# **Supporting Information**

# Catalyst-controlled Regioselective Sonogashira Coupling of 9-Substituted-6-chloro-2,8-diiodopurines

Gibae Kim,<sup>a</sup> Grim Lee,<sup>a</sup> Gyudong Kim,<sup>b</sup> Yeonseong Seo,<sup>a</sup> Dnyandev B. Jarhad,<sup>\*a</sup> and Lak Shin Jeong<sup>\*a</sup>

<sup>a</sup>Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Korea

<sup>b</sup>College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea

# **Table of Contents**

| 1. | The chemical structures of ligands and their abbreviations                        | <b>S</b> 2 |
|----|-----------------------------------------------------------------------------------|------------|
| 2. | Table S1. Solvent screening of regioselective Sonogashira coupling reaction S3-   | S4         |
| 3. | Scheme S1. Investigation of the effect of mixed ligand for selectivity            | S4         |
| 4. | Single-Crystal X-ray crystallography data of compounds of <b>3a</b> and <b>4a</b> | ·S8        |
| 5. | Computational details                                                             | 16         |
| 6. | Experimental Section                                                              | 32         |
| 7. | References                                                                        | 33         |
| 8. | <sup>1</sup> H NMR, <sup>13</sup> C NMR, and 2D NMR spectraS34-S                  | 99         |

## Fig. S1. The chemical structures ligands and their abbreviations





Dibenzylideneacetone (**dba**)

2-Biphenyl)di-tert-butylphosphine (JohnPhos)

| N<br>N<br>N<br>THP<br>1a                         | I Pd₂(dba)₃ <sup>.</sup> CHCl₃ (10 mol <sup>4</sup><br>Cul (20 mol%)<br>N 1-hexyne (1.1 equiv)<br><i>i</i> Pr₂NH (3 equiv)<br>solvent, rt<br>18 h | (1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ |                                                                               | $C_{4}H_{9} \longrightarrow N \longrightarrow N$ $H_{9} \longrightarrow$ |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                  |                                                                                                                                                   | + C <sub>4</sub> H <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI<br>N<br>N<br>THP<br>5a                                                     | I<br>C₄H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                  |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ontru                                            | colvent -                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yield (%) <sup>b</sup>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| entry                                            | solvent                                                                                                                                           | 3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yield (%) <sup>b</sup><br><b>4a</b>                                           | 5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| entry<br>1                                       | solvent -<br>DMF                                                                                                                                  | <b>3a</b><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yield (%) <sup>b</sup><br>4a<br>69                                            | <b>5a</b><br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| entry<br>1<br>2                                  | solvent -<br>DMF<br>Toluene                                                                                                                       | <b>3a</b><br>4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yield (%) <sup>b</sup><br>4a<br>69<br>42                                      | <b>5a</b><br>9<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| entry<br>1<br>2<br>3                             | solvent -<br>DMF<br>Toluene<br>dichloromethane                                                                                                    | <b>3a</b><br>4<br>7<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yield (%) <sup>b</sup><br>4a<br>69<br>42<br>38                                | <b>5a</b><br>9<br>15<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| entry<br>1<br>2<br>3<br>4                        | solvent -<br>DMF<br>Toluene<br>dichloromethane<br>THF                                                                                             | <b>3a</b><br>4<br>7<br>11<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yield (%) <sup>b</sup><br>4a<br>69<br>42<br>38<br>49                          | <b>5a</b><br>9<br>15<br>13<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| entry<br>1<br>2<br>3<br>4<br>5                   | solvent -<br>DMF<br>Toluene<br>dichloromethane<br>THF<br>1,4-dioxane                                                                              | <b>3a</b><br>4<br>7<br>11<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yield (%) <sup>b</sup><br>4a<br>69<br>42<br>38<br>49<br>49                    | <b>5a</b><br>9<br>15<br>13<br>11<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| entry<br>1<br>2<br>3<br>4<br>5<br>6 <sup>c</sup> | solvent -<br>DMF<br>Toluene<br>dichloromethane<br>THF<br>1,4-dioxane<br>Acetonitrile                                                              | <b>3a</b><br>4<br>7<br>11<br>3<br>3<br>trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yield (%) <sup>b</sup><br><b>4a</b><br>69<br>42<br>38<br>49<br>49<br>49<br>20 | <b>5a</b><br>9<br>15<br>13<br>11<br>5<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Table S1. Solvent Screening of regioselective Sonogashira coupling reaction<sup>a</sup>

<sup>a</sup>Unless otherwise noted, all the reactions were performed with **1a** (0.2 mmol, 1 equiv), CuI (0.04 mmol, 0.2 equiv), Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub> (0.02 mmol, 0.1 equiv), 1-hexyne (0.22 mmol, 1.1 equiv), and *i*Pr<sub>2</sub>NH (0.6 mmol, 3 equiv) in 5.0 mL of solvent for 18 h under nitrogen atmosphere. <sup>b</sup>Isolated yield after silica gel column chromatography. <sup>c</sup>45% of **1a** was recovered.

In an attempt to improve the yield of the reaction, we briefly investigated the effect of solvent on the Sonogashira cross-coupling of **1a** with 1-hexyne. Examination of solvent effects revealed that aprotic polar solvents such as DMF, dioxane, and THF showed good results (Table S1). Among them, the use of DMF solvent showed an enhancement in the yield of the reaction as well as the regioisomeric ratio (entry 1). The use of non-polar solvents toluene and dichloromethane resulted in a greatly diminished yield of C8-alkynylated product **4a** to 42 and 38%, respectively, and also regioisomeric ratio was decreased (entries 2 and 3). When the reaction was performed in a polar solvent such as THF and 1,4-dioxane, the yield of C8alkynylated product was increased in comparison to non-polar solvents, and only a trace amount of the C2-alkynylated product was observed (entries 4 and 5). The use of acetonitrile gave a low yield of **4a**, but 45% of **1a** was recovered (entry 6). It implies acetonitrile made the reaction sluggish. When a mixture of DMF and toluene (1:1) was used as solvent, no improvement in the yield of **4a** was observed (entry 7).



Scheme S1. Investigation of the effect of the mixed ligands for selectivity

To investigate how does mixed ligand affect the regioselectivity, we also performed experiment of the Sonogashira reaction of **1a** with 1-hexyne using  $Pd_2(dba)_3$ ·CHCl<sub>3</sub>-PPh<sub>3</sub> combination to explore the selectivity. Under this condition, C2-selective coupling product (**3a**) was obtained in 47% of isolated yield without being formation of C8-coupling product (**4a**). It demonstrated that Pd catalyst enters catalytic cycle as Pd(PPh<sub>3</sub>)<sub>2</sub> species. Although Pd(dba)(PPh<sub>3</sub>)<sub>2</sub> was preliminarily formed as resting state, it was converted to Pd(PPh<sub>3</sub>)<sub>n</sub> as active species.<sup>[1]</sup>

#### 2. Single-Crystal X-ray crystallography data of compounds 3a and 4a

**Sample preparation:** Compound **3a** or **4a** (~5 mg) was dissolved in dichloromethane and nhexane (0.6 mL, 1:5) in a glass vial. After slow evaporation at room temperature, the single crystals of **3a** or **4a** suitable for X-ray analysis were obtained.

**Crystal structure determination**: X-ray diffraction data of **3a** (CCDC: 2164196) and **4a** (CCDC: 2164194) were collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 294.1(2) K (for **3a**) and 291.7(6) K (for **4a**) during data collection. Using Olex2 <sup>[2]</sup>, the structure was solved with the ShelXT <sup>[3]</sup> structure solution program using Intrinsic Phasing and refined with the ShelXL<sup>[4]</sup> refinement package using Least Squares minimization

#### 2.1 Single-Crystal X-ray crystallography data of compound 3a



Fig S2. ORTEP diagram of compound 3a showing thermal ellipsoid at 50% probability.

| Empirical formula                                   | $C_{16}H_{18}ClIN_4O$                                                                   |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|
| Formula weight                                      | 443.68                                                                                  |
| Temperature/K                                       | 294.1(2)                                                                                |
| Crystal system                                      | monoclinic                                                                              |
| Space group                                         | P2 <sub>1</sub> /n                                                                      |
| a/Å                                                 | 10.3449(9)                                                                              |
| b/Å                                                 | 15.2749(15)                                                                             |
| c/Å                                                 | 11.5805(13)                                                                             |
| α/°                                                 | 90                                                                                      |
| β/°                                                 | 98.234(10)                                                                              |
| $\gamma/^{\circ}$                                   | 90                                                                                      |
| Volume/Å <sup>3</sup>                               | 1811.1(3)                                                                               |
| Z                                                   | 4                                                                                       |
| $\rho_{calc}g/cm^3$                                 | 1.627                                                                                   |
| $\mu/mm^{-1}$                                       | 1.925                                                                                   |
| F(000)                                              | 876.0                                                                                   |
| Crystal size/mm <sup>3</sup>                        | $0.5\times0.3\times0.1$                                                                 |
| Radiation                                           | MoKa ( $\lambda = 0.71073$ )                                                            |
| $2\Theta$ range for data collection/^               | 4.444 to 59.278                                                                         |
| Index ranges                                        | $\textbf{-12} \leq h \leq 14, \textbf{-16} \leq k \leq 20, \textbf{-12} \leq l \leq 14$ |
| Reflections collected                               | 8344                                                                                    |
| Independent reflections                             | 4171 [ $R_{int} = 0.0644, R_{sigma} = 0.0744$ ]                                         |
| Data/restraints/parameters                          | 4171/0/210                                                                              |
| Goodness-of-fit on F <sup>2</sup>                   | 1.032                                                                                   |
| Final R indexes [I>= $2\sigma$ (I)]                 | $R_1 = 0.0726, wR_2 = 0.1998$                                                           |
| Final R indexes [all data]                          | $R_1 = 0.1110, \ wR_2 = 0.2446$                                                         |
| Largest diff. peak/hole / e ${\rm \AA}^{\text{-}3}$ | 1.03/-0.85                                                                              |

# Table S2. Crystal data and structure refinement for 3a

# 2.2 Single-Crystal X-ray crystallography data of compound 4a





Fig S3. ORTEP diagram of compound 4a showing thermal ellipsoid at 50% probability.

