Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

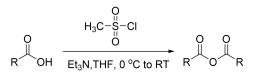
Electronic Supplementary Information for

Phosphine-Catalyzed Divergent Reactivity of Alkynoates with Acid Anhydrides: Chemo- and Stereoselective Synthesis of Polysubstituted Olefins and Dienes

Yunxia Li,^a Yunfeng Du,^a Yiming Liu,^{*b} Rongfang Liu^{*c} and Rong Zhou^{*a}

^a College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 ^b College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 ^c College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China

Table of Contents


I. General Information	
II. General Procedures for the Synthesis of Anhydrides 2	S2
III. Typical Procedure for the Phosphine-Catalyzed Reactions of Alkyn	oates with
Anhydrides	S2
IV. Survey of the Reaction Conditions	S3
V. Control Experiments for Mechanistic Investigation	S5
VI. Analytical Data for Compounds 3, 4, and 5	S6
VII. ORTEP Drawings for 3b , 4k , 5b	S17
VIII. Supplementary References	S20
IX. ¹ H and ¹³ C NMR Spectra for Compounds 3, 4, and 5	S21

I. General Information

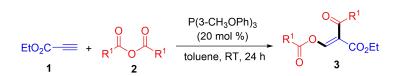
Unless otherwise noted, all reactions were carried out in nitrogen atmosphere under anhydrous conditions. Solvents were purified prior to use according to standard procedures. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AV-III400 (400 MHz) spectrometer. ¹H and ¹³C NMR spectra were recorded in benzene-d₆ (δ 7.16) or CDCl₃(δ 7.26) with tetramethylsilane (TMS) as the internal standard. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether/ethyl acetate as eluant. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). HRMS spectra were acquired in ESI mode with the mass analyzer of TOF used. All the commercially available reagents were used without any purification. Some of alkyl acid anhydrides and acyl chlorides were prepared according to the known procedures.¹⁻⁹

II. General Procedures for the Synthesis of Anhydrides 2

Method A:

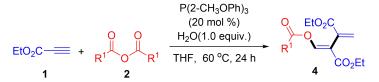
The anhydrides **2** were synthesized according to a known procedure. Triethylamine (3.4 equiv.) in THF (0.30 M) was added dropwise to a THF solution (0.34 M) containing organic acid (2.0 equiv.) and methanesulfonyl chloride (1.1 equiv.) at 0 °C. The resulting mixture was stirred for 12 h and concentrated in vacuo. The mixture was extracted with saturated NaHCO₃ solution and ethyl acetate for three times, and the combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated to obtain the anhydride.

Method B:

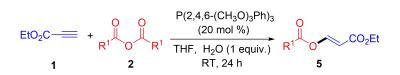

Prepared according to a known procedure. Acid chloride (5.0 mmol) and water (2.5 mmol) were mixed in acetone (5 mL). The resulting mixture was then slowly added triethylamine (5.0 mmol) over 2 minutes. After the completion of the reaction as monitored by TLC, the precipitated triethylamine hydrochloride was filtered off. Then, the solid triethylamine hydrochloride was washed with (5 mL \times 3) acetone. The combined solutions were evaporated under vacuum to give the product.

Method C:

A procedure from the literature was used. Under argon and at 0 °C, acid chloride (4.0 mmol) was added dropwise to a suspension of zinc powder (144.0 mg, 2.2 mmol) in pentane (4.0 mL) and anhydrous DMF (0.6 mL, 8.0 mmol). The resulting mixture was warmed to room temperature and stirred for 20 h. The mixture was then filtered on a pad of flash silica eluting with pentane / Et_2O . Removal of the solvents in vacuo furnished the corresponding anhydrides.


III. Typical Procedure for the Phosphine-Catalyzed Reactions of Alkynoates with Anhydrides

Produce A: typical procedure for the synthesis polysubstituted olefins 3


Under argon atmosphere, to a 10 mL Schlenk tube was added propiolate 1 (0.20 mmol), acid anhydride 2 (0.30 mmol), P(3-CH₃OPh)₃ (14.1 mg, 20 mol %) and toluene (2.0 mL). The resulting reaction mixture was stirred at room temperature for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with petroleum ether / ethyl acetate (20:1-5:1) to give the product polysubstituted olefine **3**.

Produce B: typical procedure for the synthesis of conjugated dienes 4

Under argon atmosphere, propiolate 1 (0.40 mmol), acid anhydride 2 (0.20 mmol), P(2-CH₃OPh)₃ (14.1 mg, 20 mol %), H₂O (5.0 μ L, 1.0 equiv) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at 60 °C for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with petroleum ether / ethyl acetate (30:1-4:1) to give the product conjugated diene **4**.

Produce C: typical procedure for the synthesis of vinyl esters 5

Also under argon atmosphere, ethyl propiolate 1 (0.30 mmol), acid anhydride 2 (0.20 mmol), P(2,4,6-(CH₃O)₃Ph)₃ (21.3 mg, 20 mol %), H₂O (5.0 μ L, 1.0 equiv.) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at room temperature for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with petroleum ether / ethyl acetate (40:1-10:1) to give the product vinyl esters 5.

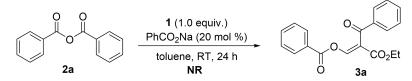
IV. Survey of the Reaction Conditions

Table S1. Survey of conditions for the synthesis of conjugated dienes 4^a

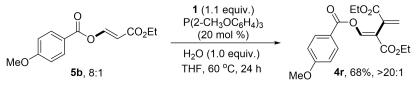
	$EtO_2C \longrightarrow + \underbrace{)}_{2i} O O O O O O O O O O O O O O O O O O O$	PR ₃ (20 mol %) solvent, RT, 24 h	tO ₂ C CO ₂ Et 4d
Entry	PR ₃	Solvent	Yield of $4d (\%)^b$
1	PPh ₃	Toluene	20
2	PMePh ₂	Toluene	10
3	P(4-ClC ₆ H ₄) ₃	Toluene	10
4	P(2-CH ₃ OC ₆ H ₄) ₃	Toluene	22

5	P(3-CH ₃ OC ₆ H ₄) ₃	Toluene	12
6	P(4-CH ₃ OC ₆ H ₄) ₃	Toluene	13
7	PBu ₃	Toluene	11
8	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	Toluene	Trace
9	P(3,5-(CH ₃ O) ₂ C ₆ H ₃) ₃	Toluene	Trace
10	P(2-CH ₃ OC ₆ H ₄) ₃	1,4-Dioxane	20
11	P(2-CH ₃ OC ₆ H ₄) ₃	DMF	17
12	P(2-CH ₃ OC ₆ H ₄) ₃	THF	24
13	P(2-CH ₃ OC ₆ H ₄) ₃	C ₂ H ₅ OH	-
14	P(2-CH ₃ OC ₆ H ₄) ₃	THF	38 ^c
15	P(2-CH ₃ OC ₆ H ₄) ₃	THF	26^d
16	P(2-CH ₃ OC ₆ H ₄) ₃	THF	26 ^e
17	P(2-CH ₃ OC ₆ H ₄) ₃	THF	47 ^{<i>c</i>,<i>f</i>}

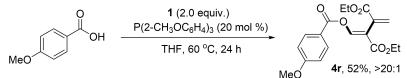
^{*a*} Reaction conditions: ethyl propiolate **1** (0.4 mmol), isobutyric anhydride **2i** (0.2 mmol), PR₃ (20 mol %), solvent (2.0 mL), RT, 24 h. ^{*b*} Isolated yield based on **2i**. ^{*c*} H₂O (0.2 mmol) was added. ^{*d*} PhOH (0.2 mmol) was added. ^{*f*} Conducted at 60 °C instead of RT.

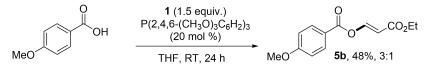

Table S2. Survey of conditions for synthesis of the vinyl esters 5^a

	$EtO_2C \longrightarrow + Ar O Ar \frac{(2)}{solvent},$ 1 2e	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	SCO₂Et
Entry	PR ₃	Solvent	Yield of 5b $(\%)^b$
1	PPh ₃	Toluene	28
2	PMePh ₂	Toluene	18
3	P(4-ClC ₆ H ₄) ₃	Toluene	25
4	P(2-CH ₃ OC ₆ H ₄) ₃	Toluene	21
5	P(3-CH ₃ OC ₆ H ₄) ₃	Toluene	22
6	P(4-CH ₃ OC ₆ H ₄) ₃	Toluene	21
7	P(3,5-(CH ₃ O) ₂ C ₆ H ₃) ₃	Toluene	28
8	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	Toluene	47
9	PBu ₃	Toluene	17
10	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	THF	61
11	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	1,4-Dioxane	59


12	P(2,4,6-CH ₃ OC ₆ H ₂) ₃	CH ₂ Cl ₂	35
13	P(2,4,6-CH ₃ OC ₆ H ₄) ₃	CH ₃ CN	53
14	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	THF	79 ^c
15	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	THF	90^d
16	P(2,4,6-(CH ₃ O) ₃ C ₆ H ₂) ₃	THF	64 ^e

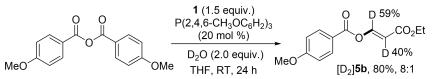
^{*a*} Reaction conditions: ethyl propiolate **1** (0.3 mmol), 4-methoxybenzoic anhydride **2e** (0.2 mmol), PR₃ (20 mol %), solvent (2.0 mL), RT, 24 h. ^{*b*} Isolated yield based on **2e** and dr 8:1. ^{*c*} H₂O (0.1 mmol) was added. ^{*d*} H₂O (0.2 mmol) was added. ^{*e*} Ethyl propiolate **1** (0.2 mmol) and 4-methoxybenzoic anhydride **2e** (0.3 mmol) were used.


V. Control Experiments for Mechanistic Investigation


Under argon atmosphere, ethyl propiolate 1 (0.20 mmol), benzoic anhydride 2a (67.9 mg, 0.30 mmol), toluene (2.0 mL) and PhCO₂Na (8.7 mg, 20 mol %) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at room temperature for 24 h, and no reaction occurred according to TLC detection.

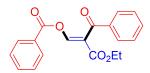
Under argon atmosphere, 3-ethoxy-3-oxoprop-1-en-1-yl 4-methoxybenzoate **5b** (50.0 mg, 0.20 mmol), ethyl propiolate **1** (22.0 μ L, 0.22 mmol), P(2-CH₃OPh)₃ (14.1 mg, 20 mol %), H₂O (5.0 μ L, 1.0 equiv.) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at 60 °C for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation to give the product **4r** in 68 % yiled with dr > 20:1.

In argon atmosphere, ethyl propiolate 1 (40.0 μ L, 0.40 mmol), 4-methoxybenzoic acid (30.4 mg, 0.20 mmol), P(2-CH₃OPh)₃ (14.1 mg, 20 mol %) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at 60 °C for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation to give the product 4**r** in 52% yield with dr >20:1.

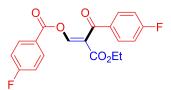


In argon atmosphere, ethyl propiolate 1 (30.0 μ L, 0.30 mmol), 4-methoxybenzoic acid (30.4 mg, 0.20 mmol), P(2,4,6-(CH₃O)₃Ph)₃ (21.3 mg, 20 mol %) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting

reaction mixture was then stirred at room temperature for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation to give the product **5b** in 48% yield with dr 3:1

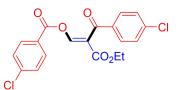


In argon atmosphere, ethyl propiolate 1 (40.0 μ L, 0.40 mmol), 4-methoxybenzoic anhydride 2e (57.3 mg, 0.20 mmol), P(2-CH₃OPh)₃ (14.1 mg, 20 mol %), D₂O (10.0 μ L, 2.0 equiv.) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was stirred at 60 °C for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation to give the product [D₃]4r in 57% yield with dr > 20:1.

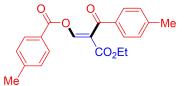


In the argon atmosphere, ethyl propiolate 1 (30.0 μ L, 0.30 mmol), 4-methoxybenzoic anhydride 2e (57.3 mg, 0.20 mmol), P(2,4,6-(CH₃O)₃Ph)₃ (21.3 mg, 20 mol %), D₂O (10.0 μ L, 2.0 equiv.) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The resulting reaction mixture was then stirred at room temperature for 24 h. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation to give the product [D₂]**5b** in 80% yield with dr 8:1.

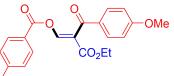
VI. Analytical Data for Compounds 3, 4, and 5



3a (63%,40.8 mg, dr > 20:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and benzoic anhydride **2a** (67.9 mg, 0.3 mmol) were employed to give **3a** in 63% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-10:1). A white solid, mp: 76-78 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.98 (s, 1H), 7.95 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.64 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 7.00 (t, *J* = 7.3 Hz, 2H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.73 (dd, *J* = 10.8, 4.8 Hz, 2H), 3.92 (q, *J* = 7.1 Hz, 2H), 0.81 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 190.3, 164.2, 161.8, 147.2, 137.5, 134.3, 133.5, 130.5, 129.4, 129.0, 128.7, 127.5, 119.2, 61.3, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₆NaO₅ 347.0890; found 347.0895.

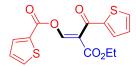


3b (56%, 40.3 mg, dr = 7:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and 4-fluorobenzoic anhydride **2b** (78.7 mg, 0.3 mmol) were employed to give **3b** in 56% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-10:1). A white solid, mp: 89-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 3.92 (dd, *J* = 14.4, 7.2 Hz, 2H), 0.82 (t, *J* = 7.1 Hz, 3H)

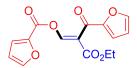

ppm. ¹³C NMR (101 MHz, C₆D₆) δ 188.7, 166.7 (d, *J* = 256.5 Hz), 166.3 (d, *J* = 255.2 Hz), 164.0, 160.7, 147.2, 133.8 (d, *J* = 2.8 Hz), 133.2 (d, *J* = 9.8 Hz), 132.1 (d, *J* = 9.4 Hz), 123.5 (d, *J* = 2.9 Hz), 118.9, 116.1 (d, *J* = 22.1 Hz), 116.0 (d, *J* = 22.3 Hz), 61.4, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₄F₂NaO₅ 383.0702; found 383.0694.

