Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information to

Access to cyclopentenones via copper-catalyzed 5-endo trifluoromethylcarbocyclization of

ynones

Siya Le,[§] Yihui Bai,[§] Jiayan Qiu, Zuxiao Zhang, Hanliang Zheng,* and Gangguo Zhu*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of

Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.

*email: hanliang@zjnu.edu.cn, gangguo@zjnu.cn

Contents

1. General information	S2
2. General procedures for experiments and analytical data	S2-S16
3. Mechanistic experiments	S16-S18
4. Computational data	S19-S30
5. NMR spectra	
6. X-Ray data	S84

1. General information

Unless otherwise noted, materials obtained from commercial suppliers were used directly without further purification. Ynones were prepared according to the method reported in the literature.¹ Melting points reported here were measured by a melting point instrument and were uncorrected. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on a 600 MHz or 400 MHz NMR spectrometer. Chemical shifts are given in parts per million on the delta (δ) scale, and the coupling constants are given in hertz. ¹H NMR chemical shifts were determined relative to the internal standard tetramethylsilane (TMS) at 0.00 ppm, ¹³C NMR shifts were determined relative to the residual solvent peaks of CDCl₃ at δ 77.00 ppm, and ¹⁹F NMR chemical shifts were determined relative to to the residual solvent peaks of CDCl₃ at δ 0.00 ppm. High-resolution mass spectrometry (HRMS) analysis were carried out using a TOF MS instrument with an ESI source. Flash column chromatography was carried out on the silica gel (200-300 mesh).

2. General procedures for experiments and analytical data

To a mixture of CuCN (1.8 mg, 0.02 mmol), **2a** (94.8 mg, 0.3 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of EtOAc was added **1a** (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After being heated in an oil bath at 50 °C for 10 h, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 40 mg (79% yield) of **3a** as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.45 (m, 3H), 7.15 (dd, *J* = 6.5, 3.0 Hz, 2H), 2.60 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.62, 185.51, 132.45, 129.83 (q, *J* = 31.1 Hz), 128.90, 128.07, 126.17 (q, *J* = 0.8 Hz), 120.90 (q, *J* = 273.4 Hz), 51.01, 43.02, 26.65. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.39. HRMS (ESI) *m*/*z*: [*M* + H]⁺ Calcd for C₁₄H₁₃F₃O+H⁺: 255.0991; Found 255.0991.

¹ (a) Q.-X. Wang and J. A. May, *Org. Lett.*, 2020, **22**, 9579; (b) T. P. Reddy, J. Gujral, P. Roy and D. B. Ramachary, *Org. Lett.*, 2020, **22**, 9653.

Scale-up experiments.

To a mixture of CuCN (17.9 mg, 0.2 mmol), **2a** (948 mg, 3.0 mmol) and K_2CO_3 (553 mg, 4.0 mmol) in 20 mL of EtOAc was added **1a** (372 mg, 2.0 mmol) under nitrogen atmosphere. After being heated in an oil bath at 50 °C for 16 h, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 422 mg (83% yield) of **3a** as a yellow oil.

Compound **3b**: 46 mg, 82% yield, white solid, mp 168-170 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 2H), 2.63 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.52, 182.29, 137.14, 131.95, 130.60 (q, *J* = 31.0 Hz), 127.18, 120.53 (q, *J* = 273.6 Hz), 118.01, 113.19, 50.77, 43.05, 26.56. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.36. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₂F₃NO+H⁺: 280.0944; Found 280.0942.

Compound 3c: 53 mg, 81% yield, white solid, mp 105-107 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 2.62 (s, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.98, 183.97, 165.85, 136.90, 131.09, 130.20 (q, *J* = 31.3 Hz), 129.27, 126.34, 120.69 (q, *J* = 273.5 Hz), 61.32, 50.90, 43.02, 26.62, 14.32. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.40. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₇H₁₇F₃O₃+H⁺: 327.1203; Found 327.1202.

Compound 3d: 48 mg, 85% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (600 MHz, CDCl₃) δ 10.08 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 2.62 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.81, 191.41, 183.32, 138.52, 136.46, 130.34 (q, *J* = 31.2 Hz), 129.33, 127.07, 120.63 (q, *J* = 273.5 Hz), 50.86, 43.08, 26.63. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.38. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₃F₃O₂+H⁺: 283.0940; Found 283.0945.

Compound 3e: 52 mg, 78% yield, white solid, mp 136-137 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 2.60 (s, 2H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.09, 183.90, 131.44, 131.24, 130.23 (q, *J* = 31.1 Hz), 127.86 (q, *J* = 0.9 Hz), 123.41, 120.74 (q, *J* = 273.5 Hz), 50.90, 42.94, 26.60. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.35. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₂BrF₃O+H⁺: 333.0096; Found 333.0097.

Compound **3***f*: 48 mg, 83% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.60 (s, 2H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.11, 183.96, 135.28, 130.75, 130.27 (q, *J* = 31.2 Hz), 128.51, 127.64, 120.75 (q, *J* = 273.6 Hz), 50.91, 42.99, 26.61. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.36. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₂ClF₃O+H⁺: 289.0602;

Found: 289.0601.

Compound **3g:** 43 mg, 79% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.21-7.11 (m, 4H), 2.60 (s, 2H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.24, 184.42 (d, *J* = 2.9 Hz), 163.05 (d, *J* = 249.3 Hz), 130.28 (q, *J* = 31.0 Hz), 128.25 (d, *J* = 4.2 Hz), 128.18 (d, *J* = 1.5 Hz), 120.81 (q, *J* = 273.5 Hz), 115.45 (d, *J* = 21.8 Hz), 50.94, 43.01, 26.62. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.38, -112.09. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₂F₄O+H⁺: 273.0897; Found 273.0888.

Compound **3h**: 42 mg, 78% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, *J* = 7.9 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 2.56 (s, 2H), 2.41 (s, 3H), 1.25 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.69, 185.99, 138.93, 129.70 (q, *J* = 30.9 Hz), 129.50, 128.75, 126.14, 120.96 (q, *J* = 273.5 Hz), 51.07, 43.03, 26.70, 21.31. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.35. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₅F₃O+H⁺: 269.1148; Found 269.1150.

Compound 3i: 43 mg, 76% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (600 MHz, CDCl₃) δ 7.10 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.87 (s, 3H), 2.58 (s, 2H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.73, 185.85,

160.16, 129.65 (q, J = 30.4 Hz), 127.80, 124.59, 121.03 (q, J = 273.5 Hz), 113.62, 55.28, 51.17, 43.14, 26.78. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.28. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₅H₁₅F₃O₂+H⁺: 285.1097; Found 285.1099.

Compound 3j: 40 mg, 71% yield, white solid, mp 77-79 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (600 MHz, CDCl₃) δ 7.07 (s, 1H), 6.73 (s, 2H), 2.58 (s, 2H), 2.38 (s, 6H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.85, 186.16, 137.62, 132.41, 130.52, 129.51 (q, *J* = 30.8 Hz), 123.79, 120.96 (q, *J* = 273.3 Hz), 51.08, 42.97, 26.77, 21.37. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.41. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₆H₁₇F₃O+H⁺: 283.1304; Found 283.1305.

Compound **3***k***:** 47 mg, 79% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (600 MHz, CDCl₃) δ 6.89 (d, *J* = 7.9 Hz, 1H), 6.64 (s, 1H), 6.61 (d, *J* = 7.9 Hz, 1H), 6.06 (s, 2H), 2.57 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.55, 185.35, 148.28, 147.57, 129.94 (q, *J* = 30.8 Hz), 125.72, 120.92 (q, *J* = 273.5 Hz), 120.24 (q, *J* = 1.5 Hz), 108.24, 107.09 (q, *J* = 1.4 Hz), 101.50, 51.11, 43.12, 26.83. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.37. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₃F₃O₃+H⁺: 299.0890; Found 299.0888.

Compound 31: 45 mg, 78% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.39 (m, 2H), 7.18-7.14 (m, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 2.60 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.01, 183.25, 134.32, 134.04, 130.32 (q, *J* = 31.2 Hz), 129.52, 129.12, 126.15, 124.56, 120.68 (q, *J* = 273.5 Hz), 50.90, 42.99, 26.63. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.42. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₂ClF₃O+H⁺: 289.0602; Found 289.0599.

Compound **3m**: 34 mg, 63% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.32 (m, 1H), 7.26 (d, *J* = 7.7 Hz, 1H), 6.96-6.91 (m, 2H), 2.59 (s, 2H), 2.42 (s, 3H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.70, 185.83, 137.78, 132.41, 129.64, 129.45 (q, *J* = 31.0 Hz), 127.92, 126.60, 123.30, 120.92 (q, *J* = 273.5 Hz), 51.03, 42.99, 26.71, 21.50. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.40. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₅H₁₅F₃O+H⁺: 269.1148; Found 269.1150.

Compound **3n**: 42 mg, 82% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 8.81-8.69 (m, 1H), 8.54-8.42 (m, 1H), 7.57-7.40 (m, 2H), 2.63 (s, 2H), 1.29 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.74, 181.05, 150.22, 146.14, 133.93, 131.20 (q, *J* = 31.0 Hz), 123.13, 120.64 (q, *J* = 273.5 Hz), 99.98, 50.81, 43.02, 26.41. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.25. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₃H₁₂F₃NO+H⁺: 256.0944; Found 256.0942.

Compound **3o:** 38 mg, 75% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 8.78-8.68 (m, 2H), 7.08 (d, *J* = 5.5 Hz, 2H), 2.61 (s, 2H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.52, 181.09, 149.56, 140.65, 130.37 (q, *J* = 31.5 Hz), 121.02, 120.49 (q, *J* = 273.6 Hz), 50.74, 42.81, 26.48. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.41. HRMS (ESI) m/z: [*M* + H]⁺ Calcd for C₁₃H₁₂F₃NO+H⁺: 256.0944; Found 256.0943.

