Sequential Visible-Light-Mediated Wolff Rearrangement and Staudinger Cycloaddition Enabling Assembly of Spiro-Pyrazolone-β-Lactams

Jie Tang, Zhen-Hui Yan, Gu Zhan,* Qian-Qian Yang, Ying-Ying Chen, Xiang Li,* Wei Huang*

State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137

Supporting Information

1. General information2
2. Optimization of the model reaction (Table S1)
3.General procedure for the synthesis of products 3
4. Scale-up synthesis of product 3a14
5. Synthesis of other spiro- β -Lactams and deprotection of N-Boc
group of products 5 and 814
6. Synthetic transformation of spiro-pyrazolone-β-lactam 3a17
7. NOE experiments of products 3aa and 3aa'18
8. X-ray crystal structure of products 3a and 1419
9. ¹ H NMR and ¹³ C NMR spectra22

1. General information

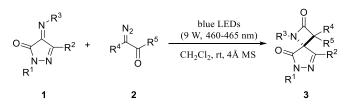
Nuclear magnetic resonance (NMR) spectra were recorded in Chloroform-d on Bruker 600, 700 MHz, or JEOL 600 NMR instrument (at 400, 600 or 700 MHz for ¹H, and at 100, 150, or 175 MHz for ¹³C). Proton chemical shifts are reported in parts per million (δ scale). The ¹H NMR chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as standard. The ¹³C NMR chemical shifts were given using Chloroform-d or DMSO- d_6 as the internal standard (Chloroform-d: $\delta = 77.00$ ppm, DMSO- d_6 : $\delta =$ 39.50 ppm). Data are reported as follows: chemical shift [multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration]. High-resolution mass spectra (HRMS) were obtained using Agilent P/N G1969-90010 or Waters/Acquity UPLC-Synapt G2HDMS. High-resolution mass spectra were reported for the molecular ion [M+Na]⁺. X-ray diffraction experiment was carried out on an Agilent Gemini and the data obtained were deposited at the Cambridge Crystallographic Data Centre. UV detection was performed at 254 nm. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate (EA) and petroleum ether (PE). TLC was performed on glass-backed silica plates; products were visualized using UV light. All reagents and solvents were obtained from commercial sources and used without further purification. pyrazolonederived phenyl ketimines 1,^[1] α -diazoketones 2,^[2] arylalkylketenes^[3] and other ketimines^[4] were prepared according to the literature procedures. Six position parallel photocatalytic reactor were used as the reaction instrument. Melting points were recorded on BUCHI Melting Point M-565 instrument.

Reference

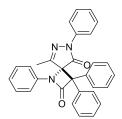
^{1.} P. Chauhan, S. Mahajan, U. Kaya, A. Peuronen, K. Rissanen, D. Enders, Asymmetric Synthesis of Amino-Bis-Pyrazolone Derivatives via an Organocatalytic Mannich Reaction. *J. Org. Chem.* 2017, **82**, 7050-7058.

^{2.} J. R. Denton, H. M. L. Davies, Enantioselective Reactions of Donor/Acceptor Carbenoids Derived from α-Aryl-α-Diazoketones. *Org. Lett.* 2009, **11**, 787-790.

^{3.} L. M. Baigrie, H. R. Seiklay, T. T. Tidwell, Stereospecific formation of enolates from reaction of unsymmetrical ketenes and organolithium reagents. *J. Am. Chem. Soc.* 1985, **107**, 5391-5396.

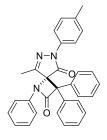

^{4.} T. Niwa, H. Yorimitsu, K. Oshima, Palladium-Catalyzed Benzylic Arylation of N-Benzylxanthone Imine. *Org. Lett.* 2008, **10**, 4689-4691.

2. Optimization of the model reaction (Table S1)

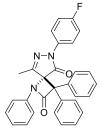

	N ^{PI} O N-N Ph	$h = \frac{N_2}{T}$	Phblue LEDs solvent, time	$- \underbrace{Ph-N}_{N-N} \underbrace{Ph}_{Ph}$	
	1a	2a		3a	
Entry	Wave	Wattage	solvent	Time	Yield
	length (nm)	(W)		(h)	$(\%)^b$
1	410-415	6	DCM	2	78
2	460-465	6	DCM	1	82
3	520-525	6	DCM	24	70
4	590-595	6	DCM	48	60
5	620-625	6	DCM	48	65
6	460-465	3	DCM	2	82
7	460-465	9	DCM	1	84
8	460-465	12	DCM	1	82
9	460-465	9	THF	2	61
10	460-465	9	Toluene	1.5	65
11	460-465	9	CH ₃ CN	2	79
12	460-465	9	EA	2	74
13	460-465	9	Et ₂ O	2.5	66
14 ^c	460-465	9	DCM	1	84
15^{d}	460-465	9	DCM	1	81
16 ^e	460-465	9	DCM	1	85
17 ^f	460-465	9	DCM	1	88

^{*a*}Unless otherwise noted, for the reaction, a mixture of **1a** (0.1 mmol) and **2a** (0.15 mmol) in 1.0 mL of solvent was irradiated at room temperature under LEDs light. ^{*b*}Isolated yields. ^{*c*}The ratio of **1a/2a** was 1.0:2.0. ^{*d*}The ratio of **1a/2a** was 1.0:2.5. ^{*e*}With MgSO₄. ^{*f*}With 4 Å molecular sieves. DCM: dichloromethane; THF: tetrahydrofuran; EA: ethyl acetate; Et₂O: diethyl ether

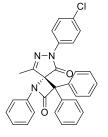
3.General procedure for the synthesis of products 3



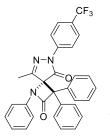
Pyrazolone-derived phenyl ketimines 1 (0.1 mmol) and α -diazoketones 2 (0.2 mmol, 2.0 equiv.) were dissolved in CH₂Cl₂ (1.0 mL). At room temperature, the reaction mixture was then irradiated under blue LEDs for hours until the complete consumption of 1 (monitored by TLC). The reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (PE/EA = 80/1) to give the pure products 3.


8-methyl-1,3,3,6-tetraphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3a): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3a** as a white solid in 88% yield (40.2 mg), m. p. 183.4 – 184.4 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.81 (dd, *J* = 8.4, 0.7 Hz, 2H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.54 – 7.50 (m, 2H), 7.40 – 7.35 (m, 2H), 7.29 (t, *J* = 7.7 Hz, 2H), 7.26 – 7.19 (m, 6H), 7.18 – 7.15 (m, 3H), 7.06 – 7.02 (m, 1H), 1.37 (s,

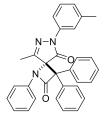
3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.8, 164.6, 158.6, 137.8, 136.7, 136.6, 136.2, 129.7, 129.17, 129.15, 128.6, 128.4, 128.2, 127.3, 127.0, 125.6, 125.4, 118.4, 116.6, 77.3, 72.8, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₃N₃O₂Na 480.1683; found 480.1682.


8-methyl-1,3,3-triphenyl-6-(p-tolyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3b): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3b** as a white solid in 86% yield (40.5 mg), m. p. 190.0 – 191.2 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.69 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.53 – 7.49 (m, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.26 – 7.19 (m, 6H), 7.19 – 7.14 (m, 4H), 7.04 (t, J = 7.8 Hz, 1H), 2.31 (s, 3H), 1.36 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.6, 164.6, 158.5, 136.8, 136.6, 136.3, 135.4, 135.3, 129.7, 129.6,

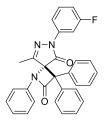
129.2, 128.6, 128.4, 128.2, 127.3, 127.0, 125.4, 118.4, 116.6, 77.2, 72.7, 21.0, 15.4. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{31}H_{25}N_3O_2Na$ 494.1839; found 494.1849.


6-(4-fluorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3c): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3c** as a white solid in 68% yield (32.2 mg), m. p. 195.6 – 197.6 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.30 (t, J = 8.4 Hz, 2H), 7.26 – 7.19 (m, 6H), 7.17 – 7.15 (dd, J = 9.0, 1.2 Hz, 2H), 7.08 – 7.03 (m, 3H), 1.37 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.7, 164.5, 160.1 (d, $J_{CF} =$ 246.1 Hz), 158.9, 136.58,

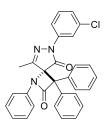
136.56, 136.1, 134.0 (d, $J_{C,F} = 1.5$ Hz), 129.7, 129.2, 128.6, 128.5, 128.3, 127.2, 127.0, 125.5, 120.2 (d, $J_{C,F} = 7.5$ Hz), 116.5, 115.9 (d, $J_{C,F} = 22.5$ Hz), 77.4, 72.7, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂FN₃O₂Na 498.1589; found 498.1581.