3c (48%, 37.6 mg, dr = 10:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and 4-chlorobenzoic anhydride **2c** (88.5 mg, 0.3 mmol) were employed to give **3c** in 48% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-10:1). A white solid, mp: 104-105 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.86 (s, 1H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 3.92 (q, *J* = 7.1 Hz, 2H), 0.82 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 189.0, 163.9, 160.9, 147.2, 141.1, 140.2, 135.7, 131.7, 130.8, 129.3, 129.2, 125.6, 118.9, 61.5, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₄Cl₂NaO₅ 415.0110; found 415.0134.

3d (51%, 35.9 mg, dr = 11:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and 4-methylbenzoic anhydride **2d** (76.3 mg, 0.3 mmol) were employed to give **3d** in 51% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-10:1). A white solid, mp: 91-93 °C. ¹H NMR (400 MHz, C₆D₆) δ 9.03 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 7.9 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 2H), 3.94 (q, *J* = 7.1 Hz, 2H), 1.91 (s, 3H), 1.78 (s, 3H), 0.83 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 190.0, 172.4, 164.4, 161.9, 147.1, 145.3, 144.3, 135.2, 130.7, 129.7, 129.5, 124.9, 119.3, 61.2, 21.4, 21.4, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀NaO₅ 357.1203; found 357.1184.



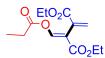
MeC


3e (41%, 31.5 mg, dr = 13:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and 4-methoxybenzoic anhydride **2e** (85.9 mg, 0.3 mmol) were employed to give **3e** in 41% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-5:1). A white solid, mp: 78-80 °C. ¹H NMR (400 MHz, C₆D₆) δ 9.11 (s, 1H), 8.03 (d, *J* = 8.9 Hz, 2H), 7.76 (d, *J* = 9.0 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 6.29 (d, *J* = 9.0 Hz, 2H), 3.96 (q, *J* = 7.1 Hz, 2H), 3.07 (s, 3H), 2.97 (s, 3H), 0.84 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 189.0, 164.7, 164.5, 161.6, 147.0, 132.9, 131.9, 114.3, 114.2, 61.2, 54.9, 54.8, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀NaO₇ 407.1101; found 407.1101.

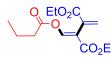
3f (63%, 47.9 mg, dr = 9:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and 3,5-dimethylbenzoic anhydride **2f** (82.3 mg, 0.3 mmol) were employed to give **3f** in 63% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-5:1). A white solid, mp: 110-112 °C. ¹H NMR (400 MHz, C₆D₆) δ 9.09 (s, 1H), 7.78 (d, *J* = 6.8 Hz, 2H), 7.38 (d, *J* = 7.0 Hz, 2H), 6.80 (s, 1H), 6.66 (s, 1H), 3.98 (m, 2H), 1.98 (s, 6H), 1.83 (s, 6H), 0.88 (m, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 190.5, 164.5, 162.1, 147.2, 138.6, 138.5, 137.9, 136.2, 135.3, 128.4, 127.5, 127.5, 119.5, 61.3, 21.0, 20.7, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄NaO₅ 403.1516; found 403.1521.

3g (68%, 45.7 mg, dr = 10:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and thiophene-2-carboxylic anhydride **2g** (71.5 mg, 0.3 mmol) were employed to give **3g** in 68% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (10:1-5:1). A white solid, mp: 120 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.86 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.33 (d, *J* = 3.6 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.61 (d, *J* = 4.8 Hz, 1H), 6.46 (t, *J* = 4.1 Hz, 1H), 6.23 (t, *J* = 4.2 Hz, 1H), 3.93 (q, *J* = 7.1 Hz, 2H), 0.83 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 182.1, 163.8, 161.5, 157.1, 146.7, 141.0, 136.0, 135.1, 134.7, 134.3, 132.0, 129.3, 119.2, 61.4, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₂S₂NaO₅ 359.0018; found 359.0019.

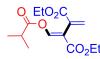
3h (66%, 40.1 mg, dr = 20:1), Scheme 2; prepared according to the Produce A. Ethyl propiolate **1** (20.0 μ L, 0.2 mmol) and furan-2-carboxylic anhydride **2h** (61.9 mg, 0.3 mmol) were employed to give **3h** in 66% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (10:1-5:1). A white solid, mp: 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 6.97 (d, *J* = 3.5 Hz, 1H), 6.87 (d, *J* = 0.9 Hz, 1H), 6.73 (s, 1H), 6.69 (d, *J* = 3.6 Hz, 1H), 5.87 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.64 (dd, *J* = 3.6, 1.7 Hz, 1H), 3.99 (q, *J* = 7.1 Hz, 2H), 0.89 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 163.9, 153.3, 153.2, 148.3, 147.0, 146.9, 142.1, 121.5, 118.8, 112.5, 112.3, 61.3, 14.0 ppm. HRMS(ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃O₇ 305.0656; found 305.0654.



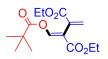
3i (54%, 38.0 mg, dr > 10:1), Scheme 2; prepared according to the Produce A. *Tert*-butyl propiolate (26.3 µL, 0.2 mmol) and benzoic anhydride **2a** (67.9 mg, 0.3 mmol) were employed to give **3i** in 54% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-10:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.95 (s, 1H), 7.96 (dd, *J* = 8.2, 1.3 Hz, 2H), 7.71 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.05 (dd, *J* = 15.6, 7.3 Hz, 3H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.75 (t, *J* = 7.8 Hz, 2H), 1.25 (s, 9H) ppm. ¹³C (101 MHz, C₆D₆) δ 190.1, 163.1, 161.5, 146.5, 137.4, 133.8, 132.9, 130.2, 128.9, 128.5, 128.3, 127.2, 120.2, 81.6, 27.5 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀NaO₅ 375.1203; found 375.1203.

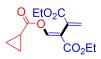


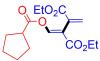
4a (43%, 22.0 mg, dr = 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate 1 (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and acetic anhydride 2i (18.9 μ L, 0.2 mmol) were employed to give 4a in 43%


yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 6.69 (d, *J* = 1.6 Hz, 1H), 5.62 (d, *J* = 1.5 Hz, 1H), 4.08 (qd, *J* = 7.1, 5.1 Hz, 4H), 1.41 (s, 3H), 1.00 (td, *J* = 7.1, 5.9 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 166.1, 165.7, 165.6, 145.2, 133.5, 129.9, 115.6, 61.0, 60.9, 19.6, 14.2, 14.0 ppm. HRMS(ESI) m/z: [M + H]⁺Calcd for C₁₂H₁₇O₆257.1020; found 257.1025.

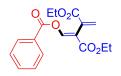

4b (41%, 22.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and propionic anhydride **2j** (25.6 μ L, 0.2 mmol) were employed to give **4b** in 41% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.70 (d, *J* = 1.8 Hz, 1H), 6.61 (s, 1H), 5.57 (d, *J* = 1.4 Hz, 1H), 4.01 (m, 4H), 1.73 (q, *J* = 7.5 Hz, 2H), 0.93 (q, *J* = 7.2 Hz, 6H), 0.69 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 169.7, 165.7, 165.6, 145.3, 133.6, 129.9, 115.5, 61.0, 60.9, 26.9, 14.2, 14.1, 8.4 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₈NaO₆ 293.0996; found 293.0984.


4c (46%, 26.1 mg, dr = 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and butyric anhydride **2k** (32.7 μL, 0.2 mmol) were employed to give **4c** in 46% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.71 (d, J = 4.1 Hz, 1H), 6.62 (t, J = 1.6 Hz, 1H), 5.59 (d, J = 1.4 Hz, 1H), 4.01 (m, 4H), 1.78 (t, J = 7.3 Hz, 2H), 1.26 (m, 2H), 0.93 (q, J = 7.0 Hz, 6H), 0.59 (t, J = 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 168.9, 165.7, 165.6, 145.3, 133.6, 129.9, 115.5, 61.0, 60.9, 35.3, 17.9, 14.2, 14.1, 13.3 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₂₀NaO₆ 307.1152; found 307.1165.

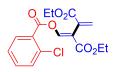

4d (47%, 26.7 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and isobutyric anhydride **2l** (32.4 μ L, 0.2 mmol) were employed to give **4d** in 47% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.68 (s, 1H), 6.60 (s, 1H), 5.57 (s, 1H), 4.07 – 3.91 (m, 4H), 2.09 (dt, *J* = 13.9, 7.0 Hz, 1H), 0.93 (q, *J* = 6.9 Hz, 6H), 0.81 (d, *J* = 7.0 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 172.2, 165.7, 165.6, 145.5, 133.6, 129.8, 115.6, 61.0, 60.9, 33.8, 18.2, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₂₀NaO₆ 307.1152; found 307.1153.


4e (41%, 24.5 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate 1 (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and 3-methylbutanoic anhydride **2m** (39.0 μL, 0.2 mmol) were employed to give **4e** in 41% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 6.74 (d, J = 1.3 Hz, 1H), 5.70 (d, J = 1.1 Hz, 1H), 4.11 (m, 4H), 1.94 (m, 1H), 1.88 (m, 2H), 1.04 (q, J = 7.0 Hz, 6H), 0.75 (d, J = 6.4 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 168.3, 165.7, 165.6, 145.3, 133.7, 129.9, 115.6, 61.0, 60.9, 42.3, 25.3, 22.0, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₂NaO₆ 321.1309; found 321.1301.

4f (64%, 38.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and pivalic anhydride **2n** (38.9 μL, 0.2 mmol) were employed to give **4f** in 64% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.68 (s, 1H), 6.59 (d, J = 1.5 Hz, 1H), 5.57 (d, J = 1.5 Hz, 1H), 3.99 (qd, J = 7.1, 5.4 Hz, 4H), 0.92 (m, 15H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 173.6, 165.7, 165.6, 145.6, 133.7, 129.7, 115.7, 61.0, 60.9, 38.9, 26.5, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₂NaO₆ 321.1309; found 321.1319.

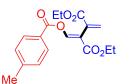

4g (53%, 29.9 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and cyclopropanecarboxylic anhydride **2o** (27.7 μL, 0.2 mmol) were employed to give **4g** in 53% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.70 (s, 1H), 6.62 (d, J = 1.6 Hz, 1H), 5.58 (d, J = 1.5 Hz, 1H), 3.99 (dq, J = 14.2, 7.1 Hz, 4H), 1.10 (dd, J = 12.5, 4.5 Hz, 1H), 0.92 (dt, J = 13.3, 7.1 Hz, 6H), 0.82 – 0.71 (m, 2H), 0.28 (dd, J = 8.0, 3.2 Hz, 2H). ppm. ¹³C NMR (101 MHz, C₆D₆) δ 170.4, 165.7, 165.6, 145.4, 133.6, 129.9, 115.3, 61.0, 60.9, 14.1, 12.7, 9.7, 9.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₈NaO₆ 305.0996; found 305.1003.

4h (45%, 27.9 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and cyclopentanecarboxylic anhydride **2p** (42.1 μ L, 0.2 mmol) were employed to give **4h** in 45% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.72 (s, 1H), 6.62 (d, *J* = 1.2 Hz, 1H), 5.60 (d, *J* = 1.1 Hz, 1H), 4.00 (m, 4H), 2.33 (p, *J* = 7.9 Hz, 1H), 1.59 (td, *J* = 14.5, 7.4 Hz, 2H), 1.47 (m, 2H), 1.37 (dd, *J* = 9.2, 5.9 Hz, 2H), 1.18 (dd, *J* = 6.8, 4.2 Hz, 2H), 0.93 (q, *J* = 7.0 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 171.9, 165.8, 165.6, 145.7, 133.7, 129.8, 115.5, 61.0, 60.9, 43.5, 30.1, 29.7, 26.0, 25.8, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₂NaO₆ 333.1309; found 333.1319.

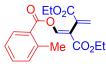


4i (42%, 27.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and cyclohexanecarboxylic anhydride **2q** (45.4 μ L, 0.2 mmol) were employed to give **4i** in 42% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.78 (s, 1H), 6.63 (d, *J* = 1.5 Hz, 1H), 5.61 (d, *J* = 1.5 Hz, 1H), 4.02 (m, 4H), 1.95 (tt, *J* = 11.0, 3.7 Hz, 1H), 1.81 (d, *J* = 14.4 Hz, 1H), 1.64 (d, *J* = 12.9 Hz, 2H), 1.48 (m, 1H), 1.42 (m, 2H), 1.26 (m, 3H), 0.93 (dt, *J* = 15.6, 7.8 Hz, 7H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 171.1, 165.7, 165.6, 145.6, 133.7, 129.8, 115.6, 61.0, 60.9, 42.6, 29.2, 28.5, 25.7, 25.5, 25.2, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₂₄NaO₆ 347.1465; found 347.1458.

4j (71%, 45.2 mg, dr = 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and benzoic anhydride **2a** (45.3 mg, 0.2 mmol) were employed to give **4j** in 71% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A white solid. mp: 61 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.88 (s, 1H), 7.92 (d, *J* = 7.1 Hz, 2H), 7.03 (dd, *J* = 11.4, 7.6 Hz, 1H), 6.93 (t, *J* = 7.7 Hz, 2H), 6.66 (d, *J* = 1.5 Hz, 1H), 5.64 (d, *J* = 1.5 Hz, 1H), 4.02 (q, *J* = 7.1 Hz, 4H), 0.94 (dd, *J* = 13.3, 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 172.6, 165.8, 165.6, 162.1, 145.5, 134.2, 133.8, 130.51, 130.49, 130.1, 128.8, 128.6, 116.3, 61.14, 61.01, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈NaO₆ 341.0991; found 341.0996.


4k (61%, 43.0 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 4-chlorobenzoic anhydride **2c** (59.0 mg, 0.2 mmol) were employed to give **4k** in 61% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-10:1). A white solid. mp: 63-65 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.82 (s, 1H), 7.61 (m, 2H), 6.85 (m, 2H), 6.66 (d, *J* = 1.5 Hz, 1H), 5.60 (d, *J* = 1.5 Hz, 1H), 4.02 (q, *J* = 7.2 Hz, 4H), 0.94 (td, *J* = 7.1, 4.7 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.6, 165.4, 161.3, 145.2, 141.7, 140.8, 133.8, 132.3, 131.8, 130.0, 129.2, 126.5, 116.6, 61.2, 61.1, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇ClNaO₆ 375.0606; found 375.0596.