Compound **3***p*: 33 mg, 63% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.43 (m, 1H), 7.30-7.27 (m, 1H), 7.04-7.01 (m, 1H), 2.56 (s, 2H), 1.29 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.26, 181.41, 131.88, 129.70 (q, *J* = 31.0 Hz), 126.99 (q, *J* = 1.1 Hz), 126.16, 124.15 (q, *J* = 1.5 Hz), 120.98 (q, *J* = 273.4 Hz), 51.27, 42.93, 26.97. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.51. HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₂H₁₁F₃OS+Na⁺: 283.0375; Found 283.0362.

Compound **3***q***:** 40 mg, 66% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.95-7.89 (m, 3H), 7.64-7.57 (m, 3H), 7.26 (dd, J = 8.4, 1.6 Hz, 1H), 2.65 (s, 2H), 1.34 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.60, 185.51, 133.03, 132.38, 130.12 (q, J = 31.0 Hz), 129.97, 128.26, 127.88, 127.84, 127.01, 126.91, 125.38 (q, J = 0.8 Hz), 124.04 (q, J = 0.8 Hz), 120.93 (q, J = 273.5 Hz), 51.11, 43.34, 26.82. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.32. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₅F₃O+H⁺: 305.1148; Found 305.1148.

Compound **3r**: 54 mg, 68% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.41 (m, 3H), 7.19-7.15 (m, 2H), 3.74-3.68 (m, 2H), 3.00 (d, *J* = 19.0 Hz, 1H), 2.43 (d, *J* = 19.0 Hz, 1H), 1.83-1.77 (m, 1H), 1.74-1.70 (m, 1H), 1.25 (s, 3H), 0.88 (s, 9H), 0.03 (s, 3H), 0.03 (s, 3 H). ¹³C NMR (151 MHz, CDCl₃) δ 200.82, 184.65, 132.60, 130.61 (q, *J* = 31.0 Hz), 128.95, 128.05, 126.56, 120.95 (q, *J* = 273.6 Hz), 59.73, 48.58, 45.48, 39.80, 25.90, 25.34, 18.23, -5.55, -5.56. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.12. HRMS (ESI) *m*/*z*: [*M* + NH₄]⁺ Calcd for C₂₁H₂₉F₃O₂Si+NH₄⁺: 416.2227; Found 416.2196.

Compound **3s**: 44 mg, 71% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.43 (m, 3H), 7.14 (dd, *J* = 6.6, 2.9 Hz, 2H), 2.52 (s, 2H), 1.64-1.55 (m, 3H), 1.51-1.45 (m, 1H), 1.34-1.28 (m, 3H), 1.26-1.22 (m, 1H), 0.94-0.90 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.99, 183.22, 132.71, 131.93 (q, *J* = 30.8 Hz), 129.11, 128.19, 126.15, 120.84 (q, *J* = 273.5 Hz), 50.72, 44.74, 36.49, 29.67, 26.51, 23.02, 13.93, 8.70. ¹⁹F NMR (565 MHz, CDCl₃) δ -59.71. HRMS (ESI) *m*/*z*: [*M* + H]⁺ Calcd for C₁₈H₂₁F₃O+H⁺: 311.1617; Found 311.1615.

Compound 3t: 47 mg, 80% yield, yellow solid, mp 86-88 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.75-7.42 (m, 3H), 7.10 (dd, *J* = 6.5, 2.9 Hz, 2H), 2.59 (s, 2H), 1.78-1.74 (m, 2H), 1.69-1.66 (m, 1H), 1.57-1.48 (m,

4H), 1.41-1.31 (m, 2H), 1.06-0.98 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 200.83, 185.98, 132.63, 130.25 (q, J = 31.1 Hz), 128.70, 127.89, 126.34, 120.94 (q, J = 273.5 Hz), 47.81, 46.48, 33.96, 24.68, 22.97. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.13. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₇F₃O+H⁺: 295.1304; Found 295.1305.

Compound **3u**: 43 mg, 77% yield, white solid, mp 83-85 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.42 (m, 3H), 7.14-7.10 (m, 2H), 2.51 (s, 2H), 1.82-1.78 (m, 2H), 1.73-1.67 (m, 4H), 1.60-1.57 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 200.64, 183.95 (d, J = 2.8 Hz), 132.39, 131.04 (q, J = 30.9 Hz), 128.74, 127.97, 126.59 (d, J = 0.8 Hz), 120.82 (q, J = 273.4 Hz), 54.16, 49.85, 36.99, 23.86. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.19. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₅F₃O+H⁺: 281.1148; Found 281.1146.

Compound **3***v*: 35 mg, 66% yield, yellow oil; *cis/trans* >20:1. The *cis*-stereochemistry was determined by NOE. Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.44 (m, 3H), 7.38-7.35 (m, 2H), 3.77-3.69 (m, 1H), 3.05-3.01 (m, 1H), 2.09-2.04 (m, 1H), 1.88-1.81 (m, 1H), 1.72-1.62 (m, 3H), 1.51-1.46 (m, 1H), 1.35-1.26 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 205.10, 180.33, 133.79, 130.46, 130.23 (q, *J* = 31.3 Hz), 128.50, 127.44 (q, *J* = 1.5 Hz), 121.12 (q, *J* = 273.2 Hz), 50.75, 49.30, 29.93, 29.30, 23.97. ¹⁹F NMR (565 MHz, CDCl₃) δ -59.95. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₃F₃O+H⁺: 267.0991; Found 267.0989.

Compound **3***w*: 15 mg, 39% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 2.42 (s, 2H), 2.24-2.21 (m, 3H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.30, 186.37, 128.67 (q, *J* = 30.9 Hz), 121.82 (q, *J* = 273.0 Hz), 50.79, 42.29, 26.32, 12.79. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.13. HRMS (ESI) *m/z*: [2*M* + H]⁺ Calcd for C₁₈H₂₂F₆O₂+H⁺: 385.1597; Found 385.1592.

Compound **3***x*: 56 mg, 56% yield, white solid, mp 109-111 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.27-7.23 (m, 2H), 6.91-6.87 (m, 2H), 5.13-5.06 (m, 1H), 2.62 (s, 2H), 1.68 (s, 6H), 1.29 (s, 6H), 1.21 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.07, 194.61, 173.07, 159.92, 138.55, 136.05, 132.09, 130.25 (q, *J* = 31.2 Hz), 130.01, 129.77, 129.39, 129.37, 126.25, 126.24, 120.75 (q, *J* = 273.5 Hz), 117.29, 79.48, 69.36, 50.94, 43.10, 26.67, 25.38, 21.54. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.30. HRMS (ESI) *m*/*z*: [*M* + H – H₂O]⁺ Calcd for C₂₈H₂₉F₃O₅+H⁺-H₂O: 485.1934; Found 485.1955.

Compound **3***y*: 84 mg, 80% yield, white solid, mp 127-129 °C, as a 1.3:1 mixture of two rotamers; Flash column chromatography conditions: petroleum ethers/EtOAc = 5:1; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.2 Hz, 2H), 7.27-7.23 (m, 2H), 5.60-5.56 (m, 1H), 4.55 (t, *J* = 7.9 Hz, 0.43H, minor rotamer), 4.45 (t, *J* = 8.0 Hz, 0.57H, major rotamer), 3.87 (d, *J* = 3.1 Hz, 1H), 3.80 (s, 1.29H, minor rotamer), 3.79 (s, 1.71H, major rotamer), 3.75-3.73 (m, 1H), 2.62 (s, 1 H), 2.60-2.53 (m, 2H), 2.40-2.35 (m, 1H), 1.48 (s, 3.90H, minor rotamer), 1.46 (s, 5.10H, major rotamer), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.87, 183.63, 173.01, 165.11, 153.60, 137.47, 130.29 (q, *J* = 31.5 Hz), 130.16, 129.44, 120.66 (q, *J* = 273.4 Hz), 80.73, 72.98, 57.99, 53.37, 52.05, 50.87, 43.02, 36.70, 28.24, 26.60. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.38. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₃₀F₃NO₇+Na⁺: 548.1867; Found 548.1814.

Compound 3*z*: 110 mg, 77% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 2.69-2.63 (m, 4H), 2.16 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.61-1.16 (m, 32H), 0.90-0.87 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 199.95, 183.81, 164.45, 149.62, 140.50, 137.53, 130.28 (q, *J* = 31.5 Hz), 130.21, 126.80, 126.64, 125.07, 123.25, 120.73 (q, *J* = 273.5 Hz), 117.58, 77.25, 77.04, 76.83, 75.16, 50.92, 43.12, 39.39, 37.47, 37.31, 32.82, 28.00, 26.65, 24.83, 24.47, 22.74, 22.65, 21.05, 20.67, 19.78, 19.69, 13.15, 12.30, 11.89. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.28. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₄₄H₆₁F₃O₄+H⁺: 711.4595; Found 711.4622.

Compound 3za: 76 mg, 70% yield, white solid, mp 184-186 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 5:1; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 5.96 (d, *J* = 3.7 Hz, 1H), 5.52 (d, *J* = 2.8 Hz, 1H), 4.65 (d, *J* = 3.7 Hz, 1H), 4.40-4.36 (m, 1H), 4.34 (dd, *J* = 8.1, 2.8 Hz, 1H), 4.16-4.09 (m, 2H), 2.61 (s, 2H), 1.57 (s, 3H), 1.43 (s, 3H), 1.33 (s, 3H), 1.29 (s, 3H), 1.27 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.85, 183.50, 164.51, 137.62, 130.32 (q, *J* = 31.2 Hz), 130.12, 129.45, 126.60, 120.65 (q, *J* = 273.6 Hz), 112.46, 109.52, 105.11, 83.33, 79.85, 72.55, 67.34, 50.85, 43.04, 26.90, 26.72, 26.64, 26.60, 26.21,

25.25. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.36. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₇H₃₁F₃O₈+Na⁺: 563.1863; Found 563.1865.

