Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Ruthenium(II)-catalyzed synthesis of CF₃-isoquinolinones *via* C–H activation/annulation of benzoic acids and CF₃-imidoyl sulfoxonium ylides

Si Wen, Yuqing Zhang, Qingyu Tian, Yanhui Chen, and Guolin Cheng*

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China

*Corresponding Author E-mail: glcheng@hqu.edu.cn

Table of Contents

1. General Information	S2
2. Experimental Section	S3
2.1 Optimization of the Reaction Conditions	S3
2.2 Procedure for the Synthesis of 2	S6
2.3 Procedure for the Synthesis of 3	S6
2.4 Procedure for the Synthesis of 4	S15
2.5 Procedure for the Gram-Scale Synthesis of 3a	S21
2.6 Procedure for the Synthesis of D-1a	S21
2.7 Procedure for the Synthesis of D-3a	S22
2.8 Kinetic Isotope Effect Experiment	S22
2.9 Synthetic Applications of 3a	S23
3. ¹ H and ¹³ C NMR Spectra	S28

1. General Information

All the solvents were used without further purification. the other commercial chemicals were used without further purification. All reactions were performed under an air of nitrogen in flame-dried glassware, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. Preparative TLC was performed on 1.0 mm silica gel. ¹H NMR spectra were recorded on a Bruker Avance III instrument (500 MHz). ¹³C NMR spectra were recorded on a Bruker Avance III instrument (126 MHz) and were fully decoupled by broad band proton decoupling. High-resolution mass spectra (HRMS) were recorded on an Agilent 1290 mass spectrometer using ESI-TOF (electrospray ionization time-of-flight). IR spectra were recorded on a Nicolet IS 50. IR spectra were recorded in KBr. NMR spectra were recorded in CDCl₃. ¹H NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to the central peak of CDCl₃ at 77.0 ppm. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

2. Experimental Section

2.1 Optimization of the Reaction Conditions

Table S1 Optimization of the Reaction Conditions^a

Me	соон	Ph、NO	[Ru(p-cyr b ado	nene)Cl ₂] ₂ (2.5 mol base (2 equiv) ditive (10 mol%)		N N
		F ₃ C	solvent (1	mL), air, 100 °C, 2	4 h	≺ _{CF3}
1a		2a			<u>3a</u>	
	Entry	Solvent	Base	Additive	Yield (%) ^b	
	1	DCE	NEt ₃	AgSbF ₆	72	
	2	DMF	NEt ₃	$AgSbF_6$	20	
	3	MTBE	NEt ₃	AgSbF ₆	26	
	4	HFIP	NEt ₃	$AgSbF_6$	trace	
	5	toluene	NEt ₃	AgSbF ₆	34	
	6	ⁱ PrOH	NEt ₃	AgSbF ₆	10	
	7	NMP	NEt ₃	AgSbF ₆	0	
	8	DMSO	NEt ₃	AgSbF ₆	0	
	9	THF	NEt ₃	$AgSbF_6$	25	
	10	1,4-dioxane	NEt ₃	AgSbF ₆	10	
	11	CH ₃ CN	NEt ₃	AgSbF ₆	76 (73) ^c	
	12	CH ₃ CN	K ₂ CO ₃	AgSbF ₆	35	
	13	CH ₃ CN	KOAc	AgSbF ₆	40	
	14	CH ₃ CN	KHCO ₃	AgSbF ₆	50	
	15	CH ₃ CN	КОН	AgSbF ₆	45	
	16	CH ₃ CN	K ₂ HPO ₄	AgSbF ₆	45	
	17	CH ₃ CN	K ₃ PO ₄	$AgSbF_6$	25	
	18	CH ₃ CN	KH ₂ PO ₄	AgSbF ₆	40	
	19	CH ₃ CN	NaOH	AgSbF ₆	0	
	20	CH ₃ CN	NaOAc	AgSbF ₆	57	
	21	CH ₃ CN	HCOONa	$AgSbF_6$	25	
	22	CH ₃ CN	CH ₃ ONa	$AgSbF_6$	35	
	23	CH ₃ CN	NaHCO ₃	$AgSbF_6$	54	

24	CH ₃ CN	Na ₂ CO ₃	AgSbF ₆	35
25	CH ₃ CN	Na ₃ PO ₄	AgSbF ₆	62
26	CH ₃ CN	NaH ₂ PO ₄	AgSbF ₆	45
27	CH ₃ CN	^t BuOK	AgSbF ₆	20
28	CH ₃ CN	^t BuONa	AgSbF ₆	10
27	CH ₃ CN	Cs_2CO_3	AgSbF ₆	34
28	CH ₃ CN	LiOH	AgSbF ₆	20
29	CH ₃ CN	CH ₃ OK	AgSbF ₆	20
30	CH ₃ CN	Li ₂ CO ₃	AgSbF ₆	45
31	CH ₃ CN	LiOAc	AgSbF ₆	45
32	CH ₃ CN	'BuOLi	AgSbF ₆	0
33	CH ₃ CN	DBU	AgSbF ₆	30
34	CH ₃ CN	Cy ₂ NH	AgSbF ₆	48
35	CH ₃ CN	ⁱ Pr ₂ NEt	AgSbF ₆	47
36	CH ₃ CN	NEt ₃		45
37	CH ₃ CN		AgSbF ₆	48
48	CH ₃ CN			46
39 ^d	CH ₃ CN	NEt ₃	AgSbF ₆	65
40 ^e	CH ₃ CN	NEt ₃	AgSbF ₆	74
41 ^f	CH ₃ CN	NEt ₃	AgSbF ₆	44
42 ^g	CH ₃ CN	NEt ₃	AgSbF ₆	0
43 ^h	CH ₃ CN	NEt ₃	AgSbF ₆	58
44 ⁱ	CH ₃ CN	NEt ₃	AgSbF ₆	66
45 ^j	CH ₃ CN	NEt ₃	AgSbF ₆	50

46 ^k	CH ₃ CN	NEt ₃	AgSbF ₆	72
47 ¹	CH ₃ CN	NEt ₃	AgSbF ₆	trace
48	CH ₃ CN	NEt ₃	AgOAc	64
49	CH ₃ CN	NEt ₃	Ag ₂ CO ₃	48
50	CH ₃ CN	NEt ₃	CF ₃ COAg	54
51	CH ₃ CN	NEt ₃	AgNO ₃	38
52	CH ₃ CN	NEt ₃	AgOTf	34

^a **1a** (0.1 mmol), **2a** (0.15 mmol), base (2.0 equiv), additive (10 mol%) and solvent (1 mL) at 100 °C under air for 24 h. ^b The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. ^c The isolated yield. ^d At 80 °C. ^e At 120 °C. ^f At 60 °C. ^g At 40 °C. ^h **1a** (0.1 mmol), **2a** (0.2 mmol). ⁱ**1a** (0.15 mmol), **2a** (0.1 mmol). ^j CH₃CN 0.5 mL. ^k CH₃CN 2 mL. ¹ Without [Ru(*p*-cymene)Cl₂]₂.

