Supporting Information

Direct benzylic C-H difluoroalkylation with

difluoroenoxysilanes by transition metal-free photoredox

catalysis

Jing Gui,^{a,b} Manman Sun,^b Haijian Wu,^b Jinshan Li,^b Jianguo Yang^{*a,b} and Zhiming Wang^{*a,b}

 ^a Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
^b Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China.

E-mail: yjg@tzc.edu.cn, zhiming@tzc.edu.cn, wzmmol@hotmail.com

Table of Contents

General information	S2
General procedure for preparation of products 3	S2
Procedure for preparation of compound 4	S18
Procedure for preparation of compound 5	S19
Procedure for preparation of compound 6	S20
The singlet oxygen capture experiment with α-terpinene	
References	
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S24

General information. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 instrument at 400 (¹H NMR), 100 (¹³C NMR), and 376 MHz (¹⁹F NMR).Tetramethylsilane (TMS) and CDCl₃ (7.26 ppm for ¹H NMR, 77.0 ppm for ¹³C NMR) were used as references. Data for ¹H NMR were reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, br = broad singlet), coupling constants (Hz), and integration. Data for ¹³C NMR were reported as ppm. High-resolution mass spectra analyses were performed on a Waters SYNAPT G2-Si mass spectrometer. Melting points were determined using a X-4 digital micro melting point apparatus. Thin-layer chromatography (TLC) was performed, and visualization of the compounds was accomplished with UV light (254 nm). Flash column chromatography was performed on silica gel (200–300 mesh). Reactions were carried out using 1.5 W green LED (555nm) on a synLED-16 A discover. Known compounds xanthenes **1a–1k**, ¹**1p**, ²**1q**, ² acridines **11–1n**, ³ thioxanthene **10**⁴ allylic and propargylic substrates **1w–1aa**, ⁵ and difluoroenoxysilanes **2**⁶ were prepared according to literature procedures. Purchased reagents and solvents were used without further purification.

General procedure for preparation of products 3.

To a mixture of **1** (0.2 mmol) and **2** (0.4 mmol, 2.0 equiv) in HFIP (2.0 mL) was added Na₂-eosin Y (13.8 mg, 0.02 mmol, 10 mol%). The mixture was exposed to green LED (1.5 W) and stirred at room temperature under air for 6 h. Then the mixture was concentrated in vacuo, and purified by column chromatography on silica gel (PE/EA, 30:1 or 20:1) to afford the desired products **3**.

2,2-Difluoro-1-phenyl-2-(9H-xanthen-9-yl)ethanone (3a). Yellow solid; 56.4 mg, 84% yield, PE/EA = 30/1 as the eluent; mp = 62–63 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.35–7.25 (m, 6H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.04 (t, *J* = 7.6 Hz, 2H), 4.96 (t, *J* = 14.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0 (t, *J* = 29.6 Hz), 153.5, 133.9, 133.1, 130.6, 129.8 (t, *J* = 3.6 Hz), 129.5, 128.3, 123.2, 118.0 (t, *J* = 260.5 Hz), 116.8, 116.2 (t, *J* = 3.2 Hz), 44.4 (t, *J* = 23.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.16 (d, *J* = 14.3 Hz, 2F). Physical and spectral properties of this material were identical to those previously reported in literature.⁷

2,2-Difluoro-2-(2-methyl-9*H***-xanthen-9-yl)-1-phenylethanone (3b).** Yellow oil; 56.7 mg, 81% yield, PE/EA = 30/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 6.7 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.33–7.26 (m, 4H), 7.17–6.99 (m, 5H), 4.89 (t, J = 14.3 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.1 (t, J = 29.4 Hz), 153.7, 151.4, 133.9, 133.2 (t, J = 1.9 Hz), 132.7, 130.8, 130.6, 130.1, 129.8 (t, J = 3.9 Hz), 129.4, 128.3, 123.1, 118.1 (t, J = 259.1 Hz), 116.8, 116.5, 116.2 (t, J = 3.2 Hz), 115.8 (t, J = 3.2 Hz), 44.5 (t, J = 23.9 Hz), 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.86 (dd, J = 259.4, 13.9 Hz, 1F), -103.62 (dd, J = 268.1, 14.3 Hz, 1F); HRMS

(ESI) m/z calcd for $[M + Na]^+ C_{22}H_{16}F_2O_2Na$ 373.1011, found 373.1017.

2-(2-(*tert***-Butyl)-9***H***-xanthen-9-yl)-2,2-difluoro-1-phenylethanone (3c). Yellow oil; 47.0 mg, 60% yield, PE/EA = 30/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) \delta 7.52 (d,** *J* **= 7.8 Hz, 2H), 7.39 (t,** *J* **= 7.4 Hz, 1H), 7.29–7.16 (m, 5H), 7.09 (s, 1H), 7.08 (d,** *J* **= 8.5 Hz, 1H), 7.02–6.97 (m, 2H), 4.85 (dd,** *J* **= 17.4, 11.7 Hz, 1H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) \delta 191.8 (t,** *J* **= 28.6 Hz), 153.7, 151.3, 146.1, 133.8, 133.3, 130.7, 129.8 (t,** *J* **= 3.7 Hz), 129.4, 128.3, 127.3, 126.4, 123.1, 118.2 (t,** *J* **= 258.4 Hz), 116.7, 116.3, 116.2 (d,** *J* **= 4.9 Hz), 115.2 (d,** *J* **= 4.9 Hz), 44.9 (t,** *J* **= 23.9 Hz), 34.1, 31.2; ¹⁹F NMR (376 MHz, CDCl₃) \delta -101.31 (dd,** *J* **= 260.5, 12.2 Hz, 1F), -106.33 (dd,** *J* **= 260.2, 17.3 Hz, 1F); HRMS (ESI)** *m***/z calcd for [M + Na]⁺ C₂₅H₂₂F₂O₂Na 415.1480, found 415.1490.**