Compound **3***zb*: 62 mg, 81% yield, yellow oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 7.02 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.55 (s, 2H), 1.64 (s, 6H), 1.24 (s, 6H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.58, 185.51, 173.91, 156.31, 129.77 (q, *J* = 30.7 Hz), 127.44, 125.69, 120.95 (q, *J* = 273.4 Hz), 118.02, 79.34, 61.55, 51.13, 43.07, 26.75, 25.44, 13.97. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.35. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₀H₂₃F₃O₄+H⁺: 385.1621; Found 385.1626.

Compound 3zc: 88 mg, 65% yield, white solid, mp 65-66 °C; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 5.02-4.92 (m, 1H), 2.59 (s, 2H), 2.01-1.00 (m, 38H), 0.92-0.85 (m, 12H), 0.73-0.64 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 200.01, 184.06, 165.34, 136.75, 131.52, 130.16 (q, *J* = 31.3 Hz), 129.26, 126.28, 120.70 (q, *J* = 273.5 Hz), 74.86, 56.43, 56.28, 54.24, 50.89, 44.71, 43.01, 42.61, 39.99, 39.52, 36.79, 36.18, 35.81, 35.53, 35.50, 34.12, 32.01, 28.65, 28.26, 28.02, 27.58, 26.61, 24.22, 23.85, 22.83, 22.57, 21.24, 18.68, 12.30, 12.09. ¹⁹F NMR (377 MHz, CDCl₃) δ -60.37. HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₄₃H₆₁F₃O₃+H⁺: 683.4646 Found 683.4660.

Experimental procedure for the transformation of 3a to 4a

To a solution of **3a** (50.8 mg, 0.2 mmol) and NaOH (8.0 mg, 0.2 mmol) in 2 mL of MeOH was added H₂O₂ (30 wt%, 226.7 mg, 2 mmol) at 0 °C. After stirring at 25 °C for 10 h, the reaction mixture was quenched with water, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 46 mg (85% yield) of **4a** as a white solid, mp 83-85 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.33 (m, 5H), 2.56 (d, *J* = 17.3 Hz, 1H), 2.13 (d, *J* = 17.2 Hz, 1H), 1.22 (s, 3H), 1.12 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.64, 129.34, 128.85, 128.55, 128.08, 120.72 (q, *J* = 276.9 Hz), 79.11, 64.48 (q, *J* = 38.2 Hz), 47.43, 39.23, 26.20, 21.85. ¹⁹F NMR (565 MHz, CDCl₃) δ -67.58. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₃F₃O₂+H⁺: 271.0940; Found 271.0948.

Experimental procedure for the transformation of 3a to 4b

To a solution of **3a** (50.8 mg, 0.2 mmol) in 5 mL of DCM was added NBS (42.7 mg, 0.24 mmol) and TMSOTf (8.9 mg, 0.04 mmol) at 0 °C. After stirring at reflux for 4 h, the reaction mixture was quenched by water, extracted with DCM, washed with saturated aqueous NaHCO₃ and brine, dried over anhydrous Mg₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 46 mg (69% yield) of **4b** as a white solid, mp 113-115 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.53-7.46 (m, 3H), 7.18 (dd, *J* = 6.4, 3.1 Hz, 2H), 4.59 (s, 1H), 1.36 (s, 3H), 1.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.29, 182.56 (q, *J* = 2.9 Hz), 131.72, 131.65, 129.49, 128.26, 127.63 (q, *J* = 32.2 Hz), 126.28, 120.53 (q, *J* = 273.8 Hz), 59.18 (q, *J* = 1.4 Hz), 47.12, 26.06, 24.89. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.17. HRMS (ESI) *m*/*z*: [*M* + H]⁺ Calcd for C₁₄H₁₂BrF₃O+H⁺: 333.0096; Found 333.0097.

Experimental procedure for the transformation of 3a to 4c

To a solution of **3a** (50.8 mg, 0.2 mmol) in 1 mL of dry THF was added LiHDMS (0.24 mmol, 1.0 M solution in THF) at -78 °C. After stirring at -78 °C for 1 h, a solution of MeI (0.22 mmol) in 1 mL of THF was added. Upon warming to 25 °C over 2 h, the reaction mixture was quenched with saturated NH₄Cl solution, extracted with EtOAc, dried over anhydrous MgSO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 44 mg (82% yield) of **4c** as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48-7.44 (m, 3H), 7.17-7.14 (m, 2H), 2.48 (q, *J* = 7.3 Hz, 1H), 1.22 (s, 3H), 1.21 (s, 3H), 1.11 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.81, 183.83, 132.67, 128.80, 128.45 (q, *J* = 28.8 Hz), 128.00, 126.35, 121.09 (d, *J* = 273.3 Hz), 53.13, 46.48, 25.49, 23.02, 9.80. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.13. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₅F₃O+H⁺: 269.1148; Found 269.1153.

Experimental procedure for the transformation of 3a to 4d

To a mixture of *m*-CPBA (69.0 mg, 0.4 mmol) and NaHCO₃ (42 mg, 0.5 mmol) in 2 mL of DCM was added **3a** (50.8 mg, 0.2 mmol) at 0 °C. After stirring at 25 °C overnight, the reaction mixture was quenched with aqueous Na₂SO₃ solution, extracted with DCM, washed with brine, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 40:1) gave 39 mg (72% yield) of **4d** as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.43 (m, 3H), 7.15 (dd, *J* = 6.5, 3.1 Hz, 2H), 2.60 (s, 2H), 1.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 200.58, 185.50, 132.44, 129.81 (q, *J* = 31.1 Hz), 128.88, 128.05, 126.16, 120.89 (q, *J* = 273.6 Hz), 51.00, 43.02, 26.65. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.39. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₄H₁₃F₃O₂+H⁺: 271.0940; Found 271.0948.

Experimental procedure for the transformation of 3a to 4e

To a solution of **3a** (50.8 mg, 0.2 mmol) in 1 mL of dry THF was added PhMgBr (0.4 mmol, 2.5 M in THF) at 0 °C. After stirring at 0 °C for 2 h, the reaction mixture was quenched with saturated NH₄Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous MgSO₄ and concentrated to give the crude alcohol. To a solution of the crude alcohol obtained above in 2 mL of PhMe was added TsOH (6.7 mg, 0.04 mmol) at 25 °C. After stirring at reflux for 2 h, the reaction mixture was quenched with saturated K₂CO₃ solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄ and concentrated. Column chromatography on silica gel using petroleum ethers as the eluent gave 49 mg (78% yield) of **4e** as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.33 (m, 8H), 7.18-7.15 (m, 2H), 6.30 (s, 1H), 1.22 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 161.15 (q, *J* = 4.5 Hz), 145.10, 139.77, 135.80, 134.75, 128.19 (q, *J* = 1.7 Hz), 128.17 (q, *J* = 1.4 Hz), 128.00, 127.98, 127.67, 127.49, 125.96, 122.57 (q, *J* = 272.4 Hz), 54.19, 21.09. ¹⁹F NMR (565 MHz, CDCl₃) δ -55.69. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₀H₁₇F₃+H⁺: 315.1355; Found 315.1349.

3. Mechanistic experiments

To a mixture of CuCN (1.8 mg, 0.02 mmol), **2a** (94.8 mg, 0.3 mmol), TEMPO (62.5 mg, 0.4 mmol) and K_2CO_3 (55.3 mg, 0.4 mmol) in 2 mL of EtOAc was added **1a** (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After stirring at 50 °C for 16 h, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, and concentrated to give **5a**² in 36% ¹⁹F NMR yield using PhCF₃ as the internal standard.

² Z. Xiong, F. Zhang, Y. Yu, Z. Tan and G. Zhu, Org. Lett., 2020, 22, 4088.

To a solution of phenylacetylene (s1, 612 mg, 6.0 mmol) in 15 mL of dry THF was added *n*-BuLi (2.5 M in hexanes, 2.4 mL, 6.0 mmol) at -78 °C under nitrogen atmosphere. After stirring at -78 °C for 1 h, BF₃•Et₂O (1.7 g, 12 mmol) and s2 (585 mg, 5 mmol, 75% D), prepared from methyl 3-methylbut-2-enoate using NaBD₄ and CoSO₄•7H₂O using the known method,³ was added. After stirring at 25 °C for 2 h, the reaction mixture was quenched with saturated aqueous NH₄Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 486 mg (52% yield) of [D]-1a with 75% deuterium incorporation as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.58-7.57 (m, 2H), 7.47-7.44 (m, 1H), 7.40-7.37 (m, 2H), 2.55-2.52 (m, 2H), 2.37-2.30 (m, 0.25H), 1.01 (d, *J* = 7.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 188.0, 133.0, 130.7, 128.6, 120.1, 90.5, 88.1, 54.4, 25.0, 24.9, 24.7, 22.4. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for

³ F. J. Lundevall, V. Elumalai, A. Drageset, C. Totland and H.-R. Bjørsvik, *Eur. J. Org. Chem.*, 2018, 3416.

 $C_{13}H_{13}DO+H^+$: 188.1180; Found 188.1166.

The method to calculate KIE is according to the reported method⁴ through parallel reactions of **1a** and [D]-**1a** (75% D) using the general produce with *n*-dodecane as the internal standard.