2.2 Procedure for the Synthesis of 2

All compounds **2** are known, which were synthesized following the literature procedures.¹ To a solution of triphenylphosphine (82 mmol, 3 equiv) in CCl₄ (100 mL), triethylamine (32.2 mmol, 1.2 equiv) and fluorinated carboxylic acid (27.4 mmol, 1 equiv) were added dropwise at 0 °C. After stirring for 10 min at 0 °C, the aniline (27.4 mmol, 1 equiv) was added. The mixture was refluxed on an oil bath for 4 h and then cooled at room temperature, and then filtered under reduced pressure. The filtrate was concentrated under vacuum, and the resulting residue was purified by flash chromatography on silica gel with petroleum ether. Then, Trimethylsulfoxonium iodide (30 mmol, 3.0 equiv) was added and the mixture was stirred at room temperature for 2 hours. After, fluorinated acetimidoyl chloride (10 mmol, 1.0 equiv) was added. The mixture was stirred at room temperature for 3 hours and then filtered through a plug of celite before all volatiles were removed under vacuum. Purification by flash chromatography (DCM/MeOH = 100 : 1) afforded products.

2.3 Procedure for the Synthesis of 3

A dried 10 mL Schlenk tube was charged with **3-methylbenzoic acid 1a** (13.6 mg, 0.1 mmol, 1 equiv), **sulfoxonium ylide 2** (0.15 mmol, 1.5 equiv), $[Ru(p-cymene)Cl_2]_2$ (1.6 mg, 2.5 mol%), NEt₃ (20.2 mg, 0.2 mmol, 2.0 equiv), AgSbF₆ (3.4 mg, 20 mol%) and CH₃CN (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane to give the corresponding products.

7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**3a**) (22.2 mg, 73%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.58 (d, *J* = 1.9 Hz, 2H), 7.50 (dd, *J* = 6.9, 4.6 Hz, 3H), 7.30 (d, *J* = 6.9 Hz, 2H), 7.10 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.7, 140.1, 137.2, 134.7, 131.8, 129.8 (q, *J* =

32.6 Hz), 129.5, 129.2, 129.0, 128.2, 127.4, 127.1, 120.2 (q, J = 273.0 Hz), 107.7 (q, J = 6.1 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₃F₃NO⁺: 304.0944 (M + H)⁺, found: 304.0947. m.p. 143-144 °C. IR (KBr): v = 3093, 3066, 3043, 2926, 1660, 1501, 1490, 1315, 886 cm⁻¹.

7-methyl-2-(o-tolyl)-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3b) (19.7 mg, 62%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as Light grey solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.26 (s, 1H), 7.59 (s, 2H), 7.41 – 7.37 (m, 1H), 7.35 (d,** *J* **= 6.9 Hz, 1H), 7.32 (t,** *J* **= 7.5 Hz, 1H), 7.21 (d,** *J* **= 7.8 Hz, 1H), 7.14 (s, 1H), 2.53 (s, 3H), 2.09 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 161.9, 140.0, 137.2, 136.2, 134.7, 131.9, 130.6, 129.5 (q,** *J* **= 32.4 Hz), 129.45, 129.39, 128.2, 127.4, 127.0, 126.5, 120.1 (q,** *J* **= 273.0 Hz), 108.0 (q,** *J* **= 6.1 Hz), 21.7, 17.4; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 318.1096. m.p. 134-135 °C. IR (KBr): v = 3093, 3033, 2941, 2925, 1658, 1503, 1492, 1315, 890 cm⁻¹.**

2-(2-(*tert***-butyl)phenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2***H***)-one (3c) (13.3 mg, 37%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.26 (s, 1H), 7.63 (d,** *J* **= 8.2 Hz, 1H), 7.58 (s, 2H), 7.43 (t,** *J* **= 7.2 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.13 (s, 1H), 7.03 (d,** *J* **= 7.8 Hz, 1H), 2.53 (s, 3H), 1.22 (s, 9H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 163.4, 147.8, 140.1, 134.7, 133.8, 131.8, 131.5, 130.4 (q,** *J* **= 31.7 Hz), 130.1, 129.3, 128.3, 127.4, 126.9, 126.3, 120.2 (q,** *J* **= 273.3 Hz), 107.8 (q,** *J* **= 6.2 Hz), 36.7, 31.7, 21.6; HRMS (ESI-TOF) m/z: calcd for C₂₁H₂₁F₃NO⁺: 360.1570 (M + H)⁺, found: 360.1573. m.p. 155-157 °C. IR (KBr): v = 3090, 2995, 2962, 2919, 2878, 1659, 1501, 1491, 1313, 891 cm⁻¹.**

2-(2-methoxyphenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**3d**) (15.8 mg, 47%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 6) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 (s, 1H), 7.57 (s, 2H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 5.6 Hz, 1H), 7.09 (s, 1H), 7.09 – 7.05 (m, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 3.75 (s, 3H), 2.52 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.3, 155.9, 139.7, 134.5, 132.0, 130.8, 130.6, 130.1 (q, *J* = 32.6 Hz), 128.2, 127.3, 127.0, 125.9, 120.4, 120.1 (q, *J* = 272.9 Hz), 111.6, 107.6 (q, *J* = 5.9 Hz), 55.7, 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₄F₃NO₂K⁺: 372.0608 (M + K)⁺, found: 372.0609. m.p. 112-113 °C. IR (KBr): v = 3097, 2923, 1671, 1500, 1460, 1315, 1025, 872 cm⁻¹.

2-(2-fluorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3e) (18.8 mg, 59%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.24 (s, 1H), 7.61 – 7.56 (m, 2H), 7.52 – 7.47 (m, 1H), 7.34 (t,** *J* **= 7.5 Hz, 1H), 7.28 (td,** *J* **= 7.1, 6.4, 1.4 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.12 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.1, 158.9 (d,** *J* **= 252.0 Hz), 140.2, 134.9, 131.8, 131.4, 131.3, 129.4 (q,** *J* **= 33.0 Hz), 128.3, 127.5, 126.7, 124.9 (d,** *J* **= 14.0 Hz), 124.3 (d,** *J* **= 3.9 Hz), 120.1 (q,** *J* **= 272.7 Hz), 116.3 (d,** *J* **= 19.9 Hz), 108.2 (q,** *J* **= 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂F₄NO⁺: 322.0850 (M + H)⁺, found: 322.0846. m.p. 136-137 °C. IR (KBr): v = 3094, 2927, 1664, 1500, 1316, 1133, 889, 817 cm⁻¹.**

2-(2-chlorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3f**) (21.3 mg, 63%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as light yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.26 (s, 1H), 7.60 (d, *J* = 10.8 Hz, 2H), 7.58 – 7.55 (m, 1H), 7.49 – 7.44 (m, 1H), 7.44 – 7.40 (m, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.14 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.8, 140.2, 134.9, 134.2, 131.8, 131.23, 131.22, 130.7, 130.0, 129.1 (q, *J* = 33.0 Hz), 128.3, 127.6, 127.4, 126.8, 120.0 (q, *J* = 272.8 Hz), 108.2 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂ClF₃NO⁺: 338.0554 (M + H)⁺, found: 338.0553. m.p. 123-125 °C. IR (KBr): v = 3100, 2923, 1670, 1504, 1475, 1314, 884, 736 cm⁻¹.