6-(4-chlorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3d): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product 3d as a white solid in 85% yield (41.6 mg), m. p. 185.0 – 188.7 °C. ¹H NMR (700 MHz, Chloroform-d) δ 7.80 – 7.75 (m, 2H), 7.58 (d, J = 7.7 Hz, 2H), 7.49 (d, J = 7.0 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.30 (t, J = 7.7 Hz, 2H), 7.27 – 7.18 (m, 6H), 7.16 – 7.14 (m, 2H), 7.05 (t, J = 8.4 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (175 MHz, Chloroform-d) δ 167.8, 164.5, 159.1, 136.5, 136.3, 136.1, 130.7, 129.7,

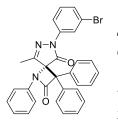
129.21, 129.18, 128.6, 128.5, 128.3, 127.2, 127.0, 125.5, 119.5, 116.5, 77.5, 72.8, 15.5. HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{30}H_{22}CIN_3O_2Na$ 514.1293; found 514.1300.


8-methyl-1,3,3-triphenyl-6-(4-(trifluoromethyl)phenyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3e): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product 3e as a white solid in 85% yield (44.7 mg), m. p. 151.1 – 152.3 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 6.3 Hz, 2H), 7.49 (d, J = 7.0 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.28 – 7.18 (m, 6H), 7.15 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 7.7 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 168.2, 164.4, 159.5, 140.4,

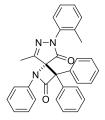
136.5, 136.4, 136.0, 129.8, 129.2, 128.7, 128.6, 128.4, 127.2, 127.0, 127.2 (q, $J_{C,F} = 31.6$ Hz), 126.4, 125.6, 124.0 (q, $J_{C,F} = 271.0$ Hz), 118.0, 116.5, 77.8, 72.9, 15.5. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₁H₂₂F₃N₃O₂Na 548.1557; found 548.1562.


8-methyl-1,3,3-triphenyl-6-(m-tolyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (*3f*): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3f** as a white solid in 81% yield (38.0 mg), m. p. 178.1 – 180.0 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.64 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.31 – 7.27 (m, 2H), 7.25 – 7.21 (m, 5H), 7.21 – 7.15 (m, 4H), 7.06 – 7.02 (m, 1H), 7.00 (d, *J* = 6.3 Hz, 1H), 2.34 (s, 3H), 1.37 (s,

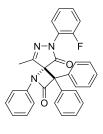
3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.7, 164.6, 158.5, 139.2, 137.8, 136.8, 136.6, 136.2, 129.7, 129.2, 129.0, 128.6, 128.4, 128.2, 127.3, 127.0, 126.4, 125.4, 119.0, 116.6, 115.7, 77.3, 72.8, 21.7, 15.4.
HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₁H₂₅N₃O₂Na 494.1839; found 494.1844.


6-(3-fluorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3g): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3g** as a white solid in 87% yield (41.4 mg), m. p. 130.6 – 132.7 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.66 – 7.62 (m, 1H), 7.62 – 7.54 (m, 3H), 7.51 – 7.47 (m, 2H), 7.34 – 7.27 (m, 3H), 7.27 – 7.19 (m, 6H), 7.15 (dd, J = 9.1, 1.4 Hz, 2H), 7.05 (t, J = 7.0 Hz, 1H), 6.90 – 6.84 (m, 1H), 1.38 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.9, 164.5, 163.0 (d, $J_{CF} = 244.6$ Hz), 159.1,

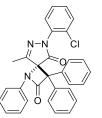
139.1 (d, $J_{C,F} = 10.5$ Hz), 136.5, 136.0, 130.5 (d, $J_{C,F} = 8.8$ Hz), 129.7, 129.2, 128.6, 128.5, 128.3, 127.2, 127.0, 125.5, 116.5, 113.7, 112.3, 112.2, 105.9 (d, $J_{C,F} = 28.1$ Hz), 77.6, 72.89, 15.4; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂FN₃O₂Na 498.1589; found 498.1592.


6-(3-chlorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5*dione (3h)*: The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3h** as a white solid in 93% yield (45.8 mg), m. p. 147.6 – 149.1 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.77 – 7.73 (m, 1H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.49 (d, *J* = 7.7 Hz,2H), 7.32 – 7.25 (m, 3H), 7.27 – 7.18 (m, 6H), 7.15 (d, *J* = 7.7 Hz, 3H), 7.05 (t, *J* = 7.0 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.9, 164.5, 159.2, 138.8, 136.5, 136.0, 135.0, 130.2,

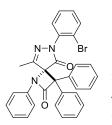
129.8, 129.2, 128.6, 128.5, 128.4, 127.2, 127.0, 125.54, 125.50, 125.47, 118.3, 116.5, 116.3, 77.6, 72.8, 15.4. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{30}H_{22}ClN_3O_2Na$ 514.1293; found 514.1303.


6-(3-bromophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3i): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3i** as a white solid in 68% yield (36.5 mg); m. p. 154.2 – 158.4 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 2.1 Hz, 1H), 7.80 (dd, *J* = 7.7, 0.7 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.49 (d, *J* = 7.0 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.27 – 7.19 (m, 7H), 7.15 (d, *J* = 7.7 Hz, 2H), 7.05 (t, *J* = 7.7 Hz, 1H), 1.38 (s,

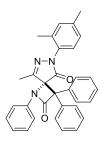
3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.9, 164.5, 159.2, 138.9, 136.5, 136.0, 130.5, 129.8, 129.2, 128.6, 128.5, 128.43, 128.41, 128.35, 127.2, 127.0, 125.6, 122.9, 121.2, 116.7, 116.5, 77.6, 72.8, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂BrN₃O₂Na 558.0788; found 558.0795.


8-methyl-1,3,3-triphenyl-6-(o-tolyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3j): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3j** as a white solid in 92% yield (43.4 mg), m. p. 178.7 – 180.2 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.7 Hz, 2H), 7.55 – 7.50 (m, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.24 – 7.20 (m, 2H), 7.19 – 7.16 (m, 6H), 7.20 – 7.15 (m, 1H), 7.08 (m, 1H), 2.16 (s, 3H), 1.38 (s, 3H). ¹³C NMR (175

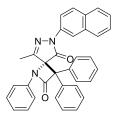
MHz, Chloroform-*d*) δ 168.3, 164.9, 158.7, 136.7, 136.2, 135.9, 135.2, 134.6, 131.4, 129.7, 129.1, 128.6, 128.5, 128.4, 128.1, 127.3, 126.8, 125.5, 125.3, 116.6, 77.0, 71.8, 18.7, 15.5. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₁H₂₅N₃O₂Na 494.1839; found 494.1846.


6-(2-fluorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3k): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3k** as a white solid in 79% yield (37.6 mg), m. p. 185.8 – 187.8 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.65 (d, J = 7.7 Hz, 2H), 7.59 (dd, J = 8.4, 1.4 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.33 – 7.28 (m, 3H), 7.27 – 7.21 (m, 7H), 7.19 – 7.14 (m, 3H), 7.07 (t, J = 7.0 Hz, 1H), 1.36 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 168.6, 164.6, 159.1, 156.8 (d, $J_{CF} = 253.4$ Hz), 136.6, 135.8, 129.9,

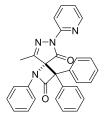
129.8, 129.7, 129.1, 128.5, 128.4, 128.3, 127.5, 127.0, 126.6, 125.5, 124.8 (d, $J_{C,F} = 12.3$ Hz), 124.6, 117.0 (d, $J_{C,F} = 19.3$ Hz), 116.6, 77.2, 71.7, 15.40. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂FN₃NaO₂Na 498.1589; found 498.1596.


6-(2-chlorophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3l): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3l** as a white solid in 67% yield (33.1 mg), m. p. 159.2 – 163.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.2 Hz, 2H), 7.59 (d, *J* = 7.2 Hz, 2H), 7.48 – 7.43 (m, 1H), 7.38 (dd, *J* = 7.2, 1.8 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.28 (m, 7H), 7.22 (t, *J* = 7.2 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.08 (m,

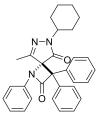
1H), 1.37 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 166.8, 163.1, 157.1, 135.0, 134.7, 133.7, 132.7, 130.0, 129.1, 128.4, 128.0, 127.5, 126.81, 126.78, 126.74, 126.66, 126.2, 126.1, 125.6, 123.9, 115.0, 75.6, 70.0, 13.8. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂ClN₃O₂Na 514.1293; found 514.1298.