Adjusted initial rates:

 $k_{\rm H} = 0.7659$

 $0.4693 = k_{\rm H} x 25\% + k_{\rm D} x 75\%$

 $k_{\rm D} = 0.3704$

 $KIE = k_{\rm H} / k_{\rm D} = 2.07$

⁴ (a) X.-H. Yang, R. Davison, S.-Z. Nie, F. A. Cruz, T. M. McGinnis and V. M. Dong, *J. Am. Chem. Soc.*, 2019, 141, 3006; (b) C. Obradors, R. M. Martinez and R. A. Shenvi, *J. Am. Chem. Soc.*, 2016, 138, 4962.

4. Computational data

Computational details: All density functional theory (DFT) calculations were performed using Gaussian 16. ⁵ Geometry optimizations and frequencies were calculated at the B3LYP-D3(BJ)/6-31G(d)-SDD(Cu,I)-SMD(EtOAc) level of theory. ⁶ Frequency calculations confirmed that optimized structures are minima (no imaginary frequency) or transition structures (one imaginary frequency). To obtain more accurate electronic energies, single-point energy calculations were performed at the B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SMD(EtOAc) level of theory with the optimized structures. Structures were generated using CYLview.⁷ Grimme's quasi-RRHO correction⁸ for the frequencies that are below 100 cm⁻¹ and concentration correction for all species (from 1 atm to 1 mol/L) are implemented by the GoodVibes program.⁹

The Gibbs free energy profile for the mechanism of Cu-catalyzed trifluoromethylative *endo*-carbocyclization of ynones is shown in Figure S1. The reaction is initiated by electron transfer from Cu(I) to **2a**, producing CF₃ radical and Cu(II) species **Int1**. Coordination of **Int1** with **1a** leads to a stable carbonyl-coordinated Cu(II) complex **Int2**, which is exergonic by 6.1 kcal/mol. Addition of CF₃ radical to **Int2** at the alkynyl carbon atom α to the carbonyl group proceeds via transition state **TS**_{2-3a} to give vinyl radical intermediate **Int3a**, which is highly exergonic by 21.9 kcal/mol. Subsequently, 1,5-HAT occurs to form a more stable tertiary alkyl radical intermediate **Int4a**, through transition state **TS**_{3a-4a} that requires a Gibbs free energy barrier of 10.8 kcal/mol. This step is calculated to be the rate-determining step, which is consistent with the observed significant KIE value (2.1). Then, 5-*endo-trig* cyclization of **Int4a** results in the formation of α -carbonyl radical **Int5a**, with an activation free energy of 5.6 kcal/mol. Combined with K₂CO₃, an adduct **Int5b** that lies 24.8 kcal/mol lower in energy than **Int5a** is formed.

⁵ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

⁶ (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.* 1988, **37**, 785; (b) D. Andrae, U. Hau ßermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta.* 1990, **77**, 123.

⁷ C. Y. Legault, CYL view 1.0b; Université de Sherbrooke, Sherbrooke, Canada, 2009; http://www.cylview.org.

⁸ S. Grimme, *Chem. Eur. J.* 2012, **18**, 9955.

⁹ G. Luchini, J. Alegre-Requena, I. Funes, J. Rodr guez-Guerra, J. Chen and R. S. Paton, 2019, GoodVibes: GoodVibes 3.0.0 http://doi.org/10.5281/zenodo.595246.

Afterward, proton transfer takes place with an activation free energy of only 3.8 kcal/mol to afford radical anion **Int6**. Electron transfer from this radical anion to Cu(II) via **MECP1** would deliver **3a** as well as regenerate Cu(I). Notably, the SET oxidation of α -carbonyl radical **Int5a** by Cu(II) followed by deprotonation is also a possible pathway leading to **3a**. However, calculations indicate that the SET oxidation via **MECP2** has an electronic barrier of 15.2 kcal/mol, which is much less favored than the above mentioned pathway.

Figure S1. The relative free energies (Δ G) and relative electronic energies (Δ E, in parentheses) of intermediates and transition-states for the model reaction at the B3LYP-D3(BJ)/6-311+G(d,p) -SDD(Cu,I)-SMD(EtOAc)//B3LYP-D3(BJ)/6-31G(d)-SDD(Cu,I)-SMD(EtOAc) level of theory at 298.15 K. All energies are in kcal/mol.

				0				
1a				C		-2.30314	-1.16387	-0.33238
С	-0.61385	0.60934	-0.18605	C		-2.97861	1.09878	0.26143
С	2.90434	-0.92414	0.142	C		-3.62698	-1.57964	-0.23142
С	2.9143	0.31691	-0.77617	Н	I	-1.52031	-1.86666	-0.59925
С	1.92789	1.39046	-0.36322	C		-4.2994	0.67207	0.35872
С	0.54387	0.97463	-0.27081	Н	I	-2.71531	2.13448	0.45051
Н	3.9094	0.77496	-0.79325	C		-4.62575	-0.66465	0.11341
Н	2.6628	0.00758	-1.80043	Н	I	-3.8815	-2.61814	-0.42143
0	2.25698	2.54553	-0.11893	Н	I	-5.07627	1.38201	0.62652
С	-1.96671	0.18208	-0.086	Н	I	-5.65811	-0.99335	0.19097

The calculated Cal testall cool unlates and energies of structure	e calc	alculated Car	•tesian coordi	nates and energy	rgies of s	structure
---	--------	---------------	----------------	------------------	------------	-----------

С	3.86846	-1.98369	-0.39973	
Н	3.60758	-2.27618	-1.42391	
Н	4.89932	-1.60695	-0.40995	
Н	3.84867	-2.8848	0.22464	
С	3.24847	-0.54756	1.58704	
Н	4.24607	-0.09342	1.64484	
Н	2.53033	0.16894	2.0028	
Н	3.24498	-1.43399	2.23199	
Н	1.88919	-1.34304	0.12643	
B3LY	P-D3(BJ)/6	-311+G(d,p)-SDD(Cu,I)-SM	
D(EtOAc): E = -579.210640381 hartree				
Corrected Gibbs Free Energy = -579.01657				
hartre	e			

3a

С	-0.11456	0.54423	0.08445
С	-0.52424	2.01552	-0.08917
С	-2.06587	1.96945	0.01032
С	-2.44861	0.49857	-0.0276
С	-1.19114	-0.27329	0.11732
Η	-2.42018	2.38553	0.96151
Н	-2.56846	2.51843	-0.79133
0	-3.57224	0.04482	-0.15751
С	-1.20876	-1.76553	0.18976
F	-0.07203	-2.28896	0.70036
F	-1.37945	-2.31874	-1.03929
F	-2.22232	-2.21128	0.96285
С	1.30315	0.12557	0.05083
С	2.20547	0.48133	1.06395
С	1.76312	-0.63046	-1.03983
С	3.54068	0.0857	0.98581
Н	1.85919	1.03942	1.92651
С	3.10143	-1.00864	-1.12184
Н	1.06385	-0.91905	-1.81867
С	3.99416	-0.65164	-0.10911
Н	4.22622	0.35464	1.78432
Η	3.44462	-1.58792	-1.97424
Н	5.03636	-0.95169	-0.17028
С	0.08734	2.94315	0.97116
Н	-0.31901	3.95264	0.84254
Н	-0.15488	2.60754	1.98567
Н	1.17475	3.00659	0.87395
С	-0.07583	2.47148	-1.49338
Н	1.01167	2.40649	-1.59973

Η	-0.53491	1.85447	-2.27398	
Н	-0.37523	3.5125	-1.65732	
B3LY	YP-D3(BJ)/6-	311+G(d,p)-SDD(Cu,I)-SM	
D(EtOAc): E = -916.416875676 hartree				
Corre	ected Gibbs F	Free Energy	v = - 916.217277	
hartro	ee			

CF₃•

С	0.00004	0.00025	0.32887	
F	1.0608	-0.68858	-0.07307	
F	-1.12676	-0.57438	-0.07306	
F	0.06593	1.2628	-0.07312	
B3L	YP-D3(BJ)/6	5-311+G(d,p)-SDD(Cu,I)-S	SM
D(Et	OAc): E = -	337.670228	227 hartree	
Corr	ected Gibbs	Free Energy	y = -337.68195	0
hartr	ee			

Int1

Cu	2.8856	-0.35776	-0.01454
С	0.75829	0.65467	-0.01797
0	0.95854	-0.614	-0.02503
0	1.81666	1.37728	-0.01707
С	-0.57768	1.27694	-0.00863
С	-0.59979	2.68665	-0.00779
С	-1.80537	0.5875	0.00234
С	-1.79504	3.39117	0.00366
Н	0.34756	3.21349	-0.01596
С	-3.00726	1.2955	0.01431
С	-3.00185	2.69079	0.01504
Н	-1.78593	4.47626	0.00412
Н	-3.94945	0.75992	0.02312
Н	-3.94726	3.22496	0.02459
С	4.77801	-0.11485	0.02551
Ν	5.93606	0.01826	0.05175
Ι	-2.01127	-1.55366	0.00381
B3L	YP-D3(BJ)/	6-311+G(d,j	p)-SDD(Cu,I)-SM
D(E	tOAc): $E = -$	721.439621	570 hartree
Corr	ected Gibbs	Free Energy	y =721.377300
hartı	ree		