2-(2-bromophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**3g**) (18 mg, 47%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (s, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.60 (s, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.15 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.8, 140.2, 136.6, 134.9, 133.2, 131.8, 131.3, 130.8, 129.0 (q, *J* = 33.2 Hz), 128.3, 128.1, 127.6, 126.9, 124.6, 120.0 (q, *J* = 273.3 Hz), 108.3 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂BrF₃NO⁺: 382.0049 (M + H)⁺, found: 382.0052. m.p. 140-142 °C. IR (KBr): v = 3092, 2926, 1668, 1503, 1472, 1314, 861, 651 cm⁻¹.

7-methyl-3-(trifluoromethyl)-2-(2-(trifluoromethyl)phenyl)isoquinolin-1(2*H***)-one (3h**) (18.7 mg, 50%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.12 (s, 1H), 2.52 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 140.3, 134.9, 134.7, 132.6, 132.0, 131.7, 129.9, 129.5 (q, *J* = 20.4 Hz), 129.3 (q, *J* = 18.6 Hz), 128.3, 127.7 (q, *J* = 4.7 Hz), 127.6, 126.6, 123.0 (q, *J* = 273.4 Hz), 120.0 (q, *J* = 272.9 Hz), 108.3 (q, *J* = 6.1 Hz), 21.6; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₂F₆NO⁺: 372.0818 (M + H)⁺, found: 372.0816. m.p. 132-133 °C. IR (KBr): v = 3062, 2918, 1679, 1607, 1497, 1455, 1315, 857 cm⁻¹.

7-methyl-2-(*m*-tolyl)-3-(trifluoromethyl)isoquinolin-1(2*H*)-one (3i) (18.2 mg, 57%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.57 (s, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 3.3 Hz, 3H), 2.53 (s, 3H), 2.41 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.8, 140.0, 138.9, 137.0, 134.7, 131.8, 130.0, 130.0, 129.7 (q, *J* = 32.7 Hz), 128.7, 128.1, 127.4, 127.0, 126.4, 120.2 (q, *J* = 273.1 Hz), 107.6 (q,

J = 6.0 Hz), 21.7, 21.3; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 318.1102. m.p. 117-118 °C. IR (KBr): v = 3095, 3034, 2922, 2865, 1660, 1502, 1488, 1316, 890 cm⁻¹.

2-(3-methoxyphenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one (3j)** (21.3 mg, 64%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 6) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 7.60 – 7.55 (m, 2H), 7.40 (t, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 7.03 (dd, *J* = 8.4, 1.9 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.84 (s, 1H), 3.82 (s, 3H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 160.0, 140.1, 138.1, 134.7, 131.8, 130.0 (q, *J* = 32.7 Hz), 129.6, 128.2, 127.4, 127.0, 121.8, 120.2 (q, *J* = 273.1 Hz), 115.2, 115.2, 107.7 (q, *J* = 6.1 Hz), 55.4, 21.6; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO₂⁺: 334.1049 (M + H)⁺, found: 334.1046. m.p. 85-86 °C. IR (KBr): v = 3074, 3006, 2968, 2924, 1664, 1605, 1496, 1313, 1032, 856 cm⁻¹.

2-(3-fluorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3k**) (17.1 mg, 53%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as light yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.63 – 7.55 (m, 2H), 7.52 – 7.43 (m, 1H), 7.24 – 7.19 (m, 1H), 7.10 (d, *J* = 6.9 Hz, 2H), 7.06 (d, *J* = 9.0 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6 (d, *J* = 248.0 Hz), 162.5, 140.3, 138.4 (d, *J* = 10.0 Hz), 134.9, 131.7, 130.1 (d, *J* = 8.8 Hz), 129.4 (q, *J* = 32.8 Hz), 128.2, 127.5, 126.9, 125.5, 120.1 (q, *J* = 273.0 Hz), 117.4 (d, *J* = 23.2 Hz), 116.5 (d, *J* = 21.0 Hz), 108.0 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂F₄NO⁺: 322.0850 (M + H)⁺, found: 322.0854. m.p. 113-114 °C. IR (KBr): v = 3094, 3036, 2924, 1672, 1600, 1503, 1488, 1315, 1131, 871 cm⁻¹.

2-(3-chlorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**3l**) (13.4 mg, 40%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.64 – 7.59 (m, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.49 (dt, *J* = 8.2, 1.6 Hz, 1H), 7.45 (t, *J* = 7.9 Hz, 1H), 7.33 (s, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 140.4, 138.1, 134.9, 134.5, 131.7, 130.0, 129.9, 129.6, 129.3 (q, *J* = 32.6 Hz), 128.1, 128.0, 127.5, 126.8, 120.1 (q, *J* = 273.0 Hz), 108.0 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂ClF₃NO⁺: 338.0554 (M + H)⁺, found: 338.0555. m.p. 150-151 °C. IR (KBr): v = 3087, 3061, 2922, 1674, 1583, 1504, 1474, 1315, 861, 741 cm⁻¹.

2-(3-bromophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3m) (26.7 mg, 70%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as brown solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.22 (s, 1H), 7.63 (d,** *J* **= 8.1 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.47 (s, 1H), 7.38 (t,** *J* **= 8.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.11 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.5, 140.4, 138.3, 134.9, 132.8, 132.5, 131.7, 130.2, 129.3 (q,** *J* **= 32.9 Hz), 128.4, 128.2, 127.5, 126.8, 122.2, 120.1 (q,** *J* **= 273.0 Hz), 108.0 (q,** *J* **= 6.1 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂BrF₃NO⁺: 382.0049 (M + H)⁺, found: 382.0054. m.p. 144-146 °C. IR (KBr): v = 3088, 3060, 2943, 1675, 1506, 1471, 1316, 862, 687 cm⁻¹.**

7-methyl-3-(trifluoromethyl)-2-(3-(trifluoromethyl)phenyl)isoquinolin-1(2*H***)-one (3n**) (27.9 mg, 75%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.65 (t, *J* = 7.9 Hz, 1H), 7.61 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.59 (d, *J* = 4.4 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.13 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 140.5, 137.7, 135.0, 133.2, 131.7 (q, *J* = 33.2 Hz), 131.7, 129.6, 129.2 (q, *J* = 32.8 Hz), 128.2, 127.6, 126.9 (q, *J* = 4.1 Hz), 126.8, 126.2 (q, *J* = 3.6 Hz), 123.5 (q, *J* = 272.5 Hz), 120.1 (q, *J* = 272.9 Hz), 108.2 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₁F₆NOK⁺: 410.0376 (M + K)⁺, found: 410.0374. m.p. 128-130 °C. IR (KBr): v = 3095, 3038, 2925, 1660, 1503, 1492, 1317, 891 cm⁻¹.

7-methyl-2-(*p*-tolyl)-3-(trifluoromethyl)isoquinolin-1(2*H*)-one (3o) (18.4 mg, 58%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.57 (s, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.09 (s, 1H), 2.52 (s, 3H), 2.43 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.8, 140.0, 139.1, 134.6, 134.4, 131.8, 129.7, 129.2 (q, *J* = 47.5 Hz), 129.1, 128.1, 127.4, 127.0, 120.2 (q, *J* = 272.8 Hz), 107.6 (q, *J* = 6.1 Hz), 21.7, 21.3; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 318.1099. m.p. 169-171 °C. IR (KBr): v = 3095, 3064, 3039, 2950, 2923, 1659, 1510, 1316, 890 cm⁻¹.