6-(2-bromophenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3m): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3m** as a white solid in 82% yield (44.2 mg), m. p. 197.5 – 199.5 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 1.4 Hz, 2H), 7.65 (d, *J* = 7.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.37 – 7.31 (m, 4H), 7.31 – 7.25 (m, 5H), 7.25 – 7.18 (m, 3H), 7.16 (t, *J* = 7.0 Hz, 1H), 7.11 – 7.06 (m, 1H), 1.37 (s, 3H). ¹³C NMR

 $(175 \text{ MHz}, \text{Chloroform-}d) \delta 168.4, 164.8, 158.7, 136.6, 136.3, 135.9, 135.3, 134.0, 130.3, 129.7, 129.1, 128.73, 128.66, 128.44, 128.41, 128.38, 128.0, 127.3, 125.5, 121.3, 116.6, 77.4, 71.7, 15.4. HRMS (ESITOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂BrN₃O₂ 558.0788; found 558.0792.$


6-(2,4-dimethylphenyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3n): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3n** as a white solid in 87% yield (42.1 mg), m. p. = 192.5 – 194.2 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.64 (d, J = 7.7 Hz, 2H), 7.52 (dd, J = 8.4, 1.4 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.29 – 7.19 (m, 7H), 7.19 – 7.14 (m, 2H), 7.10 – 7.05 (m, 1H), 7.01 (d, J = 5.6 Hz, 2H), 2.26 (s, 3H), 2.14 (s, 3H), 1.37 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 168.4, 164.9, 158.5, 138.6,

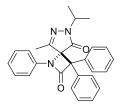
136.7, 136.3, 135.3, 134.4, 133.3, 132.0, 129.6, 129.1, 128.4, 128.0, 127.4, 127.3, 125.44, 125.35, 125.3, 116.6, 76.9, 71.7, 21.1, 18.6, 15.5. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₂H₂₇N₃O₂Na 508.1996; found 508.2003.


8-methyl-6-(naphthalen-2-yl)-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (30) : The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **30** as a white solid in 80% yield (40.4 mg), m. p. 170.6 – 173.7 °C. ¹H NMR (600 MHz, Chloroform-d) δ 8.34 (d, J = 1.8 Hz, 1H), 8.07 (dd, J = 9.0, 1.8 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.87 – 7.82 (t, J = 7.2 Hz, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.52 – 7.43 (m,

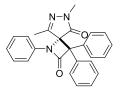
2H), 7.37 (t, J = 7.8 Hz, 2H), 7.34 – 7.24 (m, 8H), 7.11 (t, J = 7.2 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) 168.0, 164.6, 158.9, 136.7, 136.6, 136.2, 135.4, 133.5, 131.2, 129.7, 129.2, 129.1, 128.6, 128.5, 128.3, 128.1, 127.7, 127.3, 127.1, 126.8, 125.7, 125.5, 117.8, 116.6, 115.6, 77.4, 72.9, 15.5. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₄H₂₅N₃O₂Na 530.1839; found 530.1831.


8-methyl-1,3,3-triphenyl-6-(pyridin-2-yl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3p): The residue was purified by a silica gel flash chromatography (PE/EA = 20/1) giving the product **3p** as a white solid in 95% yield (43.5 mg), m. p. 162.7 – 165.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.55 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.61 (d, *J* = 6.6 Hz, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.25 – 7.18 (m, 8H), 7.14 (dd, *J*

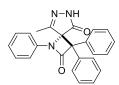
= 7.2, 4.8 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 168.6, 164.4, 160.0, 149.2, 148.9, 138.6, 136.5, 136.3, 136.1, 129.7, 129.2, 128.64, 128.57, 128.3, 127.2, 127.1, 125.5, 121.4, 116.5, 114.0, 77.8, 73.0, 15.7. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₉H₂₂N₄O₂Na 481.1635; found 481.1629.


6-cyclohexyl-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3q): The residue was purified by a silica gel flash chromatography (PE/EA = 100/1) giving the product 3q as a white solid in 82% yield (37.8 mg), m. p. 209.3 – 211.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.28 (q, *J* = 7.2 Hz, 5H), 7.23 (d, 6.6Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 7.2 Hz, 1H), 4.11 – 4.03 (m, 1H), 2.00 –

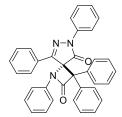
1.95 (m, 1H), 1.91 (d, J = 10.2 Hz, 2H), 1.89 – 1.78 (m, 3H), 1.70 (d, J = 11.4 Hz, 1H), 1.45 – 1.34 (m, 2H), 1.31 (s, 3H), 1.28 – 1.19 (m, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.8, 164.8, 157.0, 136.9, 136.8, 136.2, 129.5, 129.0, 128.4, 128.2, 128.1, 127.3, 127.0, 125.2, 116.4, 76.1, 71.9, 53.4, 31.1, 30.4, 25.5, 25.4, 25.2, 15.3. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₉N₃O₂Na 486.2152; found 486.2144.


6-(tert-butyl)-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5dione (3r): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3r** as a white solid in 80% yield (36.4 mg), m. p. 160.7 – 161.6 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 6.6 Hz, 2H), 7.51 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 2H), 7.24 – 7.19 (m, 5H), 7.18 –

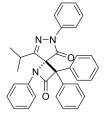
7.13 (m, 1H), 7.14 – 7.09 (m, 2H), 7.03 (t, J = 7.8 Hz, 1H), 1.48 (s, 9H), 1.24 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 170.2, 164.9, 155.7, 137.2, 136.9, 136.6, 129.5, 129.0, 128.3, 128.2, 128.0, 127.2, 127.0, 125.1, 116.5, 76.0, 72.4, 58.1, 28.0, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₈H₂₇N₃O₂Na 460.1996; found 460.2002.


6-isopropyl-8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3s): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3s** as a white solid in 72% yield (30.5 mg), m. p. 198.4 – 200.6 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 7.8 Hz, 2H), 7.48 – 7.44 (m, 2H), 7.28 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.20 (m, 5H), 7.18 – 7.15 (m, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.04 (t, *J* = 7.2 Hz, 1H), 4.43 – 4.37(m, 1H), 1.41 (d, *J*

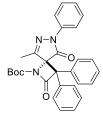
= 6.6 Hz, 3H), 1.30 (d, *J* = 6.6 Hz, 3H), 1.27 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.9, 164.8, 157.2, 136.9, 136.8, 136.2, 129.5, 129.1, 128.4, 128.3, 128.1, 127.3, 127.0, 125.2, 116.5, 76.2, 72.0, 46.2, 20.8, 20.2, 15.3. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₇H₂₅N₃O₂Na 446.1839; found 446.1838.


6,8-dimethyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3t): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3t** as a white solid in 76% yield (30.1 mg), m. p. 167.8 – 169.6 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 6.3 Hz, 2H), 7.55 – 7.51 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.28 (m, 5H), 7.27 – 7.24 (m, 1H),

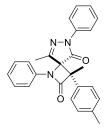
7.19 (dd, J = 8.4, 1.4 Hz, 2H), 7.12 (t, J = 7.7 Hz, 1H), 3.44 (s, 3H), 1.33 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 169.9, 164.8, 157.9, 136.72, 136.68, 136.0, 129.6, 129.1, 128.5, 128.3, 128.2, 127.4, 127.1, 125.3, 116.5, 76.4, 71.4, 32.3, 15.2. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₅H₂₁N₃O₂Na 418.1526; found 418.1534.


8-methyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3u): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3u** as a white solid in 87% yield (33.2 mg), m. p. 173.2 – 177.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.67 (s, 1H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.32 (m, 5H), 7.30 – 7.25 (m,

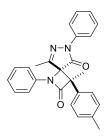
3H), 7.16 (t, J = 7.2 Hz, 1H), 1.36 (s, 3H).¹³C NMR (150 MHz, Chloroform-*d*) δ 172.5, 164.7, 159.1, 136.59, 136.56, 135.8, 129.7, 129.1, 128.5, 128.4, 128.2, 127.4, 127.0, 125.4, 116.5, 76.7, 70.5, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₅H₁₉N₃O₂Na 404.1370; found 404.1376.