Int2

С	-1.26498	1.25445	0.65013
С	-5.11055	0.91903	-0.69535
С	-3.98122	0.45333	-1.65593

С	-2.85053	-0.1689	-0.89894
С	-2.04061	0.64542	-0.06789
Н	-4.36839	-0.28226	-2.36779
Н	-3.59787	1.32	-2.20791
0	-2.64009	-1.40501	-0.95654
С	-0.33408	1.93045	1.47205
С	-0.3586	3.33661	1.57098
С	0.64668	1.19037	2.16623
С	0.5912	3.98831	2.34983
Н	-1.11799	3.89598	1.03446
С	1.59013	1.85549	2.94035
Н	0.65797	0.109	2.08852
С	1.56522	3.25094	3.03139
Н	0.57483	5.07099	2.42722
Н	2.34626	1.2866	3.47255
Н	2.30567	3.76547	3.63682
С	-6.20365	1.62202	-1.5053
Н	-5.80342	2.47701	-2.06278
Н	-6.66206	0.93213	-2.22489
Н	-6.99504	1.98949	-0.84194
С	-5.67644	-0.25446	0.1111
Н	-6.07917	-1.02755	-0.55561
Н	-4.91975	-0.72415	0.74984
Н	-6.49081	0.08682	0.76015
Cu	-1.20426	-2.07492	0.33847
С	1.14583	-1.77631	0.10024
0	0.32575	-1.62006	-0.8646
0	0.68573	-2.22531	1.20407
С	2.59036	-1.46112	-0.02653
С	3.4813	-2.30825	0.65654
С	3.11654	-0.3867	-0.76164
С	4.85578	-2.11405	0.58502
Н	3.06978	-3.12888	1.23442
С	4.49402	-0.17649	-0.82091
С	5.36111	-1.04611	-0.15718
Н	5.52685	-2.78798	1.10796
Н	4.89126	0.66443	-1.3779
Н	6.43216	-0.87693	-0.21839
С	-2.44294	-2.51991	1.75288
N	-3.2119	-2.74214	2.60205
Н	-4.67214	1.64503	0.00214
J	1.89227	1.08587	-1.7459
B3LY	'P-D3(BD/6	5-311+G(d r))-SDD(Cu.I)-SM
D(Et	DAc): E = -	1300.68201	570 hartree
	,		

Corrected Gibbs Free Energy = -1300.403585 hartree

Int3a

-3.20134	-0.89523	-0.75795
-4.23468	1.73568	1.22232
-3.094	0.76058	1.63415
-1.99291	0.74145	0.6153
-2.17898	-0.07216	-0.61996
-2.66266	1.08696	2.58491
-3.50433	-0.2445	1.76059
-0.98035	1.42662	0.81717
-1.18715	0.05986	-1.75603
-1.47492	-0.77342	-2.76792
0.08212	-0.21478	-1.36038
-1.17622	1.31735	-2.25296
-4.35726	-1.56755	-0.4224
-5.63339	-1.0447	-0.79382
-4.29278	-2.80829	0.28205
-6.78524	-1.7299	-0.44491
-5.68293	-0.11017	-1.34155
-5.46236	-3.47068	0.61577
-3.32353	-3.21105	0.55582
-6.71107	-2.94058	0.2595
-7.75262	-1.32188	-0.72183
-5.40727	-4.40842	1.16046
-7.62072	-3.46923	0.52659
-5.41222	1.55685	2.18477
-5.79002	0.52808	2.1645
-5.11647	1.79208	3.21489
-6.23581	2.22629	1.91086
-3.74997	3.18804	1.18453
-3.38004	3.50166	2.16888
-2.9428	3.34138	0.4601
-4.57403	3.85545	0.90745
0.74319	2.11759	-0.00891
2.88532	1.10903	0.15231
1.86203	0.65277	0.76192
2.73458	2.17566	-0.53383
4.2194	0.46957	0.25417
5.32917	1.33306	0.27501
4.44325	-0.91281	0.35075
6.62082	0.83983	0.41938
5.15191	2.39981	0.18936
	-3.20134 -4.23468 -3.094 -1.99291 -2.17898 -2.66266 -3.50433 -0.98035 -1.18715 -1.47492 0.08212 -1.17622 -4.35726 -5.63339 -4.29278 -6.78524 -5.68293 -5.46236 -3.32353 -6.71107 -7.75262 -5.40727 -7.62072 -5.40727 -7.62072 -5.40727 -7.62072 -5.41222 -5.79002 -5.11647 -6.23581 -3.74997 -3.38004 -2.9428 -4.57403 0.74319 2.88532 1.86203 2.73458 4.2194 5.32917 4.44325 6.62082 5.15191	-3.20134-0.89523-4.234681.73568-3.0940.76058-1.992910.74145-2.17898-0.07216-2.662661.08696-3.50433-0.2445-0.980351.42662-1.187150.05986-1.47492-0.773420.08212-0.21478-1.176221.31735-4.35726-1.56755-5.63339-1.0447-4.29278-2.80829-6.78524-1.7299-5.68293-0.11017-5.46236-3.47068-3.32353-3.21105-6.71107-2.94058-7.75262-1.32188-5.40727-4.40842-7.62072-3.46923-5.412221.55685-5.790020.52808-5.116471.79208-6.235812.22629-3.749973.18804-3.380043.50166-2.94283.34138-4.574033.855450.743192.117592.885321.109031.862030.652772.734582.175664.21940.469575.329171.333064.44325-0.912816.620820.839835.151912.39981

С	5.73786	-1.41405	0.4797		
С	6.8229	-0.53644	0.52517		
Н	7.46289	1.52414	0.4459		
Н	5.90333	-2.48368	0.54003		
Н	7.82603	-0.93787	0.63524		
С	-0.02659	3.74606	-0.70679		
Ν	-0.52042	4.7247	-1.10654		
Η	-4.57077	1.45529	0.2169		
Ι	2.86922	-2.37539	0.18823		
B3L	YP-D3(BJ)/6	5-311+G(d,p)-SDD(Cu,I)-SM		
D(EtOAc): E = -1638.40767619 hartree					
Corrected Gibbs Free Energy = -1638.120434					
hartr	ee				

Int4a

С	-1.63692	1.70888	-0.72857
С	-4.71202	-0.35311	-1.3906
С	-3.45705	-0.26178	-2.21949
С	-2.42071	-0.56236	-1.16413
С	-2.01134	0.50856	-0.22219
Н	-3.4131	-1.03027	-2.99568
Н	-3.3394	0.73094	-2.65837
0	-2.06595	-1.75386	-1.01262
С	-2.07044	0.17323	1.24552
F	-2.56264	1.19564	1.97428
F	-0.85865	-0.1473	1.78162
F	-2.8789	-0.88622	1.4731
С	-1.07834	2.91824	-0.13368
С	-1.12367	4.08168	-0.93037
С	-0.45333	2.9938	1.12851
С	-0.60223	5.28735	-0.47179
Н	-1.57865	4.0289	-1.91579
С	0.08028	4.19787	1.57693
Н	-0.34488	2.11391	1.74536
С	0.00215	5.34837	0.78594
Н	-0.65598	6.17318	-1.09738
Н	0.56869	4.23556	2.54593
Н	0.42152	6.28384	1.14446
С	-5.22804	0.85628	-0.68293
Н	-6.32587	0.84878	-0.66162
Н	-4.90103	0.88362	0.36959
Н	-4.89363	1.78622	-1.15404
С	-5.23894	-1.69838	-1.01903
Н	-5.02981	-2.44952	-1.78806

Н	-4.78684	-2.06296	-0.08137
Н	-6.32156	-1.65716	-0.84831
Cu	-0.59484	-2.57166	0.10053
С	1.70513	-1.96423	-0.00258
0	0.79521	-1.383	-0.68705
0	1.34776	-2.89947	0.78428
С	3.14128	-1.62249	-0.16017
С	4.04572	-2.69843	-0.16527
С	3.64048	-0.32293	-0.33628
С	5.40474	-2.49089	-0.37512
Н	3.6565	-3.70019	-0.01691
С	5.00401	-0.10758	-0.53003
С	5.88186	-1.19329	-0.56221
Н	6.0861	-3.33571	-0.38955
Н	5.38359	0.90096	-0.6496
Н	6.94095	-1.01575	-0.72473
С	-1.66004	-3.94541	0.94476
Ν	-2.31286	-4.7723	1.44606
Ι	2.38752	1.41821	-0.1758
Н	-1.75474	1.79602	-1.80581
B3LY	/P-D3(BJ)/6	5-311+G(d,p	o)-SDD(Cu,I)-SM
D(Et	OAc): E = -	1638.42083	735 hartree
Corre	ected Gibbs	Free Energy	v = -1638.131533
hartre	ee		

Int5a

С	3.43679	-0.21385	0.38578
С	4.31002	0.32767	-0.8096
С	3.27891	1.02077	-1.73324
С	2.13557	1.42196	-0.83277
С	2.27221	0.71796	0.41991
Η	4.00556	-0.13952	1.31848
Η	3.67643	1.88949	-2.26671
Η	2.88055	0.33156	-2.49038
0	1.24234	2.22221	-1.18055
С	1.37278	0.81437	1.6113
F	2.0504	0.59001	2.75095
F	0.36411	-0.0752	1.55283
F	0.8081	2.04803	1.71939
С	2.92969	-1.65573	0.29674
С	3.33726	-2.5808	1.26578
С	2.05803	-2.07655	-0.72007
С	2.90835	-3.90708	1.20788
Η	3.99917	-2.25956	2.0654