2,2-Difluoro-2-(2-methoxy-9*H***-xanthen-9-yl)-1-phenylethanone (3d**). Yellow oil; 45.4 mg, 62% yield, PE/EA = 20/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.37–7.26 (m, 4H), 7.13 (d, *J* = 8.6 Hz, 1H), 7.09 (d, *J* = 8.8 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.87–6.82 (m, 2H), 4.92 (t, *J* = 14.2 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0 (t, *J* = 29.2 Hz), 155.3, 153.8, 147.6, 134.0, 133.2 (t, *J* = 1.9 Hz), 130.6, 129.8 (t, *J*

= 3.7 Hz), 129.4, 128.3, 123.0, 118.1 (t, J = 260.8 Hz), 117.6, 116.78 (t, J = 2.8 Hz), 116.77, 115.78 (t, J = 2.8 Hz), 115.77, 114.7, 55.7, 44.8 (t, J = 23.8 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -102.66 (dd, J = 265.8, 13.9 Hz, 1F), -103.40 (dd, J = 265.5, 14.5 Hz, 1F); **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₂₂H₁₆F₂O₃Na 389.0960, found 389.0971.

2-(2-Bromo-9*H***-xanthen-9-yl)-2,2-difluoro-1-phenylethanone (3e)**. Yellow oil; 78.0 mg, 94% yield, PE/EA = 30/1 as the eluent; ¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.47 (s, 1H), 7.39 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.34 (t, *J* = 7.9 Hz, 2H), 7.33–7.26 (m, 2H), 7.14 (d, *J* = 8.2 Hz, 1H), 7.06 (d, *J* = 6.2 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 4.92 (t, *J* = 13.2, Hz, 1H); ¹³**C** NMR (100 MHz, CDCl₃) δ 190.2 (t, *J* = 29.7 Hz), 153.1, 152.6, 134.1, 133.2, 132.9 (t, *J* = 2.0 Hz), 132.4, 130.6, 129.8 (t, *J* = 3.7 Hz), 129.7, 128.4, 123.6, 118.5, 118.4 (t, *J* = 3.0 Hz), 117.8 (t, *J* = 259.3 Hz), 116.9, 115.6 (t, *J* = 3.3 Hz), 115.3, 44.1 (t, *J* = 23.9 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -101.82 (dd, *J* = 271.5, 13.4 Hz, 1F), -103.73 (dd, *J* = 271.3, 14.9 Hz, 1F); **HRMS** (**ESI**) *m*/*z* calcd for [M + Na]⁺ C₂₁H₁₃BrF₂O₂Na 436.9959, found 436.9966.

2,2-Difluoro-2-(2-fluoro-9*H***-xanthen-9-yl)-1-phenylethanone (3f)**. Yellow solid; 51.7 mg, 73% yield, PE/EA = 30/1 as the eluent; mp = 77–78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.0

Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.37–7.27 (m, 4H), 7.16–6.98 (m, 5H), 4.95 (t, J = 14.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (t, J = 29.4 Hz), 158.3 (d, J = 241.6 Hz), 153.5, 149.7 (d, J = 2.5 Hz), 134.1, 133.0 (t, J = 2.0 Hz), 130.6, 129.8 (t, J = 3.7 Hz), 129.6, 128.4, 123.1, 117.9 (d, J = 8.4 Hz), 117.8 (t, J = 259.5 Hz), 117.7 (t, J = 3.0 Hz), 116.9, 116.8 (d, J = 23.8 Hz), 116.4 (d, J = 23.5 Hz), 115.4 (t, J = 3.0 Hz), 44.4 (t, J = 23.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.16 (dd, J = 271.0, 13.7 Hz, 1F), -103.40 (dd, J = 270.7, 14.3 Hz, 1F), -120.03 – -120.09 (m, 1F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₁H₁₃F₃O₂Na 377.0760, found 377.0763.

2,2-Difluoro-2-(3-methoxy-9*H***-xanthen-9-yI)-1-phenylethanone (3g)**. Yellow oil; 61.5 mg, 84% yield, PE/EA = 20/1 as the eluent; ¹**H** NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.4 Hz 1H), 7.34–7.27 (m, 4H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.13 (d, *J* = 7.7 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.69 (d, *J* = 2.5 Hz, 1H), 6.63 (dd, *J* = 8.5, 2.6 Hz, 1H), 4.90 (t, *J* = 14.1 Hz, 1H), 3.79 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 191.1 (t, *J* = 29.6 Hz), 160.7, 154.4, 153.4, 133.9, 133.2 (t, *J* = 2.0 Hz), 131.1, 130.6, 129.8 (t, *J* = 3.7 Hz), 129.4, 128.3, 123.2, 118.1 (t, *J* = 258.5 Hz), 116.8, 116.5 (t, *J* = 3.0 Hz), 110.1, 108.2 (t, *J* = 3.3 Hz), 101.8, 55.4, 43.9 (t, *J* = 23.8 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -102.87 (dd, *J* = 265.5, 14.1 Hz, 1F), -103.65 (dd, *J* = 264.7, 14.3 Hz, 1F); **HRMS (ESI)** *m*/*z* calcd for [M + Na]⁺ C₂₂H₁₆F₂O₃Na 389.0960, found 389.0968.