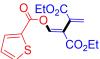
41 (70%, 49.3 mg, dr = 5:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 2-chlorobenzoic anhydride **2t** (59.0 mg, 0.2 mmol) were employed to give **4l** in 70% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1- 4:1). A white solid. mp: 62 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.84 (s, 1H), 7.54 (dd, *J* = 7.7, 1.8 Hz, 1H), 6.97 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.64 (tdd, *J* = 12.5, 7.5, 1.5 Hz, 3H), 5.62 (d, *J* = 1.5 Hz, 1H), 4.01 (dd, *J* = 7.1, 5.5 Hz, 4H), 0.93 (dt, *J* = 8.9, 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.5, 165.5, 160.7, 145.2, 136.7, 135.3, 133.8, 133.5, 132.4, 131.6, 130.3, 126.7, 116.8, 61.1, 61.0, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇ClNaO₆ 375.0606; found 375.0620.

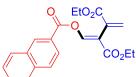

4m (77%, 51.8 mg, dr = 11:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 µL, 0.4 mmol), H₂O (5.0 µL, 1.0 equiv.) and 4-fluorobenzoic anhydride **2b** (52.4 mg, 0.2 mmol) were employed to give **4m** in 77% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1- 4:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.85 (s, 1H), 7.71 (dd, *J* = 8.8, 5.4 Hz, 2H), 6.66 (d, *J* = 1.4 Hz, 1H), 6.51 (t, *J* = 8.6 Hz, 2H), 5.61 (d, *J* = 1.4 Hz, 1H), 4.02 (qd, *J* = 7.1, 1.6 Hz, 4H), 0.93 (td, *J* = 7.1, 3.9 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 166.6 (d, *J* = 255.7 Hz), 165.7, 165.5, 161.1, 145.2, 133.8, 133.1 (d, *J* = 9.6 Hz), 130.0, 124.3 (d, *J* = 2.9 Hz), 116.4, 116.0 (d, *J* = 22.3 Hz), 61.1, 61.0, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇FNaO₆ 359.0901; found 359.0907.

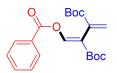
4n (83%, 55.1 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 4-methylbenzoic anhydride **2d** (50.9 mg, 0.2 mmol) were employed to give **4n** in 83% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A white solid. mp: 120-122 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.93 (s, 1H), 7.91 (d, *J* = 8.2 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 1.5 Hz, 1H), 5.67 (d, *J* = 1.5 Hz, 1H), 4.02 (qd, *J* = 7.1, 1.4 Hz, 4H), 1.89 (s, 3H), 0.93 (td, *J* = 7.1, 4.9 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.8, 165.6, 162.2, 145.6, 145.3, 144.4, 133.9, 130.6, 130.0, 129.7, 129.4, 125.5, 116.0, 61.1, 61.0, 21.5, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀NaO₆ 355.1152; found 355.1151.

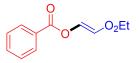
4o (77%, 51.2 mg, dr = 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 3-methylbenzoic anhydride **2r** (50.9 mg, 0.2 mmol) were employed to give **4o** in 77% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A white solid. mp: 108-110 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.92 (s, 1H), 7.80 (d, *J* = 5.5 Hz, 2H), 6.95 – 6.87 (m, 2H), 6.68 (d, *J* = 1.4 Hz, 1H), 5.67 (d, *J* = 1.5 Hz, 1H), 4.02 (qd, *J* = 7.1, 2.2 Hz, 4H), 1.92 (s, 3H), 0.93 (dd, *J* = 14.9, 7.2 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.8, 165.6, 162.3, 145.5, 138.8, 135.1, 133.9, 131.2 130.0, 128.8, 128.2, 127.7, 116.2, 61.1, 61.0, 20.9, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀NaO₆ 355.1152; found 355.1158.

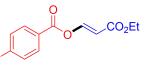

4p (65%, 43.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and 2-methylbenzoic anhydride **2s** (50.9 mg, 0.2 mmol) were employed to give **4p** in 65% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A white solid. mp: 102-104 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.90 (s, 1H), 7.86(m, 1H), 6.99 (td, J = 7.5, 1.2 Hz, 1H), 6.84 (dd, J = 12.1, 7.7 Hz, 2H), 6.64 (d, J = 1.5 Hz, 1H), 5.64 (d, J = 1.5 Hz, 1H), 4.02 (qd, J = 7.1, 3.6 Hz, 4H), 2.46 (s, 3H), 0.94 (dt, J = 8.7, 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.68, 165.66, 162.3, 145.6, 142.5, 134.0, 133.4, 132.2, 131.5, 130.0, 127.0, 126.2, 115.9, 61.1, 60.9, 22.1, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀NaO₆ 355.1152; found 355.1152.


4q (58%, 40.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and 3,5-dimethylbenzoic anhydride **2f** (54.9 mg, 0.2 mmol) were employed to give **4q** in 58% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-5:1). A white solid. mp: 95-97 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.96 (s, 1H), 7.69 (s, 2H), 6.74 (s, 1H), 6.70 (d, J = 1.4 Hz, 1H), 5.69 (d, J = 1.4 Hz, 1H), 4.01 (dd, J = 7.1, 3.9 Hz, 4H), 1.94 (s, 6H), 0.92 (dt, J = 8.8, 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.8, 165.6, 162.5, 145.7, 138.6, 136.1, 133.9, 129.9, 116.1, 61.0, 20.9, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₂₂NaO₆ 369.1309; found 369.1318.

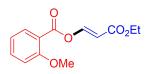

4r (59%, 41.1 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and 4-methoxybenzoic anhydride **2e** (57.3 mg, 0.2 mmol) were employed to give **4r** in 59% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-5:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.93 (s, 1H), 7.94 (d, J = 8.9 Hz, 2H), 6.70 (d, J = 1.6 Hz, 1H), 6.53 (d, J = 8.9 Hz, 2H), 5.70 (d, J = 1.6 Hz, 1H), 4.02 (qd, J = 7.1, 3.1 Hz, 4H), 3.16 (s, 3H), 0.94 (td, J = 7.1, 4.2 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.9, 165.7, 164.8, 161.8, 145.7, 133.9, 132.8, 129.9, 120.3, 115.7, 114.3, 61.1, 60.9, 55.1, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀NaO₇ 371.1101; found 371.1099.


4s (62%, 43.2 mg, dr = 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μL, 0.4 mmol), H₂O (5.0 μL, 1.0 equiv.) and 3-methoxybenzoic anhydride **2u** (57.3 mg, 0.2 mmol) were employed to give **4s** in 62% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-10:1). A white solid. mp: 69-71 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.89 (s, 1H), 7.62-7.58 (m, 1H), 7.57-7.54 (m, 1H), 6.89 (t, J = 7.9 Hz, 1H), 6.81 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 6.65 (d, J = 1.5 Hz, 1H), 5.66 (d, J = 1.5 Hz, 1H), 4.01 (qd, J = 7.1, 1.7 Hz, 4H), 3.20 (s, 3H), 0.92 (q, J = 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.8, 165.5, 162.1, 160.2, 145.4, 133.8, 130.0, 129.5, 128.2, 122.9, 121.3, 116.3, 114.7, 61.1, 61.0, 54.9, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀NaO₆ 371.1101; found 371.1100.

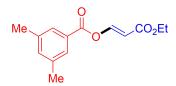

4t (68%, 44.1 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and thiophene-2-carboxylic anhydride **2g** (47.7 mg, 0.2 mmol) were employed to give **4t** in 68% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-5:1). A white solid. mp: 72-74 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.80 (s, 1H), 7.53 (dd, *J* = 3.8, 1.1 Hz, 1H), 6.78 – 6.68 (m, 2H), 6.39 (dd, *J* = 4.9, 3.9 Hz, 1H), 5.65 (d, *J* = 1.5 Hz, 1H), 4.01 (dq, *J* = 14.2, 7.1 Hz, 4H), 0.93 (td, *J* = 7.1, 2.8 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.7, 165.5, 157.6, 145.0, 135.6, 134.6, 133.6, 131.3, 130.1, 128.2,116.2, 61.1, 61.0, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆SNaO₆ 347.0560; found 347.0570.


4u (70%, 51.5 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. Ethyl propiolate **1** (40.0 μ L, 0.4 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 2-naphthoic anhydride **2v** (67.3 mg, 0.2 mmol) were employed to give **4u** in 70% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (30:1-4:1). A white solid. mp: 76 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.99 (s, 1H), 8.55 (s, 1H), 8.00 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.44 (m, 2H), 7.13 – 7.07 (m, 1H), 6.76 (d, *J* = 1.4 Hz, 1H), 5.72 (d, *J* = 1.4 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 4H), 0.94 (dt, *J* = 10.7, 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.9, 165.6, 162.3, 145.6, 142.1, 136.3, 133.9, 132.9, 132.7, 130.1, 129.9, 129.1, 128.9, 127.1, 125.9, 125.4, 116.3, 61.1, 61.0, 14.2, 14.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀NaO₆ 391.1152; found 391.1143.

4v (31%, 23.2 mg, dr > 20:1), Scheme 4; prepared according to the Produce B. *Tert*-butyl propiolate (53.3 μL, 0.4 mmol) and benzoic anhydride **2a** (45.3 mg, 0.2 mmol) were employed to give **4v** in 70% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (20:1-10:1). A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.95 (dd, J = 8.4, 1.3 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 2H), 6.46 (d, J = 1.6 Hz, 1H), 5.69 (d, J = 1.6 Hz, 1H), 1.40 (d, J = 14.9 Hz, 18H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.9, 161.3, 143.2, 133.3, 129.3, 128.2, 127.8, 126.9, 116.3, 80.4, 80.2, 27.1, 27.0 ppm. HRMS(ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₂₆NaO₆ 397.1622; found 397.1631.

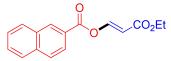


5a (77%, 32.0 mg, dr = 6:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μ L, 0.3 mmol), H₂O (5.0 μ L, 1.0 equiv.) and benzoic anhydride **2a** (45.3 mg, 0.2 mmol) were employed to give **5a** in 77% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.75 (d, *J* = 12.5 Hz, 1H), 7.88 (d, *J* = 7.1 Hz, 2H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.94 (t, *J* = 7.7 Hz, 2H), 5.87 (d, *J* = 12.5 Hz, 1H), 4.01 (q, *J* = 7.1 Hz, 2H), 0.95 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.7, 162.5, 149.8, 134.1, 130.5, 128.7, 128.2, 106.7, 60.4, 14.2 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₂NaO₄ 243.0628; found 243.0635.

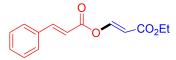


MeC

5b (90%, 45.0 mg, dr = 8:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μL, 0.3 mmol), H₂O (5.0 μL, 1.0 equiv.) and 4-methoxybenzoic anhydride **2e** (57.3 mg, 0.2 mmol) were employed to give **5b** in 90% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 80 - 82 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.83 (d, J = 12.6 Hz, 1H), 7.91 (d, J = 9.0 Hz, 2H), 6.54 (d, J = 9.0 Hz, 2H), 5.90 (d, J = 12.6 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 3.13 (s, 3H), 0.96 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.9, 164.7, 162.2, 150.1, 132.8, 120.4, 114.2, 106.2, 60.3, 55.0, 14.3 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄NaO₅ 273.0733; found 273.0722.


5c (84%, 42.0 mg, dr > 20:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μL, 0.3 mmol), H₂O (5.0 μL, 1.0 equiv.) and 2-methoxybenzoic anhydride **2w** (57.3 mg, 0.2 mmol) were employed to give **5c** in 84% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 72 - 74 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.85 (d, J = 12.5 Hz, 1H), 7.72 (dd, J = 7.8, 1.8 Hz, 1H), 7.05 (ddd, J = 8.6, 7.4, 1.8 Hz, 1H), 6.62 (td, J = 7.8, 0.9 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 5.90 (d, J = 12.6 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.22 (s, 3H), 0.94 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.9, 161.5, 160.5, 150.2, 134.8, 132.6, 120.2, 117.9, 112.3, 106.2, 60.3, 55.4, 14.2 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄NaO₅ 273.0733; found 273.0730.

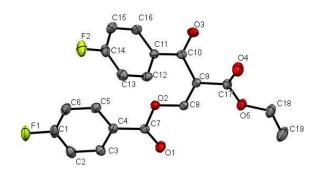
5d (98%, 48.6 mg, dr = 6:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μ L, 0.3 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 3,5-dimethylbenzoic anhydride **2f** (54.9 mg, 0.2 mmol) were employed to give **5d** in 98% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 75 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.57 (d, *J* = 12.6 Hz, 1H), 7.42 (s, 1H), 6.91 (s, 1H), 6.54 (s, 1H), 5.64 (d, *J* = 12.6 Hz, 1H), 3.77(m, 2H), 1.73 (d, *J* = 0.4 Hz, 6H), 0.71 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 164.6, 161.6, 148.8, 137.3, 134.9, 127.5, 127.2, 105.3, 59.2, 19.7, 13.1 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₆NaO₄ 271.0941; found 271.0953.


5e (64%, 28.9 mg, dr = 5:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μ L, 0.3 mmol), H₂O (5.0 μ L, 1.0 equiv.) and thiophene-2-carboxylic anhydride **2g** (47.7 mg, 0.2 mmol) were employed to give **5e** in 64% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 62 - 64 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 12.5 Hz, 1H), 7.96 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.71 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.18 (dd, *J* = 4.9, 3.8 Hz, 1H), 5.88 (d, *J* = 12.5 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 153.2, 135.4, 127.7, 121.6, 87.0, 81.5, 62.5, 61.4, 14.0 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₀SNaO₄ 249.0192; found 249.0197.

5f (70%, 37.8 mg, dr = 9:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μ L, 0.3 mmol), H₂O (5.0 μ L, 1.0 equiv.) and 2-naphthoic anhydride **2v** (67.3 mg, 0.2 mmol) were employed to give **5f** in 70% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 82 - 84 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.83 (d, *J* = 12.5 Hz, 1H), 8.49 (s, 1H), 8.00 -7.91 (m, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.47-7.42 (m, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 5.93 (d, *J* = 12.6 Hz, 1H), 4.03 (q, *J* = 7.2 Hz, 2H), 0.97 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 162.8, 149.9, 136.3, 132.9, 132.6, 129.7, 129.3, 128.9, 127.9, 127.2, 125.4, 125.2, 106.5, 60.6, 14.3 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₄NaO₄293.0784; found 293.0785.