С	1.63755	-3.40572	-0.78333	Н	0.86652	-0.47936	3.32713
Н	1.7006	-1.37805	-1.46905	0	0.69372	-2.0896	1.17452
С	2.05895	-4.32442	0.18058	С	1.21021	-0.32265	-1.23765
Н	3.24126	-4.6136	1.96274	F	1.98598	0.45847	-2.06538
Н	0.97784	-3.72065	-1.58688	F	-0.06018	-0.19022	-1.72188
Н	1.72776	-5.35758	0.13103	F	1.55168	-1.61754	-1.55293
С	5.26629	1.38974	-0.24194	С	1.75744	2.58016	-0.02607
Н	5.84123	1.85705	-1.04897	С	2.73813	3.58331	-0.08695
Н	4.72059	2.1835	0.28415	С	0.51916	2.82327	-0.63625
Н	5.9722	0.93956	0.46511	С	2.48706	4.79748	-0.73438
С	5.10579	-0.76074	-1.52761	Н	3.70198	3.41763	0.39253
Н	5.78503	-1.26823	-0.83313	С	0.26458	4.0329	-1.2824
Н	4.45396	-1.51591	-1.97599	Н	-0.24404	2.05453	-0.61398
Н	5.71096	-0.31593	-2.32579	С	1.24715	5.02626	-1.33436
Cu	-0.54855	2.74703	-0.36858	Н	3.25952	5.56137	-0.7668
С	-2.40473	1.28026	-0.14193	Н	-0.70214	4.19648	-1.75173
0	-1.33799	0.96887	-0.77541	Н	1.04869	5.96717	-1.83987
0	-2.44713	2.44346	0.38306	С	2.79131	1.93408	3.06417
С	-3.57556	0.37475	-0.0478	Н	2.56415	1.85594	4.13431
С	-4.8239	0.99784	0.13938	Н	3.76529	1.46297	2.88757
С	-3.53756	-1.02685	-0.15427	Н	2.87625	2.99996	2.82071
С	-5.99923	0.25938	0.19839	С	0.34466	1.93993	2.49904
Н	-4.84742	2.07843	0.22572	Н	0.37186	3.00778	2.25925
С	-4.71491	-1.77187	-0.0841	Н	-0.45739	1.47965	1.9139
С	-5.94267	-1.12969	0.08357	Н	0.08719	1.83874	3.56
Н	-6.95072	0.76362	0.33398	Cu	-0.84611	-2.59762	0.08667
Н	-4.67583	-2.85292	-0.15637	С	-2.98819	-1.55543	-0.08837
Н	-6.85116	-1.72319	0.12853	0	-2.0798	-1.1012	0.68036
С	-0.12034	4.59615	-0.01048	0	-2.71565	-2.58007	-0.79866
Ν	0.15209	5.71117	0.19801	С	-4.35962	-0.97896	-0.12432
Ι	-1.71928	-2.16542	-0.32637	С	-5.41411	-1.8946	-0.29159
B3LY	2P-D3(BJ)/6	5-311+G(d,p)-SDD(Cu,I)-SM	С	-4.67619	0.37949	0.02875
D(Et	OAc): $E = -2$	1638.44906	459 hartree	С	-6.74066	-1.47864	-0.27725
Corre	cted Gibbs	Free Energy	v = -1638.156616	Н	-5.16614	-2.94269	-0.41982
hartre	ee			С	-6.00415	0.80595	0.02826
				С	-7.03475	-0.12488	-0.11356
Int5b)			Н	-7.53813	-2.20562	-0.39515
С	2.06139	1.28171	0.69147	Н	-6.23632	1.85965	0.13423
С	1.69663	1.26632	2.23093	Н	-8.06549	0.21717	-0.10239
С	1.57242	-0.24876	2.52189	С	0.0113	-4.22994	-0.57843
С	1.13568	-0.8559	1.20695	Ν	0.72845	-5.09609	-0.89866
С	1.39146	0.01271	0.18007	Ι	-3.18104	1.92173	0.16284
Н	3.15342	1.14987	0.66011	С	4.94634	-1.01726	0.46728
Н	2.54539	-0.68216	2.7942	Ο	5.41754	0.15149	0.64738

S24

O 4.65927 -1.4493 -0.69484 O 4.74299 -1.75407 1.49212 K 4.5791 1.03247 -1.8415 K 2.86392 -3.42303 0.13434 B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SM D(EtOAc): E = -3102.43162934 hartree Corrected Gibbs Free Energy = 3102.136319 hartree

Int6

С	1.94105	1.59079	0.5329
С	2.06466	1.53405	2.06992
С	1.66908	0.06383	2.39335
С	1.79631	-0.67392	1.09017
С	1.94554	0.23634	0.05235
Η	2.28875	-0.38496	3.17897
Η	0.62331	-0.00528	2.72547
0	1.73803	-1.98936	1.03172
С	2.13861	-0.21395	-1.34921
F	2.73186	0.69311	-2.14502
F	0.97705	-0.58595	-1.97103
F	2.94217	-1.33559	-1.42833
С	1.70703	2.78991	-0.23268
С	2.18906	4.05929	0.18467
С	0.93467	2.76604	-1.42682
С	1.91907	5.21494	-0.54039
Н	2.80801	4.13276	1.07062
С	0.66688	3.92527	-2.14503
Н	0.51112	1.83068	-1.76882
С	1.15511	5.16322	-1.71137
Н	2.31589	6.16538	-0.19245
Н	0.06177	3.86305	-3.04605
Н	0.94447	6.06799	-2.27421
С	3.53106	1.75704	2.50106
Η	3.62908	1.63862	3.58773
Η	4.18951	1.02554	2.01691
Η	3.88944	2.75673	2.23712
С	1.1312	2.50399	2.80913
Η	1.40904	3.55025	2.6572
Η	0.09633	2.37641	2.47302
Н	1.16621	2.30298	3.88692
Cu	0.16421	-2.7044	0.06452
С	-2.05927	-1.83666	0.09129

0	-1.11066	-1.33321	0.77921		
0	-1.80862	-2.88139	-0.59521		
С	-3.42568	-1.25493	0.11211		
С	-4.50094	-2.15965	0.11462		
С	-3.70275	0.12147	0.14843		
С	-5.81567	-1.71162	0.18441		
Н	-4.28079	-3.2213	0.07412		
С	-5.02048	0.57538	0.1999		
С	-6.07339	-0.34119	0.23018		
Н	-6.63267	-2.42624	0.19858		
Н	-5.22747	1.63971	0.21105		
Н	-7.09493	0.02438	0.28005		
С	1.14574	-4.18471	-0.75255		
Ν	1.93069	-4.96274	-1.13323		
Ι	-2.16564	1.61939	-0.01896		
Κ	3.86181	-3.3084	0.13606		
B3L	YP-D3(BJ)/6	-311+G(d,j	p)-SDD(Cu,I)-SM		
D(E	tOAc): $E = -2$	2237.89238	729 hartree		
Corr	Corrected Gibbs Free Energy = -2237.614148				
hartr	ee				

Int7

С	0.36894	-0.47837	0.94692
С	-1.3286	1.40975	-0.00654
С	-2.67732	1.1888	0.75922
С	-2.12076	-0.1063	1.30633
С	-0.93163	-0.12428	0.29605
Η	0.26877	-0.98988	1.90082
Η	-2.96938	1.94037	1.499
Η	-3.52104	0.99898	0.0861
0	-2.36629	-0.81348	2.24952
С	-1.26678	-1.10607	-0.82526
F	-1.11246	-2.38129	-0.40919
F	-0.49141	-0.94917	-1.9208
F	-2.55636	-0.99416	-1.24405
С	1.68191	-0.24262	0.47869
С	2.77756	-0.63669	1.30341
С	1.99397	0.37593	-0.76657
С	4.08887	-0.42047	0.91248
Η	2.56424	-1.11234	2.2571
С	3.31126	0.58928	-1.14551
Η	1.19479	0.67057	-1.43384
С	4.36917	0.19708	-0.31466
н	4 00256	-0 73098	1 56231
11	4.90230	-0.75070	1.50251

Η	3.52128	1.06337	-2.10055			
Н	5.39736	0.36753	-0.61984			
С	-0.43097	2.37277	0.77261			
Н	-0.87559	3.37443	0.75136			
Н	-0.32393	2.0739	1.82119			
Н	0.56964	2.43406	0.33583			
С	-1.47239	1.8679	-1.45512			
Н	-0.49981	1.93876	-1.95275			
Н	-2.11594	1.21139	-2.04447			
Н	-1.91998	2.86893	-1.46432			
B3L	YP-D3(BJ)/6-	-311+G(d,p)-SDD(Cu,I)-SM			
D(Et	OAc): E = -9	16.958139	716 hartree			
Corre	Corrected Gibbs Free Energy = -916.749894					
hartr	ee					

Int8

С	2.26777	-2.00617	0.00878
С	2.08651	-2.19931	-1.55586
С	1.72985	-0.77919	-2.08109
С	2.2677	0.15308	-1.02702
С	2.52383	-0.54227	0.14325
Н	3.15596	-2.56277	0.33644
Н	2.16441	-0.5662	-3.06311
Н	0.64492	-0.63427	-2.15958
0	2.46458	1.42567	-1.20028
С	2.87864	0.1274	1.43122
F	3.19579	-0.75806	2.39118
F	1.82393	0.86358	1.89758
F	3.91181	0.98102	1.29677
С	1.12484	-2.47703	0.90413
С	1.26634	-3.66722	1.62887
С	-0.07361	-1.75836	1.00483
С	0.22197	-4.14227	2.42199
Н	2.197	-4.22521	1.5642
С	-1.1179	-2.23091	1.8005
Η	-0.19547	-0.83537	0.45279
С	-0.97401	-3.42412	2.51092
Н	0.34244	-5.07179	2.97147
Η	-2.04257	-1.66415	1.86231
Н	-1.78564	-3.79161	3.13259
С	3.44522	-2.62569	-2.13296
Н	3.39495	-2.69911	-3.22525
Η	4.22976	-1.90234	-1.87896
Н	3.74568	-3.60377	-1.73936