| Та | ble S3. | Crystal | data | and | structure | refinement | for | 4a |
|----|---------|---------|------|-----|-----------|------------|-----|----|

| Empirical formula                    | C <sub>16</sub> H <sub>18</sub> ClIN <sub>4</sub> O                                 |
|--------------------------------------|-------------------------------------------------------------------------------------|
| Formula weight                       | 444.69                                                                              |
| Temperature/K                        | 291.7(6)                                                                            |
| Crystal system                       | monoclinic                                                                          |
| Space group                          | P2 <sub>1</sub> /c                                                                  |
| a/Å                                  | 11.7366(6)                                                                          |
| b/Å                                  | 17.1589(6)                                                                          |
| c/Å                                  | 9.5008(6)                                                                           |
| $\alpha/^{\circ}$                    | 90                                                                                  |
| β/°                                  | 108.684(6)                                                                          |
| $\gamma/^{\circ}$                    | 90                                                                                  |
| Volume/Å <sup>3</sup>                | 1812.51(17)                                                                         |
| Z                                    | 4                                                                                   |
| $ ho_{calc}g/cm^3$                   | 1.630                                                                               |
| $\mu/mm^{-1}$                        | 1.923                                                                               |
| F(000)                               | 880.0                                                                               |
| Crystal size/mm <sup>3</sup>         | $0.325\times0.268\times0.162$                                                       |
| Radiation                            | MoKa ( $\lambda = 0.71073$ )                                                        |
| $2\Theta$ range for data collection/ | <sup>o</sup> 4.366 to 59.382                                                        |
| Index ranges                         | $\text{-}14 \leq h \leq 15,  \text{-}23 \leq k \leq 22,  \text{-}13 \leq l \leq 11$ |
| Reflections collected                | 16669                                                                               |
| Independent reflections              | 4552 [ $R_{int} = 0.0326$ , $R_{sigma} = 0.0331$ ]                                  |
| Data/restraints/parameters           | 4552/0/209                                                                          |
| Goodness-of-fit on F <sup>2</sup>    | 1.049                                                                               |
| Final R indexes [I>= $2\sigma$ (I)]  | $R_1 = 0.0579, wR_2 = 0.1218$                                                       |
| Final R indexes [all data]           | $R_1 = 0.0842, wR_2 = 0.1348$                                                       |
| Largest diff. peak/hole / e Å-3      | 3 1.12/-0.84                                                                        |

#### **Computational details**

The B3LYP density functional method<sup>[5]</sup> was used for the geometry optimization, natural bond orbital (NBO) analysis in implicit solvent using the conductor-like polarizable continuum model (CPCM)<sup>[6]</sup> to consider the effect of toluene. The vibrational frequency analysis was performed to calculate the zero-point energy and thermal correction at 298.15 K, 1 atm. The basis sets of  $6-31+G(d)^{[7]}$  and Lanl2dz<sup>[8]</sup> (Pd, I) were employed depending on the substrate and analysis. The bonding dissociation energy was calculated by sum of enthalpy for cleaved molecules and substrate **1a**. All of these calculations were carried out by Gaussian 09.<sup>[9]</sup>

#### **Cartesian Coordinates and Energies**

**1**a

|    |    | Center<br>Number | Atomic A<br>Number | tomic<br>Type |           |
|----|----|------------------|--------------------|---------------|-----------|
| 1  | 7  | 0                | 2.641960           | -1.440055     | 0.017372  |
| 2  | 6  | 0                | 2.580792           | -0.172890     | -0.021335 |
| 3  | 7  | 0                | 1.500970           | 0.491414      | -0.052565 |
| 4  | 6  | 0                | 0.413810           | -0.149309     | -0.045187 |
| 5  | 6  | 0                | 0.405494           | -1.490864     | -0.005164 |
| 6  | 6  | 0                | 1.581592           | -2.133687     | 0.027343  |
| 7  | 7  | 0                | -0.820399          | 0.130293      | -0.066402 |
| 8  | 6  | 0                | -1.544600          | -0.910309     | -0.041041 |
| 9  | 7  | 0                | -0.784030          | -1.924534     | -0.000988 |
| 10 | 17 | 0                | 1.656960           | -3.858293     | 0.080661  |
| 11 | 53 | 0                | 4.440785           | 0.933358      | -0.031983 |
| 12 | 53 | 0                | -3.685634          | -1.115994     | 0.012320  |
| 13 | 6  | 0                | -1.296825          | 1.527678      | -0.123822 |
| 14 | 8  | 0                | -2.310189          | 1.707101      | -1.090258 |
| 15 | 6  | 0                | -2.688919          | 3.051395      | -1.244934 |
| 16 | 6  | 0                | -3.253619          | 3.606320      | 0.059655  |
| 17 | 6  | 0                | -2.211948          | 3.477832      | 1.176549  |
| 18 | 6  | 0                | -1.747078          | 2.018791      | 1.253339  |
| 19 | 1  | 0                | -0.433539          | 2.157882      | -0.449833 |
| 20 | 1  | 0                | -3.466324          | 3.085633      | -2.043446 |
| 21 | 1  | 0                | -1.817422          | 3.646639      | -1.600753 |
| 22 | 1  | 0                | -3.546730          | 4.675028      | -0.071561 |
| 23 | 1  | 0                | -4.174567          | 3.040378      | 0.338682  |
| 24 | 1  | 0                | -2.639430          | 3.806552      | 2.153311  |
| 25 | 1  | 0                | -1.340677          | 4.138966      | 0.953944  |
| 26 | 1  | 0                | -2.583011          | 1.387510      | 1.633028  |

| 27               | 1              | 0              | -0.909740 | 1.925702       | 1.985242   |
|------------------|----------------|----------------|-----------|----------------|------------|
| Zero-point corre | ction=         |                | 0.19      | 90229 (Hartree | /Particle) |
| Thermal correcti | on to Energy=  | =              | 0.20      | 6410           |            |
| Thermal correcti | on to Enthalp  | y=             | 0.20      | 7354           |            |
| Thermal correcti | on to Gibbs F  | ree Energy=    | 0.142     | 104            |            |
| Sum of electroni | c and zero-por | int Energies=  | -116      | 63.488250      |            |
| Sum of electroni | c and thermal  | Energies=      | -11       | 63.472068      |            |
| Sum of electroni | c and thermal  | Enthalpies=    | -11       | 63.471124      |            |
| Sum of electroni | c and thermal  | Free Energies= | -116      | 53.536374      |            |

# **C8-I** fragment (fragment of purine)

| U V              | U           | Center         | Atomic        | Atomic         |               |
|------------------|-------------|----------------|---------------|----------------|---------------|
|                  |             | Number         | Number        | Туре           |               |
| 1                | 7           | 0              | 2.211823      | 1.045746       | 0.061577      |
| 2                | 6           | 0              | 1.613107      | -0.143016      | -0.035524     |
| 3                | 7           | 0              | 0.312340      | -0.403669      | -0.123697     |
| 4                | 6           | 0              | -0.425329     | 0.701354       | -0.105806     |
| 5                | 6           | 0              | 0.063394      | 2.025771       | -0.008744     |
| 6                | 6           | 0              | 1.448687      | 2.134917       | 0.074489      |
| 7                | 7           | 0              | -1.807925     | 0.819213       | -0.194534     |
| 8                | 6           | 0              | -2.032511     | 2.173133       | -0.122092     |
| 9                | 7           | 0              | -1.004556     | 2.923004       | -0.024502     |
| 10               | 17          | 0              | 2.230971      | 3.680380       | 0.196814      |
| 11               | 53          | 0              | 2.91263       | 6 -1.833671    | -0.053582     |
| 12               | 6           | 0              | -2.785943     | 3 -0.257562    | -0.207438     |
| 13               | 8           | 0              | -3.228683     | 3 -0.417948    | 1.132374      |
| 14               | 6           | 0              | -4.154382     | 2 -1.510660    | 1.276104      |
| 15               | 6           | 0              | -5.399970     | 6 -1.299329    | 0.417143      |
| 16               | 6           | 0              | -5.00331      | 5 -1.075190    | -1.050239     |
| 17               | 6           | 0              | -3.946342     | 0.036986       | -1.159816     |
| 18               | 1           | 0              | -2.24052      | 8 -1.156951    | -0.525986     |
| 19               | 1           | 0              | -4.390513     | 3 -1.545319    | 2.342287      |
| 20               | 1           | 0              | -3.645454     | 4 -2.449193    | 1.003232      |
| 21               | 1           | 0              | -6.05963      | 1 -2.171007    | 0.513008      |
| 22               | 1           | 0              | -5.951269     | 9 -0.427731    | 0.794226      |
| 23               | 1           | 0              | -5.87946      | 1 -0.815464    | -1.655151     |
| 24               | 1           | 0              | -4.59562      | 3 -2.007181    | -1.467820     |
| 25               | 1           | 0              | -4.386410     | 0 1.005149     | -0.885304     |
| 26               | 1           | 0              | -3.563954     | 4 0.120883     | -2.183844     |
| Zero-point corre | ection=     |                |               | 0.188181 (Hart | ree/Particle) |
| Thermal correct  | tion to Ene | ergy=          |               | 0.202623       |               |
| Thermal correct  | tion to Ent | halpy=         | (             | 0.203567       |               |
| Thermal correct  | tion to Gib | bs Free Energy | <i>y</i> = 0. | 142167         |               |

| Sum of electronic and zero-point Energies=   | -1152.028524 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -1152.014082 |
| Sum of electronic and thermal Enthalpies=    | -1152.013138 |
| Sum of electronic and thermal Free Energies= | -1152.074538 |

