl₃) cm⁻¹: 2927, 1766, 1738, 1246; HRMS (DART) *m/z* calcd for C₂₀H₁₇O₃ [(M-OAc)⁺]: 305.11777, found 305.11695; [α]_D²² = +179° (*c* 0.058, CHCl₃) for **5a'** (68% ee)

The optical purity of **5a'** was determined by chiral HPLC (Daicel chiralpac AD-H (15 cm \times 0.46 cm ID), hexane/2-propanol = 99:1, flow rate = 1 mL/min, 254 nm) t_{major} = 22.3 min, t_{minor} = 31.7 min.

(*E*)-5,6-dimethyldeca-5-en-2,8-diyne (12)

To a stirred mixture of NaI (282 mg, 1.88 mmol) and CuCl (326 mg, 3.29 mmol) was added 1propynylmagnesium bromide (0.5 M solution in THF, 45 mL, 22.5 mmol) at 50 °C, and the resulting mixture was stirred at 50 °C for 30 min. The solution of **11** (680 mg, 2.81 mmol) in THF (14.1 mL) was then added at 50 °C, and the mixture was stirred at 50 °C for 1 h. The reaction was quenched by the addition with ice, and the mixture was filtered through a Celite pad. After evaporation of THF in the filtrate, the residue was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated carefully because of the low boiling point of **12**. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 50 : 1) to afford **12** (369 mg, 2.31 mmol, 82%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 2.88 (4H, m), 1.72 (12H, m); ¹³C NMR (100 MHz, CDCl₃): δ 125.5, 77.0, 75.5, 24.0, 17.9, 3.6; IR (CHCl₃) cm⁻¹: 3008, 2922, 1442, 1230; HRMS (ESI+) (*m/z*) calcd for C₁₂H₁₇ [(M+H)⁺]: 161.13303, found 161.13235.

(5*R**,6*R**)-5,6-dimethyldeca-2,8-diyne-5,6-diol (13)

To a stirred solution of **12** (50 mg, 0.31 mmol) in *t*BuOH (1.6 mL) and H₂O (1.6 mL) were added MeSO₂NH₂ (89 mg, 0.94 mmol) and AD-mix- β (1.06 g) at 0°C. The pH of the reaction mixture was adjusted to 12 by adding the 2 M aqueous solution of NaOH (2.4 mL) at 0 °C. The resulting orange solution was stirred at 0 °C for 3 days. The reaction was quenched by the addition of the saturated aqueous solution of Na₂S₂O₃ and NaCl. The mixture was extracted with ethyl acetate. The organic extracts were washed with the saturated aqueous solution of NH₄Cl and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 50:1 to 10:1) to afford **13** (52 mg, 0.27 mmol, 85%) as a while solid. M.p.: 57-59 °C; ¹H NMR (600 MHz, CDCl₃): δ 2.73 (2H, br, s), 2.65 (2H, dq, *J* = 2.4 Hz, *J* = 16.8 Hz), 2.37 (2H, dq, *J* = 2.4 Hz, *J* = 16.8 Hz), 1.82 (6H, t, *J* = 2.4 Hz), 1.27 (6H, s); ¹³C NMR (150 MHz, CDCl₃): δ 79.1, 75.5, 75.4, 28.1, 21.9, 3.5; IR (CHCl₃) cm⁻¹: 3546; HRMS (ESI+) (*m/z*) calcd for C₁₂H₁₉O₂ [(M+H)⁺]: 195.13850, found 195.13864.

It was found that thus obtained **13** was racemic. The optical purity of **13** was determined by chiral HPLC analysis of its monobenzylated derivative **13**'.

The optical purity of **13'** was determined by chiral HPLC (Daicel chiralpac OJ-H (15 cm \times 0.46 cm ID), hexane/2-propanol = 9:1, flow rate = 1 mL/min, 254 nm) t = 3.9 min, t = 4.5 min.

To a solution of diol **13** (389 mg, 2.0 mmol) in CH₂Cl₂ (17 mL) cooled in an ice bath was added 2,6lutidine (0.69 mL, 6.0 mmol) and triethylsilyl trifluoromethanesulfonate (1.35 mL, 6.0 mmol). Et₂O was added to the reaction mixture, and the organic layer was separated. The organic layer was washed with saturated aqueous NaHCO₃, brine, and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (Hexane 100%) to furnish compound **14** (876 mg, quant.) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 2.58 (2H, dq, J = 2.4 Hz, J = 16.8 Hz), 2.41 (2H, dq, J = 2.4 Hz, J = 16.8 Hz), 1.79 (6H, t, J = 2.4 Hz), 1.30 (6H, s), 0.92-0.97 (18H, t, J = 8.0 Hz), 0.59-0.73 (12H, m, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 80.0, 78.3, 78.1, 27.7, 22.5, 7.3, 6.8, 3.8; IR (CHCl₃) cm⁻¹: 2051; Anal. calcd for C₂₄H₄₆O₂Si₂: C, 68.18; H, 10.97, found C, 66.37, H, 10.74.