2-(3-Chloro-9*H***-xanthen-9-yl)-2,2-difluoro-1-phenylethanone (3h)**. Yellow solid; 57.1 mg, 77% yield, PE/EA = 30/1 as the eluent; mp = 75–76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.36–7.25 (m, 5H), 7.17 (d, *J* = 2.1 Hz, 1H), 7.14 (d, *J* = 7.4 Hz 1H), 7.08–7.04 (m, 2H), 4.94 (t, *J* = 14.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 29.7 Hz), 154.0, 153.1, 134.9, 134.1, 132.9 (t, *J* = 2.1 Hz), 131.5, 130.6, 129.8 (t, *J* = 3.7 Hz), 129.6, 128.4, 123.6, 123.5, 117.8 (t, *J* = 260.9 Hz), 117.2, 116.9, 115.9 (t, *J* = 3.2 Hz), 115.0 (t, *J* = 3.1 Hz), 43.9 (t, *J* = 23.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.38 (dd, *J* = 270.5, 13.8 Hz, 1F), -103.46 (dd, *J* = 270.6, 14.6 Hz, 1F); HRMS (ESI) *m*/*z* calcd for [M + Na]⁺ C₂₁H₁₃ClF₂O₂Na 393.0464, found 393.0468.

2,2-Difluoro-2-(4-methyl-9*H***-xanthen-9-yl)-1-phenylethanone (3i**). Yellow oil; 52.5 mg, 75% yield, PE/EA = 30/1 as the eluent; ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.34–7.28 (m, 4H), 7.19 (dd, *J* = 8.6, 1.3 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, 2H), 7.04 (td, *J* = 7.4, 1.3 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 4.94 (t, *J* = 14.4 Hz, 1H), 2.38 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 191.1 (t, *J* = 29.1 Hz), 153.7, 151.7, 133.9, 133.3 (t, *J* = 1.9 Hz), 130.8, 130.5, 129.8 (t, *J* = 3.7 Hz), 129.3, 128.3, 128.1, 126.2, 123.2, 122.7, 118.2 (t, *J* = 260.7 Hz),

117.0, 116.5 (t, J = 3.0 Hz), 115.8 (t, J = 3.0 Hz), 44.7 (t, J = 23.8 Hz), 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.06 (dd, J = 264.0, 14.6 Hz, 1F), -103.85 (dd, J = 263.6, 14.6 Hz, 1F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₂H₁₆F₂O₂Na 373.1011, found 373.1016.

2,2-Difluoro-2-(4-methoxy-9*H***-xanthen-9-yl)-1-phenylethanone (3j)**. Yellow oil; 41.7 mg, 57% yield, PE/EA = 20/1 as the eluent; ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 6.8 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.34–7.26 (m, 5H), 7.05 (t, *J* = 9.6 Hz, 1H), 6.99 (t, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 2H), 4.97 (t, *J* = 14.3 Hz, 1H), 3.93 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 191.1 (t, *J* = 29.6 Hz), 153.4, 148.2, 143.2, 133.9, 133.2 (t, *J* = 1.7 Hz), 130.5, 129.8 (t, *J* = 3.7 Hz), 129.4, 128.3, 123.4, 122.9, 122.2, 118.0 (t, *J* = 260.5 Hz), 117.1, 116.1 (t, *J* = 3.3 Hz), 111.8, 56.2, 44.4 (t, *J* = 23.9 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.34 (d, *J* = 14.1 Hz, 2F); **HRMS (ESI)** *m/z* calcd for [M + Na]⁺ C₂₂H₁₆F₂O₃Na 389.0960, found 389.0964.

2,2-Difluoro-2-(4-fluoro-9*H***-xanthen-9-yl)-1-phenylethanone (3k)**. Yellow oil; 45.3 mg, 64% yield, PE/EA = 30/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.1 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.37–7.29 (m, 4H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.15–7.06 (m, 3H), 7.02–6.96 (m, 1H), 5.01 (t, *J* = 14.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7 (t, *J* = 29.5 Hz), 152.9, 151.2

(d, J = 248.5 Hz), 142.0 (d, J = 11.6 Hz), 134.1, 133.0 (t, J = 1.7 Hz), 130.7, 129.8 (t, J = 3.7 Hz), 129.7, 128.5, 125.6 (d, J = 3.8 Hz), 123.9, 122.8 (d, J = 7.2 Hz), 119.0 (t, J = 2.9 Hz), 117.9 (t, J = 259.3 Hz), 117.2, 116.2 (d, J = 17.5 Hz), 115.9 (t, J = 2.9 Hz), 44.1 (t, J = 23.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.57 (dd, J = 268.5, 14.1 Hz, 1F), -103.43 (dd, J = 268.5, 14.2 Hz, 1F), -135.017 - -135.065 (m, 1F); **HRMS (ESI)** *m*/*z* calcd for [M + Na]⁺ C₂₁H₁₃F₃O₂Na 377.0760, found 377.0762.