CO2Et

5g (53%, 21.2 mg, dr > 20:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μL, 0.3 mmol), H₂O (5.0 μL, 1.0 equiv.) and 3-methylbutanoic anhydride **2m** (39.0 μL, 0.2 mmol) were employed to give **5g** in 53% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A colorless oil. ¹H NMR (400 MHz, C₆D₆) δ 8.65 (d, J = 12.6 Hz, 1H), 5.81 (d, J = 12.6 Hz, 1H), 4.00 (q, J = 7.1 Hz, 2H), 1.82 (dd, J = 13.0, 6.5 Hz, 1H), 1.76 (d, J = 6.4 Hz, 2H), 0.94 (t, J = 7.1 Hz, 3H), 0.67 (d, J = 6.4 Hz, 6H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 168.5, 165.8, 149.6, 106.0, 60.4, 42.3, 25.3, 22.0, 14.2 ppm. HRMS(ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₇O₄ 201.1121; found 201.1129.


5h (75%, 36.9 mg, dr > 20:1), Scheme 5; prepared according to the Produce C. Ethyl propiolate **1** (30.0 μ L, 0.3 mmol), H₂O (5.0 μ L, 1.0 equiv.) and cinnamic anhydride **2x** (55.6 mg, 0.2 mmol) were employed to give **5h** in

75% yield by column chromatography isolation on silica gel via gradient elution with petroleum ether / ethyl acetate (40:1-10:1). A white solid. mp: 63 - 65 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.80 (d, *J* = 12.6 Hz, 1H), 7.64 (d, *J* = 16.0 Hz, 1H), 7.05 - 6.88 (m, 5H), 6.10 (d, *J* = 16.0 Hz, 1H), 5.91 (d, *J* = 12.6 Hz, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 0.96 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 165.8, 162.5, 149.9, 148.2, 134.1, 131.0, 129.0, 128.7, 115.7, 106.2, 60.4, 14.3 ppm. HRMS(ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄NaO₄ 269.0784; found 269.0790.

VII. ORTEP Drawings for 3b, 4k, 5b

Table S3. Crystal data and structure refinement for 3b (ellipsoids at 50% probability)

Tips: hexane and ethyl acetate were used for the crystal growth.

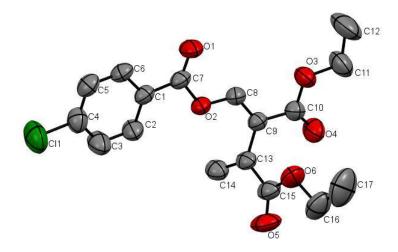


Figure S1. X-ray Crystal Structure of 3b

Identification code	3b
Empirical formula	$C_{19}H_{14}F_2O_5$
Formula weight	360.30
Temperature	113.15 K
Crystal system, Space group	orthorhombic, Pna21
Unit cell dimensions	a=7.2621(2) Å, α=90°
	b=14.5996(4) Å, β=90°
	c=15.7127(5) Å, γ=90°
Volume	1665.92(8) Å ³
Z, Calculated density	4, 1.437 g/cm ³
Absorption coefficient	0.118 mm ⁻¹
F(000)	744.0
Crystal size	$0.23 \times 0.2 \times 0.14 \text{ mm}^3$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	5.186 to 65.81°
Limiting indices	$-10 \le h \le 10, -22 \le k \le 21, -23 \le l \le 23$
Reflections collected/unique	23672/5790 [Rint = 0.0466, Rsigma = 0.0352]
Data/restraints/parameters	5790/1/237
Goodness-of-fit on F2	1.023
Final R indexes [I>= 2σ (I)]	R1 = 0.0385, wR2 = 0.0925
Final R indexes [all data]	R1 = 0.0443, wR2 = 0.0965
Largest diff. peak/hole	0.30/-0.25 e Å ⁻³
Flack parameter	-0.3(3)
CCDC	2133581

Table S4. Crystal data and structure refinement for 4k (ellipsoids at 50% probability)

Tips: hexane and ethyl acetate were used for the crystal growth.

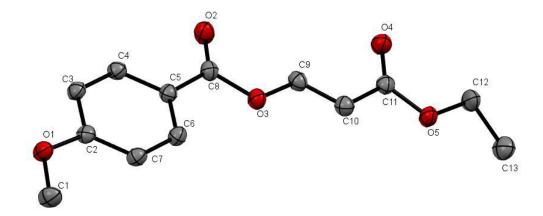
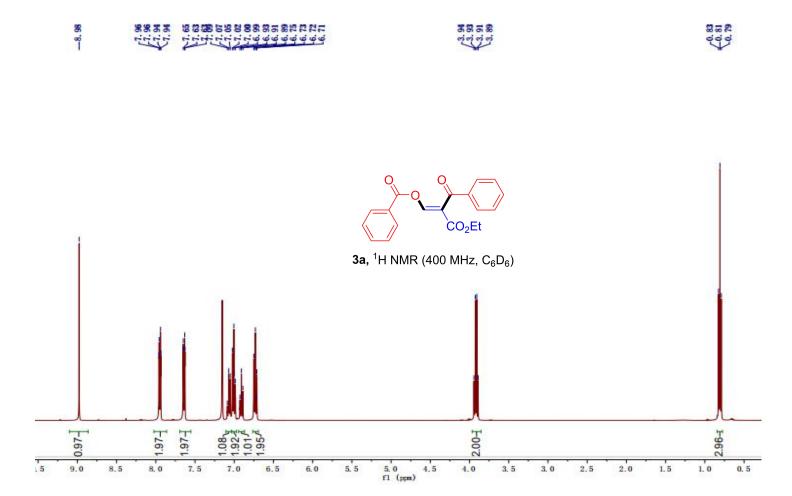


Figure S2. X-ray Crystal Structure of 4k

Identification code	4k
Empirical formula	C ₁₇ H ₁₇ ClO ₆
Formula weight	352.75
Temperature	300.85(10) K
Crystal system, Space group	triclinic, P-1
Unit cell dimensions	a=7.7704(5) Å, α=91.269(5)°
	b=10.7352(7) Å, β=97.889(5)°
	c=10.8707(7) Å, γ=90.643(5)°
Volume	897.90(10) Å ³
Z, Calculated density	2, 1.305 g/cm ³
Absorption coefficient	0.240 mm ⁻¹
F(000)	368.0
Crystal size	$0.25\times0.21\times0.15$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection	3.784 to 61.814°
Limiting indices	$-10 \le h \le 9, -15 \le k \le 13, -13 \le l \le 15$
Reflections collected/unique	12562, 4507 [Rint = 0.0267, Rsigma = 0.0325]
Data/restraints/parameters	4507/24/246
Goodness-of-fit on F2	1.044
Final R indexes [I>= 2σ (I)]	R1 = 0.0498, wR2 = 0.1386
Final R indexes [all data]	R1 = 0.0920, wR2 = 0.1583
Largest diff. peak/hole	0.26/-0.33 e Å ⁻³
CCDC	2143069

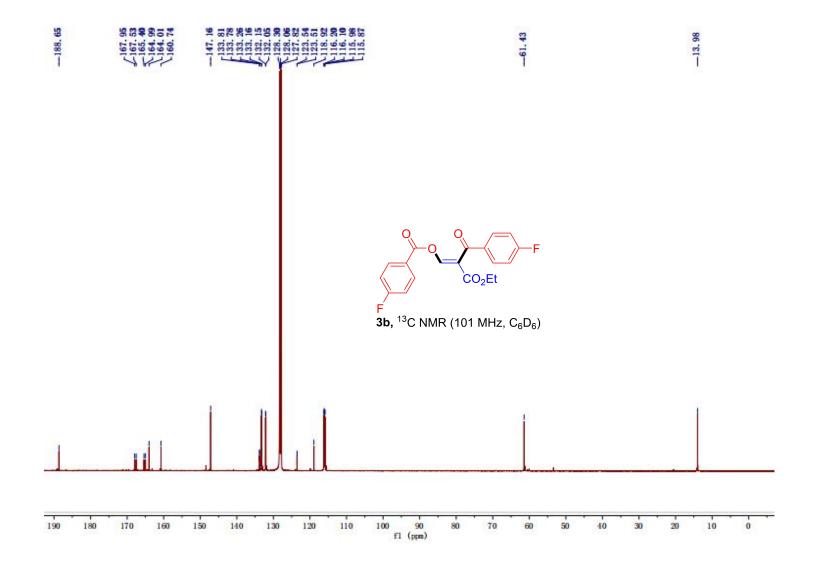
Table S5. Crystal data and structure refinement for 5b (ellipsoids at 50% probability)

Tips: hexane and ethyl acetate were used for the crystal growth.

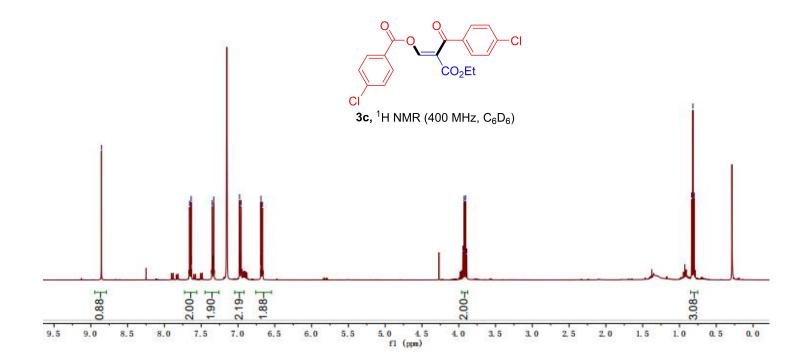


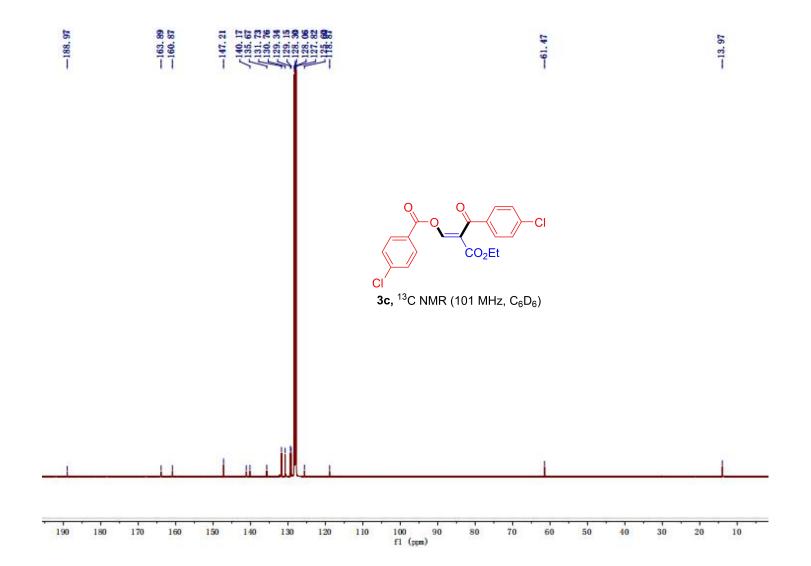

Figu	re S3. X-ray Crystal Structure of 5b
Identification code	5b
Empirical formula	$C_{13}H_{14}O_5$
Formula weight	250.24
Temperature	113.15 K
Crystal system, Space group	triclinic, P-1
Unit cell dimensions	a=8.4627(5) Å, α=79.025(5)°
	b=8.5873(4) Å, β=66.995(6)°
	c=9.3807(7) Å, γ=77.883(5)°
Volume	609.05(7) Å ³
Z, Calculated density	2, 1.365 g/cm ³
Absorption coefficient	0.105 mm ⁻¹
F(000)	264.0
Crystal size	$0.24\times0.22\times0.17$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection	4.752 to 65.818°
Limiting indices	$-12 \le h \le 12, -12 \le k \le 11, -13 \le l \le 14$
Reflections collected/unique	9172, 4079 [Rint = 0.0293, Rsigma = 0.0375]
Data/restraints/parameters	4079/0/166
Goodness-of-fit on F2	1.045
Final R indexes [I>=2 σ (I)]	R1 = 0.0479, wR2 = 0.1217
Final R indexes [all data]	R1 = 0.0649, wR2 = 0.1370
Largest diff. peak/hole	0.34/-0.25 e Å ⁻³
CCDC	2132379