To a solution of **14** (31.4 mg, 0.074 mmol) in acetone (2.5 mL) and a buffer solution (1.0 mL) that was prepared from of NaHCO₃ (4.93 mg), MgSO₄ (49.3 mg), and water (1.0 mL) was added at room temperature KMnO₄ (94 mg, 0.60 mmol) in portions over 24 h. After Celite filtration with ethyl acetate, the organic layer was separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2% ethyl acetate/hexane) to afford tetraone **15** (26 mg, 72%) as a yellow oil.

¹H NMR (600 MHz, CDCl₃): δ 3.90 (2H, d, J = 13.6 Hz), 2.40 (2H, d, J = 13.6 Hz), 2.34 (6H, s), 1.42 (6H, s), 0.90 (18H, t, J = 7.6 Hz), 0.55 (12H, q, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃): δ 196.9, 195.9, 81.8, 23.5, 22.9, 22.6, 14.1, 6.9, 6.5; IR (CHCl₃) cm⁻¹: 1708; Anal. calcd for C₂₄H₄₆O₆Si₂: C, 59.22; H, 9.53, found C, 58.93, H, 9.26.

1-((1R*,2R*,3R*,5S*)-5-acetyl-5-hydroxy-2,3-dimethyl-2,3-

bis((triethylsilyl)oxy)cyclopentyl)propane-1,2-dione (16)

To a solution of tetraone **15** (144 mg, 0.3 mmol) in toluene (6 mL) was added TiCl₄ (1.0 M solution of dichloromethane, 0.3 mL, 0.3 mmol) at -78 °C under argon atmosphere. The mixture was stirred at -78 °C for 1 h and at -20 °C for 5 h, and the reaction was quenched by adding saturated aqueous solution of NaHCO₃ at -20 °C. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2% ethyl acetate/hexane) to afford **16** (82.3 mg, 57%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.80 (1H, s), 3.53 (1H, s), 2.40 (3H, s), 2.20 (1H, d, *J* = 14 Hz), 2.14 (3H, s), 2.04 (1H, d, *J* = 14 Hz), 1.46 (3H, s), 1.23 (3H, s), 0.97 (9H, t, *J* = 8.0 Hz), 0.88 (9H, t, *J* = 8.0 Hz), 0.59-0.68 (12H, m); ¹³C NMR (100 MHz, CDCl₃): δ 207.9, 203.1, 194.8, 88.3, 87.9, 83.9, 62.4, 49.0, 23.8, 23.7, 20.0, 18.7, 7.2, 7.1, 6.6, 6.5; IR (CHCl₃) cm⁻¹: 3478, 1774, 1708, 1602; Anal. calcd for C₂₄H₄₆O₆Si₂: C, 59.22; H, 9.52, found C, 58.90, H, 9.80.

(±)-Nesteretal A (1)³

To a solution of **16** (35 mg, 0.071 mmol) in dry THF (0.35 mL) was added pyridine (0.096 mL, 1.20 mmol) and HF·pyridine (0.071 mL) at 0 °C. The mixture was stirred at the room temperature for 52 h. The reaction was quenched with saturated aqueous solution of NaHCO₃ and the resulting mixture was extracted with AcOEt (three times) and THF (twice). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (AcOEt 100%) to afford **1** (12.6 mg, 69%) as amorphous powder. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.67 (1H, s), 5.16 (1H, s), 4.54 (1H, s), 2.55 (1H, s), 2.11 (1H, d, *J* = 14 Hz), 1.51 (1H, d, *J* = 14 Hz), 1.20 (3H, s), 1.15 (3H, s), 1.13 (3H, s), 1.04 (3H, s); ¹³C NMR (400 MHz, DMSO-*d*₆): δ 111.6, 107.0, 104.1, 90.3, 90.2, 84.3, 64.3, 47.4, 21.0, 19.4, 18.1, 13.3. The ¹H an ¹³C NMR data of our synthesized **1** were accordance with the literature values.³

X-ray Crystallography of 5a'

Crystallographic data (excluding structure factors) for **5a'** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 2141535. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: <u>deposit@ccdc.cam.ac.Uk</u>).

Figure S1. DFT calculations of 4a, 5a, and 6a.

Geometry optimization was performed with Spartan '18⁴ and the Gaussian 09 packages.⁵ The ground-state geometries of all compounds were determined by means of the following successive steps: Conformational search with MMFF,⁶ then DFT calculation with B3LYP functionals.⁷ The basis set employed for DFT geometry optimization was the native 6-31G(d).

