Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Asymmetric Cross Rauhut-Currier Reaction of Vinyl Ketones with Carbonyl *para*-Quinone Methides via Phosphine Catalysis

Yue Lu,^a Ningtao He,^a Xiaohe Miao^c and De Wang*,^{a,b}

^a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China.

^b Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of

Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao

266237, China.

^c Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou

310024, China.

Email: wangde@ouc.edu.cn

Table of Contents

1. General information	S2
2. Experimental procedure and characterization data	S 3
3. Synthetic applications	S66
4. References	S76
5. X-ray data of compound 3e and 5	\$77
6. NMR Spectra	S79
7. Additives effects	S157

<u>1. General Informations</u>

¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz by JEOL (7.26 ppm for ¹H NMR, 77.00 ppm for ¹³C NMR as internal references when CDCl₃ used), respectively. High-resolution mass spectra were recorded by ESI method. The used organic solvents were dried by standard methods if it was necessary. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ -values are given in unit of 10 deg⁻¹ cm² g⁻¹. Chiral HPLC was performed on a SHIMADZU LC-20AT LC System with chiral columns [Chiralpak OD-H and AD-H columns 4.6 x 250 mm, (Daicel Chemical Ind., Ltd.)]. Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

All the racemic products were carried out with triphenylphosphine PPh₃ (20 mol%) as catalyst in toluene at room temperature.

2. Experimental procedure and characterization data

General procedure (I) for the synthesis of carbonyl p-QM (1a-1w)

p-QMs were prepared according to the modified procedure of literature.^[1]

Procedure (1): 2,6-di-tert-Butyl-phenol (S-1, 30 g, 145 mmol) and glyoxylic acid monohydrate (S-2, 28 g, 187 mmol) were dissolved in glacial acetic acid (100 mL). Gaseous HCl (6.3 g, 180 mmol, generated in situ from solid NaCl and $H_2 SO_4$)

of were then bubbled into the reaction mixture with stirring and cooling in an ice bath over a period of 3 hrs, keeping the temperature between 0-10 °C. The mixture was then stirred at room temperature overnight. The precipitated white solid was isolated by filtration and washed with 50 mL H₂O, giving the yellowish and wet cake of the chloride compound (**S-3**, 35 g). This material was used directly for the next step without purification. **S-3** (10 g) dissolved in toluene, a solution of NaOAc (5.5 g, 67 mmol) in water was injected to the above solvent, the mixture stirred at room temperature for 3 hours. The precipitated orange solid was isolated by filtration, washed with H₂O and cold ethanol sequentially, evacuate to remove the residue organic solvent to give the dry orange solid compound (**S-4**, 5.4 g, 61% yield), **S-4** was used directly without any purification.

Compound S-4 (5 mmol) was dissolved in dry DCM (15 mL) under argon. A few drops of DMF were added, followed by the dropwise addition of oxalyl chloride (5 mmol) slowly. Stirring at room temperature to ensure full conversion to the acetyl chloride. A solution of alcohol (1.5 equiv.), thiol (1.5 equiv.) or amine (1.5 equiv.) and triethylamine (1.0 equiv) in 15 mL of anhydrous DCM was cooled to -70 °C to -60 °C under nitrogen atmosphere. The solution of the acetyl chloride was added dropwise while maintaining the temperature at -70 °C to -60 °C. After stirring at this temperature for another 20 min, the reaction mixture was allowed to warm to room temperature for a full conversion. The filtrate was concentrated under reduced pressure. The residue was purified by 300 mesh silica gel column chromatography to give the corresponding product 1.

Compounds **1a-1c**, **1g**, **1l-1p** and **1w** were known compounds. The spectra data were correspondence with the literature data.^[1]

Cyclopropylmethyl 2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetate (1d).

Compound **1d** (609.4 mg, 47% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (4.1 mmol, 1.08 g) and cyclopropylmethanol (6.0 mmol, 0.49 mL); **Mp**: 68-69 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, J = 2.4 Hz, 1H), 6.79 (d, J = 2.0 Hz, 1H), 6.18 (s, 1H), 4.04 (d, J = 7.2 Hz, 2H), 1.30 (s, 9H), 1.28 (s, 9H), 1.24-1.14 (m, 1H), 0.63-0.59 (m, 2H), 0.34-0.30 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.7, 165.9, 151.3, 151.1, 142.1, 133.6, 127.2, 125.8, 69.7, 35.7, 35.2, 29.5, 29.4, 9.8, 3.4; **HRMS** Calcd. For C₂₀H₂₉O₃⁺ [M+H]⁺: 317.2117, found: 317.2118.