2,2-Difluoro-2-(10-methyl-9,10-dihydroacridin-9-yl)-1-phenylethanone (**31**). Yellow solid; 67.0 mg, 96% yield, PE/EA = 30/1 as the eluent; mp = 125–126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.39 (m, 3H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.29–7.24 (m, 2H), 7.21 (t, *J* = 8.4 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 2H), 6.76 (d, *J* = 8.2 Hz, 2H), 4.88 (t, *J* = 13.6 Hz, 1H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.1 (t, *J* = 28.0 Hz), 143.3, 133.4, 133.3, 130.5, 129.6 (t, *J* = 3.7 Hz), 128.8, 127.9, 120.8, 118.7 (t, *J* = 259.8 Hz), 117.8 (t, *J* = 3.3 Hz), 112.7, 49.7 (t, *J* = 24.6 Hz), 32.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.67 (d, *J* = 13.6 Hz, 2F); HRMS (ESI) *m/z* calcd for [M + Na]⁺ C₂₂H₁₇F₂NONa 372.1170, found 372.1179.

2,2-Difluoro-1-phenyl-2-(10-phenyl-9,10-dihydroacridin-9-yl)ethanone (3m). Brown solid; 42.7 mg, 52% yield, PE/EA = 30/1 as the eluent; mp = 102-103 °C; ¹H NMR (400 MHz, CDCl₃)

δ 7.59–7.52 (m, 4H), 7.50–7.44 (m, 2H), 7.31 (d, J = 7.5 Hz, 2H), 7.25 (d, J = 9.2 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.05 (t, J = 7.0 Hz, 2H), 6.91 (t, J = 6.9 Hz, 2H), 6.30 (d, J = 8.3 Hz, 2H), 5.06 (t, J = 14.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4 (t, J = 28.9 Hz), 143.0, 140.1, 133.6, 133.5, 130.80, 130.78, 130.7, 129.8 (t, J = 3.4 Hz), 128.5, 128.4, 128.2, 120.8, 118.6 (t, J = 260.5 Hz), 114.8 (t, J = 2.9 Hz), 114.5, 48.2 (t, J = 23.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.99 (d, J = 14.1 Hz, 2F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₇H₁₉F₂NONa 434.1327, found 434.1331.

2-(9,10-Dihydroacridin-9-yl)-2,2-difluoro-1-phenylethanone (3n). Brown solid; 40.2 mg, 60% yield, PE/EA = 20/1 as the eluent; mp = 133–134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.9 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.29–7.21 (m, 4H), 7.16 (t, *J* = 7.7 Hz, 2H), 6.88 (t, *J* = 7.5 Hz, 2H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.19 (br, 1H), 4.98 (t, *J* = 14.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8 (t, *J* = 28.7 Hz), 140.7, 133.6, 133.5, 130.9, 129.7 (t, *J* = 3.7 Hz), 128.8, 128.1, 120.9, 118.7 (t, *J* = 260.2 Hz), 114.1, 113.8 (t, *J* = 3.1 Hz), 47.7 (t, *J* = 23.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.89 (d, *J* = 14.7 Hz, 2F); HRMS (ESI) *m/z* calcd for [M + Na]⁺ C₂₁H₁₅F₂NONa 358.1014, found 358.1022.

2,2-Difluoro-1-phenyl-2-(9H-thioxanthen-9-yl)ethanone (30). White solid; 39.4 mg, 56% yield,

PE/EA = 30/1 as the eluent; mp = 96–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.40–7.32 (m, 4H), 7.29–7.17 (m, 6H), 5.06 (t, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2 (t, J = 28.4 Hz), 134.3, 133.8, 133.3, 131.9, 129.8 (t, J = 3.9 Hz), 128.3, 128.2, 127.4, 126.7, 126.4, 119.3 (t, J = 262.3 Hz), 52.5 (t, J = 23.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.17 (d, J = 16.0 Hz, 2F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₁H₁₄F₂NONa 375.0626, found 375.0630.

2-(12*H***-Benzo[***a***]xanthen-12-yl)-2,2-difluoro-1-phenylethanone (3p). Yellow solid; 74.1 mg, 96% yield, PE/EA = 30/1 as the eluent; mp = 97–98 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.13 (d,** *J* **= 8.6 Hz, 1H), 7.88–7.77 (m, 2H), 7.60–7.55 (m, 3H), 7.46–7.36 (m, 4H), 7.34–7.28 (m, 1H), 7.26–7.21 (m, 3H), 7.06 (t,** *J* **= 7.5 Hz, 1H), 5.76 (dd,** *J* **= 19.4, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 191.4 (dd,** *J* **= 30.8, 27.7 Hz), 153.6, 152.2, 133.9, 133.2, 132.5, 130.7, 130.4, 130.2, 129.7 (dd,** *J* **= 4.8, 2.7 Hz), 129.4, 128.5, 128.2, 127.0, 124.5, 123.7, 123.0, 118.9 (t,** *J* **= 262.3 Hz), 117.8, 116.8, 116.7 (dd,** *J* **= 5.9, 2.0 Hz), 109.3, 40.5 (t,** *J* **= 24.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -97.16 (dd,** *J* **= 263.1, 7.4 Hz, 1F), -107.40 (dd,** *J* **= 262.9, 19.4 Hz, 1F); HRMS (ESI)** *m/z* **calcd for [M + Na]⁺ C₂₅H₁₀F₂O₂Na 409.1011, found 409.1018.**

2-(14H-Dibenzo[a,h]xanthen-14-yl)-2,2-difluoro-1-phenylethanone (3q). White solid; 60.2 mg,