SCF Done:	E(RB3LYP) =	= -1073.85384809 Standard orien	A.U. af	ter 7 cycle	es	
Center	Atomic	Atomic	Coordin	ates (Angstron	ms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.716688	-0.817644	-4.095689	
2	6	0	-1.815898	-0.677725	-2.555082	
3	6	0	-0.509737	-0.380902	-1.847439	
4	1	0	0.173944	-1.221310	-2.046677	
5	1	0	-0.045241	0.474665	-2.354280	
6	6	0	-0.669222	-0.141569	-0.345993	
7	1	0	-1.152982	-1.013888	0.111864	

Compound 4a: 0 kcal/mol

8

9

10

11

1

6

1

1

0

0

0

0

S15

-1.359637

0.669222

1.359637

1.152982

0.696881

0.141569

-0.696881

1.013888

-0.187874

0.345993

0.187874

-0.111864

12	6	0	0.509737	0.380902	1.847439	
13	1	0	0.045241	-0.474665	2.354280	
14	1	0	-0.173944	1.221310	2.046677	
15	6	0	1.815898	0.677725	2.555082	
16	6	0	1.716688	0.817644	4.095689	
17	6	0	2.646422	1.700239	4.851722	
18	6	0	4.278074	3.357584	6.412408	
19	6	0	2.514202	1.717848	6.252554	
20	6	0	3.605692	2.526962	4.240945	
21	6	0	4.414364	3.350502	5.023251	
22	6	0	3.325533	2.537967	7.027259	
23	1	0	1.765366	1.077909	6.707577	
24	1	0	3.726947	2.513616	3.165523	
25	1	0	5.154820	3.986004	4.545687	
26	1	0	3.217830	2.543406	8.108380	
27	1	0	4.912109	4.000867	7.016954	
28	6	0	-2.646422	-1.700239	-4.851722	
29	6	0	-4.278074	-3.357584	-6.412408	
30	6	0	-2.514202	-1.717848	-6.252554	
31	6	0	-3.605692	-2.526962	-4.240945	
32	6	0	-4.414364	-3.350502	-5.023251	
33	6	0	-3.325533	-2.537967	-7.027259	
34	1	0	-1.765366	-1.077909	-6.707577	
35	1	0	-3.726947	-2.513616	-3.165523	
36	1	0	-5.154820	-3.986004	-4.545687	
37	1	0	-3.217830	-2.543406	-8.108380	
38	1	0	-4.912109	-4.000867	-7.016954	
39	8	0	0.851914	0.152215	4.651648	
40	8	0	2.889346	0.741041	1.984483	
41	8	0	-2.889346	-0.741041	-1.984483	
42	8	0	-0.851914	-0.152215	-4.651648	

Compound 5a: -0.29 kcal/mol

SCF Done:	E(RB3LYP) =	-1073.85431499	A.U. after	7 cycles

Center	Atomic	Atomic Coordin		Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-0.692339	1.282122	0.304641	
2	6	0	0.149632	2.298628	-0.509421	
3	6	0	0.477207	3.474380	0.444444	
4	6	0	0.274261	2.890349	1.853140	
5	6	0	-0.933346	1.953298	1.675026	
6	1	0	-0.375033	2.633047	-1.408229	
7	1	0	1.484388	3.863377	0.265529	
8	1	0	-0.232482	4.290817	0.269167	
9	1	0	0.103734	3.657257	2.615628	
10	1	0	1.153867	2.310016	2.157132	
11	1	0	-1.858241	2.540878	1.624024	
12	1	0	-1.047481	1.210600	2.470478	
13	8	0	0.180963	0.138039	0.515801	
14	6	0	1.372663	1.495974	-0.932058	
15	8	0	2.393052	1.920570	-1.413805	
16	6	0	1.075249	0.011578	-0.572803	
17	6	0	-2.016936	0.899701	-0.391381	
18	8	0	0.420909	-0.488003	-1.725970	
19	1	0	0.184592	-1.414861	-1.546308	
20	8	0	-2.526357	1.725196	-1.136243	
21	6	0	2.277230	-0.811986	-0.171948	
22	6	0	4.554735	-2.299929	0.495474	
23	6	0	2.576743	-1.078833	1.168880	
24	6	0	3.131129	-1.286218	-1.176715	
25	6	0	4.264083	-2.026833	-0.842790	
26	6	0	3.709009	-1.824667	1.498946	
27	1	0	1.918198	-0.708582	1.946568	
28	1	0	2.900893	-1.070591	-2.214754	
29	1	0	4.921084	-2.389302	-1.628777	
30	1	0	3.929536	-2.034359	2.542309	
31	1	0	5.437246	-2.878788	0.754725	
32	6	0	-2.718320	-0.395327	-0.109082	
33	6	0	-4.215476	-2.727674	0.339408	

34	6	0	-3.864946	-0.670671	-0.875519	
35	6	0	-2.333763	-1.306726	0.889320	
36	6	0	-3.084287	-2.461652	1.112232	
37	6	0	-4.603719	-1.828595	-0.658465	
38	1	0	-4.157571	0.046043	-1.635442	
39	1	0	-1.446128	-1.123959	1.480772	
40	1	0	-2.780517	-3.157013	1.890061	
41	1	0	-5.484176	-2.030806	-1.262314	
42	1	0	-4.793294	-3.631707	0.513192	

Compound 6a: +1.79 kcal/mol

SCF	Done	E(RF
SCL	Done.	