| 8               |               | Center 4       | Atomic   | Atomic         |               |
|-----------------|---------------|----------------|----------|----------------|---------------|
|                 |               | Number         | Number   | Туре           |               |
|                 |               |                |          |                |               |
| 1               | 7             | 0              | 3.806459 | 9 1.656455     | -0.043029     |
| 2               | 6             | 0              | 2.949574 | 2.591469       | -0.092471     |
| 3               | 7             | 0              | 1.694293 | 5 2.412208     | -0.113195     |
| 4               | 6             | 0              | 1.26739  | 1 1.225048     | -0.083173     |
| 5               | 6             | 0              | 2.118360 | 0.188451       | -0.030658     |
| 6               | 6             | 0              | 3.433985 | 5 0.445753     | -0.010338     |
| 7               | 7             | 0              | 0.13919  | 5 0.651418     | -0.087959     |
| 8               | 6             | 0              | 0.24709  | 5 -0.611197    | -0.041858     |
| 9               | 7             | 0              | 1.48040  | 5 -0.904877    | -0.004170     |
| 10              | 17            | 0              | 4.59414  | -0.831819      | 0.057712      |
| 11              | 53            | 0              | -1.26819 | 0 -2.136096    | 0.046356      |
| 12              | 6             | 0              | -1.12044 | 1 1.421038     | -0.150918     |
| 13              | 8             | 0              | -2.02037 | 0.895409       | -1.103251     |
| 14              | 6             | 0              | -3.17151 | 3 1.684947     | -1.264466     |
| 15              | 6             | 0              | -3.95269 | 2 1.773197     | 0.043491      |
| 16              | 6             | 0              | -3.06263 | 3 2.358634     | 1.145352      |
| 17              | 6             | 0              | -1.77237 | 8 1.534532     | 1.228425      |
| 18              | 1             | 0              | -0.86093 | 0 2.451713     | -0.495979     |
| 19              | 1             | 0              | -3.79617 | 0 1.201200     | -2.051195     |
| 20              | 1             | 0              | -2.88352 | 7 2.693471     | -1.639134     |
| 21              | 1             | 0              | -4.86175 | 7 2.405833     | -0.093044     |
| 22              | 1             | 0              | -4.29789 | 6 0.754328     | 0.341871      |
| 23              | 1             | 0              | -3.59568 | 4 2.354977     | 2.125508      |
| 24              | 1             | 0              | -2.81612 | 6 3.419953     | 0.903273      |
| 25              | 1             | 0              | -2.00983 | 9 0.521410     | 1.626743      |
| 26              | 1             | 0              | -1.06441 | 4 2.010165     | 1.948176      |
| Zero-point corr | ection=       |                |          | 0.188733 (Hart | ree/Particle) |
| Thermal correc  | tion to Ener  | ·gy=           |          | 0.202999       |               |
| Thermal correc  | tion to Enth  | alpy=          |          | 0.203943       |               |
| Thermal correc  | tion to Gibb  | os Free Energy | = 0.     | .144388        |               |
| Sum of electron | nic and zero  | -point Energie | s=       | -1152.031122   |               |
| Sum of electron | nic and there | mal Energies=  |          | -1152.016856   |               |
| Sum of electron | nic and there | mal Enthalpies | =        | -1152.015912   |               |
| Sum of electron | nic and there | mal Free Energ | gies=    | -1152.075467   |               |

## **C2-I fragment (fragment of purine)** Center

# Iodine

| Zero-point correction=                       | 0.000000 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.001416                    |
| Thermal correction to Enthalpy=              | 0.002360                    |
| Thermal correction to Gibbs Free Energy=     | -0.017503                   |
| Sum of electronic and zero-point Energies=   | -11.363637                  |
| Sum of electronic and thermal Energies=      | -11.362221                  |
| Sum of electronic and thermal Enthalpies=    | -11.361277                  |
| Sum of electronic and thermal Free Energies= | -11.381140                  |

# Molecular Orbital Coefficients of Substrate(1a), LUMO = 59

|      |             | 59       | 60       | 61       | 62       | 63       |  |
|------|-------------|----------|----------|----------|----------|----------|--|
|      |             | Ο        | 0        | 0        | 0        | Ο        |  |
|      | Eigenvalues | -0.29066 | -0.28658 | -0.27362 | -0.27099 | -0.25943 |  |
| 11   | N 1S        | 0.00371  | -0.00140 | 0.03079  | -0.02154 | -0.00017 |  |
| 2    | 2S          | -0.00966 | 0.00330  | -0.07024 | 0.04824  | 0.00037  |  |
| 3    | 3S          | -0.00142 | 0.00241  | -0.11299 | 0.07791  | 0.00016  |  |
| 4    | 4PX         | 0.01027  | -0.00912 | 0.17594  | -0.13763 | -0.00086 |  |
| 5    | 4PY         | 0.04281  | -0.00170 | -0.06792 | 0.07532  | 0.00108  |  |
| 6    | 4PZ         | -0.07623 | -0.02729 | 0.02809  | 0.03260  | -0.09753 |  |
| 7    | 5PX         | 0.01212  | -0.00329 | 0.05676  | -0.03413 | 0.00007  |  |
| 8    | 5PY         | 0.02543  | -0.00173 | -0.04113 | 0.05320  | 0.00156  |  |
| 9    | 5PZ         | -0.04071 | -0.01577 | 0.01448  | 0.01731  | -0.04736 |  |
| 10 2 | C 1S        | -0.00544 | 0.00085  | -0.00197 | -0.00155 | -0.00006 |  |
| 11   | 2S          | 0.01249  | -0.00163 | 0.00477  | 0.00392  | 0.00010  |  |
| 12   | 3S          | 0.03573  | -0.00669 | 0.01765  | 0.01310  | 0.00171  |  |
| 13   | 4PX         | 0.00904  | 0.00093  | -0.02694 | 0.03077  | 0.00225  |  |
| 14   | 4PY         | -0.02426 | 0.00064  | 0.04504  | -0.04582 | -0.00119 |  |
| 15   | 4PZ         | 0.02962  | 0.04420  | 0.00636  | 0.01217  | -0.21157 |  |
| 16   | 5PX         | -0.02253 | -0.00097 | 0.02441  | -0.02764 | 0.00098  |  |
| 17   | 5PY         | 0.01860  | 0.00002  | -0.02052 | 0.04103  | 0.00178  |  |
| 18   | 5PZ         | 0.01829  | 0.03636  | 0.00128  | 0.00224  | -0.07776 |  |
| 193  | N 1S        | 0.00771  | -0.00012 | -0.02271 | 0.02605  | 0.00046  |  |
| 20   | 2S          | -0.02054 | 0.00110  | 0.05218  | -0.05941 | -0.00100 |  |
| 21   | 38          | 0.01868  | -0.00824 | 0.06333  | -0.08183 | -0.00219 |  |
| 22   | 4PX         | 0.01683  | -0.00559 | -0.00352 | 0.00278  | 0.00133  |  |
| 23   | 4PY         | 0.11578  | -0.01163 | -0.16083 | 0.18511  | 0.00273  |  |
| 24   | 4PZ         | 0.02783  | -0.12956 | -0.00756 | -0.00838 | -0.14584 |  |
| 25   | 5PX         | 0.02955  | -0.00627 | 0.02726  | -0.01202 | 0.00077  |  |
| 26   | 5PY         | 0.05472  | -0.00712 | -0.06245 | 0.06859  | 0.00027  |  |
| 27   | 5PZ         | 0.01433  | -0.06814 | -0.00530 | -0.00703 | -0.07542 |  |

| 28 4 | С | 1S  | 0.00811  | -0.00116 | 0.00989  | -0.00088 | 0.00079  |
|------|---|-----|----------|----------|----------|----------|----------|
| 29   |   | 2S  | -0.01179 | 0.00188  | -0.02619 | 0.00397  | -0.00262 |
| 30   |   | 3S  | -0.17672 | 0.02490  | -0.07911 | -0.04725 | -0.00509 |
| 31   |   | 4PX | -0.02039 | 0.00106  | 0.03191  | -0.06919 | -0.00635 |
| 32   |   | 4PY | -0.07734 | 0.01215  | 0.06923  | -0.04561 | 0.00259  |
| 33   |   | 4PZ | -0.02979 | -0.08159 | -0.00471 | -0.00734 | 0.19051  |
| 34   |   | 5PX | 0.00505  | -0.00737 | -0.00072 | -0.02281 | -0.00123 |
| 35   |   | 5PY | 0.03278  | -0.00912 | -0.06422 | -0.00553 | -0.00236 |
| 36   |   | 5PZ | -0.01844 | -0.04780 | 0.00387  | 0.00505  | 0.07220  |
| 37 5 | С | 1S  | -0.00959 | 0.00125  | 0.00368  | -0.00691 | -0.00016 |
| 38   |   | 2S  | 0.02879  | -0.00424 | -0.01189 | 0.01458  | -0.00017 |
| 39   |   | 3S  | 0.00181  | 0.00688  | 0.01297  | 0.06915  | 0.00484  |
| 40   |   | 4PX | 0.07686  | -0.01455 | 0.03095  | -0.00032 | -0.00102 |
| 41   |   | 4PY | 0.09202  | -0.01538 | -0.08577 | 0.07625  | 0.00074  |
| 42   |   | 4PZ | 0.02974  | -0.02718 | -0.03222 | -0.04426 | 0.21998  |
| 43   |   | 5PX | -0.06959 | 0.00784  | 0.03506  | -0.06000 | -0.00023 |
| 44   |   | 5PY | -0.07393 | 0.01053  | -0.05998 | 0.00594  | -0.00114 |
| 45   |   | 5PZ | 0.01722  | 0.00551  | -0.01595 | -0.02294 | 0.08813  |
| 46 6 | С | 1S  | -0.00532 | 0.00108  | -0.00614 | 0.00585  | 0.00023  |
| 47   |   | 2S  | 0.01902  | -0.00329 | 0.01446  | -0.01171 | -0.00072 |
| 48   |   | 3S  | -0.01957 | -0.00185 | 0.05685  | -0.08768 | -0.00166 |
| 49   |   | 4PX | 0.00249  | 0.00180  | -0.07651 | 0.04587  | -0.00163 |
| 50   |   | 4PY | -0.01019 | 0.00231  | -0.03332 | 0.02918  | 0.00086  |
| 51   |   | 4PZ | -0.05361 | -0.06475 | -0.00161 | -0.00537 | 0.17362  |
| 52   |   | 5PX | 0.02798  | -0.00634 | 0.03402  | -0.01777 | 0.00054  |
| 53   |   | 5PY | 0.07690  | -0.00899 | -0.03759 | 0.05718  | 0.00061  |
| 54   |   | 5PZ | -0.01921 | -0.03250 | 0.00144  | 0.00018  | 0.05575  |
| 55 7 | Ν | 1S  | 0.00217  | -0.00100 | -0.00283 | -0.00469 | -0.00093 |
| 56   |   | 2S  | -0.01015 | 0.00312  | 0.00593  | 0.00923  | 0.00197  |
| 57   |   | 3S  | 0.01298  | 0.00022  | 0.02186  | 0.03505  | 0.00664  |
| 58   |   | 4PX | -0.01835 | -0.00022 | 0.05084  | -0.00628 | 0.00424  |
| 59   |   | 4PY | 0.01552  | -0.01253 | 0.01084  | 0.00086  | 0.00181  |
| 60   |   | 4PZ | -0.07282 | 0.12862  | 0.03430  | 0.04064  | 0.02948  |
| 61   |   | 5PX | -0.05413 | 0.00347  | 0.01371  | -0.05851 | -0.00146 |
| 62   |   | 5PY | 0.06215  | -0.02233 | 0.00126  | 0.00194  | 0.00373  |
| 63   |   | 5PZ | -0.03641 | 0.09563  | 0.01576  | 0.01825  | 0.02084  |
| 64 8 | С | 1S  | -0.01187 | 0.00085  | 0.00789  | -0.00870 | 0.00043  |
| 65   |   | 2S  | 0.02849  | -0.00312 | -0.01975 | 0.02194  | 0.00001  |
| 66   |   | 3S  | 0.03585  | 0.01181  | -0.01476 | 0.06137  | -0.00636 |
| 67   |   | 4PX | -0.00761 | 0.00246  | 0.01173  | -0.02918 | -0.00264 |
| 68   |   | 4PY | 0.02725  | -0.00217 | -0.03630 | 0.00430  | -0.00398 |
| 69   |   | 4PZ | 0.01374  | 0.06712  | 0.02424  | 0.03320  | -0.23180 |
| 70   |   | 5PX | 0.00587  | -0.01046 | -0.00747 | -0.01560 | 0.00343  |