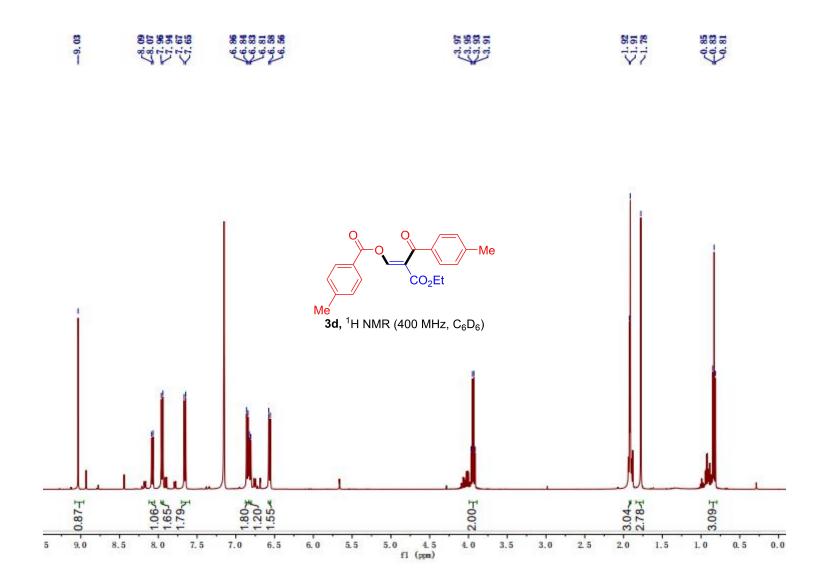
VIII. Supplementary References

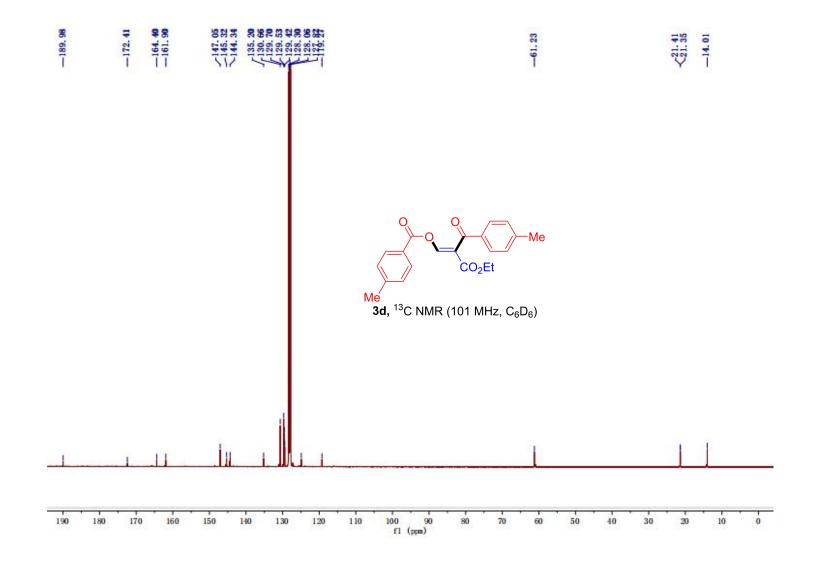

- [1] Y. S. Liao, C. F. Liang, One-pot synthesis of thioesters with sodium thiosulfate as a sulfur surrogate under transition metal-free conditions, *Org. Biomol. Chem.* 2018, **16**, 1871-1881.
- [2] I. Dhimitruka, J. SantaLucia, Investigation of the yamaguchi esterification mechanism. synthesis of a lux-S enzyme inhibitor using an improved esterification method, *Org. Lett.* 2006, 8, 47-50.
- [3] A. Serieys, C. Botuha, F. Chemla, F. Ferreira and A. Pérez-Luna, Zinc(0) / dimethylformamide-mediated synthesis of symmetrical carboxylic anhydrides from acid chlorides, *Tetrahedron*. 2008, 49, 5322-5323.
- [4] Z. M. Karimi, B. F. Mirjalili, K. S. Z. Shamsi and M. Tayefi, A mild, clean, and simple synthesis of symmetrical carboxylic anhydrides from carboxylic acides using a polymer supported tosyl chloride, *J. Iran. Chem. Soc.* 2010, 7, 455-460.
- [5] J. G. Kim and D. O. Jang, Synthesis of symmetrical carboxylic acid anhydrides from acyl chlorides in the presence of in metal and DMF, *Bull. Korean Chem. Soc.* 2009, **30**, 27-28.
- [6] Z. Yang, S. F. Chen, C. Yang, Zhang, Y. Dou, Q. Zhou, Tang, L. PPh₃/Selectfluor-mediated transformation of carboxylic acids into acid anhydrides and acyl fluorides and its application in amide and ester synthesis, *Eur. J. Org. Chem.* 2019, **34**, 5998-6002.
- [7] H. Rouhi-Saadabad, B. Akhlaghinia, Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent, *Chem. Papers*. 2015, 69, 479-485.
- [8] M. D. Konieczynska, C. Dai, C. R. Stephenson, J. Synthesis of symmetric anhydrides using visible light-mediated photoredox catalysis, *Org. Biomol. Chem.* 2012, 10, 4509-4511.
- [9] Y. L.Hu, X. E. Zhao, M. Lu, Efficient and convenient synthesis of symmetrical carboxylic anhydrides from carboxylic acids with sulfated zirconia by phase transfer catalysis, *Bull. Chem. Soc. Ethiop.* 2011, 25, 255-262.

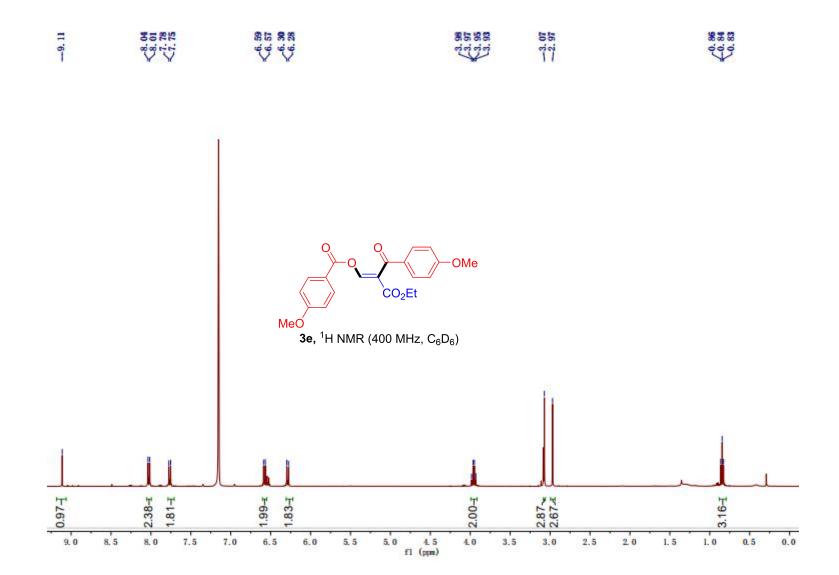
IX. ¹H and ¹³C NMR Spectra for Compounds 3, 4, and 5