Center

B3LYP) = -1073.85099898

A.U. after

Standard orientation:

6 cycles

Coordinates (Angstroms) Atomic Atomic Type х Y Number

Number	Number	Туре	Х	Y	Z	
1	6	0	0.688341	0.935619	-1.340639	
2	6	0	0.843307	3.159549	-0.123442	
3	6	0	0.560584	0.985176	1.168302	
4	6	0	1.120925	2.405822	1.183207	
5	6	0	0.973197	0.102800	-0.056621	
6	6	0	1.285555	2.349966	-1.351371	
7	1	0	1.359317	4.126246	-0.107157	
8	1	0	0.678143	2.923589	2.040699	
9	1	0	0.973995	2.853885	-2.273167	
10	1	0	1.034575	0.369147	-2.213327	
11	1	0	-0.228742	3.375041	-0.195496	
12	1	0	2.200064	2.349480	1.366587	
13	1	0	2.380522	2.270191	-1.379328	
14	8	0	-0.146697	-0.842562	-0.044478	
15	6	0	-0.848558	0.925047	-1.341171	
16	6	0	-1.198166	0.099249	-0.077814	
17	8	0	-0.877285	1.036784	0.980521	
18	8	0	-1.595902	1.484372	-2.105987	

19	8	0	0.849961	0.394195	2.399348	
20	1	0	0.488806	-0.508966	2.370614	
21	6	0	2.277868	-0.655884	-0.045608	
22	6	0	4.693542	-2.088808	-0.188770	
23	6	0	2.434711	-1.709574	-0.960536	
24	6	0	3.343726	-0.340354	0.806066	
25	6	0	4.544768	-1.049550	0.728285	
26	6	0	3.629701	-2.421750	-1.030476	
27	1	0	1.605990	-1.979963	-1.608259	
28	1	0	3.233890	0.436203	1.552603	
29	1	0	5.361555	-0.790537	1.396562	
30	1	0	3.729588	-3.237617	-1.741297	
31	1	0	5.627942	-2.640774	-0.243850	
32	6	0	-2.565122	-0.484199	0.060307	
33	6	0	-5.145767	-1.535181	0.274287	
34	6	0	-3.663083	0.374322	0.194193	
35	6	0	-2.762526	-1.868118	0.026774	
36	6	0	-4.051898	-2.390564	0.135059	
37	6	0	-4.948586	-0.152628	0.303720	
38	1	0	-3.506362	1.447657	0.215483	
39	1	0	-1.908046	-2.528115	-0.079902	
40	1	0	-4.200156	-3.466860	0.112256	
41	1	0	-5.797491	0.517093	0.410436	
42	1	0	-6.149318	-1.943635	0.358792	

Determination of the absolute configuration of (-)-5a

The absolute configuration of (-)-**5a** was determined by comparing the experimental and calculated ECD spectra using the TDDFT method at the B3LYP/6-31+G(d) level. The calculated ECD curves of (1S,3S,5R)-**5a** was in good agreement with the experimental one of (-)-**5a** (Figure S6).

^{*a*}Conditions: A 1.33 x 10^{-5} M of **5a** in MeCN at 20 °C.

Figure S3. ECD spectrum of compoun (-)-5a^b

^bConditions: A 1.33 x 10^{-5} M solution of (-)-5a (68% ee) in MeCN at 20 °C.

Computational experiments: The all conformers of (1S,3S,5R)-**5a** and (1R,3R,5S)-**5a** were systematically generated by Spartan '18¹ package using MMFF molecular force field⁶ within an energy from the global minima to 9.56 kcal/mol (40 kJ/mol). These comformers were optimized by Gaussian 09² using DFT calculation at B3LYP/6-31G(d) level and an energy minimum of each conformers was confirmed by frequency calculation at the same level. ECD calculations for all of the optimized conformers were carried out by Gaussian 09 using TDDFT calculation at B3LYP/6-31G(d) level by considering the first 20 excitations. The ECD spectra corrected with regard to Boltzmann weighted average of each conformer at 20 °C were produced by excel program (UV-VIS peak half-width at height: 0.333 eV).

Results				
conformers	G (hartree)	ΔG (kcal/mol)	Boltzmann	distribution
			(%)	
(1 <i>R</i> ,3 <i>R</i> ,5 <i>S</i>)- 5a-01	-1073.85431497	0	97.73	
(1 <i>R</i> ,3 <i>R</i> ,5 <i>S</i>)- 5a-02	-1073.85034767	2.49	1.36	
(1 <i>R</i> ,3 <i>R</i> ,5 <i>S</i>)- 5a-03	-1073.84997352	2.72	0.91	
(1 <i>S</i> ,3 <i>S</i> ,5 <i>R</i>)- 5a-01	-1073.85431495	0	97.73	
(1 <i>S</i> ,3 <i>S</i> ,5 <i>R</i>)- 5a-02	-1073.85034767	2.49	1.36	
(1 <i>S</i> ,3 <i>S</i> ,5 <i>R</i>)- 5a-03	-1073.84997351	2.72	0.91	

Figure S4. Structures of (1*R*,3*R*,5*S*)-5a and (1*S*,3*S*,5*R*)-5a.