Compound **1e** (206 mg, 27% yield) was obtained as a orange liquid following the *general procedure I* from **S-4** (2.0 mmol, 0.52 g) and cinnamyl alcohol (3.0 mmol, 0.39 ml); ¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (d, J = 2.4 Hz, 1H), 7.42-7.27 (m, 5H), 6.79 (d, J = 2.4 Hz, 1H), 6.73-6.67 (m, 1H), 6.38-6.31 (m, 1H), 6.19 (s, 1H), 4.88 (dd, J = 6.4, 1.6 Hz, 1H), 1.31 (s, 9H), 1.29 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 165.4, 151.4, 151.2, 142.6, 136.0, 134.5, 133.5, 128.6, 128.1, 127.0, 126.6, 125.2, 122.6, 65.3, 35.7, 35.2, 29.5, 29.4; **HRMS** Calcd. For C₂₅H₂₉O₃⁻ [M-H]⁻: 377.2117, found: 377.2108.

Prop-2-yn-1-yl 2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetate (1f)

Compound **1f** (238.9 mg, 40% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (2.0 mmol, 0.52 g) and propargyl alcohol (3.0 mmol, 0.18 ml); **Mp**: 69-71 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 2.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 6.15 (s, 1H), 4.80 (dd, J = 2.8, 0.8 Hz, 2H), 2.51 (td, J = 2.8, 0.8 Hz, 1H), 1.29 (d, J = 0.8 Hz, 9H), 1.27 (d, J = 0.8 Hz, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 164.8, 151.8, 151.5, 143.4, 133.3, 126.9, 123.9, 75.2, 52.2, 35.7, 35.3, 29.5, 29.4; **HRMS** Calcd. For C₁₉H₂₅O₃⁺ [M+H]⁺: 301.1804, found: 301.1805.

Compound **1h** (174.0 mg, 41% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and diphenylmethanol (1.5 mmol, 280.0 mg); **Mp**: 88-90 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, J = 2.0 Hz, 1H), 7.38-7.31 (m, 10H), 7.03 (s, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.32 (s, 1H), 1.30 (s, 9H), 1.29 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 164.7, 151.6, 151.3, 142.9, 142.2, 139.8, 133.5, 128.6, 128.3, 128.1, 127.4, 127.2, 127.1, 127.0, 125.2, 79.9, 35.7, 35.3, 29.5, 29.4; **HRMS** Calcd. For C₂₉H₃₃O₃⁺ [M+H]⁺: 429.2430, found: 429.2432.

Furan-2-ylmethyl 2-(3,5-di*-tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetate (1i).

Compound **1i** (131.1 mg, 38% yield) was obtained as a red liquid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and furan-2-ylmethanol (1.5 mmol, 0.13 ml); ¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 2.0 Hz, 1H), 7.44-7.43 (m, 1H), 6.75 (d, J = 2.4 Hz, 1H), 6.47-6.45 (m, 1H), 6.39-6.37 (m, 1H), 6.14 (s, 1H), 5.19 (s, 2H), 1.28 (s, 9H), 1.26 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 165.3, 151.5, 151.3, 149.0, 143.5, 142.8, 133.5, 127.0, 124.9, 110.9, 110.6, 58.3, 35.7, 35.3, 29.5, 29.4; **HRMS** Calcd. For C₂₁H₂₇O₄⁺ [M+H]⁺: 343.1909, found: 343.1909.

Compound **1j** (57.0 mg, 17% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and phenol (1.5 mmol, 0.15 g); **Mp**: 88-90 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1H), 7.45-7.41 (m, 2H), 7.30-7.28 (m, 1H), 7.17-7.15 (m, 2H), 6.87 (d, J = 2.0 Hz, 1H), 6.37 (s, 1H), 1.31 (s, 9H), 1.30 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 164.3, 152.0, 151.6, 150.3, 144.2, 133.3, 129.5, 126.9, 126.1, 124.0, 121.5, 35.8, 35.3, 29.50, 29.47; **HRMS** Calcd. For C₂₂H₂₇O₃⁺ [M+H]⁺: 339.1960, found: 339.1961.