С	1.01672	-3.22667	-1.92443
Η	1.25876	-4.2142	-1.5155
Η	0.0306	-2.93744	-1.54912
Η	0.95223	-3.32047	-3.01499
Cu	1.12228	2.51897	-0.39397
С	-1.07607	1.91885	0.2302
0	-0.28633	1.19108	-0.47937
0	-0.62205	3.067	0.54855
С	-2.38431	1.43696	0.69907
С	-2.88237	2.03103	1.87422
С	-3.12906	0.41033	0.08925
С	-4.07717	1.60559	2.44024
Η	-2.30085	2.81953	2.3394
С	-4.33211	-0.01154	0.6522
С	-4.79883	0.57992	1.82852
Η	-4.44108	2.06837	3.3516
Η	-4.90748	-0.79789	0.17741
Η	-5.73383	0.2346	2.25942
С	2.26594	4.02024	-0.25046
Ν	2.96119	4.95149	-0.15419
Ι	-2.57202	-0.53606	-1.75842
B3I	LYP-D3(BJ)	/6-311+G(d	,p)-SDD(Cu,I)-SM
D(E	EtOAc): E =	-1638.4262	3790 hartree
Cor	rected Gibb	s Free Energ	gy = -1638.129723
hart	ree		

TS_{2-3a}

С	-3.52081	-0.26274	0.46023
С	-3.96163	3.27828	-0.11014
С	-2.58098	3.06044	0.56594
С	-1.94661	1.77308	0.13289
С	-2.59839	0.55099	0.49257
Н	-1.89898	3.87683	0.30853
Н	-2.71178	3.03462	1.6547
0	-0.90625	1.78286	-0.55621
С	-0.85494	-0.5122	1.85415
F	-1.57477	-1.00603	2.85543
F	0.06539	0.33267	2.30875
F	-0.28136	-1.51014	1.17237
С	-4.47654	-1.29486	0.45366
С	-4.36007	-2.35135	-0.47798
С	-5.54866	-1.27685	1.3737
С	-5.3034	-3.37147	-0.47727
Η	-3.54369	-2.34149	-1.1922

С	-6.47768	-2.30954	1.3661	Н	-3.12501	1.1621	2.95868	
Н	-5.62895	-0.45905	2.08234	0	-0.84399	1.63087	1.18917	
С	-6.35711	-3.35481	0.44328	С	-1.24022	-0.84901	-0.1952	
Н	-5.21908	-4.18263	-1.19381	F	-1.66326	-1.95487	-0.82319	
Н	-7.29884	-2.30229	2.07627	F	-0.36289	-1.22723	0.7561	
Н	-7.08833	-4.15787	0.44046	F	-0.52311	-0.14192	-1.1249	
С	-4.54577	4.6139	0.35823	С	-4.50225	-1.29621	-0.4007	
Н	-4.63547	4.65284	1.45026	С	-5.58596	-0.87825	-1.20476	
Н	-3.91251	5.45151	0.03993	С	-4.33352	-2.67326	-0.1356	
Н	-5.54318	4.76617	-0.06993	С	-6.43921	-1.81671	-1.7738	
С	-3.85314	3.21709	-1.63751	Н	-5.73213	0.1819	-1.38873	
Н	-3.14091	3.96406	-2.01064	С	-5.21523	-3.59955	-0.68187	
Н	-3.5245	2.23215	-1.98886	Н	-3.5224	-3.0005	0.50445	
Н	-4.82648	3.42212	-2.0974	С	-6.26047	-3.17852	-1.51011	
Cu	-0.08933	0.12186	-1.39286	Н	-7.25434	-1.48669	-2.41088	
С	2.05626	-0.77389	-0.90175	Н	-5.08273	-4.65586	-0.46704	
0	1.61727	0.31352	-0.39524	Н	-6.93899	-3.90863	-1.94134	
0	1.30793	-1.36629	-1.75091	С	-5.59386	1.81984	2.3338	
С	3.3539	-1.3755	-0.50734	Н	-5.5491	0.91824	2.95555	
С	3.49462	-2.75539	-0.74869	Н	-5.6092	2.68943	3.00848	
С	4.4234	-0.69353	0.09789	Н	-6.53944	1.81457	1.78069	
С	4.64797	-3.44038	-0.38823	С	-4.49716	2.98777	0.33615	
Н	2.66814	-3.27591	-1.21913	Н	-4.45479	3.9794	0.81104	
С	5.58857	-1.37514	0.45109	Н	-3.669	2.9343	-0.3793	
С	5.69702	-2.74617	0.21481	Н	-5.43978	2.92788	-0.21904	
Н	4.72809	-4.5061	-0.57764	Cu	0.5484	1.9589	-0.26225	
Н	6.41225	-0.83903	0.90843	С	2.79588	1.21476	-0.37092	
Н	6.60749	-3.26437	0.5014	0	2.03713	0.97434	0.62639	
С	-1.58649	-0.29298	-2.54293	0	2.31722	1.92795	-1.31544	
Ν	-2.51429	-0.53755	-3.2078	С	4.19696	0.73312	-0.43722	
Н	-4.62412	2.47034	0.22523	С	5.14059	1.6182	-0.98776	
Ι	4.44527	1.42747	0.47667	С	4.6366	-0.51908	0.01892	
B3LY	2P-D3(BJ)/6	5-311+G(d,j	p)-SDD(Cu,I)-SM	С	6.48798	1.28137	-1.05225	
D(Et	OAc): $E = -1$	1638.35229	620 hartree	Н	4.79434	2.58033	-1.35015	
Corre	ected Gibbs	Free Energy	y = -1638.070334	С	5.9839	-0.8688	-0.0592	
hartre	ee			С	6.90858	0.03639	-0.58372	
				Н	7.20316	1.98374	-1.46846	
TS _{3a} .	4a			Н	6.3129	-1.84373	0.28222	
С	-3.67439	-0.29508	0.20604	Н	7.95701	-0.24299	-0.63108	
С	-4.41465	1.90298	1.3907	С	-0.65205	3.04163	-1.3253	
С	-3.04546	1.79653	2.06493	Ν	-1.42167	3.66826	-1.93911	
С	-1.99509	1.16022	1.18172	Н	-4.36438	0.78189	0.75078	
С	-2.36681	-0.02786	0.38779	Ι	3.29403	-2.03714	0.74567	
Н	-2.66603	2.77518	2.37958	B3LY	P-D3(BJ)/6	5-311+G(d,p)-SDD(Cu,I)-SN	1

D(EtOAc): E = -1638.38554492 hartree Corrected Gibbs Free Energy = -1638.103171 hartree

TS ₄₋₇

С	0.42036	0.60468	0.75758		
С	-1.95535	1.26434	-0.82926		
С	-2.42982	1.73749	0.53979		
С	-1.98918	0.50379	1.30616		
С	-0.80761	-0.02097	0.48691		
Н	0.32749	1.49889	1.3712		
Н	-1.88331	2.62491	0.88022		
Н	-3.5037	1.93268	0.62752		
0	-2.51715	-0.05266	2.24123		
С	-0.90601	-1.44698	0.01074		
F	-0.07015	-2.29135	0.66088		
F	-0.61641	-1.56811	-1.31625		
F	-2.15352	-1.9448	0.16354		
С	1.78205	0.34867	0.34864		
С	2.78296	1.16254	0.93982		
С	2.20805	-0.62426	-0.58793		
С	4.12748	1.00441	0.63144		
Н	2.48145	1.92238	1.65637		
С	3.55599	-0.7748	-0.8944		
Н	1.48915	-1.24946	-1.09592		
С	4.52602	0.02969	-0.28876		
Η	4.86751	1.64241	1.10683		
Н	3.85276	-1.52714	-1.6202		
Η	5.57628	-0.09719	-0.53494		
С	-0.98254	2.09732	-1.60391		
Н	-1.51406	2.92837	-2.09523		
Η	-0.2097	2.53164	-0.96312		
Η	-0.49367	1.50989	-2.38915		
С	-2.94214	0.46613	-1.63182		
Н	-2.45098	-0.11556	-2.41739		
Н	-3.53788	-0.21233	-1.01443		
Н -3.64509 1.15784 -2.12518					
B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SM					
D(EtOAc): E = -916.932729439 hartree					
Corrected Gibbs Free Energy = -916.728062					
hartree					
TS _{4a-5a}					

C -3.17364 0.54548 0.15894

С	-2.39454	0.54765	2.72755
С	-2.21031	1.99257	2.33388
С	-1.53591	2.13488	0.97441
С	-2.08208	1.36271	-0.11429
Н	-3.85746	0.88744	0.92592
Н	-3.17987	2.50819	2.31374
Н	-1.57215	2.52455	3.05409
0	-0.49839	2.83791	0.91041
С	-1.42645	1.43845	-1.46373
F	-2.20662	0.96076	-2.45099
F	-0.23812	0.76658	-1.54678
F	-1.14472	2.72377	-1.78605
С	-3.59321	-0.68237	-0.47802
С	-4.9235	-1.11181	-0.27994
С	-2.70618	-1.51947	-1.19085
С	-5.36731	-2.31463	-0.81689
Н	-5.60058	-0.48533	0.29421
С	-3.15019	-2.72856	-1.70982
Н	-1.66772	-1.23735	-1.30658
С	-4.48138	-3.12479	-1.53369
Н	-6.39633	-2.62782	-0.66961
Н	-2.4578	-3.36842	-2.24857
Н	-4.82319	-4.07058	-1.94374
С	-3.59425	0.16495	3.52498
Н	-3.44562	0.39279	4.59544
Н	-4.49143	0.71141	3.20857
Н	-3.78995	-0.91166	3.45558
С	-1.19042	-0.32913	2.75278
Н	-1.46574	-1.38947	2.74247
Н	-0.50799	-0.13264	1.91998
Н	-0.6084	-0.15665	3.67656
Cu	1.24954	2.59481	-0.0458
С	2.59658	0.63063	0.06273
0	1.50878	0.73983	0.71855
0	2.9771	1.63746	-0.62326
С	3.44092	-0.5908	0.10761
С	4.83235	-0.38554	0.10041
С	2.96055	-1.90861	0.16469
С	5.71867	-1.45355	0.17969
Н	5.20039	0.63309	0.04167
С	3.84501	-2.98496	0.22872
С	5.22193	-2.75531	0.24707
Н	6.78852	-1.27073	0.1838
Н	3.46461	-3.99975	0.25734