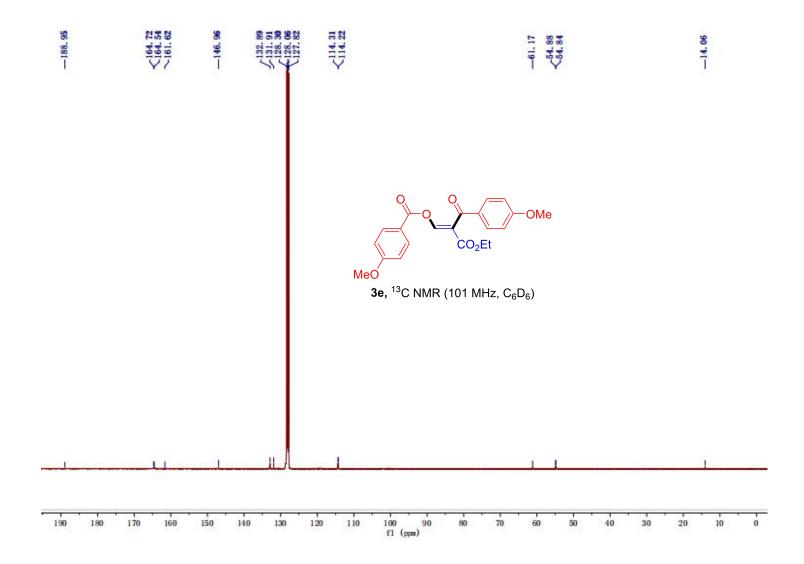


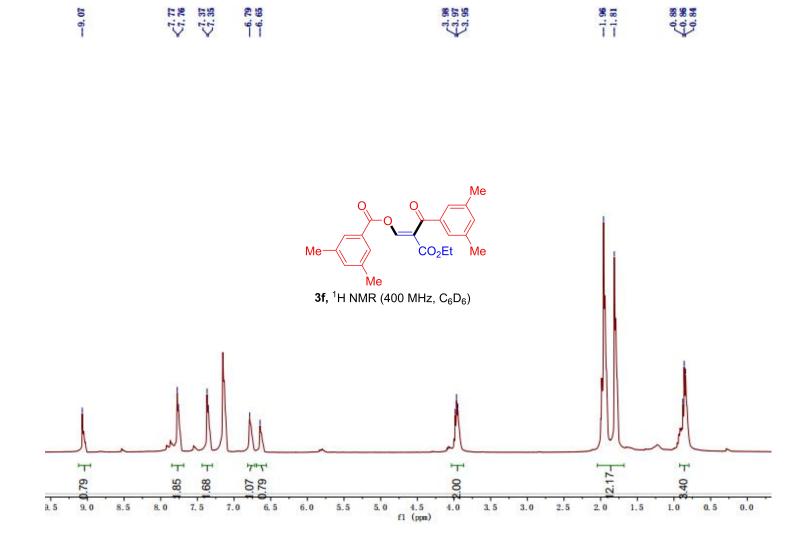


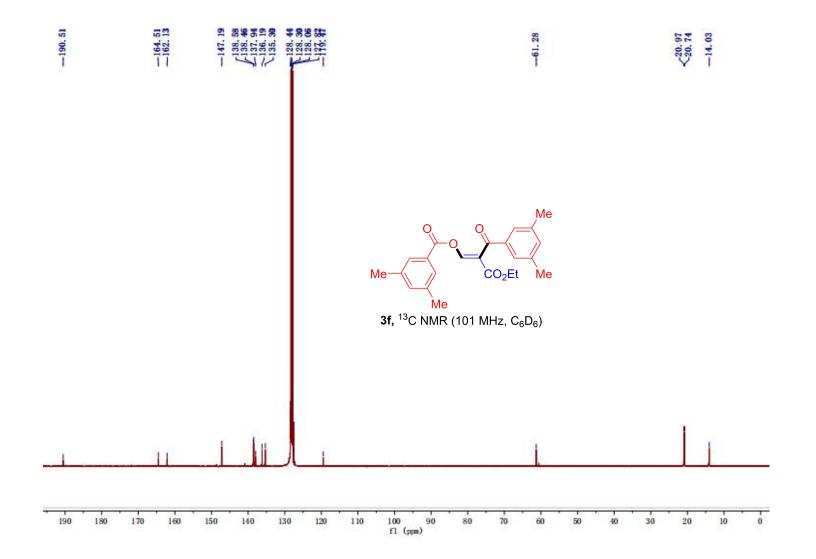


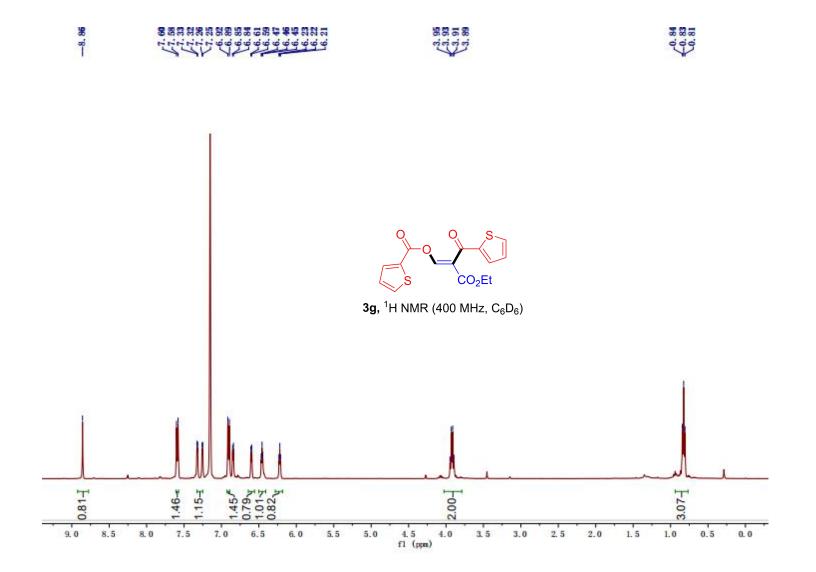


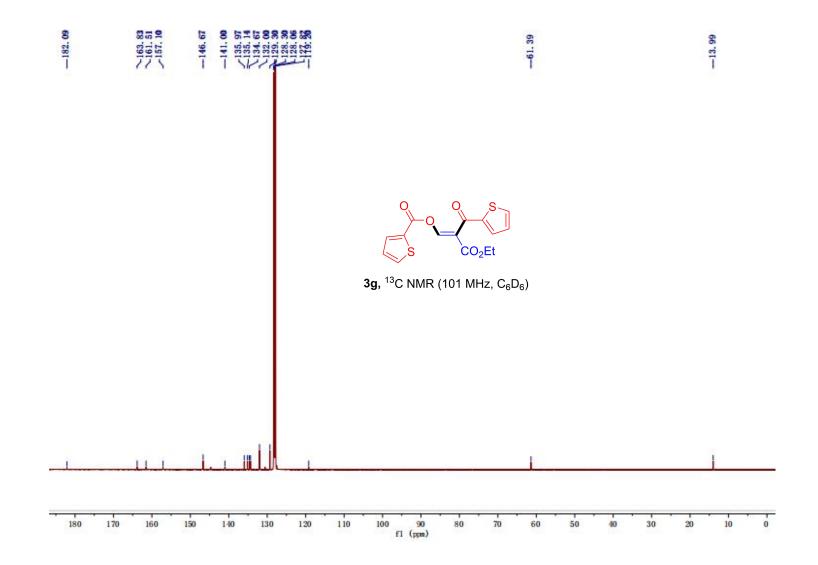


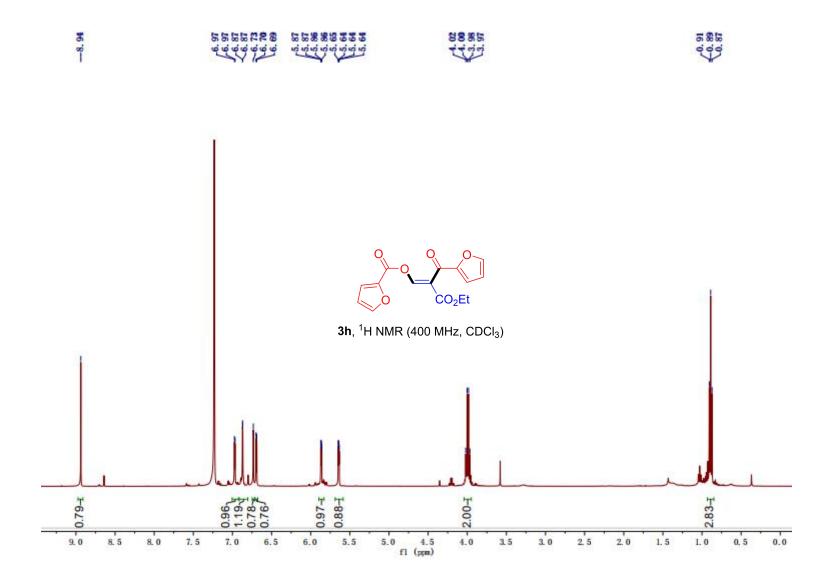


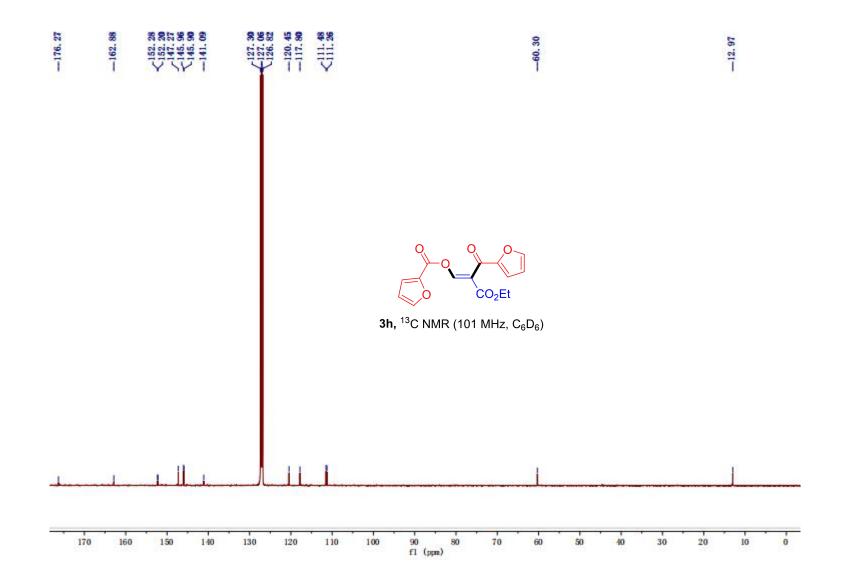


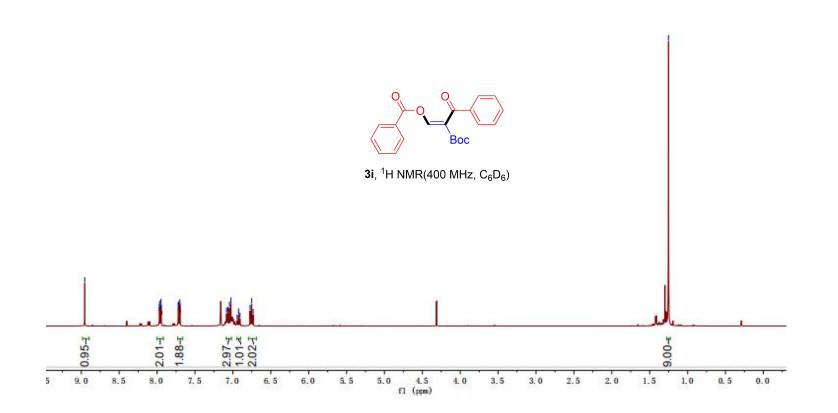




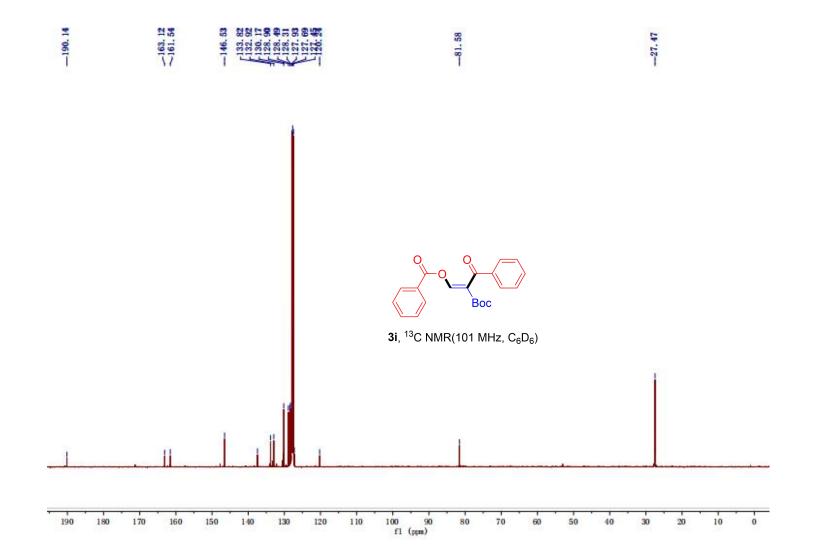


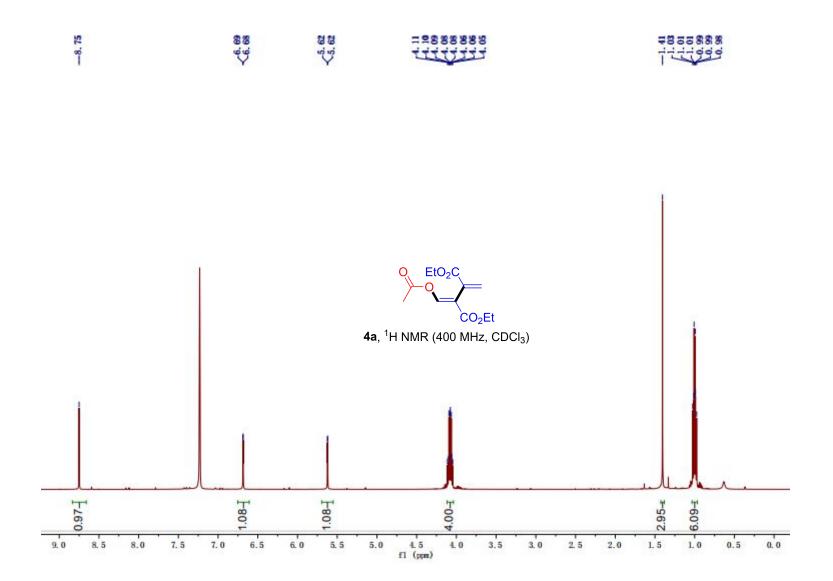


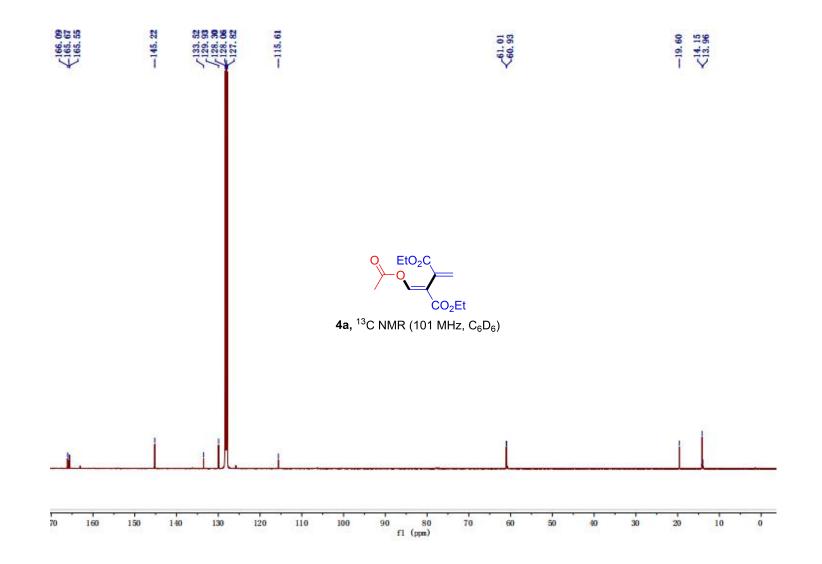


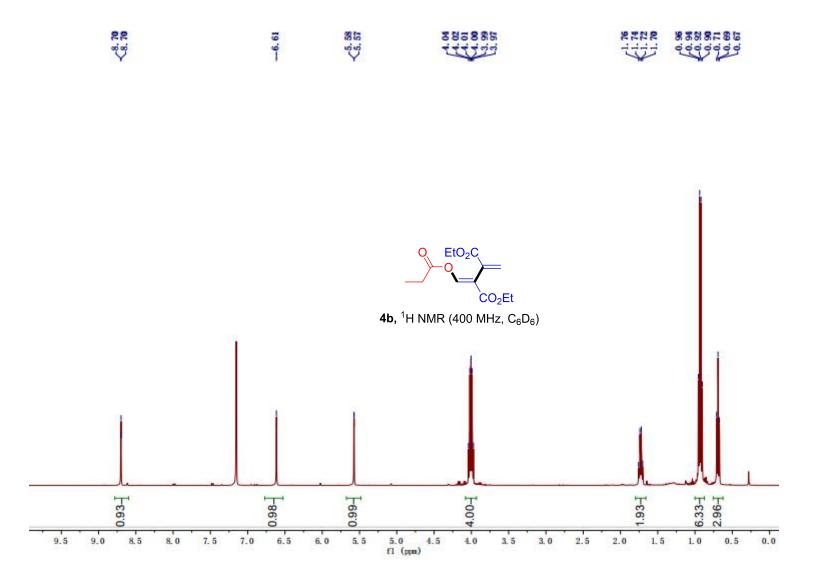