(1R,3R,5S)-5a (1S,3S,5R)-5a

Figure S5. Optimized conformers of (1R, 3R, 5S)-**5a** and (1S, 3S, 5R)-**5a** within an energy from global minima to 9.56 kcal/mol

Figure S6. Superimposed ECD spectra of the experimental spectrum of (-)-**5a** and the caluculated spectra of (1R,3R,5S)-**5a** and (1S,3S,5R)-**5a**.^{*c,d*}

^cConditions: The experimental ECD spectrum was measured using a 1.33 x 10^{-5} M solution of (-)-**5a** (68% ee) in MeCN at 20 °C. ^dThe calculation of ECD spectra were carried out with the B3LYP/6-

Results of optimization of each conformers

Conformer (1*R*,3*R*,5*S*)-**5a-01**: $\Delta G = 0$ kcal/mol

SCF Done: E(RB3LYP) = -1073.85431497

A.U. after 7 cycles

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	1	0	-0.374907	2.632781	-1.408405	
2	6	0	0.149593	2.298654	-0.509387	
3	6	0	0.476641	3.474586	0.444388	
4	6	0	0.273861	2.890515	1.853089	
5	6	0	-0.933505	1.953166	1.674967	
6	6	0	-0.692358	1.282031	0.304580	
7	1	0	-0.233384	4.290720	0.269049	
8	1	0	1.483676	3.863960	0.265479	
9	1	0	1.153622	2.310394	2.157058	
10	1	0	0.103168	3.657362	2.615602	
11	1	0	-1.858536	2.540534	1.623968	
12	1	0	-1.047491	1.210453	2.470427	
13	6	0	1.372932	1.496228	-0.931576	
14	8	0	0.180973	0.137979	0.515718	
15	6	0	1.075413	0.011703	-0.572808	
16	8	0	0.421224	-0.487542	-1.726162	
17	1	0	0.185216	-1.414574	-1.546997	
18	6	0	2.277305	-0.811982	-0.171987	
19	6	0	4.554695	-2.300142	0.495373	
20	6	0	3.131348	-1.285967	-1.176747	
21	6	0	2.576623	-1.079195	1.168814	
22	6	0	3.708829	-1.825128	1.498848	
23	6	0	4.264243	-2.026692	-0.842859	
24	1	0	2.901289	-1.070057	-2.214769	
25	1	0	1.917972	-0.709140	1.946506	

26	1	0	3.929207	-2.035098	2.542186
27	1	0	4.921352	-2.388959	-1.628848
28	1	0	5.437161	-2.879079	0.754608
29	8	0	2.393582	1.921040	-1.412571
30	6	0	-2.016921	0.899571	-0.391507
31	8	0	-2.526313	1.725008	-1.136450
32	6	0	-2.718342	-0.395436	-0.109159
33	6	0	-4.215528	-2.727761	0.339342
34	6	0	-3.865002	-0.670739	-0.875554
35	6	0	-2.333760	-1.306863	0.889203
36	6	0	-3.084297	-2.461778	1.112122
37	6	0	-4.603797	-1.828649	-0.658489
38	1	0	-4.157649	0.045994	-1.635450
39	1	0	-1.446106	-1.124133	1.480638
40	1	0	-2.780506	-3.157168	1.889916
41	1	0	-5.484286	-2.030822	-1.262305
42	1	0	-4.793354	-3.631787	0.513135

Conformers (1R, 3R, 5S)-**5a-02**: $\Delta G = 2.49$ kcal/mol

SCF Done: E(RB3LYP) = -1073.85034767

34767 A.U. after

Standard orientation:

7 cycles

Center	Atomic	Atomic	Coordina	tes (Angstrom	ns)	
Number	Number	Туре	Х	Y	Z	
1	1	0	-0.267913	2.706354	-1.147501	
2	6	0	0.171823	2.236853	-0.263021	
3	6	0	0.331842	3.232384	0.911956	
4	6	0	0.017325	2.394962	2.163337	
5	6	0	-1.102736	1.453467	1.688777	
6	6	0	-0.687105	1.058983	0.259316	
7	1	0	-0.398068	4.043350	0.806161	
8	1	0	1.329074	3.682805	0.916349	
9	1	0	0.895263	1.807461	2.458147	
10	1	0	-0.277680	3.002803	3.024608	
11	1	0	-2.057468	1.994874	1.646359	