2-(4-methoxyphenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3p**) (14.4 mg, 43%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 6) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.61 – 7.53 (m, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.09 (s, 1H), 7.00 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H), 2.52 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.0, 159.9, 140.0, 134.6, 131.8, 130.5, 130.0 (q, *J* = 32.3 Hz), 129.6, 128.2, 127.4, 127.0, 120.3 (q, *J* = 272.9 Hz), 114.2, 107.6 (q, *J* = 6.1 Hz), 55.4, 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO₂⁺: 334.1049 (M + H)⁺, found: 334.1050. m.p. 188-189 °C. IR (KBr): v = 3094, 3007, 2960, 2937, 1659, 1510, 1315, 1035, 896 cm⁻¹.

2-(4-fluorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**3q**) (21 mg, 65%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as pale solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.62 – 7.56 (m, 2H), 7.28 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.19 (t, *J* = 8.5 Hz, 2H), 7.11 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.8, 162.8 (d, *J* = 249.0 Hz), 140.3, 134.8, 132.9 (d, *J* = 3.0 Hz), 131.7, 131.3 (d, *J* = 8.9 Hz), 129.6 (q, *J* = 32.6 Hz), 128.1, 127.5, 126.8, 120.1 (q, *J* = 272.8 Hz), 116.1 (d, *J* = 23.0 Hz), 107.9 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂F₄NO⁺: 322.0850 (M + H)⁺, found: 322.0847. m.p. 197-198 °C. IR (KBr): v = 3094, 3043, 2927, 1659, 1507, 1316,1131, 892 cm⁻¹.

2-(4-chlorophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3r**) (18.7 mg, 55%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.58 (t, *J* = 6.5 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.11 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 140.3, 135.6, 135.3, 134.9, 131.7, 130.9, 129.4 (q, *J* = 32.8 Hz), 129.3, 128.1, 127.5, 126.8, 120.1 (q, *J* = 272.6 Hz), 108.0 (q, *J* = 5.9 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂ClF₃NO⁺: 338.0554 (M + H)⁺, found: 338.0552. m.p. 198-200 °C. IR (KBr): v = 3057, 2918, 1676, 1590, 1489, 1315, 858, 738 cm⁻¹.

2-(4-bromophenyl)-7-methyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one (3s)** (24.4 mg, 64%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as Light yellow powder. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.59 (q, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.11 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 140.3, 136.2, 134.9, 132.3, 131.7, 131.2, 129.3 (q, *J* = 32.5 Hz), 128.1, 127.5, 126.8, 123.4, 120.1 (q, *J* = 273.0 Hz), 108.0 (q, *J* = 6.1 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂BrF₃NO⁺: 382.0049 (M + H)⁺, found: 382.0053. m.p. 119-120 °C. IR (KBr): v = 3098, 2918, 1663, 1503, 1487, 1315, 879, 654 cm⁻¹.

7-methyl-3-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)isoquinolin-1(2*H***)-one (3t**) (15.1 mg, 41%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.63 – 7.57 (m, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.14 (s, 1H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 140.5, 140.4, 135.0, 131.7, 131.5 (q, *J* = 32.8 Hz), 130.3, 129.2 (q, *J* = 32.8 Hz), 128.2, 127.6, 126.8, 126.3 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.5 Hz), 120.1 (q, *J* = 272.9 Hz), 108.2 (q, *J* = 6.0 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₂F₆NO⁺: 372.0818 (M + H)⁺, found: 372.0816. m.p. 190-192 °C. IR (KBr): v = 3060, 2925, 1678, 1609, 1505, 1315, 859 cm⁻¹.

4-(7-methyl-1-oxo-3-(trifluoromethyl)isoquinolin-2(1*H***)-yl)benzonitrile (3u**) (18.1 mg, 55%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 6) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.21 (s, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.63 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.60 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.14 (s, 1H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.3, 141.4, 140.7, 135.2, 133.0, 131.6, 130.9, 128.9 (q, *J* = 32.8 Hz), 128.1, 127.7, 126.7, 120.0 (q, *J* = 273.0 Hz), 117.9, 113.5, 108.4 (q, *J* = 5.9 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₂F₃N₂O⁺: 329.0896 (M + H)⁺, found: 329.0899. m.p. 179-180 °C. IR (KBr): v = 3099, 3067, 2926, 2231, 1669, 1603, 1504, 1314, 858 cm⁻¹.

7-methyl-2-phenethyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (3v) (14.2 mg, 43%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 20) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.29 (s, 1H), 7.56 (d,** *J* **= 8.0 Hz, 1H), 7.52 (d,** *J* **= 8.0 Hz, 1H), 7.39 – 7.31 (m, 4H), 7.26 (d,** *J* **= 7.3 Hz, 1H), 7.07 (s, 1H), 4.33 – 4.26 (m, 2H), 3.07 – 3.01 (m, 2H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.2, 139.9, 138.3, 134.4, 131.5, 129.0, 128.9 (q,** *J* **= 45.0 Hz), 128.6, 127.7, 127.3, 126.9, 126.6, 120.9 (q,** *J* **= 272.9 Hz), 108.2 (q,** *J* **= 6.6 Hz), 47.6 (q,** *J* **= 2.9 Hz), 34.7, 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₉H₁₆F₃NOK⁺: 370.0816 (M + K)⁺, found: 370.0818. m.p. 83-85 °C. IR (KBr): v = 3056, 3031, 2954, 2941, 1660, 1498, 1461, 1304, 860 cm⁻¹.**

7-methyl-3-(perfluoroethyl)-2-phenylisoquinolin-1(2*H***)-one (3w) (16.5 mg, 47%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.22 (s, 1H), 7.62 – 7.55 (m, 2H), 7.52 – 7.46 (m, 3H), 7.26 (d,** *J* **= 7.1 Hz, 2H), 7.02 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 163.1, 140.4, 137.8, 134.8, 131.7, 129.5, 129.0, 128.8, 128.1, 128.1 (t,** *J* **= 23.3 Hz), 127.5, 127.0, 119.6 (t,** *J* **= 37.5 Hz), 117.3 (t,** *J* **= 37.7 Hz), 110.5 (t,** *J* **= 6.9 Hz), 21.7;**

HRMS (ESI-TOF) m/z: calcd for $C_{18}H_{13}F_5NO^+$: 354.0912 (M + H)⁺, found: 354.0909. m.p. 152-153 °C. IR (KBr): v = 3087, 3064, 3034, 2962, 1661, 1608, 1501, 1489, 12137, 885 cm⁻¹.