| 71     |    | 5PY | 0.03922  | -0.01419 | 0.03060  | 0.00235  | 0.00081  |  |
|--------|----|-----|----------|----------|----------|----------|----------|--|
| 72     |    | 5PZ | 0.00171  | 0.00789  | 0.01201  | 0.01630  | -0.10108 |  |
| 73 9   | Ν  | 1S  | 0.04082  | -0.00679 | -0.00979 | 0.01772  | 0.00004  |  |
| 74     |    | 2S  | -0.09420 | 0.01607  | 0.02199  | -0.03946 | -0.00018 |  |
| 75     |    | 3S  | -0.13117 | 0.02111  | 0.02024  | -0.06681 | 0.00051  |  |
| 76     |    | 4PX | -0.11969 | 0.02100  | 0.00235  | -0.04052 | 0.00030  |  |
| 77     |    | 4PY | -0.15218 | 0.01938  | 0.07512  | -0.06932 | -0.00025 |  |
| 78     |    | 4PZ | 0.09782  | 0.10256  | -0.01641 | -0.01650 | -0.22527 |  |
| 79     |    | 5PX | -0.07532 | 0.01272  | 0.00123  | -0.02087 | 0.00124  |  |
| 80     |    | 5PY | -0.05422 | 0.00935  | 0.03796  | -0.02434 | -0.00048 |  |
| 81     |    | 5PZ | 0.04820  | 0.05397  | -0.00796 | -0.00763 | -0.11661 |  |
| 82 10  | Cl | 1S  | -0.00278 | 0.00022  | 0.00833  | -0.00738 | -0.00002 |  |
| 83     |    | 2S  | -0.03328 | 0.00392  | 0.02801  | -0.02890 | 0.00004  |  |
| 84     |    | 3PX | 0.00787  | 0.00044  | 0.00440  | 0.00426  | 0.00100  |  |
| 85     |    | 3PY | 0.03597  | -0.00386 | -0.04747 | 0.04222  | 0.00009  |  |
| 86     |    | 3PZ | 0.04571  | 0.05328  | 0.00193  | 0.00483  | -0.09719 |  |
| 87     |    | 4PX | 0.00446  | 0.00110  | 0.00718  | 0.00289  | 0.00109  |  |
| 88     |    | 4PY | 0.05021  | -0.00561 | -0.06066 | 0.05385  | -0.00005 |  |
| 89     |    | 4PZ | 0.05237  | 0.06426  | 0.00191  | 0.00513  | -0.11511 |  |
| 90 11  | Ι  | 1S  | -0.00021 | -0.00016 | 0.00095  | -0.00012 | -0.00001 |  |
| 91     |    | 2S  | -0.00583 | -0.00011 | 0.00395  | -0.00136 | 0.00041  |  |
| 92     |    | 3PX | -0.01909 | -0.00305 | -0.20863 | 0.15753  | -0.00123 |  |
| 93     |    | 3PY | 0.09457  | -0.01095 | 0.35203  | -0.23221 | 0.00005  |  |
| 94     |    | 3PZ | 0.12191  | 0.37049  | -0.03021 | -0.03611 | 0.33870  |  |
| 95     |    | 4PX | -0.02135 | -0.00197 | -0.18042 | 0.13684  | -0.00096 |  |
| 96     |    | 4PY | 0.07510  | -0.00890 | 0.30376  | -0.20375 | 0.00007  |  |
| 97     |    | 4PZ | 0.10461  | 0.32271  | -0.02700 | -0.03262 | 0.31970  |  |
| 98 12  | Ι  | 1S  | 0.00189  | 0.00104  | -0.00286 | -0.00243 | -0.00121 |  |
| 99     |    | 2S  | -0.00307 | 0.00492  | -0.00173 | -0.00212 | -0.00276 |  |
| 100    |    | 3PX | -0.08881 | 0.01588  | -0.00630 | -0.02274 | -0.00075 |  |
| 101    |    | 3PY | 0.43149  | -0.11348 | 0.13824  | 0.19163  | 0.02380  |  |
| 102    |    | 3PZ | -0.06773 | -0.36692 | -0.00324 | -0.00380 | 0.26695  |  |
| 103    |    | 4PX | -0.06314 | 0.01223  | -0.00616 | -0.01569 | -0.00068 |  |
| 104    |    | 4PY | 0.35470  | -0.09126 | 0.11328  | 0.15488  | 0.01831  |  |
| 105    |    | 4PZ | -0.06093 | -0.31844 | -0.00732 | -0.00991 | 0.25607  |  |
| 106 13 | С  | 1S  | -0.00673 | 0.00295  | 0.00540  | 0.00305  | 0.00101  |  |
| 107    |    | 2S  | 0.01064  | -0.00561 | -0.01337 | -0.01332 | -0.00334 |  |
| 108    |    | 3S  | 0.08472  | -0.02378 | -0.03160 | 0.02402  | 0.00338  |  |
| 109    |    | 4PX | 0.01917  | -0.01357 | -0.06005 | -0.10492 | -0.01283 |  |
| 110    |    | 4PY | 0.00392  | 0.00152  | 0.00356  | -0.01999 | -0.00101 |  |
| 111    |    | 4PZ | 0.08771  | -0.05723 | -0.06776 | -0.08532 | -0.00571 |  |
| 112    |    | 5PX | -0.03915 | 0.01196  | 0.08041  | 0.07240  | 0.00258  |  |
| 113    |    | 5PY | 0.03421  | -0.00973 | 0.02598  | 0.02053  | 0.00025  |  |

| 114    |   | 5PZ        | -0.01431 | -0.01789 | 0.02082  | 0.02490  | 0.00831  |
|--------|---|------------|----------|----------|----------|----------|----------|
| 115 14 | 0 | 1S         | -0.01188 | 0.00646  | -0.00048 | -0.00346 | -0.00274 |
| 116    |   | 2S         | 0.02935  | -0.01500 | 0.00045  | 0.00693  | 0.00565  |
| 117    |   | 3S         | 0.02643  | -0.01965 | 0.00553  | 0.01771  | 0.01337  |
| 118    |   | 4PX        | -0.10026 | 0.00635  | 0.27028  | 0.36934  | 0.03842  |
| 119    |   | 4PY        | 0.04804  | -0.03510 | 0.05120  | 0.09000  | 0.01656  |
| 120    |   | 4PZ        | -0.17382 | 0.08222  | 0.20698  | 0.26863  | 0.02966  |
| 121    |   | 5PX        | -0.05079 | 0.00558  | 0.14062  | 0.19672  | 0.01941  |
| 122    |   | 5PY        | 0.03263  | -0.02234 | 0.02537  | 0.04658  | 0.01126  |
| 123    |   | 5PZ        | -0.08982 | 0.04204  | 0.10540  | 0.13627  | 0.01790  |
| 124 15 | С | 1S         | -0.00173 | 0.00131  | 0.00410  | 0.00623  | 0.00092  |
| 125    |   | 2S         | 0.00281  | -0.00144 | -0.01079 | -0.01664 | -0.00300 |
| 126    |   | 3S         | 0.01754  | -0.01792 | -0.01557 | -0.01884 | 0.00307  |
| 127    |   | 4PX        | 0.03287  | -0.00374 | -0.06982 | -0.08884 | -0.00648 |
| 128    |   | 4PY        | -0.03932 | 0.01963  | -0.00200 | -0.01671 | -0.00613 |
| 129    |   | 4PZ        | 0.07463  | -0.03463 | -0.06952 | -0.08796 | -0.01035 |
| 130    |   | 5PX        | -0.01538 | 0.00624  | 0.01616  | 0.02988  | 0.00185  |
| 131    |   | 5PY        | 0.00869  | -0.00588 | -0.01292 | -0.01912 | -0.00317 |
| 132    |   | 5PZ        | 0.01442  | -0.00561 | -0.00881 | -0.01320 | -0.00274 |
| 133 16 | С | 1S         | -0.00532 | 0.00225  | 0.00948  | 0.01272  | 0.00104  |
| 134    |   | 2S         | 0.01072  | -0.00408 | -0.02110 | -0.02836 | -0.00245 |
| 135    |   | 3S         | 0.03831  | -0.01838 | -0.06965 | -0.09326 | -0.00878 |
| 136    |   | 4PX        | -0.01342 | 0.00764  | 0.05135  | 0.06606  | 0.00499  |
| 137    |   | 4PY        | 0.06225  | -0.02179 | -0.04483 | -0.05284 | -0.00532 |
| 138    |   | 4PZ        | -0.09356 | 0.03562  | 0.09524  | 0.12194  | 0.01253  |
| 139    |   | 5PX        | -0.00406 | 0.00486  | 0.00876  | 0.00984  | 0.00113  |
| 140    |   | 5PY        | 0.00499  | 0.00290  | 0.01117  | 0.01760  | 0.00207  |
| 141    |   | 5PZ        | -0.03849 | 0.01038  | 0.04760  | 0.06823  | 0.00784  |
| 142 17 | С | 1 <b>S</b> | 0.00370  | -0.00158 | 0.00074  | 0.00218  | -0.00074 |
| 143    |   | 2S         | -0.00886 | 0.00392  | -0.00064 | -0.00326 | 0.00141  |
| 144    |   | 3S         | -0.00937 | 0.00292  | -0.02972 | -0.04828 | 0.00324  |
| 145    |   | 4PX        | -0.00249 | -0.01272 | -0.02161 | -0.02431 | -0.00166 |
| 146    |   | 4PY        | -0.05753 | 0.01494  | 0.02020  | 0.01406  | 0.01027  |
| 147    |   | 4PZ        | 0.05065  | -0.02928 | -0.04053 | -0.05027 | -0.00502 |
| 148    |   | 5PX        | 0.00992  | -0.00281 | -0.01009 | -0.02165 | -0.00373 |
| 149    |   | 5PY        | -0.01452 | -0.00035 | 0.00732  | 0.00443  | 0.00586  |
| 150    |   | 5PZ        | 0.02014  | -0.01620 | -0.04304 | -0.05974 | -0.00545 |
| 151 18 | С | 1S         | -0.01221 | 0.00370  | 0.00885  | 0.01126  | 0.00374  |
| 152    |   | 2S         | 0.02295  | -0.00742 | -0.01917 | -0.02493 | -0.00673 |
| 153    |   | 3S         | 0.09266  | -0.01473 | -0.07263 | -0.09297 | -0.03256 |
| 154    |   | 4PX        | 0.01654  | 0.03470  | 0.05848  | 0.07853  | 0.00118  |
| 155    |   | 4PY        | 0.09936  | -0.01999 | -0.04105 | -0.04024 | -0.01825 |
| 156    |   | 4PZ        | -0.09240 | 0.05733  | 0.10032  | 0.12923  | 0.01469  |