12	1	0	-1.249257	0.578821	2.327236
13	6	0	1.480579	1.569421	-0.678101
14	8	0	0.209864	-0.088511	0.329132
15	6	0	1.246324	0.032671	-0.640610
16	8	0	0.839146	-0.402333	-1.922051
17	1	0	0.159879	0.204363	-2.267460
18	6	0	2.454064	-0.769176	-0.219050
19	6	0	4.759904	-2.167356	0.537130
20	6	0	3.433872	-1.079271	-1.169614
21	6	0	2.639026	-1.155584	1.112444
22	6	0	3.786322	-1.855884	1.487018
23	6	0	4.580326	-1.776384	-0.791195
24	1	0	3.288323	-0.778874	-2.200841
25	1	0	1.878516	-0.918654	1.848102
26	1	0	3.917139	-2.159229	2.522479
27	1	0	5.334373	-2.014935	-1.536474
28	1	0	5.653788	-2.711924	0.829888
29	8	0	2.509607	2.126511	-0.973497
30	6	0	-1.853640	0.672079	-0.684923
31	8	0	-1.950676	1.222773	-1.776925
32	6	0	-2.848300	-0.358950	-0.267987
33	6	0	-4.804542	-2.246771	0.405833
34	6	0	-4.100840	-0.345741	-0.906100
35	6	0	-2.579586	-1.342291	0.698887
36	6	0	-3.554549	-2.283342	1.026770
37	6	0	-5.076383	-1.275905	-0.562796
38	1	0	-4.288695	0.406433	-1.665347
39	1	0	-1.598015	-1.398041	1.154020
40	1	0	-3.334770	-3.050727	1.763695
41	1	0	-6.046391	-1.249636	-1.051452
42	1	0	-5.563995	-2.977764	0.670342

SCF Done: E(RB3LYP) = -1073.84997351 A.U. after 7 cycles

Standard orientation: _____

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	1	0	1.036000	0.810416	1.709974	
2	6	0	0.359749	1.102314	0.900967	
3	6	0	0.455676	2.612079	0.564169	
4	6	0	0.212943	2.685085	-0.953917	
5	6	0	0.901862	1.419214	-1.497276	
6	6	0	0.586666	0.336564	-0.439701	
7	1	0	1.455165	2.992096	0.808501	
8	1	0	-0.262195	3.187811	1.156590	
9	1	0	-0.861429	2.645413	-1.166945	
10	1	0	0.604163	3.603080	-1.403814	
11	1	0	1.981146	1.576399	-1.581898	
12	1	0	0.533739	1.099118	-2.476508	
13	6	0	-1.065233	0.696069	1.308297	
14	8	0	-0.709795	-0.198674	-0.794013	
15	6	0	-1.493698	-0.444920	0.354236	
16	8	0	-1.073385	-1.621752	1.025587	
17	1	0	-0.552950	-2.124411	0.366006	
18	6	0	-2.962142	-0.466042	-0.007147	
19	6	0	-5.706045	-0.456696	-0.568868	
20	6	0	-3.856398	-1.135825	0.835330	
21	6	0	-3.449542	0.211527	-1.130129	
22	6	0	-4.816282	0.211533	-1.411394	
23	6	0	-5.222283	-1.129582	0.554933	
24	1	0	-3.471575	-1.666897	1.698980	
25	1	0	-2.756147	0.719954	-1.791538	
26	1	0	-5.184802	0.731309	-2.292044	
27	1	0	-5.909328	-1.653802	1.213984	
28	1	0	-6.770637	-0.455210	-0.788068	
29	8	0	-1.713844	1.195307	2.193082	
30	6	0	1.599873	-0.835427	-0.390741	
31	8	0	1.198177	-1.981990	-0.542252	
32	6	0	3.067445	-0.599075	-0.187062	
33	6	0	5.839828	-0.359241	0.200833	

34	6	0	3.925449	-1.683612	-0.443405	
35	6	0	3.623493	0.605522	0.274680	
36	6	0	4.999229	0.721042	0.471933	
37	6	0	5.298608	-1.563067	-0.259175	
38	1	0	3.487980	-2.614681	-0.786704	
39	1	0	2.992901	1.457734	0.496824	
40	1	0	5.412986	1.656345	0.838156	
41	1	0	5.948531	-2.407755	-0.469751	
42	1	0	6.912054	-0.264830	0.349645	