H 5.90092 -3.60104 0.3043 C 1.4591 4.37687 -0.77045 N 1.59288 5.45591 -1.19369 I 0.86894 -2.40484 0.03119 B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SM D(EtOAc): E = -1638.41137878 hartree Corrected Gibbs Free Energy = -1638.122661 hartree

TS_{5b-6}

С	-2.05182	-1.18831	0.82669
С	-1.82768	-1.30893	2.37816
С	-1.54566	0.15868	2.77407
С	-0.98356	0.80247	1.52945
С	-1.26577	-0.0182	0.4192
Н	-3.19712	-0.82806	0.72122
Η	-2.4765	0.68632	3.00793
Н	-0.85716	0.2596	3.61936
0	-0.39863	1.93422	1.58577
С	-1.0391	0.38676	-0.98532
F	-1.82938	-0.29507	-1.86773
F	0.23451	0.21372	-1.42785
F	-1.31223	1.71228	-1.21405
С	-1.98899	-2.45593	0.01844
С	-3.12854	-3.26883	-0.10196
С	-0.80705	-2.862	-0.62129
С	-3.08617	-4.45336	-0.84237
Η	-4.05214	-2.96305	0.38043
С	-0.76295	-4.04545	-1.35765
Η	0.08086	-2.24416	-0.54281
С	-1.90279	-4.84609	-1.47303
Η	-3.97831	-5.06875	-0.92382
Η	0.16373	-4.34075	-1.84284
Η	-1.86868	-5.76755	-2.04752
С	-3.05135	-1.88082	3.09538
Η	-2.89673	-1.86898	4.181
Η	-3.94766	-1.29656	2.86534
Η	-3.23106	-2.92032	2.79725
С	-0.58868	-2.17026	2.67383
Η	-0.72961	-3.2016	2.33478
Η	0.30311	-1.76665	2.18073
Η	-0.39953	-2.19091	3.75365
Cu	1.015	2.60381	0.39257
С	3.08562	1.51135	-0.05517

0	2.26879	1.09527	0.83097		
0	2.78067	2.5748	-0.69182		
С	4.37528	0.8254	-0.32193		
С	5.45142	1.64398	-0.70916		
С	4.59881	-0.55483	-0.1911		
С	6.7169	1.11398	-0.93226		
Η	5.27139	2.70806	-0.81763		
С	5.86275	-1.09424	-0.4286		
С	6.92166	-0.25838	-0.78801		
Η	7.53597	1.76649	-1.21779		
Η	6.02339	-2.16251	-0.33689		
Η	7.90369	-0.68922	-0.96009		
С	0.07179	4.21743	-0.1652		
Ν	-0.65348	5.07834	-0.47918		
Ι	3.04043	-1.9693	0.26685		
С	-4.38076	0.97884	0.23102		
0	-4.52873	-0.35283	0.27529		
0	-4.71625	1.54913	-0.87273		
0	-3.88804	1.58542	1.22543		
Κ	-4.48523	-0.64873	-2.2982		
Κ	-3.07634	3.59804	-0.19662		
B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SM					
D(EtOAc): E = -3102.42767379 hartree					
Corrected Gibbs Free Energy = -3102.130248					

MECP1

С	1.922902	1.625477	0.530531
С	2.060364	1.561988	2.066903
С	1.700431	0.081852	2.387560
С	1.805788	-0.646520	1.078173
С	1.933903	0.258426	0.045032
Н	2.350472	-0.362096	3.151449
Н	0.666446	-0.012878	2.749462
0	1.754650	-1.973948	1.036494
С	2.124622	-0.183550	-1.358040
F	2.708227	0.731259	-2.152647
F	0.963872	-0.563127	-1.980525
F	2.933706	-1.302143	-1.449650
С	1.645874	2.818746	-0.224009
С	2.084251	4.102633	0.204618
С	0.880911	2.786655	-1.424666
С	1.781223	5.255876	-0.510762
Н	2.696072	4.189377	1.093929
С	0.582196	3.944172	-2.133720

Η	0.488152	1.843583	-1.781481	С	2.871638	0.142641	1.439223
С	1.026757	5.194105	-1.687462	F	3.189426	-0.743148	2.399479
Η	2.147149	6.214193	-0.150851	F	1.810443	0.873576	1.909445
Н	-0.012652	3.871370	-3.040801	F	3.899306	1.006130	1.318270
Н	0.794531	6.097039	-2.245154	С	1.122675	-2.472900	0.906618
С	3.521948	1.817871	2.494752	С	1.264387	-3.665947	1.625809
Н	3.629795	1.693448	3.580056	С	-0.078805	-1.761098	1.009749
Η	4.196116	1.106715	2.001470	С	0.222754	-4.145343	2.421152
Η	3.855148	2.828420	2.238037	Н	2.195597	-4.223079	1.558253
С	1.102972	2.500905	2.817668	С	-1.121609	-2.237313	1.805053
Η	1.348643	3.556397	2.673334	Н	-0.203764	-0.837805	0.459636
Η	0.070298	2.346548	2.484164	С	-0.974295	-3.430868	2.514399
Н	1.148948	2.292985	3.893802	Н	0.347306	-5.075219	2.969571
Cu	0.217738	-2.693139	0.061734	Н	-2.047799	-1.672682	1.868422
С	-2.000301	-1.860178	0.081251	Н	-1.783598	-3.800031	3.138367
0	-1.052365	-1.308101	0.729643	С	3.435658	-2.594968	-2.135645
0	-1.721748	-2.925248	-0.569455	Η	3.379753	-2.663948	-3.228066
С	-3.380415	-1.321733	0.112440	Н	4.218684	-1.869910	-1.882659
С	-4.427812	-2.258846	0.133021	Н	3.742194	-3.573948	-1.748724
С	-3.694126	0.047221	0.157818	С	1.010656	-3.204873	-1.921750
С	-5.753220	-1.848735	0.228543	Η	1.254907	-4.193677	-1.516727
Η	-4.177975	-3.313702	0.089343	Η	0.023832	-2.920211	-1.544568
С	-5.022945	0.460932	0.239189	Н	0.945694	-3.295015	-3.012704
С	-6.048039	-0.486310	0.286434	Cu	1.088144	2.465818	-0.387159
Η	-6.549418	-2.586410	0.256747	С	-1.097698	1.896468	0.233115
Η	-5.259340	1.519069	0.261620	0	-0.326249	1.158927	-0.485803
Η	-7.077938	-0.149584	0.359979	0	-0.602579	3.033131	0.550566
С	1.222509	-4.162673	-0.756572	С	-2.410493	1.448856	0.708695
Ν	2.019153	-4.925001	-1.142667	С	-2.896206	2.063008	1.879002
Ι	-2.208617	1.592163	-0.039549	С	-3.170218	0.426310	0.108861
Κ	3.925182	-3.221498	0.144688	С	-4.093619	1.656557	2.453289
B3LYP-D3(BJ)/6-311+G(d,p)-SDD(Cu,I)-SM			Η	-2.304455	2.848813	2.335896	
D(E	tOAc): $E = -2$	2237.8913894	hartree	С	-4.374239	0.023457	0.682296
				С	-4.827181	0.630834	1.855933
ME	CP2			Η	-4.449667	2.132357	3.360963
С	2.265611	-1.993103	0.016928	Η	-4.961146	-0.760027	0.217159
С	2.078260	-2.176250	-1.549401	Η	-5.762048	0.297329	2.296495
С	1.716143	-0.753294	-2.067845	С	2.214688	3.963190	-0.230718
С	2.255275	0.166070	-1.000997	Ν	2.895635	4.903899	-0.130492
С	2.522160	-0.523401	0.149850	Ι	-2.633509	-0.534329	-1.735612
Η	3.155143	-2.551284	0.335334	B3	LYP-D3(BJ)	6-311+G(d,p)	-SDD(Cu,I)-SM
Η	2.161225	-0.537317	-3.044685	D(I	EtOAc): $E =$	-1638.424815	hartree
Η	0.632428	-0.612578	-2.157191				

-1.173162

0

2.445940

1.459762

5. NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 c f1 (ppm)

YSL-535-N

~1.3644 ~1.3140

6. X-Ray crystallographic data

The crystal of **3b** was recrystallized in acetone/petroleum ethers via slow evaporation at room temperature. Crystal data for **3b** (C₁₅H₁₂F₃NO, 279.26): monoclinic, space group P2(1)/c, a = 12.1015(19) Å, b = 9.7752(13) Å, c = 22.586(4) Å, $\beta = 92.403(4)$, U = 2669.5(7) Å³, Z = 8, T = 297(2) K, absorption coefficient 0.116 mm⁻¹, reflections collected 6094, independent reflections 4325 [R(int) = 0.0250], refinement by full-matrix least-squares on F^2 , data/restraints/parameters 4325/0/381, goodness-of-fit on $F^2 = 1.029$, final R indices [I > 2s(I)] $R_1 = 0.0559$, $wR_2 = 0.1863$, largest diff peak and hole 0.309 and -0.463 e.Å⁻³. Crystallographic data for the structure **3b** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2114640.

Figure S2. X-Ray crystal structure of 3b with the ellipsoid contour at 50% probability levels