| 157    |   | 5PX | -0.00470 | 0.01101  | 0.00644  | 0.02692  | 0.00124  |
|--------|---|-----|----------|----------|----------|----------|----------|
| 158    |   | 5PY | 0.03599  | -0.01382 | -0.04336 | -0.04975 | -0.00693 |
| 159    |   | 5PZ | -0.02123 | 0.02012  | 0.04999  | 0.06612  | 0.00777  |
| 160 19 | Н | 1S  | -0.02086 | 0.01040  | 0.05773  | 0.08102  | 0.00899  |
| 161    |   | 2S  | -0.05674 | 0.01977  | 0.14533  | 0.15277  | 0.01436  |
| 162 20 | Н | 1S  | -0.02907 | 0.01855  | 0.00474  | 0.00434  | 0.00127  |
| 163    |   | 2S  | -0.02907 | 0.02258  | 0.00359  | -0.00112 | -0.00057 |
| 164 21 | Η | 1S  | -0.01357 | -0.00160 | 0.05741  | 0.07925  | 0.00839  |
| 165    |   | 2S  | -0.02589 | 0.00281  | 0.09462  | 0.13359  | 0.01186  |
| 166 22 | Н | 1S  | -0.02925 | 0.01020  | 0.01861  | 0.01988  | 0.00200  |
| 167    |   | 2S  | -0.04369 | 0.01666  | 0.04900  | 0.06154  | 0.00716  |
| 168 23 | Η | 1S  | 0.00939  | -0.00151 | 0.01450  | 0.02054  | 0.00118  |
| 169    |   | 2S  | 0.00281  | -0.00165 | 0.02225  | 0.03191  | 0.00188  |
| 170 24 | Η | 1S  | 0.03594  | -0.02322 | -0.04034 | -0.04905 | -0.00524 |
| 171    |   | 2S  | 0.03706  | -0.02382 | -0.02680 | -0.02623 | -0.00363 |
| 172 25 | Η | 1S  | 0.01568  | 0.00580  | 0.01181  | 0.01736  | -0.00138 |
| 173    |   | 2S  | 0.02722  | 0.00392  | 0.02223  | 0.02899  | -0.00154 |
| 174 26 | Н | 1S  | 0.02545  | 0.00786  | 0.01613  | 0.02826  | -0.00147 |
| 175    |   | 2S  | 0.00036  | 0.00839  | 0.03352  | 0.04281  | 0.00900  |
| 176 27 | Н | 1S  | -0.03808 | 0.01024  | 0.01670  | 0.01957  | 0.00290  |
| 177    |   | 2S  | -0.06165 | 0.01617  | 0.02325  | 0.03118  | 0.00668  |

#### **Experimental Section**

<sup>1</sup>H NMR and <sup>13</sup>C NMR were measured by Jeol JNM-ECZ 400s (400 MHz / 100MHz) and Bruker AV800 (800MHz/200MHz) spectrometer in CDCl<sub>3</sub>, DMSO- $d_6$ , and chemical shifts were reported as ppm ( $\delta$ ) unit relative to the solvent peaks. The <sup>1</sup>H NMR data were reported as peak multiplicities: s for singlet; d for doublet; dd for doublet of doublets; t for triplet; td for triplet of doublet; q for quartet; quin for quintet; bs for broad singlet and m for multiplet. Coupling constants were reported in Hertz. All reactions were routinely carried out under an inert atmosphere of dry nitrogen. Reactions were checked by thin –layer chromatography (Kieselgel 60 F254, Merck). Spots were detected by viewing under a UV light, and by colorizing with charring after dipping in a *p*-anisaldehyde solution. High Resolution Mass Spectra (HRMS) were obtained using Electrospray Ionization (ESI), Fast atom bombardment (FAB), and Electron Ionization (EI). Flash column chromatograph was performed on silica gel (Kieselgel 60, 230). All materials were purchased from TCI, Alfa Aesar, Sigma Aldrich, and other commercial suppliers and were used without further purification.

#### General Procedure for C2-Selective Sonogashira Coupling (A)

To a solution of 1 (0.2 mmol, 1 equiv) in DMF (5.0 mL) were added Pd(PPh<sub>3</sub>)<sub>4</sub> (0.02 mmol, 0.1 equiv), CuI (0.04 mmol, 0.2 equiv),  $iPr_2NH$  (0.6 mmol, 3 equiv), and followed by appropriate alkyne (0.22 mmol, 1.1 equiv) dropwise. After being stirred at room temperature under N<sub>2</sub>, the reaction mixture was quenched by H<sub>2</sub>O and extracted by Et<sub>2</sub>O. The combined organic layers were dried with MgSO<sub>4</sub>, filtered, and evaporated. Then, the residue was purified by flash silica gel chromatography.

#### **General Procedure for C8-Selective Sonogashira Coupling (B)**

To a solution of **1** (0.2 mmol, 1 equiv) in DMF (5.0 mL) were added  $Pd_2(dba)_3$  CHCl<sub>3</sub> (0.02 mmol, 0.1 equiv), CuI (0.04 mmol, 0.2 equiv), *i*Pr<sub>2</sub>NH (0.6 mmol, 3 equiv), and followed by appropriate alkyne (0.22 mmol, 1.1 equiv) dropwise. After being stirred at room temperature under N<sub>2</sub>, the reaction mixture was quenched by H<sub>2</sub>O and extracted by Et<sub>2</sub>O. The combined organic layers were dried with MgSO<sub>4</sub>, filtered, and evaporated. Then, the residue was purified by flash silica gel chromatography.

#### **General Procedure for Screening of Phosphine Ligand (C)**

To a solution of **1a** (0.2 mmol, 1 equiv) in DMF (5.0 mL) were added  $Pd(OAc)_2$  (0.02 mmol, 0.1 equiv), CuI (0.04 mmol, 0.2 equiv), *i*Pr<sub>2</sub>NH (0.6 mmol, 3 equiv), and appropriate phosphine ligand (0.02 mmol, 0.1 equiv for bidentate ligand or 0.04 mmol, 0.2 equiv for monodentate ligand), then stirred for 30 min at room temperature under N<sub>2</sub>. To the reaction mixture was dropwise added 1-hexyne (0.22 mmol, 1.1 equiv) and stirred for 18 h at room temperature under N<sub>2</sub>. The reaction mixture was quenched by H<sub>2</sub>O and extracted by Et<sub>2</sub>O. The combined organic layers were dried with MgSO<sub>4</sub>, filtered, and evaporated. Then, the residue was purified by flash silica gel chromatography.



#### 6-Chloro-2,8-diiodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (1a)<sup>[10]</sup>

Compound **1a** was prepared by following the reported procedure. <sup>[10]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.66 (dd, J = 11.3, 2.5 Hz, 1H), 4.21-4.17 (m, 1H), 3.74 (td, J = 11.8, 2.5 Hz, 1H), 3.04 (qd, J = 12.3, 4.1 Hz, 1H), 2.18-2.15 (m, 1H), 1.91-1.63 (m, 4H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  153.00, 146.82, 133.45, 117.94, 113.02, 86.38, 68.24, 27.96, 24.39, 22.44; HRMS (ESI) found 490.8637 [calcd for C<sub>10</sub>H<sub>10</sub>ClI<sub>2</sub>N<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 490.8627].



6-Chloro-2-(hex-1-yn-1-yl)-8-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (3a)

Compound **3a** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (52 mg, 57%) by following general procedure (A) using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 18

h).  $R_f = 0.55$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  5.64 (dd, J = 11.0, 1.8 Hz, 1H), 4.08 (d, J = 11.0 Hz, 1H), 3.71 (td, J = 11.1, 2.6 Hz, 1H), 2.93 (qd, J = 12.2, 3.6 Hz, 1H), 2.51 (t, J = 6.8 Hz, 2H), 2.02 (d, J = 11.9 Hz, 1H), 1.91 (d, J = 12.4 Hz, 1H), 1.76-1.40 (m, 7H), 0.92 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  152.32, 147.23, 144.00, 132.56, 113.25, 90.21, 86.28, 79.72, 68.25, 29.60, 28.07, 24.38, 22.46, 21.51, 17.99, 13.43; HRMS (FAB) found 445.0288 [calcd for C<sub>16</sub>H<sub>19</sub>ClIN<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 445.0292].



6-Chloro-8-(hex-1-yn-1-yl)-2-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (4a)

Compound **4a** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (63 mg, 69%) by following general procedure **(B)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 18 h).  $R_f = 0.70$  (silica gel, hexane/EtOAc, 2/1); H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  5.72 (dd, J = 11.0, 1.8 Hz, 1H), 4.07 (d, J = 11.5 Hz, 1H), 3.71-3.65 (m, 1H), 2.73 (qd, J = 12.4, 3.6 Hz, 1H), 2.66 (t, J = 6.9 Hz, 2H), 2.00 (d, J = 12.9 Hz, 1H), 1.91 (d, J = 12.9 Hz, 1H), 1.75-1.44 (m, 7H), 0.94 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  151.87, 148.19, 138.64, 130.55, 118.89, 101.76, 83.37, 70.24, 68.26, 29.18, 28.32, 24.42, 22.41, 21.45, 18.40, 13.40; HRMS (ESI) found 445.0299 [calcd for C<sub>16</sub>H<sub>19</sub>CIIN<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 445.0287].