69% yield, PE/EA = 30/1 as the eluent; mp = 173–174 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.6 Hz, 1H), 7.89–7.79 (m, 3H), 7.62–7.54 (m, 7H), 7.48–7.42 (m, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.8 Hz, 2H), 5.89 (dd, J = 18.4, 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3 (t, J = 30.4 Hz), 152.2, 149.4, 134.0, 133.8, 133.1, 132.5, 130.9, 130.2, 129.6 (dd, J = 4.2, 3.2 Hz), 128.5, 128.1, 127.6, 127.1, 127.0, 126.9, 126.2, 124.6, 124.1, 123.3, 123.1, 121.7, 119.0 (t, J = 258.7 Hz), 117.8, 110.7 (dd, J = 5.4, 2.4 Hz), 109.5 (t, J = 2.0 Hz), 40.8 (t, J = 24.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.45 (dd, J = 263.5, 7.3 Hz, 1F), -106.64 (dd, J = 263.5, 18.3 Hz, 1F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₉H₁₈F₂O₂Na 459.1167, found 459.1172.

2,2-Difluoro-1-(*m*-tolyl)-2-(9*H*-xanthen-9-yl)ethanone (3r). White solid; 49.7 mg, 71% yield, PE/EA = 30/1 as the eluent; mp = 67–68 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.9 Hz, 1H), 7.29 (s, 1H), 7.21–7.09 (m, 5H), 7.08–7.00 (m, 3H), 6.92 (t, *J* = 7.4 Hz, 2H), 4.82 (t, *J* = 14.3 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 119.2 (t, *J* = 29.2 Hz), 153.5, 138.1, 134.7, 133.1, 130.7, 130.3 (t, *J* = 3.8 Hz), 129.4, 128.2, 127.0 (t, *J* = 3.8 Hz), 123.2, 118.1 (t, *J* = 260.7 Hz), 116.8, 116.3 (t, *J* = 3.2 Hz), 44.4 (t, *J* = 23.9 Hz), 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.06 (d, *J* = 14.0 Hz, 2F); HRMS (ESI) *m*/*z* calcd for [M + Na]⁺ C₂₂H₁₆F₂O₂Na 373.1011, found 373.1018.

1-(3-Chlorophenyl)-2,2-difluoro-2-(9*H***-xanthen-9-yl)ethanone (3s)**. Yellow solid; 60.8 mg, 82% yield, PE/EA = 30/1 as the eluent; mp = 87–88 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.34–7.30 (m, 4H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.15 (d, *J* = 7.3 Hz, 2H), 7.07 (t, *J* = 7.5 Hz, 2H), 4.93 (t, *J* = 14.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0 (t, *J* = 29.9 Hz), 153.4, 134.6, 134.6, 133.9, 130.6, 129.73 (t, *J* = 3.8 Hz), 129.66, 129.6, 127.8 (t, *J* = 3.8 Hz), 123.4, 117.9 (t, *J* = 260.4 Hz), 116.9, 116.0 (t, *J* = 3.4 Hz), 44.6 (t, *J* = 23.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.10 (d, *J* = 14.6 Hz, 2F); HRMS (ESI) *m/z* calcd for [M + Na]⁺ C₂₁H₁₃ClF₂O₂Na 393.0464, found 393.0470.

2,2-Difluoro-1-(3-fluorophenyl)-2-(9*H***-xanthen-9-yl)ethanone (3t)**. Yellow solid; 41.1 mg, 58% yield, PE/EA = 30/1 as the eluent; mp = 49–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.8 Hz, 1H), 7.34–7.24 (m, 6H), 7.20 (td, *J* = 8.1, 1.6 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 2H), 7.06 (t, *J* = 7.5 Hz, 2H), 4.93 (t, *J* = 14.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9 (td, *J* = 30.0, 2.3 Hz), 162.3 (d, *J* = 248.0 Hz), 153.5, 134.9 (d, *J* = 7.1 Hz), 130.6, 130.0 (d, *J* = 7.8 Hz), 129.7, 125.6 (q, *J* = 3.8 Hz), 123.4, 121.1 (d, *J* = 21.6 Hz), 118.0 (t, *J* = 260.4 Hz), 116.9, 116.6 (dt, *J* = 23.5, 3.6

Hz), 116.1 (t, J = 3.2 Hz), 44.6 (t, J = 23.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.14 (d, J = 14.1 Hz, 2F), -111.53 – -111.64 (m, 1F); HRMS (ESI) m/z calcd for $[M + Na]^+ C_{21}H_{13}F_3O_2Na$ 377.0760, found 377.0766.

2,2-Difluoro-1-(4-methoxyphenyl)-2-(10-methyl-9,10-dihydroacridin-9-yl)ethanone (3u). Brown solid; 70.5 mg, 93% yield, PE/EA = 30/1 as the eluent; mp = 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 7.29–7.24 (m, 2H), 6.98 (t, J = 6.9 Hz, 2H), 6.78 (d, J = 8.2 Hz, 2H), 6.68 (d, J = 9.0 Hz, 2H), 4.86 (t, J = 13.6 Hz, 1H), 3.81 (s, 3H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.5 (t, J = 27.2 Hz), 163.6, 143.3, 132.2 (t, J = 4.1 Hz), 130.5, 128.8, 126.5, 120.7, 118.9 (t, J = 258.0 Hz), 117.9 (t, J = 3.5 Hz), 113.2, 112.6, 55.4, 49.7 (t, J = 24.8 Hz), 32.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.61 (d, J = 14.0 Hz, 2F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₃H₁₉F₂NO₂Na 402.1276, found 402.1278.