7-methyl-3-(perfluoropropyl)-2-phenylisoquinolin-1(2*H***)-one (3x**) (16 mg, 40%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.60 (d, *J* = 1.8 Hz, 2H), 7.51 – 7.44 (m, 3H), 7.29 – 7.21 (m, 2H), 7.04 (s, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.1, 140.4, 137.8, 134.8, 131.7, 129.4, 129.0, 128.8, 128.2, 127.5, 127.0, 111.2 (t, *J* = 8.8 Hz), 21.7; HRMS (ESI-TOF) m/z: calcd for C₁₉H₁₃F₇NO⁺: 404.0880 (M + H)⁺, found: 404.0881. m.p. 156-157 °C. IR (KBr): v = 3086, 2928, 1655, 1596, 1502, 1489, 1226, 877 cm⁻¹.

2.4 Procedure for Synthesis of 4

A dried 10 mL Schlenk tube was charged with **benzoic acid 1** (0.1 mmol, 1 equiv), (*E*)-3-(dimethyl(oxo)- $^{\lambda}$ 6-sulfanylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine 2a (39.5 mg, 0.15 mmol, 1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (1.6 mg, 2.5 mol%), NEt₃ (20.2 mg, 0.2 mmol, 2.0 equiv), AgSbF₆ (3.4 mg, 20 mol%) and CH₃CN (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane to give the corresponding products.

2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4a) (16.7 mg, 58%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.44 (d,** *J* **= 8.0 Hz, 1H), 7.77 (ddd,** *J* **= 8.3, 7.1, 1.4 Hz, 1H), 7.68 (d,** *J* **= 7.3 Hz, 1H), 7.65 (ddd,** *J* **= 8.3, 7.2, 1.3)**

Hz, 1H), 7.56 - 7.47 (m, 3H), 7.32 - 7.29 (m, 2H), 7.14 (s, 1H); 13 C NMR (126 MHz, Chloroform-*d*) δ 162.7, 137.0, 134.2, 133.3, 130.7 (q, J = 32.7 Hz), 129.5, 129.3, 129.0, 128.5, 127.5, 127.2, 120.1 (q, J = 273.4 Hz), 107.6 (q, J = 6.2 Hz); HRMS (ESI-TOF) m/z: calcd for C₁₆H₁₁F₃NO⁺: 290.0787 (M + H)⁺, found: 290.0788. m.p. 183-184 °C. IR (KBr): $\nu = 3097$, 1658, 1599, 1488, 1455, 1322, 764, 694 cm⁻¹.

6-(*tert*-butyl)-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H*)-one (4b) (18.8 mg, 54%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 8.4 Hz, 1H), 7.71 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.64 (s, 1H), 7.50 (d, *J* = 6.9 Hz, 3H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.14 (s, 1H), 1.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 157.2, 137.1, 134.2, 130.5 (q, *J* = 32.4 Hz), 129.5, 129.2, 129.0, 128.3, 127.6, 124.8, 123.7, 120.2 (d, *J* = 273.1 Hz), 108.1 (q, *J* = 6.0 Hz), 35.3, 31.1; HRMS (ESI-TOF) m/z: calcd for C₂₀H₁₉F₃NO⁺: 346.1413 (M + H)⁺, found: 346.1418. m.p. 103-105 °C. IR (KBr): v = 3066, 2964, 2869 1675, 1605, 1490, 1304, 889 cm⁻¹.

6-methoxy-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4c) (15.3 mg, 48%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 6) as brown yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.35 (d,** *J* **= 8.8 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.30 (dd,** *J* **= 7.1, 1.2 Hz, 2H), 7.19 (dd,** *J* **= 8.9, 2.5 Hz, 1H), 7.05 (s, 1H), 7.03 (d,** *J* **= 2.5 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 163.5, 162.4, 137.1, 136.3, 131.3 (q,** *J* **= 32.6 Hz), 130.6, 129.6, 129.2, 129.0, 120.7, 120.1 (q,** *J* **= 273.4 Hz), 118.5, 108.7, 107.3 (q,** *J* **= 6.1 Hz), 55.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₃F₃NO₂⁺: 320.0893 (M + H)⁺, found: 320.0898. m.p. 171-172 °C. IR (KBr): v = 3047, 2928, 1675, 1605, 1488, 1307, 1016, 862 cm⁻¹.**

6-chloro-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4d) (13.5 mg, 42%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as pale solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.37**

(d, J = 8.5 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.58 (dd, J = 8.6, 2.1 Hz, 1H), 7.56 – 7.48 (m, 3H), 7.31 – 7.28 (m, 2H), 7.04 (s, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.1, 139.9, 136.7, 135.5, 132.1 (q, J = 32.4 Hz), 130.4, 130.0, 129.4, 129.4, 129.1, 126.8, 125.4, 119.9 (q, J = 273.6 Hz), 106.4 (q, J = 6.1 Hz); HRMS (ESI-TOF) m/z: calcd for C₁₆H₁₀ClF₃NO⁺: 324.0398 (M + H)⁺, found: 324.0399. m.p. 178-180 °C. IR (KBr): $\nu = 3092$, 3070, 3047, 1663, 1595, 1489, 1294, 857, 732 cm⁻¹.

6-iodo-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4e) (17.3 mg, 42%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as light yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.11 (d,** *J* **= 8.4 Hz, 1H), 8.07 (d,** *J* **= 1.6 Hz, 1H), 7.94 (dd,** *J* **= 8.4, 1.7 Hz, 1H), 7.51 (dd,** *J* **= 5.2, 2.0 Hz, 3H), 7.30 – 7.27 (m, 2H), 7.01 (s, 1H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.5, 138.5, 136.7, 136.2, 135.6, 131.8 (q,** *J* **= 32.9 Hz), 130.0, 129.4, 129.3, 129.1, 126.3, 119.9 (q,** *J* **= 273.7 Hz), 106.1 (q,** *J* **= 5.8 Hz), 101.0; HRMS (ESI-TOF) m/z: calcd for C₁₆H₁₀IF₃NO⁺: 415.9754 (M + H)⁺, found: 415.9753. m.p. 157-158 °C. IR (KBr): v = 3082, 3059, 1671, 1585, 1488, 1294, 886, 532 cm⁻¹.**

7-fluoro-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4f) (15.5 mg, 50%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.23 (d,** *J* **= 8.0 Hz, 1H), 7.60 (td,** *J* **= 8.0, 5.2 Hz, 1H), 7.55 – 7.50 (m, 3H), 7.47 (ddd,** *J* **= 9.3, 8.0, 1.1 Hz, 1H), 7.36 (s, 1H), 7.32 – 7.28 (m, 2H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 161.8, 158.4 (d,** *J* **= 254.3 Hz), 136.8, 131.3 (q,** *J* **= 32.5 Hz), 130.0 (d,** *J* **= 8.0 Hz), 129.4, 129.4, 129.1, 128.6 (d,** *J* **= 2.7 Hz), 124.2 (d,** *J* **= 3.9 Hz), 123.7 (d,** *J* **= 16.0 Hz), 119.9 (q,** *J* **= 273.6 Hz), 118.4 (d,** *J* **= 19.6 Hz), 100.3 (q,** *J* **= 6.1 Hz); HRMS (ESI-TOF) m/z: calcd for C₁₆H₁₀F₄NO⁺: 308.0693 (M + H)⁺, found: 308.0690. m.p. 122-124 °C. IR (KBr): v = 3057, 1676, 1591, 1491, 1481, 1300, 1138, 853 cm⁻¹.**

8-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4g) (18.8 mg, 62%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta**

7.59 (t, J = 7.7 Hz, 1H), 7.55 – 7.44 (m, 4H), 7.40 (d, J = 7.4 Hz, 1H), 7.30 (dd, J = 7.2, 1.2 Hz, 2H), 7.04 (s, 1H), 2.87 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.5, 142.9, 137.3, 136.0, 132.7, 132.5, 130.3 (q, J = 32.9 Hz), 129.6, 129.1, 129.1, 125.9, 125.4, 120.0 (q, J = 273.1 Hz), 108.0 (q, J = 6.1 Hz), 23.7; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₃F₃NO⁺: 304.0944 (M + H)⁺, found: 304.0943. m.p. 158-159 °C. IR (KBr): v = 3095, 3067, 3042, 2924, 1665, 1594, 1491, 1474, 1300, 875 cm⁻¹.