1,3,3,6,8-pentaphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3v): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3v** as a white solid in 95% yield (49.5 mg), m. p. 203.8-205.0 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.98 – 7.92 (t, *J* = 7.0 Hz, 2H), 7.66 (t, *J* = 7.0 Hz, 2H), 7.52 (t, *J* = 6.3 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 4H), 7.35 (t, *J* = 6.3 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.27 – 7.24 (m, 3H), 7.14 – 7.09 (t, *J* = 7.0 Hz, 1H),

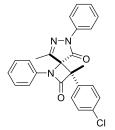
7.10 – 7.05 (t, J = 7.0 Hz, 1H), 7.02 (t, J = 7.7 Hz, 2H), 6.94 (m, 2H), 6.89 (t, J = 7.7 Hz, 1H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 168.3, 164.7, 155.0, 137.7, 137.2, 136.6, 136.0, 130.9, 123.0, 129.7, 129.2, 128.6, 128.4, 128.2, 128.1, 127.8, 127.3, 126.9, 126.4, 125.8, 125.5, 118.7, 117.1, 78.8, 72.7. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₅H₂₅N₃O₂Na 542.1839; found 542.1845.


8-isopropyl-1,3,3-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3x): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3x** as a white solid in 93% yield (45.4 mg), m. p. 165.1 – 167.3 °C, ¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.59 (s, 2H), 7.52 – 7.47 (m, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.24 – 7.13 (m, 9H), 7.02 (t, *J* = 7.8 Hz, 1H), 1.65 – 1.56 (m, 1H). 0.88 (d, *J* = 6.6 Hz, 3H), 0.63 (d, *J* = 6.6 Hz, 3H)

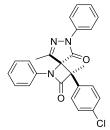
3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.9, 165.3, 164.9, 138.0, 137.2, 136.8, 136.7, 129.4, 129.13, 129.10, 128.5, 128.4, 128.1, 127.2, 127.1, 125.5, 125.3, 118.4, 117.1, 77.4, 73.1, 29.7, 22.2, 19.3. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₂H₂₇N₃O₂Na 508.1996; found 508.1991.


tert-butyl5-methyl-2,8-dioxo-3,3,7-triphenyl-1,6,7-triazaspiro[3.4]oct-5-ene-1-carboxylate (3y): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3y** as a white solid in 23% yield (11.2 mg), m. p. 153.4 – 156.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 4H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.30 (q, *J* = 7.2 Hz, 2H), 1.40 (s, 3H), 1.31 (s, 9H).

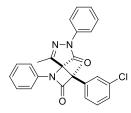
¹H NMR (600 MHz, Chloroform-*d*₆) δ 7.73 (d, *J* = 7.2 Hz, 2H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.8 Hz, 3H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 1.40 (s, 3H), 1.31 (s, 9H). ¹³C NMR (150 MHz, DMSO-*d*) δ 168.6, 157.1, 137.6, 136.4, 136.3, 130.0, 129.7, 129.3, 129.2, 128.6, 126.9, 126.7, 126.2, 118.9, 85.8, 76.2, 71.2, 27.6, 14.9. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₉H₂₇N₃O₄Na 504.1894, found 504.1900.


3,8-dimethyl-1,6-diphenyl-3-(p-tolyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (*3z*): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product **3z** as a white solid in 45% yield (18.6 mg), m. p. 133.2 – 135.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.50 – 7.45 (m, 3H), 7.30 – 7.25 (m, 3H), 7.19 – 7.13 (m, 4H), 7.10 (t, *J* = 7.2 Hz, 2H), 2.34 (s, 3H), 1.91 (s, 3H), 1.28 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.3, 166.7, 159.6, 138.4, 138.1, 136.8, 134.7, 129.8, 129.7, 129.2, 125.9, 125.7, 125.3, 118.7, 116.3,

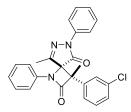
71.8, 68.9, 21.5, 21.3, 14.9. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{26}H_{23}N_3O_2Na$ 432.1683, found 432.1687.


3,8-dimethyl-1,6-diphenyl-3-(p-tolyl)-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (*3z'*): The residue was purified by a silica gel flash chromatography (PE/EA = 60/1) giving the product *3z*' as a white solid in 35% yield (14.2 mg), m. p. 172.3 – 176.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.67 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.15 (m, 5H), 7.13 – 7.07 (m, 3H), 2.36 (s, 3H), 2.32 (s, 3H), 1.94 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.3, 167.0, 157.0, 138.1, 137.6, 136.8, 134.4, 129.7, 129.5, 129.1, 125.9, 125.5, 125.2, 118.6, 116.5,

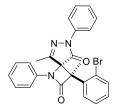
72.8, 70.5, 22.9, 21.3, 16.9. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{26}H_{23}N_3O_2Na$ 432.1683; found 432.1692.


3-(4-chlorophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3aa): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3aa** as a white solid in 54% yield (23.2 mg), m. p. 153.9 – 155.1 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.59 (dd, J = 8.4, 0.7 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.27 – 7.16 (m, 6H), 7.13 (t, J = 7.0 Hz, 1H), 7.11 – 7.07 (m, 2H), 7.05 (t, J = 7.0 Hz, 1H), 2.28 (s, 3H), 1.86 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 168.0, 166.3, 156.7, 137.4, 136.5, 135.9, 134.3, 129.73,

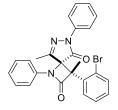
129.70, 129.1, 128.9, 125.6, 125.4, 118.4, 116.4, 72.5, 69.7, 22.7, 16.9. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{25}H_{20}N_3O_2Na$ 452.1137; found 452.1143.


3-(4-chlorophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3aa'): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3aa'** as a white solid in 42% yield (18.1 mg), m. p. 166.0 – 167.3 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.7 Hz, 2H), 7.45 – 7.39 (m, 3H), 7.30 (d, *J* = 9.1 Hz, 2H), 7.25 – 7.19 (m, 3H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.05 (t, *J* = 7.7 Hz, 2H), 1.84 (s, 3H), 1.27 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ 167.9, 166.0, 159.0, 137.9, 136.5, 136.2, 134.5, 129.7,

129.5, 129.2, 127.4, 125.8, 125.4, 118.6, 116.3, 71.5, 68.0, 21.6, 14.8. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{25}H_{20}N_3O_2Na$ 452.1137; found 452.1135.

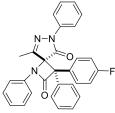

3-(3-chlorophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7ene-2,5-dione (3bb): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3bb** as a white solid in 56% yield (24.1 mg), m. p. 173.2 – 177.9 °C. m. p. 142.6 – 144.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 3H), 7.31 – 7.15 (m, 8H), 7.12 (t, *J* = 7.8 Hz, 1H), 2.36 (s, 3H), 1.94 (s, 3H). ¹³C NMR

 $(150 \text{ MHz, Chloroform-}d) \ \delta \ 168.0, \ 166.0, \ 156.6, \ 139.3, \ 137.2, \ 136.5, \ 134.7, \ 130.0, \ 129.7, \ 129.0, \ 128.6, \ 126.3, \ 125.7, \ 125.4, \ 124.2, \ 118.6, \ 116.4, \ 72.4, \ 69.7, \ 22.6, \ 16.8. \ \text{HRMS} \ (\text{ESI-TOF}) \ \text{m/z} \ [\text{M} + \text{Na}]^+ \ \text{Calcd} \ \text{for } C_{25}\text{H}_{20}\text{ClN}_3\text{O}_2\text{Na} \ 452.1137; \ \text{found} \ 452.1133.$

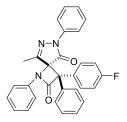

3-(3-chlorophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7ene-2,5-dione (3bb'): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3bb'** as a white solid in 40% yield (17.3 mg), m. p. 190.1 – 192.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.8 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 3H), 7.33 (m, 2H), 7.30 (m, 3H)., 7.16 (d, *J* = 8.4 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 2H), 1.92 (s, 3H), 1.35 (s, 3H). ¹³C

NMR (150 MHz, Chloroform-*d*) δ 167.9, 165.8, 158.9, 139.7, 138.0, 136.6, 135.4, 130.7, 129.8, 129.3, 128.8, 126.3, 125.9, 125.5, 124.3, 118.8, 116.4, 71.5, 68.1, 21.5, 14.9. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₅H₂₀ClN₃O₂Na 452.1137; found 452.1141.

3-(2-bromophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3cc): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3cc** as a white solid in 38% yield (17.8 mg), m. p. 128.3 – 129.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.97 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.59 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.32 (m, 1H), 7.33 – 7.22 (m, 3H), 7.26 – 7.16 (m, 3H), 7.11

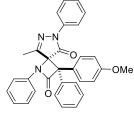

(t, J = 7.2 Hz, 1H), 2.17 (s, 3H), 1.40 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.4, 167.1, 157.2, 138.0, 136.6, 134.9, 130.1, 129.8, 129.2, 129.0, 128.2, 125.8, 125.5, 122.0, 119.0, 116.6, 70.3, 68.5, 17.9, 14.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₅H₂₀BrN₃O₂Na 496.0632; found 496.0641.