2,2-Difluoro-2-(10-methyl-9,10-dihydroacridin-9-yl)-1-(thiophen-2-yl)ethanone (3v). Brown oil; 63.2 mg, 89% yield, PE/EA = 30/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 5.0 Hz, 1H), 7.34 (d, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 2H), 6.99 (t, *J* = 6.9 Hz, 2H), 6.92 (d, *J*

= 2.4 Hz, 1H), 6.82 (dd, J = 4.9, 3.9 Hz, 1H), 6.78 (d, J = 8.3 Hz, 2H), 4.82 (t, J = 13.1 Hz, 1H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.6 (t, J = 30.0 Hz), 143.2, 140.2, 135.20 (t, J = 5.9 Hz), 135.18, 130.5, 128.9, 128.3, 120.8, 118.1 (t, J = 257.4 Hz), 117.7 (t, J = 3.5 Hz), 112.6, 50.0 (t, J = 24.9 Hz), 32.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.51 (d, J = 12.8 Hz, 2F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₀H₁₅F₂NOSNa 378.0735, found 378.0744.

(*E*)-2,2-Difluoro-1,3,5-triphenylpent-4-en-1-one (3w). White solid; 29.8 mg, 43% yield, PE/EA = 30/1 as the eluent; mp = 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.62 – 7.58 (m, 1H), 7.45 (t, *J* = 7.1 Hz, 2H), 7.39 – 7.28 (m, 9H), 7.26 – 7.23 (m, 1H), 6.55 (s, 2H), 4.49 (t, *J* = 16.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9 (t, *J* = 29.8 Hz), 136.5, 135.4, 135.3, 134.0, 132.9, 129.8 (d, *J* = 3.4 Hz), 129.6, 128.6 (t, *J* = 7.6 Hz), 127.9, 126.5, 123.6 (t, *J* = 3.9 Hz), 118.7 (t, *J* = 258.9 Hz), 53.3 (t, *J* = 22.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.53 (dd, *J* = 275.3, 16.9 Hz, 1F), -103.38 (dd, *J* = 275.3, 16.7 Hz, 1F); HRMS (ESI) *m*/z [M + Na]⁺ calcd for C₂₃H₁₈F₂ONa 371.1223, found 371.1216. Physical and spectral properties of this material were identical to those previously reported in literature.⁷

(E)-2,2-Difluoro-1-phenyl-3,5-di-p-tolylpent-4-en-1-one (3x). White solid; 42.1 mg, 56% yield,

PE/EA = 30/1 as the eluent; mp = 94–95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.9 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.26 – 7.21 (m, 4H), 7.12 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 6.50 – 6.41 (m, 2H), 4.45 – 4.36 (m, 1H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1 (t, J = 29.7 Hz), 137.8, 137.6, 135.0, 134.0, 133.9, 133.0, 132.5, 129.9 (t, J = 3.4 Hz), 129.5, 129.4, 129.3, 128.6, 126.5, 122.7 (t, J = 4.2 Hz), 118.8 (t, J = 258.6 Hz), 53.1 (t, J = 22.0 Hz), 21.2 (d, J = 10.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.19 (d, J = 16.2 Hz, 2F); HRMS (ESI) m/z [M + Na]⁺ alcd for C₂₅H₂₂F₂ONa 399.1536, found 399.1542. Physical and spectral properties of this material were identical to those previously reported in literature.⁷

(*E*)-3,5-Bis(4-chlorophenyl)-2,2-difluoro-1-phenylpent-4-en-1-one (3y). White solid; 31.6 mg, 38% yield, PE/EA = 30/1 as the eluent; mp = 116–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H), 7.62 (dd, J = 10.6, 4.3 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.41 – 7.32 (m, 4H), 7.28 (s, 4H), 6.57 – 6.49 (m, 2H), 4.54 (tdd, J = 16.0, 4.5, 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2 (t, J = 29.9 Hz), 134.7, 134.3, 134.2, 133.8, 133.7, 133.6, 132.5 (d, J = 1.7 Hz), 130.9, 129.8 (t, J = 3.3 Hz), 128.8, 128.6, 127.6, 123.7 (t, J = 4.1 Hz), 118.3 (t, J = 259.4 Hz), 52.4 (t, J = 22.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.01 (dd, J = 278.9, 16.1 Hz, 1F), -102.84 (dd, J = 278.8, 15.6 Hz, 1F); HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₃H₁₆Cl₂F₂ONa 416.0546, found 416.0551. Physical and spectral properties of this material were identical to those previously reported in literature.⁷

(*E*)-3,5-Bis(4-bromophenyl)-2,2-difluoro-1-phenylpent-4-en-1-one (3z). White solid; 41.5 mg, 41% yield, PE/EA = 30/1 as the eluent; mp = 143–144 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.48 (t, *J* = 8.1 Hz, 4H), 7.44 – 7.41 (m, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.23 – 7.19 (m, 2H), 6.55 – 6.45 (m, 2H), 4.50 (td, *J* = 16.1, 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4 (t, *J* = 30.0 Hz), 135.3, 134.5, 134.4, 134.3 (t, *J* = 2.1 Hz), 132.6, 131.9, 131.8, 131.4, 130.0 (t, *J* = 3.3 Hz), 128.8, 128.1, 124.0 (t, *J* = 4.2 Hz), 122.2, 122.0, 118.4 (t, *J* = 259.5 Hz), 52.6 (t, *J* = 22.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.01 (dd, *J* = 279.7, 16.4 Hz, 1F), -102.81 (dd, *J* = 280.0, 16.2 Hz, 1F); HRMS (ESI) *m*/z [M + Na]⁺ calcd for C₂₃H₁₆Br₂F₂ONa 528.9413, found 528.9420. Physical and spectral properties of this material were identical to those previously reported in literature.⁷