2-phenyl-3-(trifluoromethyl)benzo[h]isoquinolin-1(2*H***)-one (4h) (19.9 mg, 59%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as light yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 10.07 (d,** *J* **= 8.1 Hz, 1H), 8.15 (d,** *J* **= 8.5 Hz, 1H), 7.95 (dd,** *J* **= 7.9, 1.6 Hz, 1H), 7.72 (ddd,** *J* **= 8.7, 6.9, 1.6 Hz, 1H), 7.67 (ddd,** *J* **= 8.4, 7.0, 1.5 Hz, 1H), 7.64 (d,** *J* **= 8.5 Hz, 1H), 7.60 – 7.51 (m, 3H), 7.36 (d,** *J* **= 6.6 Hz, 2H), 7.24 (s, 1H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 163.1, 137.4, 136.3, 135.0, 133.6, 131.6, 131.4 (q,** *J* **= 33.0 Hz), 129.5, 129.3, 129.1, 129.0, 128.5, 127.6, 127.5, 124.8, 121.4, 120.0 (q,** *J* **= 273.4 Hz), 107.7 (q,** *J* **= 5.7 Hz); HRMS (ESI-TOF) m/z: calcd for C₂₀H₁₃F₃NO⁺: 340.0944 (M + H)⁺, found: 340.0944. m.p. 176-177 °C. IR (KBr): v = 3067, 1666, 1600, 1488, 1290, 857, 748 cm⁻¹.**

7,8-dimethyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**4i**) (22.4 mg, 71%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 – 7.45 (m, 4H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.01 (s, 1H), 2.83 (s, 3H), 2.45 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.8, 141.0, 139.3, 137.6, 134.9, 134.1, 129.7, 129.5 (q, *J* = 32.8 Hz), 129.0 (d, *J* = 2.1 Hz), 125.3, 125.1, 120.1 (q, *J* = 272.7 Hz), 108.2 (q, *J* = 6.0 Hz), 21.4, 17.8; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 318.1101. m.p. 148-149 °C. IR (KBr): v = 3073, 2925, 1670, 1593, 1491, 1302, 860 cm⁻¹.

6,8-dimethyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2H)-one (**4j**) (23.4 mg, 74%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as light yellow solid. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.54 – 7.45 (m, 3H), 7.31 – 7.26 (m, 33H), 7.22 (s, 1H), 6.98 (s, 1H), 2.83 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.4, 143.2, 142.7, 137.4, 136.1, 134.1, 130.3 (q, *J* = 32.5 Hz), 129.7, 129.0, 125.8, 123.1, 120.1 (q, *J* = 272.9 Hz), 107.9 (q, *J* = 5.9 Hz), 23.5, 21.4; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 318.1098. m.p. 153-154 °C. IR (KBr): ν = 3100, 3067, 2923, 1669, 1608, 1492, 1301, 862 cm⁻¹.

6-fluoro-8-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (**4k**) (19.3 mg, 60%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 – 7.47 (m, 3H), 7.29 (d, *J* = 7.1 Hz, 2H), 7.12 (td, *J* = 8.6, 8.2, 2.6 Hz, 2H), 6.98 (s, 1H), 2.86 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.3 (d, *J* = 254.4 Hz), 162.8, 147.1 (d, *J* = 9.6 Hz), 138.4 (d, *J* = 10.7 Hz), 137.0, 131.6 (q, *J* = 32.7 Hz), 129.6, 129.2, 129.1, 122.1 (d, *J* = 1.7 Hz), 120.4 (d, *J* = 22.2 Hz), 119.9 (q, *J* = 273.4 Hz), 110.9 (d, *J* = 21.6 Hz), 107.2 (q, *J* = 5.9, 3.4 Hz), 23.9; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂F₄NO⁺: 322.0850 (M + H)⁺, found: 322.0853. m.p. 169-170 °C. IR (KBr): v = 3096, 3072, 2925, 1670, 1601, 1489, 1301, 1129, 758 cm⁻¹.

6-chloro-8-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4l) (19.7 mg, 58%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 7.56 – 7.47 (m, 3H), 7.47 (d,** *J* **= 2.1 Hz, 1H), 7.37 (d,** *J* **= 1.2 Hz, 1H), 7.28 (dd,** *J* **= 6.9, 1.4 Hz, 2H), 6.95 (s, 1H), 2.83 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.9, 145.2, 138.6, 137.3, 137.0, 132.5, 131.6 (q,** *J* **= 32.9 Hz), 129.5, 129.3, 129.1, 125.0, 123.8, 119.8 (q,** *J* **= 273.5 Hz), 106.9 (q,** *J* **= 5.9 Hz), 23.6; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂ClF₃NO⁺: 338.0554 (M + H)⁺, found: 338.0550. m.p. 161-162 °C. IR (KBr): v = 3089, 3069, 2926, 1670, 1583, 1491, 1294, 894, 733 cm⁻¹.**

8-bromo-6-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2H)-one (**4m**) (16 mg, 42%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as light yellow solid. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.74 (s, 1H), 7.52 – 7.46 (m, 3H), 7.38 (s, 1H), 7.28 (d, J = 7.2 Hz, 2H), 6.97 (s, 1H), 2.47 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.9, 144.3, 137.8, 137.2, 136.9, 131.3 (q, J = 32.8 Hz), 129.6, 129.2, 129.0, 127.5, 123.8, 122.2, 119.8 (q, J = 273.4 Hz), 107.0 (q, J = 6.0 Hz), 21.1; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂BrF₃NO⁺: 382.0049 (M + H)⁺, found: 382.0047. m.p. 172-173 °C. IR (KBr): ν = 3067, 2921, 1671, 1604, 1488, 1293, 867, 685 cm⁻¹.