6-Chloro-2,8-di(hex-1-yn-1-yl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (5a)

Compound **5a** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (7 mg, 9%) by general procedure **(B)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 18 h).  $R_f = 0.68$ 

(silica gel, hexane/EtOAc, 1/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.84 (dd, J = 11.2, 2.5 Hz, 1H), 4.18 (d, J = 11.4 Hz, 1H), 3.71 (td, J = 12.0, 2.4 Hz, 1H), 2.90 (qd, J = 12.2, 4.1 Hz, 1H), 2.57 (t, J = 7.1 Hz, 2H), 2.48 (t, J = 7.3 Hz, 2H), 2.10 (d, J = 11.0 Hz, 1H), 1.86-1.44 (m, 12H), 0.97 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.33, 150.11, 146.31, 139.61, 130.22, 101.59, 91.17, 83.46, 79.78, 70.91, 69.29, 30.21, 29.84, 29.42, 24.87, 23.30, 22.30, 22.18, 19.51, 19.29, 13.75, 13.65; HRMS (ESI) found 399.1955 [calcd for C<sub>22</sub>H<sub>28</sub>ClN<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 339.1946].



6-(6-Chloro-8-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2-yl)hex-5-yn-1-ol (6a)

Compound **6a** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (54 mg, 59%) by following general procedure **(A)** using 5-hexynol (0.024 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.26$  (silica gel, hexane/EtOAc, 1/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.76 (dd, J = 11.6, 2.4 Hz, 1H), 4.22-4.18 (m, 1H), 3.74 (td, J = 11.6 Hz, 1H), 3.72 (t, J = 5.6 Hz, 2H), 3.05 (qd, J = 12.4, 4.3 Hz, 1H), 2.56-2.52 (m, 2H), 2.17-2.13 (m, 1H), 1.89-1.72 (m, 7H), 1.63 (d, J = 14.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  152.34, 147.25, 144.01, 132.58, 113.34, 90.29, 86.29, 79.77, 68.27, 60.11, 31.72, 28.10, 24.40, 24.29, 22.47, 18.17; HRMS (FAB) found 461.0231 [calcd for C<sub>16</sub>H<sub>19</sub>ClIN<sub>4</sub>O<sub>2</sub><sup>+</sup>(M+H)<sup>+</sup> 461.0241].

 $\setminus$ 



## 6-(6-Chloro-2-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-8-yl)hex-5-yn-1-ol (7a)

Compound 7a was prepared from 1a (100 mg, 0.20 mmol) as a white solid (47 mg, 51%) by

following general procedure (**B**) using 5-hexynol (0.024 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.25$  (silica gel, hexane/EtOAc, 1/3); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.77 (dd, J = 11.4, 2.4Hz, 1H), 4.20-4.16 (m, 1H), 3.73 (t, J = 6.0 Hz, 2H), 3.72 (td, J = 11.6, 2.4 Hz, 1H), 2.89 (qd, J = 12.3, 4.2 Hz, 1H), 2.63 (t, J = 6.8 Hz, 2H), 2.14-2.10 (m, 1H), 1.88-1.59 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.89, 149.79, 139.13, 131.28, 117.00, 101.30, 83.90, 70.75, 69.31, 62.20, 31.87, 29.24, 24.85, 24.27, 23.24, 19.65; HRMS (ESI) found 461.0221 [calcd for  $C_{16}H_{19}CIIN_4O_2^+(M+H)^+$  461.0236].



6,6'-(6-Chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine-2,8-diyl)bis(hex-5-yn-1-ol) (8a)

Compound **8a** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (14 mg, 16%) by following general procedure (**A**) using 5-hexynol (0.024 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.07$  (silica gel, hexane/EtOAc, 1/3); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.84 (dd, J = 11.4, 2.3 Hz, 1H), 4.20-4.17 (m, 1H), 3.75-3.69 (m, 5H), 2.89 (qd, J = 12.2, 4.1 Hz, 1H), 2.62 (t, J = 6.6 Hz, 2H), 2.54 (t, J = 6.6 Hz, 2H), 2.12-2.09 (m, 1H), 1.86-1.61 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.32, 150.18, 146.22, 139.55, 130.28, 101.15, 90.63, 83.54, 80.13, 71.17, 69.32, 62.44, 62.20, 32.06, 31.89, 29.46, 24.89, 24.44, 24.28, 23.28, 19.65, 19.37; HRMS (ESI) found 431.1843 [calcd for C<sub>22</sub>H<sub>28</sub>ClN<sub>4</sub>O<sub>3</sub><sup>+</sup>(M+H)<sup>+</sup> 431.1844].



Methyl 6-(6-chloro-8-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2-yl)hex-5-ynoate (6b)

Compound 6b was prepared from 1a (100 mg, 0.20 mmol) as a white solid (51 mg, 52%) by

following general procedure (**A**) using methyl 5-hexynoate (0.029 mL, 0.22 mmol). (Reaction time: 15 h).  $R_f = 0.26$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.76 (dd, J = 11.0, 2.5 Hz, 1H), 4.23-4.19 (m, 1H), 3.74 (td, J = 12.1, 2.2 Hz, 1H), 3.70 (s, 3H), 3.06 (qd, J = 12.5, 4.3 Hz, 1H), 2.57 (t, J = 7.6 Hz, 2H), 2.54 (t, J = 7.6 Hz, 2H), 2.17-2.13 (m, 1H), 2.04-1.97 (m, 2H), 1.89-1.73 (m, 3H), 1.64 (d, J = 12.9 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.51, 152.57, 149.20, 145.40, 133.22, 105.87, 89.54, 86.40, 80.34, 69.38, 51.82, 33.01, 29.09, 24.68, 23.31, 23.25, 18.99; HRMS (FAB) found 489.0187 [calcd for C<sub>17</sub>H<sub>19</sub>ClIN<sub>4</sub>O<sub>3</sub><sup>+</sup>(M+H)<sup>+</sup> 489.0190].



#### Methyl 6-(6-chloro-2-iodo-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-8-yl)hex-5-ynoate (7b)

Compound **7b** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (52 mg, 53%) by following general procedure **(B)** using methyl 5-hexynoate (0.029 mL, 0.22 mmol). (Reaction time: 15 h).  $R_f = 0.27$  (silica gel, hexane/EtOAc, 1/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.77 (dd, J = 11.5, 2.5 Hz, 1H), 4.20-4.17 (m, 1H), 3.73 (td, J = 11.6, 2.0 Hz, 1H), 3.70 (s, 3H), 2.87 (qd, J = 8.8, 4.0 Hz, 1H), 2.66 (t, J = 7.0 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.14-2.11 (m, 1H), 2.07-1.99 (m, 2H), 1.89-1.85 (m, 1H), 1.78-1.72 (m, 2H), 1.66-1.63 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.17, 151.86, 149.89, 138.89, 131.25, 117.09, 100.11, 83.88, 71.19, 69.31, 51.91, 32.76, 29.32, 24.84, 23.21, 23.07, 19.20; HRMS (ESI) found 489.0168 [calcd for C<sub>17</sub>H<sub>19</sub>CIIN<sub>4</sub>O<sub>3</sub><sup>+</sup>(M+H)<sup>+</sup> 489.0185].



#### Dimethyl 6,6'-(6-chloro-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine-2,8-diyl)bis(hex-5-ynoate) (8b)

Compound 8b was prepared from 1a (100 mg, 0.20 mmol) as a white solid (18 mg, 18%) by

general procedure (**A**) using methyl 5-hexynoate (0.029 mL, 0.22 mmol). (Reaction time: 15 h).  $R_f = 0.10$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.84 (dd, J = 11.3, 2.5 Hz, 1H), 4.19 (dd, J = 13.7, 2.2 Hz, 1H), 3.75 (td, J = 11.6, 2.4 Hz, 1H), 3.70 (s, 3H), 3.70 (s, 3H), 2.88 (qd, J = 12.3, 4.1 Hz, 1H), 2.67 (t, J = 6.9 Hz, 2H), 2.58 (t, J = 6.8 Hz, 3H), 2.54 (t, J = 6.8 Hz, 3H) 2.13-2.10 (m, 1H), 2.06-1.97 (m, 4H), 1.88-1.68 (m, 3H), 1.64 (d, J = 10.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.50, 173.21, 151.28, 150.29, 146.12, 139.37, 130.33, 99.98, 89.50, 83.54, 80.48, 71.60, 69.32, 51.89, 51.81, 33.00, 32.77, 29.54, 24.88, 23.31, 23.25, 23.09, 19.21, 19.01; HRMS (ESI) found 487.1738 [calcd for C<sub>24H28</sub>ClN<sub>4</sub>O<sub>5</sub><sup>+</sup>(M+H)<sup>+</sup> 487.1743].



6-Chloro-8-iodo-2-(phenylethynyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (6c)<sup>[4]</sup>

Compound **6c** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (51 mg, 55%) by following general procedure (**A**) using phenylacetylene (0.024 mL, 0.22 mmol). (Reaction time: 18 h).  $R_f = 0.27$  (silica gel, hexane/EtOAc, 3/1), and the <sup>1</sup>H NMR data of **6c** was identical to those reported before.<sup>4</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70-7.67 (m, 2H), 7.43-7.36 (m, 3H), 5.77 (dd, J = 11.1, 2.3 Hz, 1H), 4.25-4.21 (m, 1H), 3.76 (td, J = 12.1, 2.2 Hz, 1H), 3.12 (qd, J = 12.4, 4.1 Hz, 1H), 2.19-2.16 (m, 1H), 1.93-1.64 (m, 4H).



#### 6-Chloro-2-iodo-8-(phenylethynyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (7c)

Compound 7c was prepared from 1a (100 mg, 0.20 mmol) as a white solid (56 mg, 60%) by

following general procedure **(B)** using phenylacetylene (0.024 mL, 0.22 mmol). (Reaction time: 18 h).  $R_f = 0.43$  (silica gel, hexane/EtOAc, 3/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (s, 1H), 7.65 (s, 1H), 7.52-7.42 (m, 3H), 5.88 (dd, J = 11.3, 2.1 Hz, 1H), 4.25-4.22 (m, 1H), 3.77 (td, J = 12.0, 4.0 Hz, 1H), 2.92 (qd, J = 12.2, 4.1 Hz, 1H), 2.17-2.14 (m, 1H), 1.94 (d, J = 12.2 Hz, 1H), 1.89-1.72 (m, 2H), 1.68 (d, J = 11.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.93, 150.00, 138.89, 132.43, 131.48, 130.89, 128.95, 120.34, 117.24, 98.43, 83.84, 78.58, 69.39, 29.55, 24.99, 23.25; HRMS (FAB) found 464.9969 [calcd for C<sub>18</sub>H<sub>15</sub>ClIN<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 464.9979].