2,2-Difluoro-1,3-diphenylpent-4-yn-1-one (3aa): Yellow oil; 33.2 mg, 48% yield, PE/EA = 30/1 as the eluent; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 2H), 7.57 (dd, *J* = 14.0, 6.8 Hz, 3H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.43 – 7.37 (m, 5H), 7.32 – 7.26 (m, 3H), 4.89 (dd, *J* = 18.3, 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6 (dd, *J* = 30.2, 28.6 Hz), 134.2, 133.1, 132.9 (t, *J* = 1.7 Hz), 132.4 (d, *J* = 1.9 Hz), 131.7, 130.1, 130.0 (dd, *J* = 3.9, 3.2 Hz), 122.4, 116.9 (dd, *J* = 263.3, 259.9 Hz), 86.2, 83.4 (dd, *J* = 9.4, 2.2 Hz), 43.6 (dd, *J* = 27.4, 23.1 Hz); ¹⁹F NMR (376 MHz,

CDCl₃) δ -100.50 (dd, J = 267.7, 11.7 Hz, 1F), -105.72 (dd, J = 267.8, 20.0 Hz, 1F); **HRMS (ESI)** m/z [M + Na]⁺ calcd for C₂₃H₁₆F₂ONa 369.1067, found 369.1061. Physical and spectral properties of this material were identical to those previously reported in literature.⁷

Procedure for preparation of compound 4.

To a slurry of *N*-benzylacridine-9(10*H*)-one **SI** (142.5 mg, 0.5 mmol, 1.0 equiv) in THF (2 mL) BH₃ THF solution (1.0 M in THF; 1 mL, 1.0 mmol, 2.0 equiv) was added dropwise and the mixture was refluxed for 4 hours under Ar-atmosphere. Then the mixture was cooled to 0-5 $^{\circ}$ C and cautiously quenched by the addition of brine (5 mL) followed by 2 M aq. NaOH (1 mL). The organic layer was separated, and the aqueous layer was extracted with Et₂O (1 \times 10 mL). The collected organic layers were dried over MgSO₄ and evaporated.³

The obtained 10-benzyl-9,10-dihydroacridine without any further purification was transferred to a vial equipped with a magnetic stirring bar with HFIP (5.0 mL). **2a** (237 mg, 1.0 mmol, 2.0 equiv) and Na₂-eosin Y (34.5 mg, 0.05 mmol, 10 mol%) were added to the vial. The mixture was exposed to green LED (1.5 W) and stirred at room temperature under air for 6 h. Then the mixture was concentrated in vacuo, and purified by column chromatography on silica gel (PE/EA, 30:1) to afford the desired products **4** (182.8 mg, 86% yield) as a brown solid.

2-(10-Benzyl-9,10-dihydroacridin-9-yl)-2,2-difluoro-1-phenylethanone (4). Brown solid; 182.8 mg, 86% yield, PE/EA = 30/1 as the eluent; mp = 119–120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.43 (m, 3H), 7.33 (d, J = 6.8 Hz, 2H), 7.30–7.23 (m, 5H), 7.12 (t, J = 7.0 Hz, 2H), 7.07 (d, J = 6.6 Hz, 2H), 6.95 (t, J = 6.9 Hz, 2H), 6.62 (d, J = 8.3 Hz, 2H), 4.96 (t, J = 13.7 Hz, 1H), 4.76 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0 (t, J = 28.0 Hz), 142.3, 136.5, 133.50, 133.45, 130.7, 129.7 (t, J = 3.7 Hz), 129.0, 128.8, 128.1, 127.0, 125.9, 121.0, 118.7 (t, J = 260.1 Hz), 117.1 (t, J = 3.0 Hz), 113.8, 50.9, 49.1 (t, J = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.40 (d, J = 13.3 Hz, 2F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₁F₂NONa 448.1483, found 448.1494.

Procedure for preparation of compound 5.

Compound **31** (69.8 mg, 0.2 mmol, 1.0 equiv), NaOH (16 mg, 0.4 mmol, 2.0 equiv) and THF (2.0 mL) were added to a sealed tube. After the reaction was stirred at 80 $^{\circ}$ C for 6 h, the resulting mixture was cooled to room temperature, concentrated in vacuo, and purified by flash column chromatography on silica gel (PE/EA, 50:1) to give product **5** (30.9 mg, 63% yield) as a green solid.⁸

9-(**Difluoromethyl**)-10-methyl-9,10-dihydroacridine (5). Green solid; 30.9 mg, 63% yield, PE/EA = 50/1 as the eluent; mp = 89–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.24 (m, 4H), 7.05–6.92 (m, 4H), 5.60 (td, J = 57.1, 6.0 Hz, 1H), 4.30 (td, J = 12.9, 5.9 Hz, 1H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 130.2, 128.6, 120.9, 119.0 (t, J = 4.0 Hz), 115.1 (t, J = 245.5 Hz), 112.4, 48.5 (t, J = 13.3 Hz), 33.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -120.83 (dd, J = 57.0, 13.1 Hz, 2F); HRMS (ESI) m/z calcd for [M + H]⁺ C₁₅H₁₄F₂N 246.1089, found 246.1088.