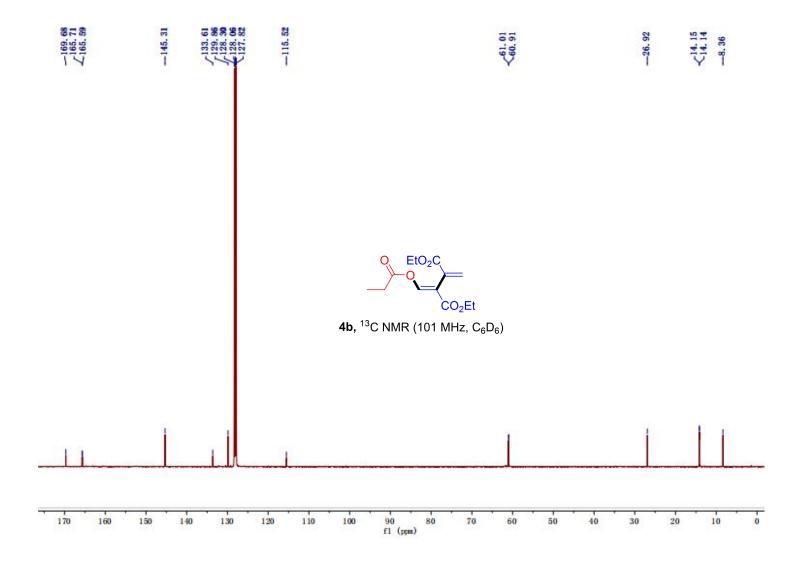
S34

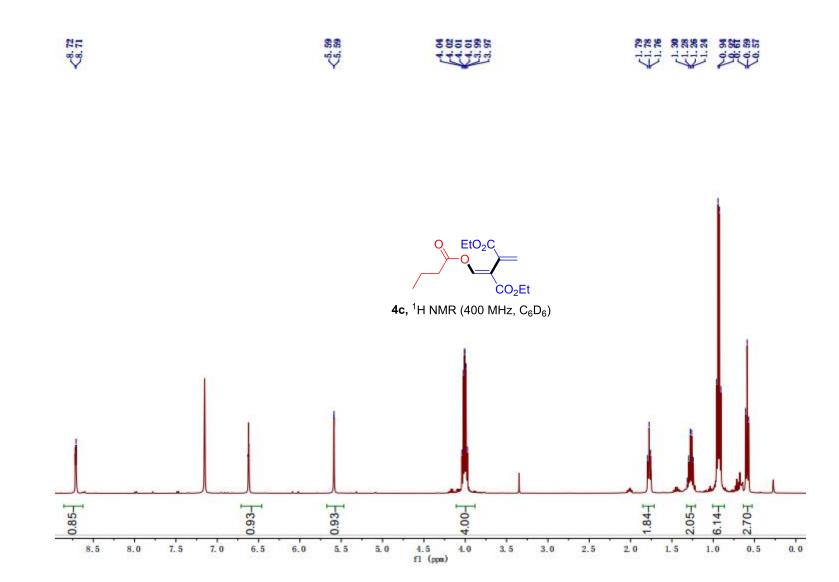


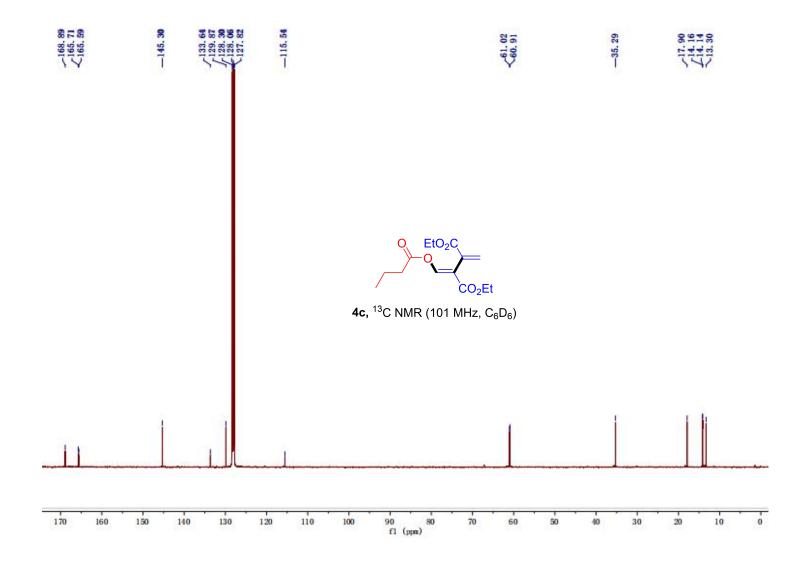


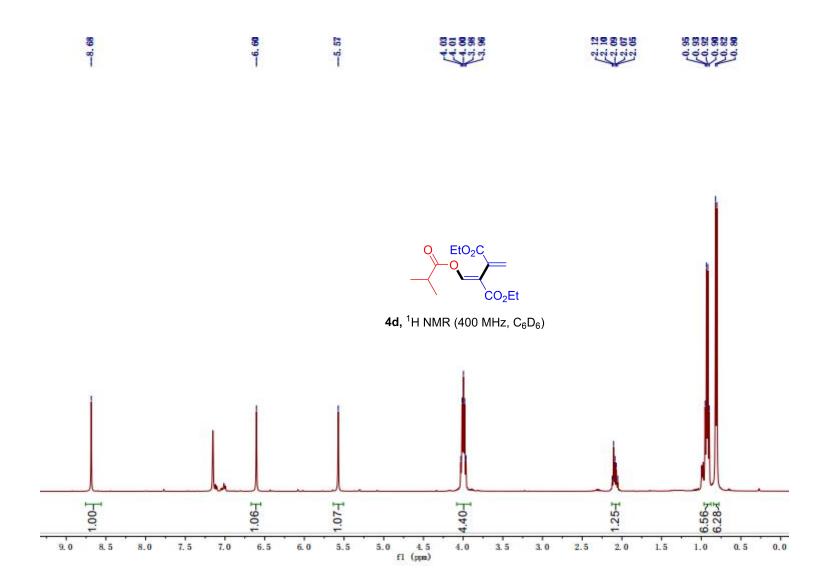


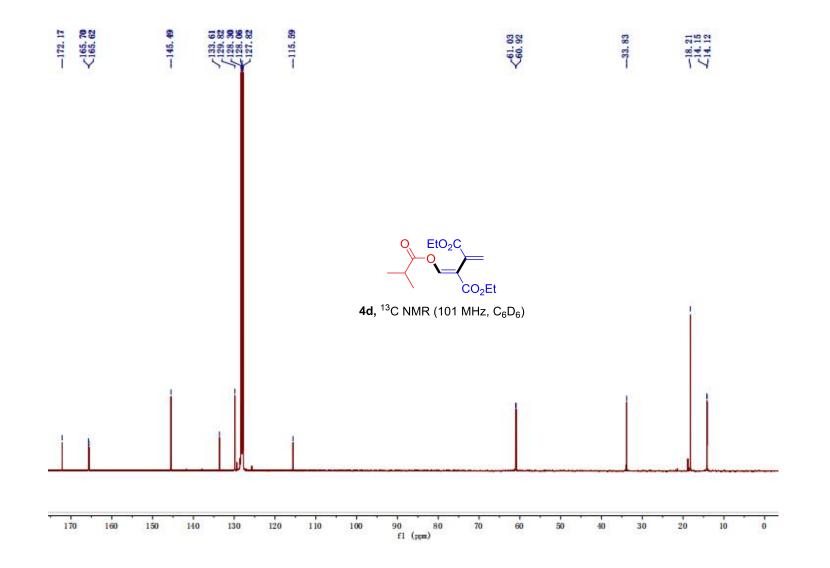


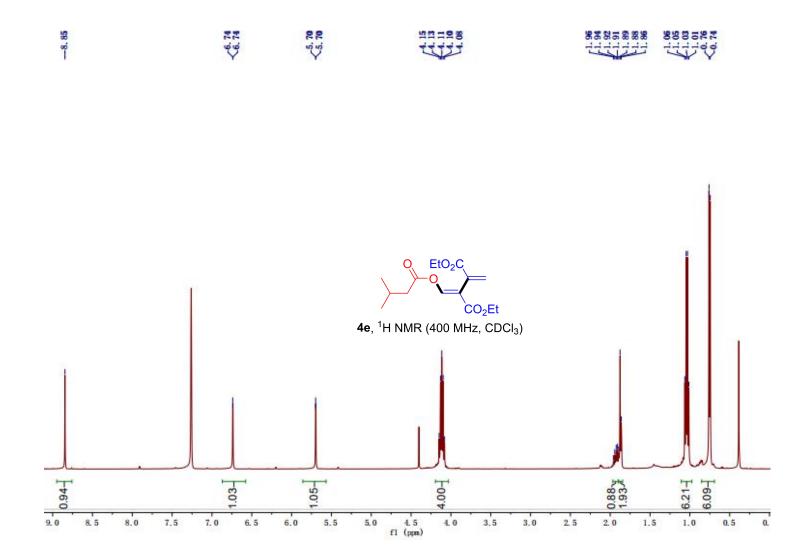

-1.25

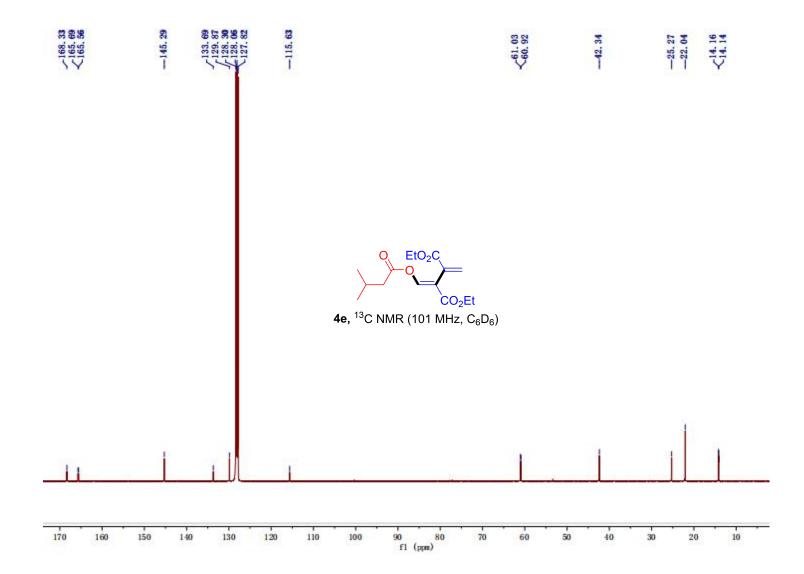


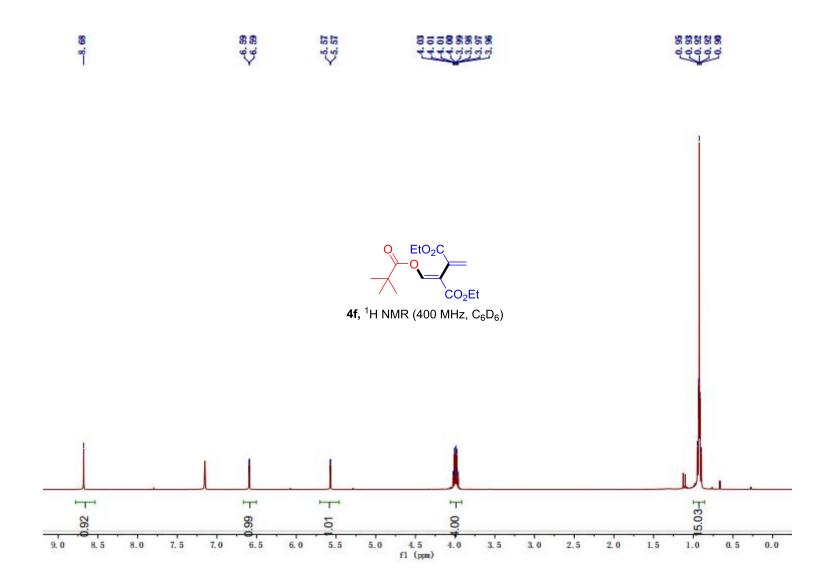


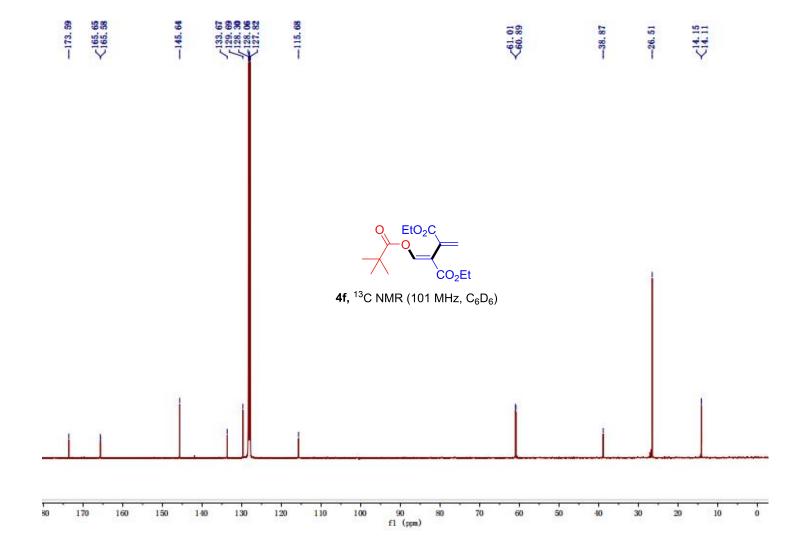


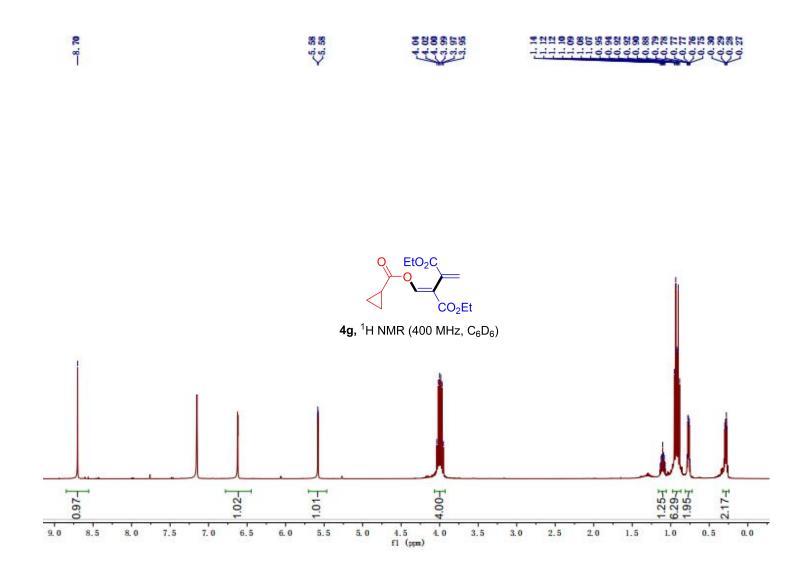


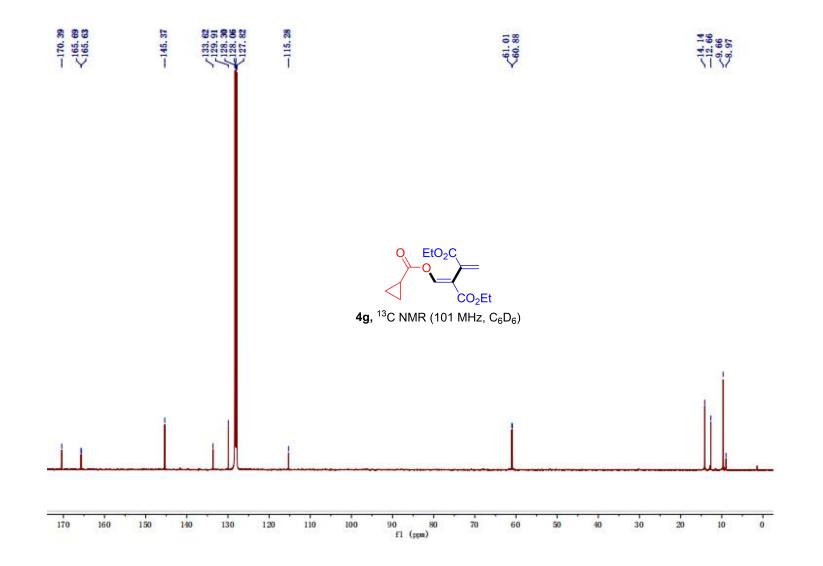


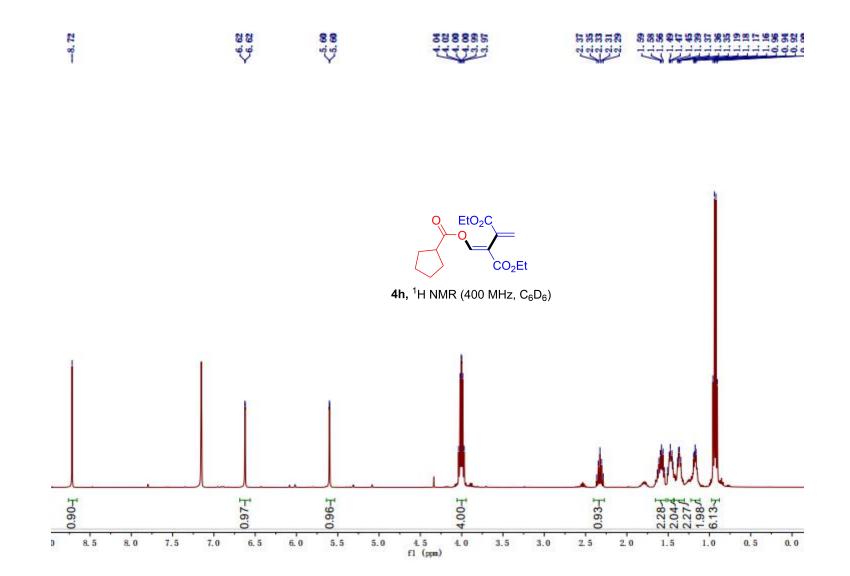