3-(2-bromophenyl)-3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3cc'): The residue was purified by a silica gel flash chromatography (PE/EA = 50/1) giving the product **3cc'** as a white solid in 40% yield (19.2 mg), m. p. 186.0 – 187.5 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 3H), 7.17 –

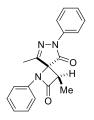

7.10 (m, 2H), 2.40 (s, 3H), 2.14 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.19, 167.15, 155.6, 137.6, 136.5, 136.2, 134.0, 129.68, 129.65, 129.0, 127.8, 125.6, 125.4, 121.5, 118.8, 116.6, 71.7, 69.7, 20.5, 17.0. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₅H₂₀BrN₃O₂Na 496.0632; found 496.0633.

The isomers **3dd/3dd'** can't be separated neither by flash chromatography nor by HPLC chromatography. The individual yield of **3dd/3dd'** was calculated by ¹H NMR.

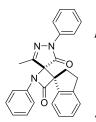
3-(4-fluorophenyl)-8-methyl-1,3,6-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3dd): The mixture of isomers was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product 3dd/3dd' as a white solid in 84% total yield (individual yield was calculated by ¹H NMR, 3dd, 46% yield, 22.1 mg). ¹H NMR (600 MHz, Chloroform-d) δ 7.80 (t, J = 7.2 Hz, 4H), 7.65 – 7.52 (m, 4H), 7.41 – 7.34 (m, 4H), 7.28 – 7.22 (m, 3H), 7.05 (t, J = 7.2 Hz, 2H),


6.92 (t, J = 9.0 Hz, 2H), 1.37 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) $\delta \delta$ 167.6, 164.4, 162.4 (d, $J_{C,F} = 246.8$ Hz), 158.7, 137.7, 136.5, 132.6, 131.9, 129.8, 129.3 (d, $J_{C,F} = 8.7$ Hz), 129.2 (d, $J_{C,F} = 4.0$ Hz), 128.4, 127.2, 127.0, 125.7, 125.6, 118.4, 116.5, 115.6 (d, $J_{C,F} = 21.6$ Hz), 76.6, 72.7, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂FN₃O₂Na 498.1589; found 498.1589.

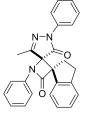
3-(4-fluorophenyl)-8-methyl-1,3,6-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3dd'): The mixture of isomers was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3dd/3dd'** as a white solid in 84% total yield (individual yield was calculated by ¹H NMR, **3dd'**, 38% yield, 18.3 mg). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.53 – 7.44 (m, 5H), 7.30 (t, *J* = 7.2 Hz, 3H), 7.18 – 7.14 (m, 9H), 6.99 (t, *J* = 8.4 Hz, 2H), 1.42 (s, 3H). ¹³C


NMR (150 MHz, Chloroform-*d*) δ 167.6, 164.4, 162.5 (d, $J_{C,F} = 247.8$ Hz), 158.3, 136.5, 136.4, 136.1, 132.6, 131.9, 129.3 (d, $J_{C,F} = 2.0$ Hz), 129.0, 128.9, 128.6 (d, $J_{C,F} = 15.3$ Hz), 128.4, 127.2, 125.64, 125.59, 116.5, 116.2 (d, $J_{C,F} = 21.6$ Hz), 76.6, 72.7, 15.6. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₂FN₃O₂Na 498.1589; found 498.1589.

The isomers **3ee/3ee'** can't be separated neither by flash chromatography nor by HPLC chromatography. The individual yield of **3ee/3ee'** was calculated by ¹H NMR. NMR spectra of **3ee'** can't be obtained due to overlap of NMR signals.

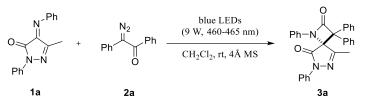

3-(4-methoxyphenyl)-8-methyl-1,3,6-triphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3ee): The mixture of isomers was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product 3ee/3ee' as a white solid in 78% total yield (individual yield was calculated by ¹H NMR, 3ee, 65% yield, 38.5 mg; 3ee', 13% yield, 7.7 mg). ¹H NMR (600 MHz, Chloroform-d) δ 7.80 (d, J = 7.2 Hz, 2H), 7.55 (d, J = 6.6 Hz, 2H), 7.48 (d,

J = 7.2 Hz, 1H), 7.41 (d, J = 9.0 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.27 (t, J = 7.2 Hz, 2H), 7.23 – 7.18 (m, 4H), 7.02 (t, J = 7.2 Hz, 1H), 6.74 (d, J = 9.0 Hz, 2H), 3.65 (s, 3H), 1.35 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.7, 164.9, 159.3, 158.9, 137.9, 136.9, 136.6, 129.7, 129.17, 129.16, 128.8, 128.6, 128.38, 128.36, 128.0, 127.1, 127.0, 125.6, 125.4, 77.2, 72.8, 55.2, 15.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₁H₂₅N₃O₃Na 510.1789; found 510.1788.


3,8-dimethyl-1,6-diphenyl-1,6,7-triazaspiro[3.4]oct-7-ene-2,5-dione (3ff): The residue was purified by a silica gel flash chromatography (PE/EA = 100/1) giving the product **3ff** as a white solid in 75% yield (23.8 mg), m. p. 97.2 – 103.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.92 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.24 – 7.18 (m, 3H), 7.03 (t, J = 7.8 Hz, 1H), 3.77 (q, J = 7.8 Hz, 1H), 2.17 (s, 3H), 1.40 (d, J = 7.8 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 169.1, 165.5, 157.2, 137.7,

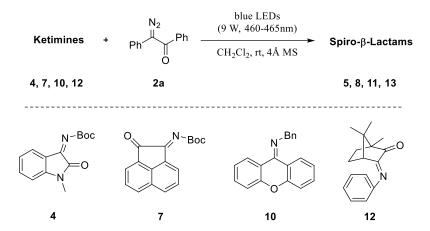
136.8, 129.7, 129.1, 125.7, 125.1, 118.5, 115.9, 67.2, 56.7, 15.7, 10.1. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for C₁₉H₁₇N₃O₂Na 342.1213; found 342.1220.

3''-methyl-1',1''-diphenyl-2,3-dihydrodispiro[indene-1,3'-azetidine-2',4''pyrazole]-4',5''(1''H)-dione (3gg): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3gg** as a white solid in 64% yield (25.6 mg), m. p. 189.1 – 191.2 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.81 – 7.75 (m, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.37 – 7.31 (m, 4H), 7.30 – 7.26 (m, 2H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.23 – 7.18 (m, 1H), 7.15 (t, *J* = 7.8 Hz, 2H), 3.00 – 2.88 (m, 2H),


2.76 (dt, J = 13.8, 9.0 Hz, 1H), 2.68 – 2.62 (m, 1H), 2.33 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 167.02, 166.96, 157.9, 144.8, 137.7, 136.6, 135.8, 129.7, 129.6, 128.9, 128.0, 126.1, 125.4, 125.3, 124.4, 118.5, 116.5, 77.8, 73.1, 30.9, 30.9, 16.1. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₆H₂₁N₃O₂Na 430.1526; found 430.1536.

3''-methyl-1',1''-diphenyl-2,3-dihydrodispiro[indene-1,3'-azetidine-2',4''pyrazole]-4',5''(1''H)-dione (3gg'): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **3gg'** as a white solid in 30% yield (12.2 mg), m. p. 136.9 – 142.7 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 7.2 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.41 – 7.34 (t, *J* = 7.2 Hz, 2H), 7.24 (t, *J* = 7.8 Hz, 3H), 7.20 (m, 1H), 7.18 – 7.14 (m, 2H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.06 (t, *J* = 7.2

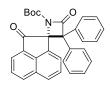
Hz, 1H), 3.04 (dd, J = 14.4, 6.0 Hz, 1H), 2.71 (m, 1H), 2.69 – 2.60 (m, 1H), 2.53 – 2.44 (m, 1H), 1.81 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 169.4, 166.7, 157.8, 146.2, 137.8, 137.4, 136.9, 129.8, 129.7, 129.1, 126.1, 125.8, 125.7, 125.4, 125.2, 118.6, 116.3, 77.9, 77.3, 73.5, 31.8, 30.7, 16.6. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₆H₂₁N₃O₂Na 430.1526; found 430.1530.