Procedure for preparation of compound 6.

An oven-dried Schlenk tube under an N₂ atmosphere was charged with compound **31** (69.8 mg, 0.2 mmol, 1.0 equiv), EtOH (2.0 mL), NaBH₄ (30.4 mg, 0.8 mmol, 4.0 equiv). After the reaction was stirred at room temperature for 2 h, aqueous solution HCl (1 M, 2.0 mL) was added. The resulting mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, concentrated in vacuo, and purified by silica gel column chromatography (PE/EA, 10:1) to give product **6** (60.4 mg, 86% yield, >20:1 dr) as a white solid.⁷

2,2-Difluoro-2-(10-methyl-9,10-dihydroacridin-9-yl)-1-phenylethanol (6). White solid; 60.4 mg, 86% yield, PE/EA = 10/1 as the eluent; mp = 174–175 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.5 Hz, 1H), 7.35–7.24 (m, 8H), 7.06–6.95 (m, 3H), 6.93 (d, J = 8.3 Hz, 1H), 4.84 (dd, J = 24.0, 7.0 Hz, 1H), 4.68 (d, J = 20.9 Hz, 1H), 3.38 (s, 3H), 2.36 (d, J = 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.6, 130.6 (d, J = 65.5 Hz), 128.5, 128.4, 128.1, 128.0, 121.9 (dd, J = 256.0, 251.3 Hz) , 120.5 (d, J = 10.2 Hz), 118.8 (dd, J = 59.1, 6.1 Hz), 112.6 (d, J = 30.4 Hz), 72.1 (dd, J = 33.4, 24.0 Hz), 47.2 (t, J = 24.9 Hz), 33.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.76 (dd, J = 252.2, 24.0 Hz, 1F), -117.68 (ddd, J = 252.1, 21.0, 7.0 Hz, 1F); HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₂H₁₉F₂NONa 374.1327, found 374.1331.

The singlet oxygen capture experiment with α-terpinene

To a mixture of **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv) and α -terpinene (0.6 mmol, 3.0 equiv) in HFIP (2.0 mL) was added Na₂-eosin Y (13.8 mg, 0.02 mmol, 10 mol%). The mixture was exposed to green LED (1.5 W) and stirred at room temperature under air for 6 h. As expected, only trace amount of **3a** and **7** were found and the adduct of singlet oxygen (¹O₂) with α -terpinene **8** is detected by ESI-HRMS.

References

- (a) E. Böb, T. Hillringhaus, J. Nitsch and M. Klussmann, Lewis acid-catalysed one pot synthesis of substituted xanthenes, *Org. Biomol. Chem.*, 2011, 9, 1744–1748; (b) K. Zhou, Y. Yu, Y.-M. Lin, Y. Li and L. Gong, Copper-catalyzed aerobic asymmetric cross-dehydrogenative coupling of C(sp³)–H bonds driven by visible light, *Green Chem.*, 2020, 22, 4597–4603; (c) J. Zhou, T. Li, M. Li, C. Li, X. Hu, L. Jin, N. Sun, B. Hu and Z. Shen, FeCl₂-Catalyzed direct C₂-benzylation of benzofurans with diarylmethanes via cross dehydrogenative coupling, *Asian J. Org. Chem.*, 2021, 10, 549–553.
- E. Larionov, M. M. Mastandrea and M. A. Peric às, Asymmetric visible-light photoredox cross-dehydrogenative coupling of aldehydes with xanthenes, ACS Catal., 2017, 7, 7008–7013.
- Á. Pint ér, A. Sud, D. Sureshkumar and M. Klussmann, Autoxidative carbon-carbon bond formation from carbon-hydrogen bonds, *Angew. Chem.*, *Int. Ed.*, 2010, 49, 5004 – 5007.

- D. Sarma, B. Majumdar and T. K. Sarma, Visible-light induced enhancement in the multicatalytic activity of sulfated carbon dots for aerobic carbon–carbon bond formation, *Green Chem.*, 2019, 21, 6717–6726.
- D,-P. Chen, L.-J. Wu, H.-W. L, X.-L. Xu and J.-Z. Yan, CDC Reaction and Subsequent Cyclization for the Synthesis of 2-Hydroxy-3-alkyl-1,4-naphthoquinones and Pyranonaphthoquinones, *J. Org. Chem.*, 2017, 82, 1610–1617.
- H. Amii, T. Kobayashi, Y. Hatamoto and K. Uneyama, Mg⁰-promoted selective C–F bond cleavage of trifluoromethyl ketones: a convenient method for the synthesis of 2,2-difluoro enol silanes, *Chem. Commun.*, 1999, 1323–1324.
- J. Li, W. Xi, R. Zhong, J. Yang, L. Wang, H. Ding and Z. Wang, HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes, *Chem. Commun.*, 2021, 57, 1050–1053.
- H. Song, R. Cheng, Q.-Q. Min and X. Zhang, Decarboxylative and deaminative alkylation of difluoroenoxysilanes via photoredox catalysis: a general method for site-selective synthesis of difluoroalkylated alkanes, *Org. Lett.*, 2020, 22, 7747–7751.

Copies of ¹H, ¹³C and ¹⁹F NMR spectra

 $<^{-103.15}_{-103.18}$

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S55

ſ ſ

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

88.08 88.08 88.08 80.05

0.5

0.0

00 0 190 180 170 160 150 130 120 110 100 70 20 10 140 90 80 60 50 40 30

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