6,7-dimethyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (4n) (22.6 mg, 71%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 15) as Light yellow solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.17 (s, 1H), 7.53 – 7.45 (m, 3H), 7.42 (s, 1H), 7.29 (d,** *J* **= 7.1 Hz, 2H), 7.04 (s, 1H), 2.43 (s, 3H), 2.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.6, 143.4, 139.4, 137.3, 132.3, 129.8 (q,** *J* **= 32.3 Hz), 129.5, 129.1, 128.9, 128.6, 127.8, 125.1, 120.2 (q,** *J* **= 273.0 Hz), 107.4 (q,** *J* **= 6.1 Hz), 20.2, 20.0; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO⁺: 318.1100 (M + H)⁺, found: 460.1097. m.p. 126-128 °C. IR (KBr): v = 3058, 2920, 2856, 1672, 1593, 1489, 1300, 881 cm⁻¹.**

7-methoxy-6-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (40) (25.1 mg, 75%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 7.76 (s, 1H), 7.55 – 7.46 (m, 3H), 7.43 (s, 1H), 7.30 (d,** *J* **= 7.9 Hz, 2H), 7.05 (s, 1H), 3.95 (s, 3H), 2.38 (s, 4H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 162.5, 159.5, 137.4, 134.9, 129.5, 129.1, 129.1, 128.9, 128.3 (q,** *J* **= 32.6 Hz), 127.8, 126.7, 120.4 (q,** *J* **= 272.6 Hz), 107.5 (q,** *J* **= 6.1 Hz), 106.7, 55.8, 16.8; HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅F₃NO₂⁺: 334.1049 (M + H)⁺, found: 334.1049. m.p. 168-169 °C. IR (KBr): v = 3065, 3045, 2960, 2925, 1663, 1592, 1505, 1490, 1302, 1011, 893 cm⁻¹.**

2.5 Procedure for the Gram-Scale Synthesis of 3a

A dried 100 mL Schlenk tube was charged with **3-methylbenzoic acid 1a** (680.8 mg, 5 mmol, 1 equiv), (*E*)-**3-(dimethyl(oxo)-^{\lambda}6-sulfanylidene)-1,1,1-trifluoro-***N***-phenylpropan-2-imine 2a (1.97 g, 7.5 mmol, 1.5 equiv), [Ru(***p***-cymene)Cl₂]₂ (76.5 mg, 2.5 mol%), NEt₃ (1.01 g, 10 mmol, 2 equiv), AgSbF₆ (171.8 mg, 20 mol%), and CH₃CN (50 mL). The reaction mixture was heated to 100 °C on an oil bath for 24 hours under vigorous stirring. Upon completion, the reaction**

mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by flash chromatography on silica gel with ethyl acetate/hexane (1 : 20) to give the corresponding products 7-**methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2H)-one** (3a) (1.016 g, 67%) as a brown solid.

2.6 Procedure for the Synthesis of D-1a

A dried 10 mL Schlenk tube was charged with **3-methylbenzoic acid 1a** (13.6 mg, 0.1 mmol, 1 equiv), $[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2$ (1.6 mg, 2.5 mol%), NEt₃ (20.2 mg, 0.2 mmol, 2.0 equiv), AgSbF₆ (3.4 mg, 20 mol%), CD₃OD (0.1 mL) and CH₃CN (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:10) to give the corresponding products.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 9.5 Hz, 0.54H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.35 (m, 1H), 2.43 (s, 3H).

2.7 Procedure for the Synthesis of D-3a

A dried 10 mL Schlenk tube was charged with **3-methylbenzoic acid 1a** (13.6 mg, 0.1 mmol, 1 equiv), (*E*)-**3-(dimethyl(oxo)-** $^{\lambda}$ **6-sulfanylidene)-1,1,1-trifluoro-***N***-phenylpropan-2-imine 2a** (39.5 mg, 0.15 mmol, 1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (1.6 mg, 2.5 mol%), NEt₃ (20.2 mg, 0.2 mmol, 2.0 equiv), AgSbF₆ (3.4 mg, 20 mol%), CD₃OD (0.1 mL) and CH₃CN (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:20) to give the corresponding products.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (s, 0.83H), 7.58 (d, *J* = 1.8 Hz, 2H), 7.53 – 7.46 (m, 3H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.11 (s, 0.33H), 2.53 (s, 3H).

2.8 Kinetic Isotope Effect Experiment

A dried 10 mL Schlenk tube was charged with **benzoic acid 1b** (6.1 mg, 0.05 mmol), **D5-benzoic acid** (6.4 mg, 0.05 mmol), **(E)-3-(dimethyl(oxo)-^{\lambda}6-sulfanylidene)-1,1,1-trifluoro-N-phenylpropan-2imine 2a** (39.5 mg, 0.15 mmol, [Ru(*p*-cymene)Cl₂]₂ (1.6 mg, 2.5 mol%), NEt₃ (20.2 mg, 0.2 mmol, 2.0 equiv), AgSbF₆ (3.4 mg, 20 mol%), and CH₃CN (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:20) to give the corresponding products.

4a/4a-D4

¹H NMR (500 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 7.9 Hz, 0.69H), 7.81 – 7.74 (m, 0.75H), 7.70 – 7.63 (m, 1.5H), 7.55 – 7.48 (m, 3H), 7.31 (d, *J* = 5.5 Hz, 2H), 7.14 (d, *J* = 1.7 Hz, 1H).

Intermolecular Kinetic Isotope Effect Experiment

Five parallel independent reactions of 1b or [D]5-1b with 2a, respectively, were performed to determine the corresponding KIE value. 1b (6.1 mg, 0.05 mmol) or [D]5-1b (6.4 mg, 0.05 mmol), 2a (19.7 mg, 0.15 mmol), [RuCl₂(p-cymene)]₂ (0.8 mg, 2.5 mol%), AgSbF₆ (1.7 mg, 10 mol%), (10.1)NEt₃ 2.0 equiv), and CH₃CN (0.5)mL) mg, were placed in a 25 mL Schlenk flask under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate concentrated under Then $^{1}\mathrm{H}$ **NMR** was vacuum, conversions were obtained by the use of CH₂Br₂ as the standard.

Time yield	20 min	30 min	40 min	50 min	60 min
4a	24%	31%	40%	48%	54%
[D] ₄ -4a	18%	20%	23%	26%	28%

Compound **5** was synthesized according to literature.² ¹H NMR (500 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.63 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.47 (d, *J* = 7.9 Hz, 1H), 6.97 (s, 1H), 2.52 (s, 3H).

2.9 Synthetic Applications of 3a

A dried 10 mL Schlenk tube was charged with **7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2***H***)-one 3a** (30.3 mg, 0.1 mmol, 1 equiv), *N*-Chlorosuccinimide (53.4 mg, 0.4 mmol, 4 equiv), and CH₃CN (0.4 mL). The reaction mixture was heated to 90 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:20) to give the corresponding products.

4-chloro-7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(*2H***)-one** (6) (10.4 mg, 31%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as brown solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 7.69 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.28 (d, *J* = 7.2 Hz, 2H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.5, 141.3, 138.7, 135.2, 131.4, 128.9, 128.8, 128.7 (d, *J* = 1.8 Hz), 128.4, 127.0 (q, *J* = 31.4 Hz), 126.5, 125.4, 120.5 (q, *J* = 277.2 Hz), 116.5 (q, *J* = 2.3 Hz), 21.5; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂ClF₃NO⁺: 338.0554 (M + H)⁺, found: 338.0550. m.p. 151-153 °C. IR (KBr): v = 3083, 3064, 2923, 1672, 1585, 1488, 1295, 843, 739 cm⁻¹.