4. Scale-up synthesis of product 3a

Pyrazolone-derived phenyl ketimines **1a** (3.0 mmol, 1.0 equiv.) and α -diazoketones **2a** (6.0 mmol, 2.0 equiv.) were dissolved in CH₂Cl₂ (3 mL). At room temperature, the reaction mixture was then irradiated under blue LEDs for hours until the complete consumption of **1a** (monitored by TLC). The reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (PE/EA = 80/1) to give the pure product **3a** in 80% (1.1 g) isolated yield.

5. Synthesis of other spiro-β-lactams and deprotection of N-Boc

group of products 5 and 8

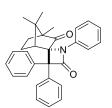

Other ketimines 4, 7, 10 or 12 (0.1 mmol, 1.0 equiv.) and α -diazoketone 2a (0.2 mmol, 2.0 equiv.) were dissolved in CH₂Cl₂ (1.0 mL). At room temperature, the reaction mixture was then irradiated under blue LEDs for hours until the complete consumption of 4 or 7 (monitored by TLC). The reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether /ethyl acetate = 80:1) to give the pure products 5, 8, 11 or 13.

tert-butyl-1'-methyl-2',4-dioxo-3,3-diphenylspiro[azetidine-2,3'-indoline]-1-

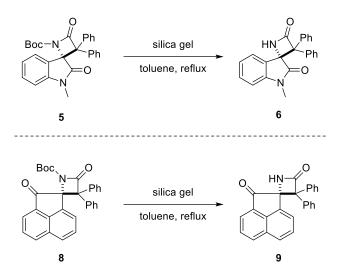
carboxylate (5): The residue was purified by a silica gel flash chromatography (PE/EA = 10/1) giving the product **5** as a white solid in 84% yield (38.1 mg), m. p. 178.2 – 179.6 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.28 – 7.20 (m, 5H), 7.20 – 7.17 (m, 3H). 6.90 (d, *J* = 7.2 Hz, 2Hz, 2Hz, 2Hz, 2Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (d, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 1Hz), 7.28 – 7.20 (m, 5Hz), 7.20 – 7.17 (m, 3Hz). 6.90 (m, *J* = 7.2 Hz), 7.32 – 7.28 (m, 7Hz), 7.20 – 7.17 (m, 7Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, 7Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, 7Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, 7Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, 7Hz). 6.90 (m, *J* = 7.2 Hz), 7.20 – 7.17 (m, *J* = 7.2 Hz).

1H), 6.70 (t, J = 7.2 Hz, 1H), 6.12 (d, J = 7.2 Hz, 1H). 3.25 (s, 3H), 1.25 (s, 9H). ¹³C NMR (150 MHz,

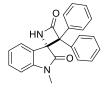
Chloroform-*d*) δ 173.0, 166.3, 144.5, 137.6, 137.1, 130.5, 128.52, 128.49, 128.04, 128.00, 127.7, 126.5, 126.2, 123.4, 122.2, 108.3, 84.2, 75.5, 69.4, 27.8, 26.8. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₈H₂₆N₂O₄Na 477.1785; found 477.1794.


tert-butyl2,4'-dioxo-3',3'-diphenyl-2H-spiro[acenaphthylene-1,2'-azetidine]-1'carboxylate (8): The residue was purified by a silica gel flash chromatography (PE/EA = 10/1) giving the product **8** as a white solid in 96% yield (45.6 mg), m. p. 174.1 – 175.6 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.80 (t, *J* = 8.4 Hz, 1H),

7.33 (d, J = 7.8 Hz, 3H), 7.20 (m, 3H), 7.16 (m, 5H). 6.45 (d, J = 6.6 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 199.1, 166.7, 142.0, 137.6, 137.5, 133.3, 132.2, 131.9, 130.7, 128.51, 128.47, 128.4, 128.09, 128.05, 128.0, 127.5, 127.2, 126.1, 123.1, 122.2, 84.0, 76.1, 73.4, 27.5. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₁H₂₅NO₄Na 498.1676; found 498.1668.

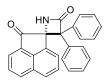

1-benzyl-3,3-diphenylspiro[azetidine-2,9'-xanthen]-4-one (11): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product **11** as a white solid in 74% yield (35.7 mg), m. p. 226.5 – 228.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.25 – 7.21 (m, 6H), 7.21 – 7.16 (m, 5H), 7.14 (t, *J* = 7.2 Hz, 2H), 6.98 – 6.91 (m, 6H), 6.54 – 6.46 (m, 4H), 4.44 (s, 2H). ¹³C NMR (150 MHz,

Chloroform-*d*) δ 170.4, 152.5, 139.2, 136.2, 129.5, 129.2, 128.5, 128.4, 127.9, 127.6, 127.3, 126.2, 122.4, 119.5, 116.2, 81.9, 68.8, 44.9. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₄H₂₅NO₂Na 502.1778; found 502.1788.



4',7',7'-trimethyl-1,3,3-triphenylspiro[azetidine-2,2'-bicyclo[2.2.1]heptane]-3',4dione (13): The residue was purified by a silica gel flash chromatography (PE/EA = 80/1) giving the product 13 as a white solid in 90% yield (39.0 mg), m. p. 215.7 – 218.5 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 7.8 Hz, 2H), 7.53 (d, *J* = 6.6 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 4.2 Hz, 4H), 7.39 – 7.34 (m, 4H), 7.30 (t, *J* = 7.2 Hz, 1H), 2.89 (d, *J* = 4.8 Hz, 1H), 1.88 – 1.79 (m, 1H), 1.68 –

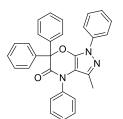
1.62 (m, 1H), 1.58 – 1.54 (m, 2H), 0.89 (s, 3H), 0.68 (s, 3H), 0.15 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 213.2, 170.4, 138.1, 135.8, 133.9, 130.1, 130.0, 129.4, 129.2, 128.61, 128.58, 128.2, 127.9, 127.7, 83.2, 75.0, 58.5, 49.3, 45.7, 28.2, 24.3, 22.9, 20.1, 9.6. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₀H₂₉NO₂Na 458.2091; found 458.2083.



To an oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with cycloadduct **5** or **8** and 1.0 g silica gel (200-300 mesh). To this mixture was added freshly distilled toluene (6 mL) and the reaction mixture was stirred under refluxing. After **5** or **8** was fully consumed, the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel (petroleum ether /ethyl acetate = 1/4) to give the corresponding product **6** or **9**.

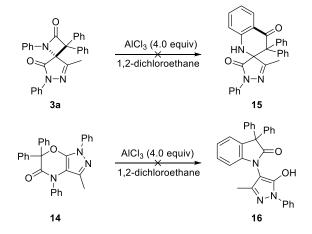
1'-methyl-3,3-diphenylspiro[azetidine-2,3'-indoline]-2',4-dione (6): The residue was purified by a silica gel flash chromatography (PE/EA = 4/1) giving the product **6** as a white solid in 77% yield (54.3 mg), m. p. 192.4 – 196.6 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.38 (td, *J* = 7.7, 1.4 Hz, 2H), 7.25 – 7.20 (m, 1H), 7.19 – 7.15 (m, 4H), 7.13 – 7.08 (m, 4H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.68 – 6.64 (td, *J* = 7.7, 7.7 Hz, 7.7

1.4 Hz, 1H), 6.40 (s, 1H), 6.19 (dd, J = 8.4, 2.1 Hz, 1H), 3.15 (s, 3H). ¹³C NMR (175 MHz, Chloroformd) δ 175.5, 169.7, 143.8, 138.5, 138.1, 130.4, 128.32, 128.30, 128.0, 127.6, 127.4, 126.6, 126.4, 124.7, 122.3, 108.3, 78.6, 67.2, 26.8. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₃H₁₈N₂O₂Na 377.1261; found 377.1264.


3',3'-diphenyl-2H-spiro[acenaphthylene-1,2'-azetidine]-2,4'-dione (9): The residue was purified by a silica gel flash chromatography (PE/EA = 5/1) giving the product 9 as a white solid in 74% yield (27.6 mg), m. p. 203.7 – 205.5 °C. ¹H NMR (600 MHz, Chloroform-d) δ 8.10 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 6.6 Hz, 1H), 7.79

(d, J = 8.4 Hz, 1H), 7.72 (dd, J = 7.8, 7.2 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.14 – 7.08 (m, 4H), 7.06 (d, J = 7.2 Hz, 4H), 6.51 (d, J = 7.2 Hz, 1H), 6.44 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 201.8, 170.0, 141.4, 138.6, 138.4, 134.3, 132.2, 131.6, 130.5, 128.5, 128.4, 128.3, 128.2, 128.0, 127.6, 127.3, 127.1, 126.0, 123.3, 122.2, 79.2, 71.4. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₆H₁₇NO₂Na 398.1152; found 398.1155.