Conformer (1S, 3S, 5R)-**5a-01**: $\Delta G = 0$ kcal/mol

SCF Done: E(RB3LYP) = -1073.85431495

A.U. after 7 cycles

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.692241	1.281922	0.304552	
2	6	0	-0.149751	2.298587	-0.509322	
3	6	0	-0.476842	3.474462	0.444483	
4	6	0	-0.274061	2.890281	1.853146	
5	6	0	0.933304	1.952952	1.674992	
6	1	0	0.374753	2.632728	-1.408341	
7	1	0	0.233124	4.290660	0.269209	
8	1	0	-1.483904	3.863786	0.265604	
9	1	0	-1.153856	2.310178	2.157063	
10	1	0	-0.103376	3.657079	2.615713	
11	1	0	1.047280	1.210182	2.470401	
12	1	0	1.858344	2.540317	1.624061	
13	8	0	-0.180832	0.137693	0.515455	
14	6	0	-1.373054	1.496130	-0.931525	
15	6	0	-1.075399	0.011534	-0.573022	
16	6	0	-2.277271	-0.812125	-0.172047	
17	6	0	-4.554690	-2.300118	0.495521	
18	6	0	-3.131284	-1.286294	-1.176748	
19	6	0	-2.576610	-1.079098	1.168796	

20	6	0	-3.708835	-1.824941	1.498935
21	6	0	-4.264205	-2.026943	-0.842753
22	1	0	-2.901208	-1.070554	-2.214801
23	1	0	-1.917909	-0.708944	1.946401
24	1	0	-3.929270	-2.034728	2.542298
25	1	0	-4.921304	-2.389354	-1.628684
26	1	0	-5.437158	-2.879004	0.754866
27	8	0	-0.421407	-0.487528	-1.726454
28	1	0	-0.185661	-1.414689	-1.547635
29	8	0	-2.393829	1.920902	-1.412289
30	6	0	2.016830	0.899634	-0.391644
31	6	0	2.718424	-0.395288	-0.109207
32	6	0	4.216048	-2.727272	0.339575
33	6	0	3.864872	-0.670707	-0.875887
34	6	0	2.334252	-1.306457	0.889549
35	6	0	3.085025	-2.461180	1.112625
36	6	0	4.603869	-1.828465	-0.658702
37	1	0	4.157184	0.045845	-1.636081
38	1	0	1.446694	-1.123683	1.481122
39	1	0	2.781605	-3.156351	1.890762
40	1	0	5.484157	-2.030767	-1.262768
41	1	0	4.794053	-3.631155	0.513520
42	8	0	2.525978	1.725029	-1.136789

Conformers (1S,3S,5R)-**5a-02**: $\Delta G = 2.49$ kcal/mol

SCF Done: E(RB3LYP) = -1073.85034767 A.U. after 7 cycles

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordina X	tes (Angstrom Y	s) Z	
1	6	0	0.687104	1.058981	0.259318	
2	6	0	-0.171823	2.236853	-0.263013	
3	6	0	-0.331836	3.232383	0.911965	
4	6	0	-0.017325	2.394956	2.163343	
5	6	0	1.102733	1.453457	1.688782	

6	1	0	0.267911	2.706353	-1.147495	
7	1	0	0.398079	4.043345	0.806171	
8	1	0	-1.329065	3.682809	0.916358	
9	1	0	-0.895266	1.807458	2.458150	
10	1	0	0.277682	3.002793	3.024616	
11	1	0	1.249246	0.578807	2.327237	
12	1	0	2.057469	1.994857	1.646370	
13	8	0	-0.209865	-0.088515	0.329127	
14	6	0	-1.480582	1.569424	-0.678090	
15	6	0	-1.246327	0.032674	-0.640611	
16	6	0	-2.454066	-0.769175	-0.219052	
17	6	0	-4.759903	-2.167362	0.537124	
18	6	0	-3.433886	-1.079246	-1.169612	
19	6	0	-2.639015	-1.155610	1.112436	
20	6	0	-3.786308	-1.855913	1.487007	
21	6	0	-4.580338	-1.776362	-0.791195	
22	1	0	-3.288348	-0.778828	-2.200835	
23	1	0	-1.878495	-0.918697	1.848090	
24	1	0	-3.917116	-2.159280	2.522464	
25	1	0	-5.334395	-2.014894	-1.536470	
26	1	0	-5.653785	-2.711933	0.829881	
27	8	0	-0.839153	-0.402321	-1.922056	
28	1	0	-0.159885	0.204376	-2.267462	
29	8	0	-2.509612	2.126517	-0.973474	
30	6	0	1.853640	0.672081	-0.684921	
31	6	0	2.848302	-0.358948	-0.267989	
32	6	0	4.804547	-2.246770	0.405823	
33	6	0	4.100843	-0.345734	-0.906100	
34	6	0	2.579589	-1.342295	0.698879	
35	6	0	3.554553	-2.283346	1.026758	
36	6	0	5.076387	-1.275898	-0.562800	
37	1	0	4.288698	0.406445	-1.665343	
38	1	0	1.598017	-1.398049	1.154012	
39	1	0	3.334774	-3.050736	1.763679	
40	1	0	6.046395	-1.249625	-1.051455	
41	1	0	5.564000	-2.977763	0.670328	