A dried 10 mL Schlenk tube was charged with **7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2***H***)-one 3a** (30.3 mg, 0.1 mmol, 1 equiv), *N*-Bromosuccinimide (106.8 mg, 0.6 mmol, 6 equiv), and DMF (0.5 mL). The reaction mixture was heated to 90 °C on a heating plate for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:20) to give the corresponding products.

4-bromo-7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (7) (17.4 mg, 46%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 10) as white solid. ¹H NMR (500 MHz, Chloroform-***d***) \delta 8.23 (s, 1H), 8.16 (d,** *J* **= 8.4 Hz, 1H), 7.67 (dd,** *J* **= 8.4, 1.8 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.28 (d,** *J* **= 7.4 Hz, 2H), 2.54 (s, 3H); ¹³C NMR (126 MHz, Chloroform-***d***) \delta 161.7, 141.2, 139.0, 135.3, 132.4, 128.9, 128.8, 128.6 (q,** *J* **= 31.4 Hz), 128.5 (d,** *J* **= 1.7 Hz), 128.4, 128.3, 126.5, 120.4 (q,** *J* **= 277.6 Hz), 105.8 (q,** *J* **= 2.8 Hz), 21.4; HRMS (ESI-TOF) m/z: calcd for C₁₇H₁₂BrF₃NO⁺: 382.0049 (M + H)⁺, found: 382.0050. m.p. 170-171 °C. IR (KBr): v = 3067, 3042, 2919, 1676, 1577, 1486, 1290, 818, 672 cm⁻¹.**

А dried 10 mL Schlenk tube charged with 4-bromo-7-methyl-2-phenyl-3was (trifluoromethyl)isoquinolin-1(2H)-one (7) (38.2 mg, 0.1 mmol, 1 equiv), (4-methoxyphenyl)boronic acid (22.8 mg, 0.15 mmol, 1.5 equiv), Pd(PPh₃)₄ (5.8 mg, 5 mol%), K₂CO₃ (27.6 mg, 0.2 mmol, 2 equiv), and dissolved in 1 mL mixture of water and 1,4-dioxane (1:3). The reaction mixture was heated to 100 °C on a heating plate for 3 hours under N₂. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:4) to give the corresponding products.

4-(4-methoxyphenyl)-7-methyl-2-phenyl-3-(trifluoromethyl)isoquinolin-1(2*H***)-one (8**) (23.4 mg, 57%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 4) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.28 (s, 1H), 7.53 – 7.45 (m, 3H), 7.43 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.36 (d, *J* = 7.7 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.08 – 6.98 (m, 3H), 3.89 (s, 3H), 2.50 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 159.4, 139.9, 138.6, 134.6, 134.3, 131.0 (d, *J* = 2.2 Hz), 129.4 (d, *J* = 1.8 Hz), 128.7, 128.7, 127.9, 127.4, 127.0, 126.8 (q, *J* = 29.5 Hz), 126.5, 122.5 (q, *J* = 3.1 Hz), 120.9 (q, *J* = 277.0 Hz), 113.8, 55.3, 21.4; HRMS (ESI-TOF) m/z: calcd for C₂₄H₁₉F₃NO₂⁺: 410.1362 (M + H)⁺, found: 410.1363. m.p. 184-185 °C. IR (KBr): v = 3066, 3043, 2962, 2920, 1663, 1591, 1509, 1320,1038, 840 cm⁻¹.

dried 10 Schlenk charged with 4-bromo-7-methyl-2-phenyl-3-А mL tube was (trifluoromethyl)isoquinolin-1(2H)-one (7) (38.2 mg, 0.1 mmol, 1 equiv), methyl acrylate (17.2 mg, 0.2 mmol, 2 equiv), Pd(OAc)₂ (1.1 mg, 5 mol%), PPh₃ (2.6 mg, 10 mol%), K₂CO₃ (27.6 mg, 0.2 mmol, 2 equiv), and DMF (1 mL). The reaction mixture was heated to 100 °C on a heating plate for 24 hours under N₂. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative thin layer chromatography (PTLC) with ethyl acetate : hexane (1:4) to give the corresponding products.

methyl (*E*)-3-(7-methyl-1-oxo-2-phenyl-3-(trifluoromethyl)-1,2-dihydroisoquinolin-4-yl)acrylate (9) (33.2 mg, 86%) was prepared from typical procedure (ethyl acetate: hexane = 1 : 4) as white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.28 (s, 1H), 7.88 (dq, *J* = 16.2, 4.4 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.58 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.53 – 7.45 (m, 3H), 7.30 (d, *J* = 7.4 Hz, 2H), 6.17 (d, *J* = 16.2 Hz, 1H), 3.86 (s, 3H), 2.53 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.9, 161.9, 140.5, 138.6, 137.9, 134.7, 131.6, 129.2 (d, *J* = 1.8 Hz), 128.9, 128.8, 128.5, 127.0 (q, *J* = 3.3 Hz), 126.6 (q, *J* = 30.7 Hz), 126.5, 125.9, 120.7 (q, *J* = 276.7 Hz), 116.6 (q, *J* = 2.5 Hz), 52.0, 21.5; HRMS (ESI-TOF) m/z: calcd for C₂₁H₁₇F₃NO₃⁺: 388.1155 (M + H)⁺, found: 388.1150. m.p. 191-192 °C. IR (KBr): v = 3052, 2949, 2923, 1720, 1672, 1588, 1500, 1488, 1319, 1078, 879 cm⁻¹.

Reference

- (a) S. Wen, Q. Tian, Y. Chen, Y. Zhang and G. Cheng, Annulation of CF₃-Imidoyl Sulfoxonium Ylides with 1,3-Dicarbonyl Compounds: Access to 1,2,3-Trisubstituted 5-Trifluoromethylpyrroles. *Org. Lett.*, 2021, 23, 7407-7411; (b) S. Wen, Y. Chen, Q. Tian, Y. Zhang and G. Cheng, Transition-Metal-, Additive-, and Solvent-Free [3+3] Annulation of RCF₂-Imidoyl Sulfoxonium Ylides with Cyclopropenones to Give Multifunctionalized CF₃-Pyridones. *J. Org. Chem.* 2022, 87, 1124–1132.
- 2 K. Zhou, J. Geng, D. Wang, J. Zhang and Y. Zhao, An Indirect Strategy for Trifluoromethylation via an Iridium Catalyst: Approach to Generate Isocoumarin Skeletons in Bioactive Molecules. Org. Lett., 2020, 22, 5109-5114.

3. ¹H and ¹³C NMR Spectra

-8.291 -8.291 7.564 7.564 7.557 7.532 7.357 7.357 7.353 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.276 7.268 7.068 7.263 7.068 -2.538

f1 (ppm)

- 0.000

S56

8.235 8.219 8.219 8.219 8.219 8.219 8.219 8.219 7.601 7.535 7.535 7.535 7.535 7.535 7.535 7.535 7.5555 7.555

- 0.000

H4/D4 H4/D4 H4/D4

8.277 7.900 7.867 7.867 7.867 7.867 7.867 7.867 7.867 7.867 7.867 7.867 7.867 7.558 7.558 7.558 7.558 7.558 7.5515 7.5490 7.480 7.480 7.470 7.470 7.470 7.470

- 2.526

- 0.000

f1 (ppm) -1