6. Synthetic transformation of spiro-pyrazolone-β-lactam 3a


3a (0.1mmol, 45.7 mg) was dissolved in 1,2-dichloroethane (3 mL) and cooled to 0 °C. Trifluoromethanesulfonic acid (0.1 mmol, 8.9 μ L) was then added drop-wise to the stirring solution at 0 °C. The mixture was warmed to room temperature and stirred for an additional 15 minutes. The reaction was quenched with saturated NaHCO₃, extracted with ethyl acetate, dried over anhydrous Na₂SO₄ and concentrated in vacuo to 80% of yield crude product **14** (36.6 mg).

3-methyl-1,4,6,6-tetraphenyl-1,4-dihydropyrazolo[3,4-b][1,4]oxazin-5(6H)-one (*14*): The residue was purified by a silica gel flash chromatography (PE/EA = 20/1) giving the product **14** as a white solid in 80% yield (36.6 mg), m. p. 135.1 – 136.7 °C. ¹H NMR (700 MHz, Chloroform-*d*) δ 7.73 (dd, *J* = 9.1, 1.4 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.39 – 7.34 (m, 8H), 7.32 (t, *J* = 7.0 Hz, 1H), 7.28 – 7.24 (m, 6H), 7.20 (t, *J* = 7.7 Hz, 1H), 1.50 (s, 3H). ¹³C NMR (175 MHz, Chloroform-*d*) δ

163.3, 140.8, 138.7, 138.0, 136.5, 136.4, 129.4, 128.9, 128.4, 128.3, 127.7, 127.5, 126.1, 119.6, 109.4, 91.7, 13.1. HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{30}H_{23}N_3O_2Na$ 480.1683; found 480.1693.

Attempts for synthetic transformation of 3a and 14

7. NOE experiments of products 3aa and 3aa'

The relative configurations of diastereomers **3aa** and **3aa**' can be determined by the NOE experiments, and the relative configurations of other products **3** were tentatively assigned by analogy.

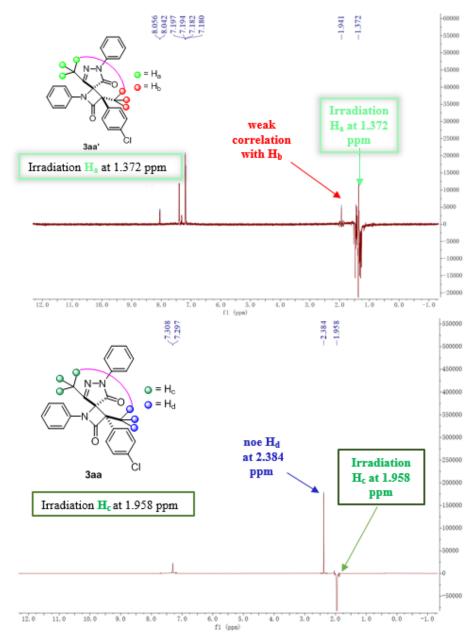
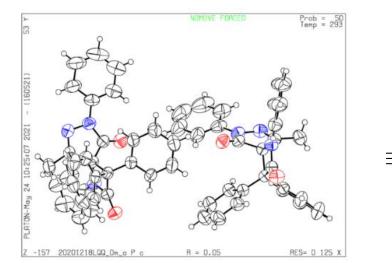
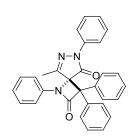
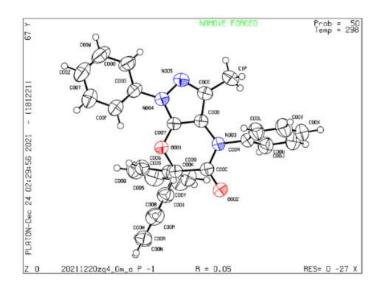
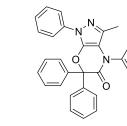




Figure S1. NOE experiments of products 3aa and 3aa'

8. X-ray crystal structure of products 3a and 14

To a 10 mL tube containing **3a** (30.0 mg) was added a mixture of solvent (petroleum ether/ethyl acetate/methylene chloride = 1:1:1, v/v/v) (6.0 mL). A clear solution was obtained through ultrasound treatment and was kept at room temperature and the crystals were obtained after the solvent evaporated, which were characterized by X-ray single crystal diffraction. X-ray diffraction experiment was carried out on an Agilent D8 QUEST and the data obtained were deposited at the Cambridge Crystallographic Data Centre.

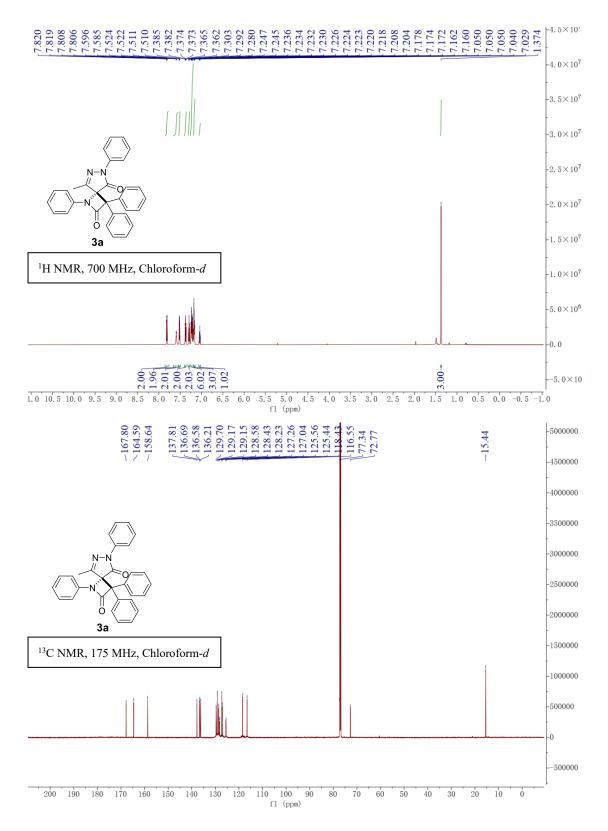

3a, CCDC 2162438

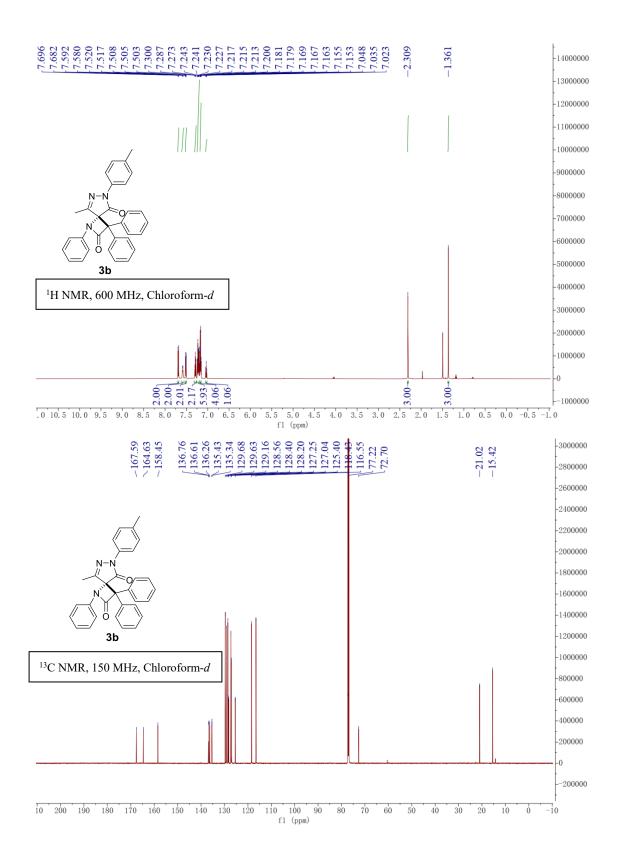

(Ellipsoid contour probability 50%)