Conformers (1S, 3S, 5R)-**5a-03**: $\Delta G = 2.72$ kcal/mol

SCF Done: E(RB3LYP) = -1073.84997351 A.U. after 7 cycles

Standard orientation: _____

Center	Atomic	Atomic	Coordina	ates (Angstron	ns)	
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-0.586733	0.336603	-0.439732	
2	6	0	-0.359633	1.102590	0.900818	
3	6	0	-0.455354	2.612301	0.563620	
4	6	0	-0.212656	2.684903	-0.954475	
5	6	0	-0.901978	1.419077	-1.497434	
6	1	0	-1.035965	0.811056	1.709886	
7	1	0	-1.454836	2.992431	0.807831	
8	1	0	0.262535	3.188115	1.155935	
9	1	0	0.861687	2.644821	-1.167561	
10	1	0	-0.603631	3.602895	-1.404586	
11	1	0	-0.534270	1.098727	-2.476741	
12	1	0	-1.981256	1.576501	-1.581718	
13	8	0	0.709730	-0.198628	-0.794093	
14	6	0	1.065237	0.696182	1.308202	
15	6	0	1.493640	-0.444840	0.354155	
16	6	0	2.962084	-0.466016	-0.007175	
17	6	0	5.706025	-0.456924	-0.568693	
18	6	0	3.856423	-1.134341	0.836391	
19	6	0	3.449410	0.209955	-1.131137	
20	6	0	4.816182	0.209819	-1.412299	
21	6	0	5.222321	-1.128209	0.556102	
22	1	0	3.471674	-1.664222	1.700807	
23	1	0	2.755950	0.717253	-1.793336	
24	1	0	5.184647	0.728330	-2.293718	
25	1	0	5.909429	-1.651268	1.216010	
26	1	0	6.770634	-0.455537	-0.787809	
27	8	0	1.073335	-1.621649	1.025536	

28	1	0	0.552566	-2.124124	0.366043	
29	8	0	1.713839	1.195287	2.193078	
30	6	0	-1.599874	-0.835380	-0.390544	
31	6	0	-3.067461	-0.599041	-0.186877	
32	6	0	-5.839867	-0.359266	0.200943	
33	6	0	-3.925435	-1.683613	-0.443179	
34	6	0	-3.623553	0.605558	0.274805	
35	6	0	-4.999296	0.721047	0.472016	
36	6	0	-5.298603	-1.563101	-0.258987	
37	1	0	-3.487936	-2.614686	-0.786429	
38	1	0	-2.992999	1.457797	0.496964	
39	1	0	-5.413081	1.656358	0.838187	
40	1	0	-5.948485	-2.407828	-0.469531	
41	1	0	-6.912097	-0.264861	0.349723	
42	8	0	-1.198134	-1.981957	-0.541905	

References

- Brown, T. J.; Cumbes, M.; Diorazio, L. J.; Clarkson, G. J.; Wills, M., J. Org. Chem. 2017, 82, 10489-10503.
- Amatore, M.; Leb.oeligat.uf, D.; Malacria, M.; Gandon, V.; Aubert, C., J. Am. Chem. Soc. 2013, 135, 4576-4579.
- (a) Xie, C.-L.; Chen, R.; Yang, S.; Xia, J.-M.; Zhang, G.-Y.; Chen, C.-H.; Zhang, Y.; Yang, X.-W. Org. Lett. 2019, 21, 8174-8177; (b) Kawamoto, Y.; Kitsukawa, H.; Kobayashi, T.; Ito, H. Org. Lett. 2021, 23, 7074-7078; (c) Leblond, A.; Houari, I.; Beauxis, Y.; Leblanc, K.; Poupon, E.; Beniddir, M. A. Org. Lett. 2022, 24, 1247-1252.
- Spartan'18, Wavefunction Inc., Irvine, CA. Many people have contributed to Spartan's interface. The current members are: Bernard Deppmeier, Andy Driessen, Thomas Hehre, Warren Hehre, Philip Klunzinger, Sean Ohlinger, and Jurgen Schnitker. Except for molecular mechanics and semi-empirical models, the calculation methods used in Spartan have been documented in: Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C-P. Hsu, G. Kedziora, R. Z. Khalliumlin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys., 8, 3172 (2006).
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 6) Halgren, T. A. J. Comput. Chem. 1996, 17, 490-519.
- 7) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

.

.

Conditions: Solvent: IPA/Hexane = 1/99 Detect: 254 nm Column: chiralpak AD-H Flow: 1 mL/min

Ľ −クNo.	保持時間	成分名	面積[mV×秒]	高さ[mV]	面積比[%]
1	22. 318		8712. 257	149. 621	84. 674
2	31. 677		1576. 905	22. 735	15. 326
ALL			0. 000	0.000	100.000

Conditions:

Solvent: IPA/Hexane = 1/9 Detect: 254 nm Column: chiralpak 0J-H

Flow: 1 mL/min

ピ−クNo.	保持時間	成分名	面積[mV×秒]	高さ[mV]	面積比[%]
1	3.915		474. 827	49. 180	49. 288
2	4. 480		488. 546	39. 543	50.712
ALL			0.000	0.000	100.000