6-Chloro-2,8-bis(phenylethynyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (8c)<sup>[4]</sup>

Compound **8c** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (18 mg, 21%) by general procedure (**A**) using phenylacetylene (0.024 mL, 0.22 mmol). (Reaction time: 18 h).  $R_f = 0.37$  (silica gel, hexane/EtOAc, 3/1). The <sup>1</sup>H and <sup>13</sup>C NMR data of **8c** was in agreement with literature.<sup>4</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70-7.67 (m, 4H), 7.52-7.37 (m, 6H), 5.98 (dd, J = 11.0, 1.8 Hz, 1H), 4.26 (d, J = 11.6 Hz, 1H), 3.80 (t, J = 11.3 Hz, 1H), 2.98 (qd, J = 12.1, 3.7 Hz, 1H), 2.18-2.15 (m, 1H), 1.98-1.68 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.46, 150.54, 146.38, 139.56, 132.77, 132.41, 130.79, 130.65, 129.88, 128.94, 128.57, 121.41, 120.51, 98.53, 88.59, 87.97, 83.69, 69.44, 29.74, 25.05, 23.32.



6-Chloro-8-iodo-2-((3-methoxyphenyl)ethynyl)-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine (6d) Compound 6d was prepared from 1a (100 mg, 0.20 mmol) as a white solid (57 mg, 58%) by following general procedure **(A)** using 3-methoxyphenylacetylene (0.028 mL, 0.22 mmol). (Reaction time: 1.5 h).  $R_f = 0.21$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30-7.28 (m, 2H), 7.21 (d, J = 1.8 Hz, 1H), 6.99-6.96 (m, 1H), 5.77 (dd, J = 11.3, 2.5 Hz, 1H), 4.25-4.21 (m, 1H), 3.83 (s, 3H), 3.76 (td, J = 12.1, 2.1 Hz, 1H), 3.12 (qd, J = 12.3, 4.0 Hz, 1H), 2.19-2.15 (m, 1H), 1.93-1.71 (m, 3H), 1.65 (d, J = 13.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.46, 152.67, 149.35, 145.56, 133.30, 129.68, 125.33, 122.34, 117.21, 116.88, 106.35, 88.34, 87.58, 86.66, 69.44, 55.54, 29.09, 24.71, 23.37; HRMS (FAB) found 495.0073 [calcd for C<sub>19</sub>H<sub>17</sub>ClIN<sub>4</sub>O<sub>2</sub><sup>+</sup>(M+H)<sup>+</sup> 495.0085].



6-Chloro-2-iodo-8-((3-methoxyphenyl)ethynyl)-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine (7d)

Compound **7d** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (55 mg, 56%) by following general procedure **(B)** using 3-methoxyphenylacetylene (0.028 mL, 0.22 mmol). (Reaction time: 1.5 h).  $R_f = 0.51$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (t, J = 7.9 Hz, 1H), 7.25 (d, J = 10.2 Hz, 1H), 7.17 (s, 1H), 7.05 (dd, J = 8.6, 2.4 Hz, 1H), 5.87 (dd, J = 11.0, 2.4 Hz, 1H), 4.25-4.22 (m, 1H), 3.85 (s, 3H), 3.77 (td, J = 11.6, 2.4 Hz, 1H), 2.91 (qd, J = 12.1, 4.0 Hz, 1H), 2.17-2.14 (m, 1H), 1.94 (d, J = 12.2 Hz, 1H), 1.86-1.72 (m, 2H), 1.68 (d, J = 11.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.62, 151.92, 150.01, 138.84, 131.48, 130.07, 124.85, 121.26, 117.37, 117.26, 98.36, 83.82, 78.31, 69.38, 55.57, 29.57, 24.99, 23.24; HRMS (FAB) found 495.0091 [calcd for C<sub>19</sub>H<sub>17</sub>ClIN<sub>4</sub>O<sub>2</sub><sup>+</sup>(M+H)<sup>+</sup> 495.0085].



S25

# 6-Chloro-2,8-bis((3-methoxyphenyl)ethynyl)-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine (8d)

Compound **8d** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (9 mg, 9%) by following general procedure **(A)** using 3-methoxyphenylacetylene (0.028 mL, 0.22 mmol). (Reaction time: 1.5 h).  $R_f = 0.40$  (silica gel, hexane/EtOAc, 1/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 8.3 Hz, 1H), 7.31-7.27 (m, 3H), 7.23-7.22 (m, 1H), 7.20-7.19 (m, 1H), 7.05 (dd, J = 7.9, 2.4 Hz, 1H), 7.00-6.97 (m, 1H), 5.98 (dd, J = 11.0, 2.4 Hz, 1H), 4.26 (d, J = 12.2 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.80 (t, J = 11.9 Hz, 1H), 2.98 (qd, J = 12.2, 4.1 Hz, 1H), 2.17 (d, J = 11.0 Hz, 1H), 1.96 (d, J = 12.8 Hz, 1H), 1.90-1.74 (m, 2H), 1.70 (d, J = 11.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.62, 159.42, 151.45, 150.56, 146.33, 139.53, 130.67, 130.05, 129.67, 125.34, 124.83, 122.34, 121.43, 117.31, 117.22, 117.17, 116.90, 98.48, 88.55, 87.69, 83.66, 78.72, 69.44, 55.57, 55.53, 29.76, 25.05, 23.32; HRMS (FAB) found 499.1530 [calcd for C<sub>28</sub>H<sub>24</sub>ClN<sub>4</sub>O<sub>3</sub><sup>+</sup>(M+H)<sup>+</sup> 499.1537].



6-Chloro-8-iodo-2-((3-nitrophenyl)ethynyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (6e)

Compound **6e** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (47 mg, 46%) by following general procedure **(A)** using 3-nitrophenylacetylene (0.027 mL, 0.22 mmol). (Reaction time: 3.5 h).  $R_f = 0.38$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (t, J = 1.8 Hz, 1H), 8.29-8.26 (m, 1H), 7.98 (dd, J = 6.1, 1.2 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 5.76 (dd, J = 11.7, 2.5 Hz, 1H), 4.26-4.22 (m, 1H), 3.77 (td, J = 12.0, 2.2 Hz, 1H), 3.14 (qd, J = 12.3, 4.1 Hz, 1H), 2.19 (d, J = 12.3 Hz, 1H), 1.95-1.72 (m, 3H), 1.67 (d, J = 13.5 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.60, 149.49, 148.20, 144.69, 138.19, 133.71, 129.79, 127.55, 124.51, 123.34, 107.31, 89.66, 86.98, 84.90, 69.49, 29.05, 24.69, 23.37; HRMS (EI) found 424.9173 [calcd for C<sub>13</sub>H<sub>5</sub>ClIN<sub>5</sub>O<sub>2</sub><sup>+</sup> (M-THP)<sup>+</sup> 424.9177].



6-Chloro-2-iodo-8-((3-nitrophenyl)ethynyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (7e)

Compound **7e** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (63 mg, 62%) by following general procedure **(B)** using 3-nitrophenylacetylene (0.027 mL, 0.22 mmol). (Reaction time: 3.5 h).  $R_f = 0.24$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.50 (t, J = 1.8 Hz, 1H), 8.35 (dd, J = 7.9, 1.8 Hz, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.67 (t, J = 7.9 Hz, 1H), 5.90 (dd, J = 11.6, 2.4 Hz, 1H), 4.28-4.24 (m, 1H), 3.80 (td, J = 11.6, 2.4 Hz, 1H), 2.83 (qd, J = 12.0, 4.1 Hz, 1H), 2.19-2.16 (m, 1H), 1.98 (d, J = 12.8 Hz, 1H), 1.84-1.71 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.74, 150.54, 148.36, 137.86, 137.70, 131.39, 130.24, 127.11, 125.35, 122.21, 117.84, 94.78, 83.81, 80.56, 69.45, 29.93, 25.00, 23.14; HRMS (FAB) found 509.9838 [calcd for C<sub>18</sub>H<sub>14</sub>CIIN<sub>5</sub>O<sub>3</sub><sup>+</sup>(M+H)<sup>+</sup> 509.9830].



6-Chloro-2,8-bis((3-nitrophenyl)ethynyl)-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine (8e)

Compound **8e** was prepared from **1a** (100 mg, 0.20 mmol) as a white solid (11 mg, 10%) by following general procedure **(A)** using 3-nitrophenylacetylene (0.027 mL, 0.22 mmol). (Reaction time: 3.5 h).  $R_f = 0.14$  (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (t, J = 1.8 Hz, 1H), 8.52 (t, J = 1.8 Hz, 1H), 8.38-8.35 (m, 1H), 8.30-8.28 (m, 1H), 8.01-7.98 (m, 2H), 7.68 (t, J = 8.0 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 6.00 (dd, J = 11.3, 2.1 Hz, 1H), 4.32-4.28 (m, 1H), 3.83 (td, J = 11.7, 2.2 Hz, 1H), 2.92 (qd, J = 12.3, 4.1 Hz, 1H), 2.22-2.17 (m, 1H), 2.05-2.00 (m, 2H), 1.89-1.73 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.30, 151.25, 148.39, 148.28, 145.88, 138.86, 138.19, 137.88, 131.03, 130.27, 129.82, 127.59, 127.15, 125.38, 124.58, 123.24, 122.27, 95.24, 89.66, 85.42, 83.91, 80.77, 69.58, 30.07, 25.05, 23.24; HRMS (FAB) found 445.0451 [calcd for C<sub>21</sub>H<sub>10</sub>ClN<sub>6</sub>O<sub>4</sub><sup>+</sup>(M-THP+H)<sup>+</sup> 445.0452].