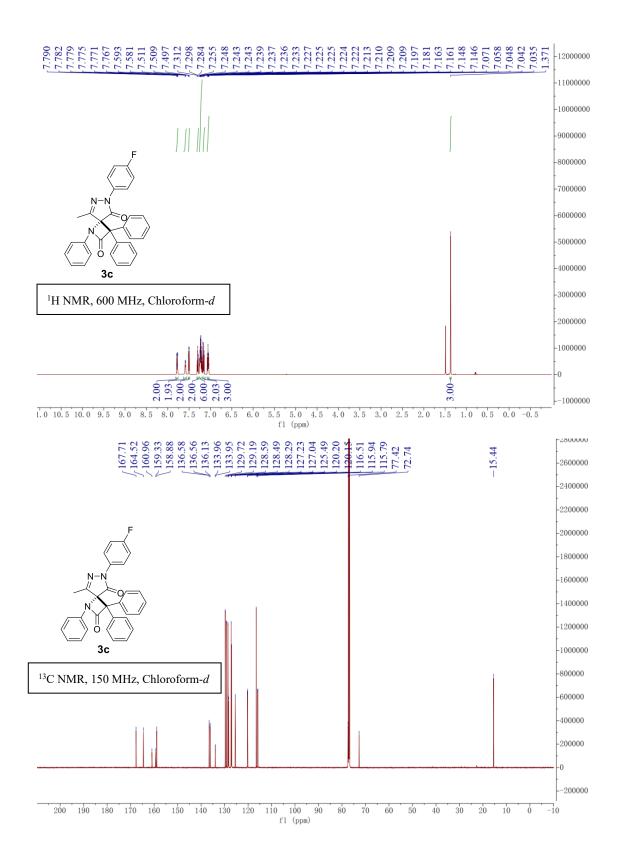
Identification code	code 20201218LQQ		
Chemical formula	ical formula C ₆₀ H ₄₆ N ₆ O ₄		
Formula weight	915.03 g/mol		
Temperature	293(2) K		
Wavelength	1.54178 Å		
Crystal system	monoclinic		
Space group	P 1 c 1		
Unit cell dimensions	a = 8.6949(2) Å	$\alpha = 90^{\circ}$	
	b = 11.6143(3) Å	$\beta = 91.655(2)^{\circ}$	
	c = 24.1633(7) Å	$\gamma = 90^{\circ}$	
Volume	2439.12(11) Å ³		
Z	2		
Density (calculated)	1.246 g/cm ³		
Absorption coefficient	0.630 mm ⁻¹		
F(000)	960		
Theta range for data collection	3.66 to 68.40°		
Index ranges	-10<=h<=10, -14<=k<=14, -29<=l<=27		
Reflections collected	35837		
Independent reflections	8101 [R(int) = 0.0745]		
Coverage of independent reflections	99.8%		
2	519		

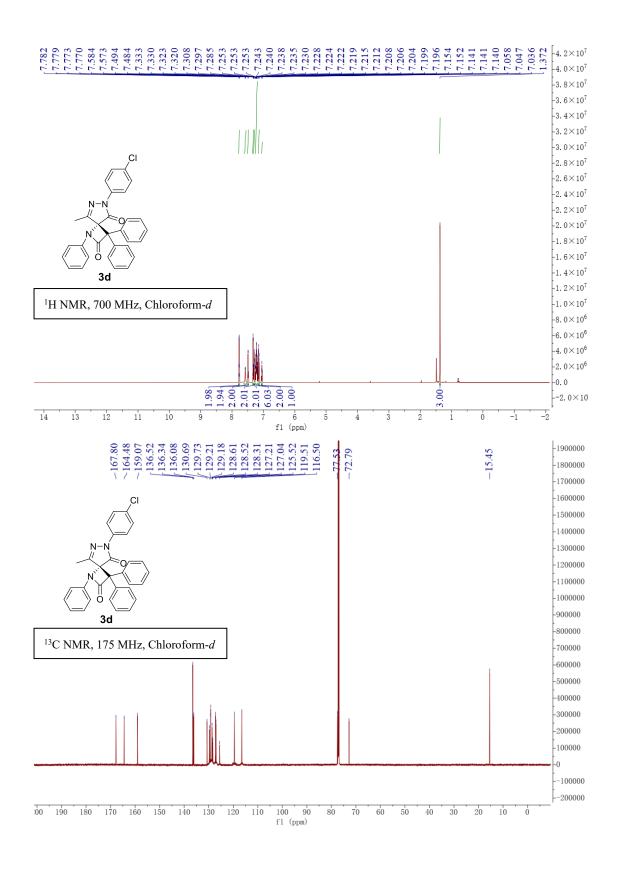
Absorption correction	Multi-Scan	
Structure solution technique	direct methods	
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	8101 / 2 / 634	
Goodness-of-fit on F ²	1.033	
Final R indices	5764 data; I> $2\sigma(I)$ R1 = 0.0537, wR2 = 0.1246	
	all data $R1 = 0.0798$, wR2 = 0.1470	
Weighting scheme	$w=1/[\sigma^2(F_o^2) + (0.0674P)^2 + 0.1858P]$	
	where $P = (F_o^2 + 2F_c^2)/3$	
Absolute structure parameter	0.5(3)	
Extinction coefficient	0.0069(5)	
Largest diff. peak and hole 0.188 and -0.155 eÅ ⁻³		
R.M.S. deviation from mean	0.046 eÅ ⁻³	

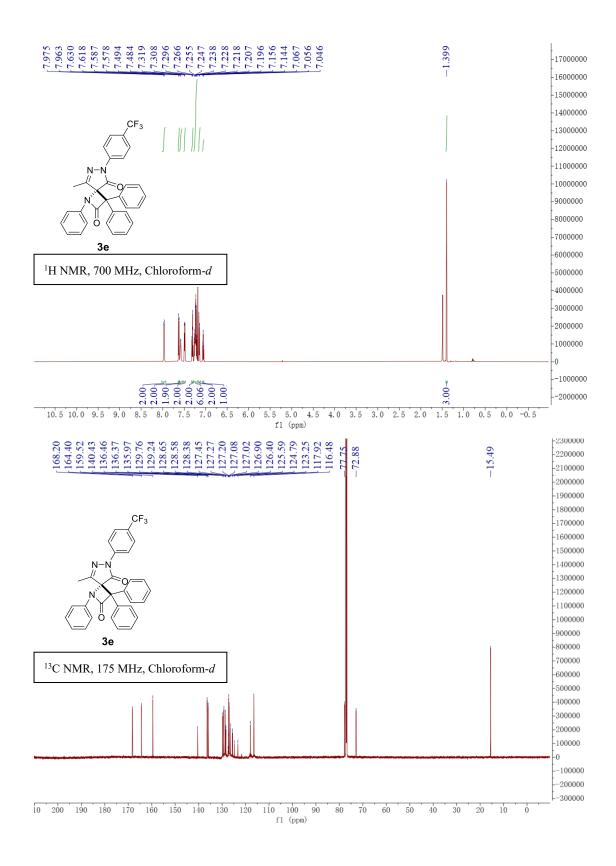
To a 10 mL tube containing **14** (30.0 mg) was added a mixture solvent (petroleum ether/ethyl acetate/methylene chloride = 1:1:2, v/v/v) (4 mL). A clear solution was obtained through ultrasound treatment and was kept at room temperature and the crystals were obtained after the solvent evaporated, which were characterized by single crystal X-ray diffraction. X-ray diffraction experiment was carried out on an Agilent D8 QUEST and the data obtained were deposited at the Cambridge Crystallographic Data Centre.


14, CCDC 2162437


(Ellipsoid contour probability 50%)


Identification code	20211220zg4
Chemical formula	$C_{30}H_{23}N_3O_2$
Formula weight	457.51 g/mol
Temperature	298(2) K


Wavelength	1.54178 Å		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	$a = 9.4208(3) \text{ Å}$ $\alpha = 105.4940(10)^{\circ}$		
	$b = 11.8769(3) \text{ Å}$ $\beta = 94.3980(10)^{\circ}$		
	$c = 12.1636(3) \text{ Å}$ $\gamma = 109.4020(10)^{\circ}$		
Volume	1216.38(6) Å ³		
Z	2		
Density (calculated)	1.249 g/cm ³		
Absorption coefficient	0.631 mm ⁻¹		
F(000)	480		
neta range for data collection3.83 to 68.43°			
Index ranges	s -11<=h<=11, -14<=k<=14, -14<=l<=14		
Reflections collected	34398		
Independent reflections	4462 [R(int) = 0.0599]		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)		
Function minimized	$\Sigma \mathrm{w} (\mathrm{F_o2} - \mathrm{F_c}^2)2$		
Data / restraints / parameters	4462 / 0 / 317		
Goodness-of-fit on F2	1.043		
Final R indices	3390 data; I>2 σ (I) R1 = 0.0488, wR2 = 0.1282		
	all data $R1 = 0.0649$, $wR2 = 0.1441$		
Weighting scheme	$w=1/[\sigma^2(F_o^2) + (0.0763P)^2 + 0.1803P]$		
	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.217 and -0.190 eÅ ⁻³		
R.M.S. deviation from mean	0.038 eÅ ⁻³		


9. ¹H NMR and ¹³C NMR spectra