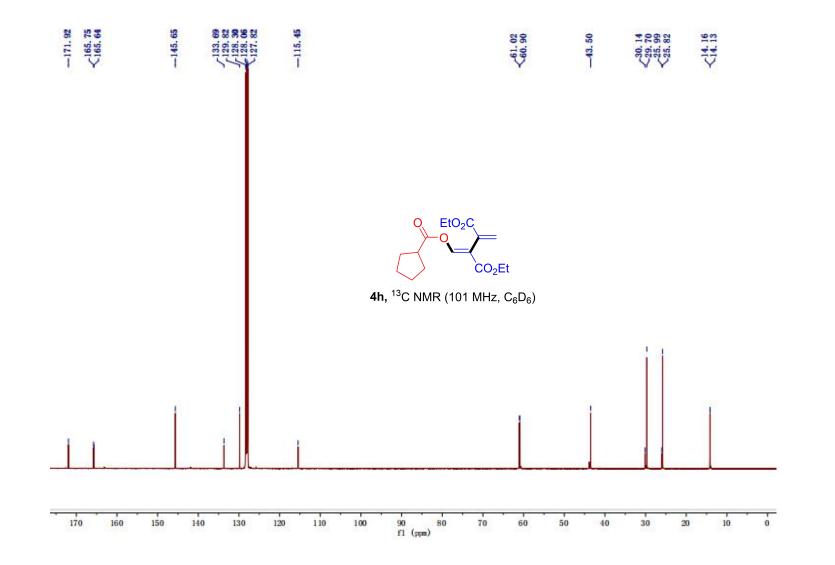


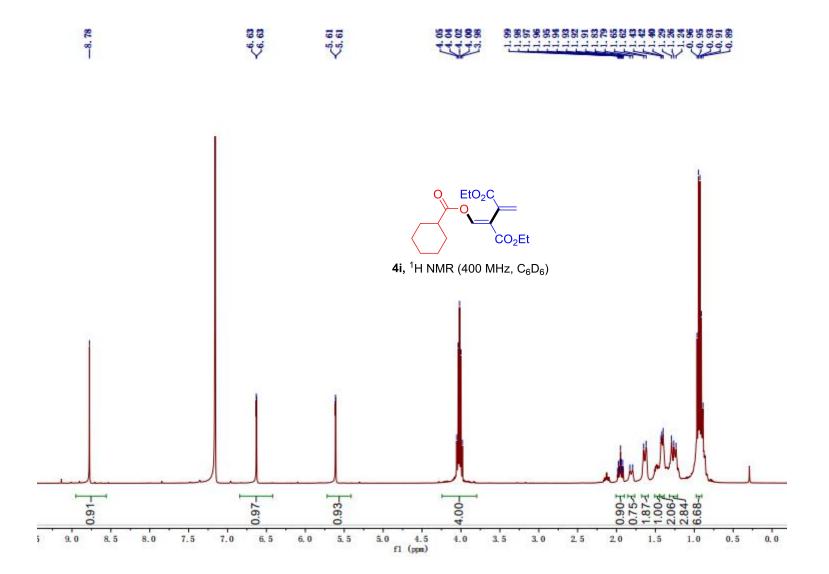


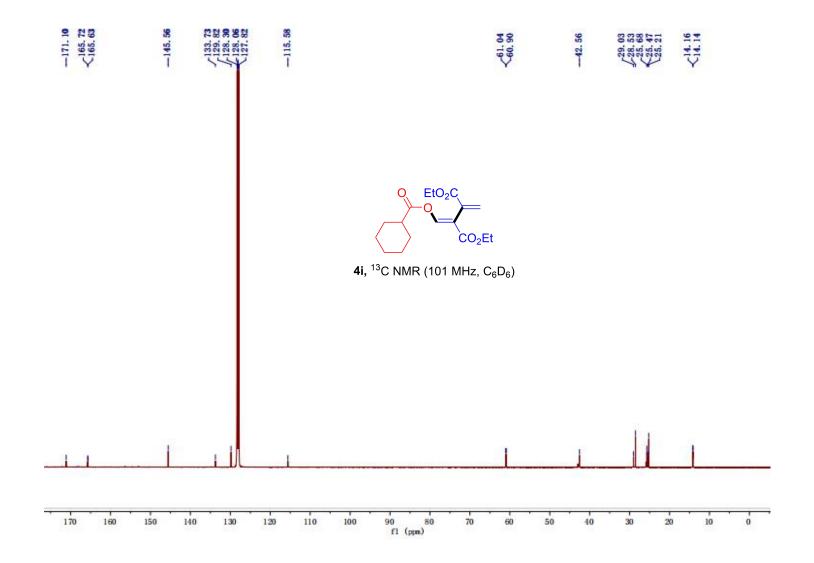


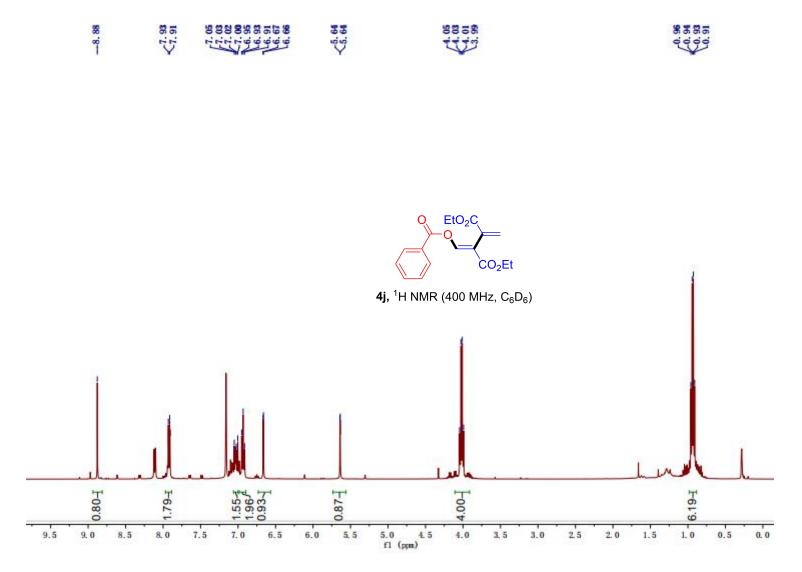


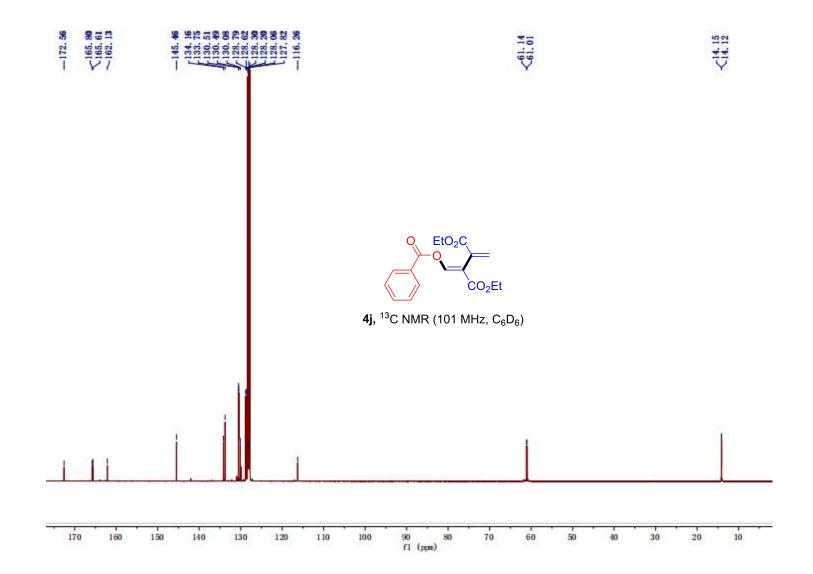


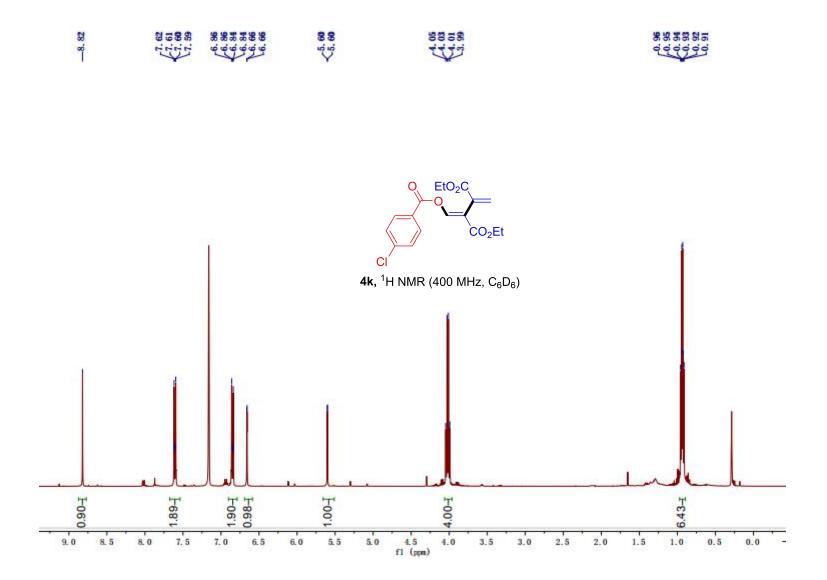


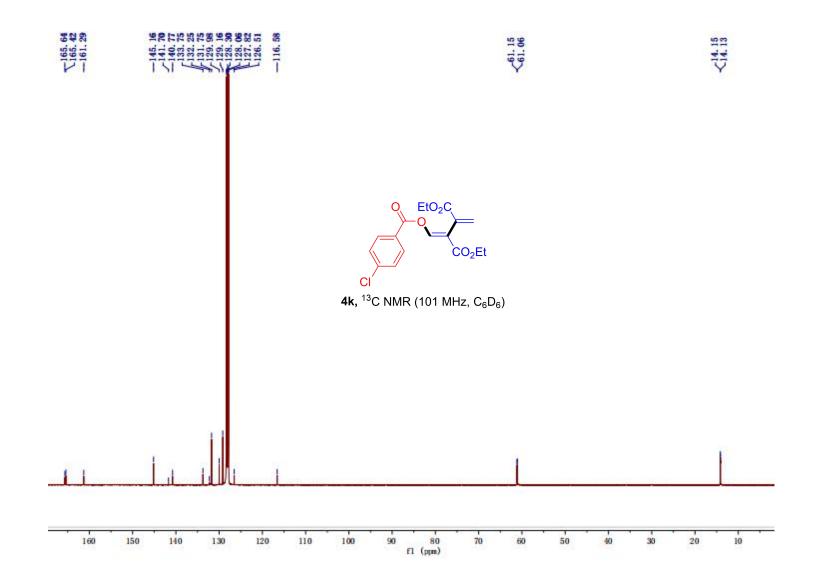


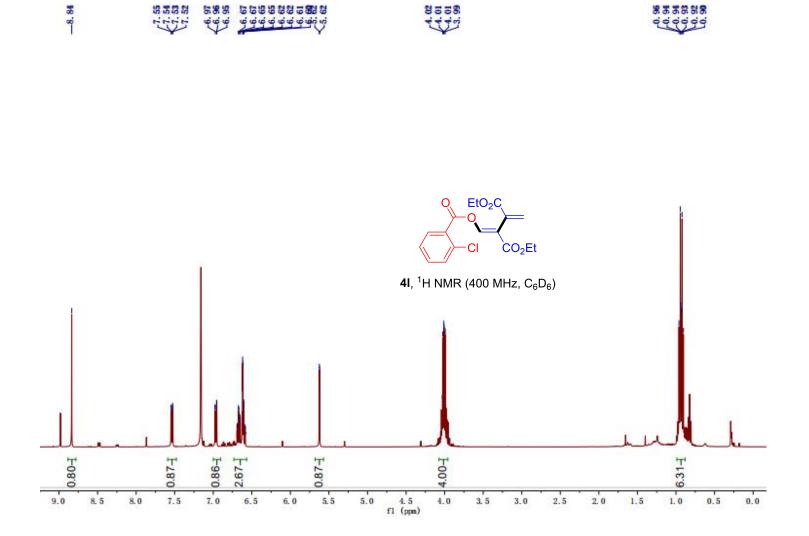




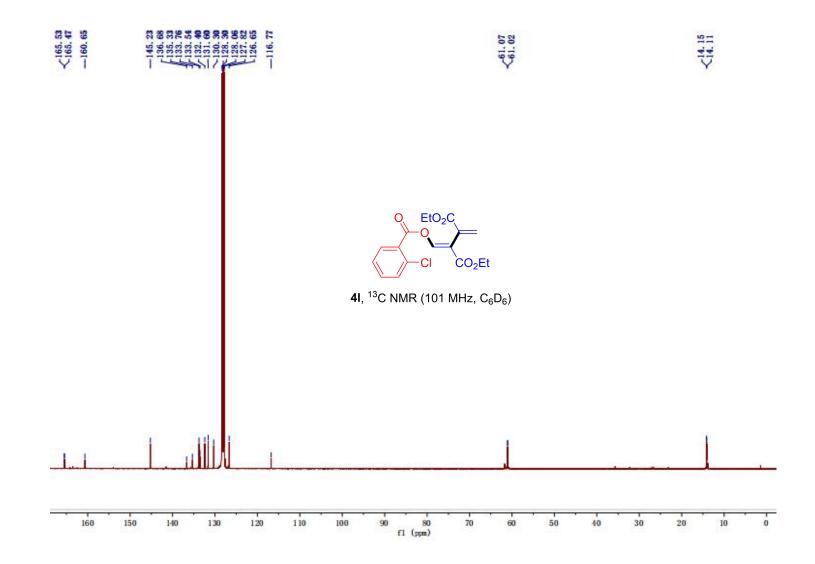


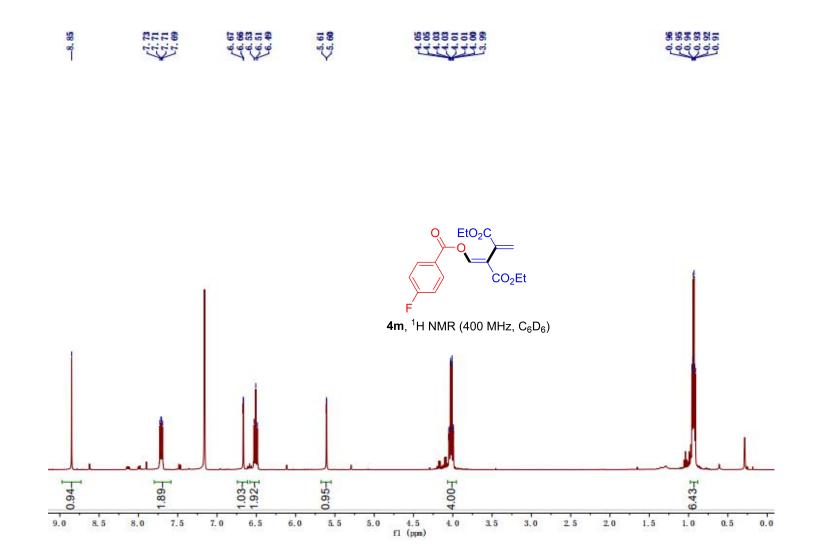


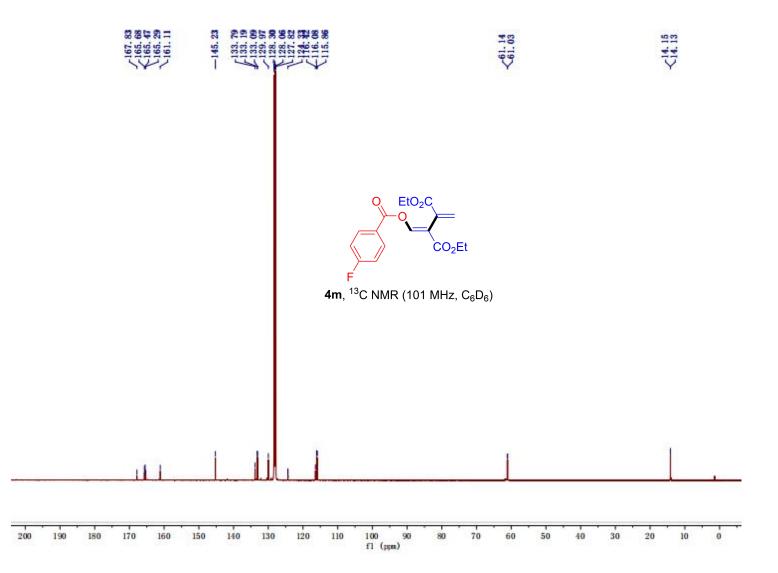




S58






S60