#### 6-Chloro-2,8-diiodo-9H-purine (9)

To a solution of **1a** (4.1 g, 8.36 mmol, 1 equiv) in EtOH (25 mL) and THF (25 mL) was added Pyridinium *p*-toluenesulfonate (260 mg, 1.03 mmol, 0.12 equiv) in H<sub>2</sub>O (5 mL) at room temperature. After being stirred for 2 h at 70 °C, the reaction mixture was cooled to room temperature, and the solvent was evaporated. Then, the residue was purified by flash silica gel chromatography (silica gel, hexanc/THF, 3/1) to give **9** (3.30 g, 97%) as white solid.  $R_f = 0.25$ (silica gel, hexane/EtOAc, 2/1); <sup>13</sup>C NMR (200 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  155.98, 145.59, 133.00, 117.62, 108.17; HRMS (ESI) found 406.8054 [calcd for C<sub>5</sub>H<sub>2</sub>ClI<sub>2</sub>N<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 406.8052].



## 6-Chloro-2,8-diiodo-9-methyl-9H-purine (1b)

To a solution of **9** (1.0 g, 2.46 mmol, 1 equiv) in DMF (15 mL) was added NaH (60% dispersion in paraffin oil, 108 mg, 2.71 mmol, 1.1 equiv) and stirred for 5 min at room temperature under N<sub>2</sub>. To the above reaction mixture was added CH<sub>3</sub>I (0.17 mL, 2.71 mmol, 1.1 equiv) and stirred for 1.5 h at room temperature under N<sub>2</sub>, then the reaction mixture was cooled to 0 °C, and quenched slowly by saturated NH<sub>4</sub>Cl. The aqueous layer was extracted by EtOAc, then the combined organic layers were dried over MgSO<sub>4</sub>, filtered and evaporated. The residue was purified by flash silica gel chromatography. (silica gel, hexane/EtOAc, 2/1) to give **1b** (821 mg, 79%) as white solid.  $R_f = 0.50$  (silica gel, hexane/EtOAc, 1/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  153.89, 146.12, 132.91, 117.92, 115.41, 32.94;

HRMS (FAB) found 420.8226 [calcd for  $C_6H_4ClI_2N_4^+(M+H)^+$  420.8214].



6-Chloro-2-(hex-1-yn-1-yl)-8-iodo-9-methyl-9H-purine (3b)

**3b** was prepared from **1b** (84 mg, 0.20 mmol) as a white solid (30 mg, 40%) by following general procedure **(A)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 0.5 h).  $R_f$ = 0.42 (silica gel, hexane/EtOAc, 2/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.83 (s, 3H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.70-1.62 (m, 2H), 1.52-1.45 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  153.05, 146.57, 144.18, 132.08, 115.76, 89.89, 79.66, 32.78, 29.62, 21.49, 17.94, 13.44; HRMS (ESI) found 374.9871 [calcd for C<sub>12</sub>H<sub>13</sub>ClIN<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 374.9868].



6-Chloro-8-(hex-1-yn-1-yl)-2-iodo-9-methyl-9H-purine (4b)

**3b** was prepared from **1b** (84 mg, 0.20 mmol) as a white solid (24 mg, 32%) by following general procedure **(B)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 0.5 h).  $R_f = 0.28$  (silica gel, hexane/EtOAc, 8/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.85 (s, 3H), 2.57 (t, J = 7.0 Hz, 2H), 1.72-1.64 (m, 2H), 1.55-1.47 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  152.84, 147.62, 140.16, 130.47, 118.45, 101.90, 69.56, 30.20, 29.30, 21.45, 18.37, 13.42; HRMS (ESI) found 374.9867 [calcd for C<sub>12</sub>H<sub>13</sub>ClIN<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 374.9868].



#### 6-Chloro-2,8-di(hex-1-yn-1-yl)-9-methyl-9H-purine (5b)

**5b** was prepared from **1b** (84 mg, 0.20 mmol) as a white solid (20 mg, 31%) by following general procedure **(A)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 0.5 h).  $R_f = 0.21$  (silica gel, hexane/EtOAc, 8/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.87 (s, 3H), 2.56 (t, J = 7.1 Hz, 2H), 2.49 (t, J = 7.1 Hz, 2H), 1.71-1.62 (m, 4H), 1.56-1.45 (m, 4H), 0.97 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  151.95, 147.96, 144.83, 140.78, 129.64, 101.89, 90.07, 79.75, 69.72, 30.02, 29.64, 29.33, 21.49, 21.45, 18.38, 17.96, 13.43, 13.41; HRMS (ESI) found 329.1526 [calcd for C<sub>18</sub>H<sub>22</sub>ClN<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 329.1528].



#### 9-Benzyl-6-chloro-2,8-diiodo-9*H*-purine (1c)

To a solution of **9** (987 mg, 2.42 mmol, 1 equiv) in DMF (10 mL) were added K<sub>2</sub>CO<sub>3</sub> (369 mg, 2.67 mmol, 1.1 equiv) and BnBr (0.31 mL, 2.67 mmol, 1.1 equiv) at room temperature under N<sub>2</sub>. After being stirred for 24 h at room temperature under N<sub>2</sub>, the reaction mixture was quenched by H<sub>2</sub>O, extracted by CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were dried with MgSO<sub>4</sub>, filtered and evaporated. The residue was purified by flash silica gel chromatography (silica gel, hexane/EtOAc, 1/1) to give **1c** (868 mg, 72%) as a white solid. R<sub>f</sub> = 0.30 (silica gel, hexane/EtOAc, 4/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38-7.30 (m, 5H), 5.42 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.76, 148.70, 134.05, 133.83, 129.19, 128.88, 128.11, 117.04, 108.21, 49.87; HRMS (ESI) found 496.8529 [calcd for C<sub>12</sub>H<sub>8</sub>ClI<sub>2</sub>N<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 496.8521].



### 9-Benzyl-6-chloro-2-(hex-1-yn-1-yl)-8-iodo-9H-purine (3c)

**3c** was prepared from **1c** (100 mg, 0.20 mmol) as a white solid (32 mg, 35%) by following general procedure **(A)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.20$  (silica gel, hexane/EtOAc, 4/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.27 (m, 5H), 5.45 (s, 2H), 2.49 (t, J = 7.1 Hz, 2H), 1.69-1.61 (m, 2H), 1.54-1.45 (m, 2H), 0.94 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.20, 149.23, 146.24, 134.38, 132.81, 129.09, 128.66, 127.92, 108.50, 91.52, 79.53, 49.54, 30.17, 22.29, 19.27, 13.73; HRMS (ESI) found 451.0180 [calcd for C<sub>16</sub>H<sub>19</sub>ClIN<sub>4</sub>O<sup>+</sup>(M+H)<sup>+</sup> 451.0181].



#### 9-Benzyl-6-chloro-8-(hex-1-yn-1-yl)-2-iodo-9H-purine (4c)

**4c** was prepared from **1c** (100 mg, 0.20 mmol) as a white solid (32 mg, 35%) by following general procedure **(B)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.53$  (silica gel, hexane/EtOAc, 4/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.33 (m, 5H), 5.44 (s, 2H), 2.53 (t, J = 7.0 Hz, 2H), 1.66-1.59 (m, 2H), 1.49-1.40 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.44, 149.76, 140.03, 134.82, 131.29, 129.09, 128.73, 128.20, 117.09, 102.39, 70.05, 47.72, 29.83, 22.15, 19.43, 13.63; HRMS (ESI) found 451.0180 [calcd for C<sub>18</sub>H<sub>17</sub>ClIN<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 451.0181].



#### 9-Benzyl-6-chloro-2,8-di(hex-1-yn-1-yl)-9*H*-purine (5c)

**5c** was prepared from **1c** (100 mg, 0.20 mmol) as a white solid (31 mg, 38%) by following general procedure **(A)** using 1-hexyne (0.025 mL, 0.22 mmol). (Reaction time: 4 h).  $R_f = 0.47$  (silica gel, hexane/EtOAc, 4/1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.30 (m, 5H), 5.48 (s, 2H), 2.51 (t, J = 7.0 Hz, 2H), 2.49 (t, J = 7.3 Hz, 2H), 1.70-1.57 (m, 4H), 1.54-1.38 (m, 4H), 0.94 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.78, 150.12, 146.51, 140.63, 135.15, 130.29, 128.95, 128.49, 128.00, 102.16, 91.17, 79.75, 70.27, 47.38, 30.21, 29.82, 22.30, 22.10, 19.39, 19.28, 13.74, 13.62; HRMS (ESI) found 405.1834 [calcd for C<sub>24</sub>H<sub>25</sub>ClN<sub>4</sub><sup>+</sup>(M+H)<sup>+</sup> 405.1841].

#### References

- Z. L. Niemeyer, A. Milo, D. P. Hickey and M. S. Sigman, Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes, *Nature Chemistry*, 2016, 8, 610–617.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J; Howard, J. A. K.; Puschmann, H. J. *Appl. Cryst.* 2009, 42, 339-341.
- 3) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- 4) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648-5652.
- Y. Takano, K. Houk, Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules, *J. Chem. Theory Comput.* 2005, 1, 70–77.
- 7) P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, *Theor. Chim. Acta*, 1973, **28**, 213-222.

- P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, *J. Chem. Phys.* 1985, 82, 299-310.
- Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 10) Ibrahim, N.; Chevot, F.; Legraverend, M. Tetrahedron Lett. 2011, 52, 305-307.

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) of **1a** 



<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of **3a** 



S35

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) of **3a** 


<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of **4a** 



<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) of **4a** 







<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) of **5a** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **6a** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **6a** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **7a** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **7a** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **8a** 



 $^{13}\text{C}$  NMR (100 MHz, CDCl<sub>3</sub>) of **8a** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **6b** 



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of **6b** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **7b** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **7b** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **8b** 



## <sup>13</sup>C NMR (100 MHz, $CDCl_3$ ) of **8b**



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **7c** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **7c** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **8c** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **8c** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **6d** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **6d** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **7d** 



 $^{13}\text{C}$  NMR (100 MHz, CDCl<sub>3</sub>) of **7d** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **8d** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **8d** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **6e** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **6e** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **7e** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **7e** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **8e** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **8e** 





## <sup>13</sup>C NMR (200 MHz, DMSO- $d_6$ ) of **9**

<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **1b** 



 $^{13}\text{C}$  NMR (100 MHz, CDCl<sub>3</sub>) of **1b** 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **3b** 


<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **3b** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **4b** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **4b** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **5b** 



 $^{13}\text{C}$  NMR (100 MHz, CDCl<sub>3</sub>) of **5b** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **1**c



 $^{13}\text{C}$  NMR (100 MHz, CDCl<sub>3</sub>) of 1c







<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **3c** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **4c** 



<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ) of **4c** 



<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ) of **5c** 



 $^{13}\text{C}$  NMR (100 MHz,  $\text{CDCl}_3$ ) of 5c





