2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-N-ethyl-Nmethylacetamide (1k)

Compound **1k** (292.0 mg, 48% yield) was obtained as a yellow solid following the *general procedure I* from S-4 (2.0 mmol, 0.52 g) and *N*-methylethanamine (3.0 mmol, 0.26 ml); **Mp**: 97-100 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.57-7.50 (m, 1H), 6.81 (s, 1H), 6.48 (s, 1H), 3.53 (q, *J* = 7.2 Hz, 1H), 3.40 (q, *J* = 7.2 Hz, 1H), 3.03 (s, 3H), 1.26 (s, 18H), 1.19 (t, *J* = 7.2 H, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.5, 186.4, 165.8, 165.7, 150.13, 150.09, 149.7, 137.1, 136.4, 133.34, 133.27, 130.8, 130.3, 127.8, 127.7, 45.2, 42.1, 35.5, 35.37, 35.35, 35.1, 32.3, 29.40, 29.38, 13.7, 12.2; **HRMS** Calcd. For C₁₉H₃₀NO₂⁺ [M+H]⁺: 304.2277, found: 304.2276.

2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-N-methoxy-N-methylaceta mide (1q)

1q

Compound **1q** (281.6 mg, 92% yield) was obtained as a yellow solid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and *N*,*O*-dimethylhydroxylamine (1.5 mmol, 0.14 mL); **Mp**: 108-110 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (s, 1H), 6.82 (s, 1H), 6.65 (s, 1H), 3.75 (s, 3H), 3.30 (s, 3H), 1.29 (s, 9H), 1.28 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.7, 166.1, 150.8, 150.5, 140.7, 134.1, 127.8, 124.7, 62.1, 35.6, 35.2, 32.3, 29.52, 29.48; **HRMS** Calcd. For C₁₈H₂₈NO₃⁺ [M+H]⁺: 306.2069, found: 306.2067.

S-phenyl 2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)ethanethioate (1r)

Compound **1r** (18.2 mg, 5% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (1.0 mmol, 262 mg) and thiophenol (1.5 mmol, 0.15 mL); **Mp**: 97-99 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 2.0 Hz, 1H), 7.47 (s, 5H), 6.76 (d, J = 2.4 Hz, 1H), 6.39 (s, 1H), 1.29 (s, 9H), 1.25 (s, 9H); ¹³C **NMR** (100 MHz, CDCl₃) δ 187.7, 186.6, 152.7, 152.4, 139.9, 134.4, 133.3, 129.9, 129.5, 129.4, 127.7, 127.4, 35.7, 35.5, 29.54, 29.47; **HRMS** Calcd. For C₂₂H₂₅O₂S⁻ [M-H]⁻: 353.1575, found: 353.1588.

S-benzyl 2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)ethanethioate (1s)

Compound **1s** (72.9 mg, 10% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (2.0 mmol, 0.52 g) and benzyl mercapten (3.0 mmol, 0.35 ml); **Mp**: 51-53 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.35-7.30 (m, 5H), 6.72 (s, 1H), 6.29 (s, 1H), 4.27 (s, 2H), 1.31 (s, 9H), 1.28 (s, 9H); ¹³C **NMR** (100 MHz, CDCl₃) 188.7, 186.5, 152.4, 152.2, 139.1, 136.9, 133.4, 130.0, 128.9, 128.7, 127.8, 127.5, 35.7, 35.4, 33.9, 29.53, 29.45; **HRMS** Calcd. For C₂₃H₂₉O₂S⁺ [M+H]⁺: 369.1888, found: 369.1877.

(R)-2-(6-methoxynaphthalen-2-yl)propyl

2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetate (1t)

Compound 1t (265.8 mg, 58% yield) was obtained as a orange solid following the general procedure Ι from **S-4** (1.0)mmol, 0.26 g) and (R)-2-(6-methoxynaphthalen-2-yl)propan-1-ol (1.5 mmol, 0.32 g); Mp: 149-151 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (dd, J = 2.4, 0.8 Hz, 1H), 7.72-7.69 (m, 2H), 7.61 (d, J = 1.2 Hz, 1H), 7.36 (dd, J = 8.4, 2.0 Hz, 1H), 7.16-7.12 (m, 2H), 6.75 (dd, J =2.4, 0.8 Hz, 1H), 6.10-6.09 (m, 1H), 4.44-4.34 (m, 2H), 3.92 (s, 3H), 3.35-3.26 (m, 1H), 1.42 (d, J = 7.2 Hz, 3H), 1.28 (s, 9H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 165.7, 157.4, 151.4, 151.1, 142.5, 138.0, 133.6, 133.5, 129.1, 128.9, 127.0, 126.2, 125.5, 125.4, 118.9, 105.5, 69.6, 55.3, 38.8, 35.6, 35.2, 29.5, 29.4, 18.3; **HRMS** Calcd. For C₃₀H₃₇O₄⁺ [M+H]⁺: 461.2692, found: 461.2694.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl

Compound **1u** (257.2 mg, 64% yield) was obtained as a orange liquid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and *L*-menthol (1.5 mmol, 0.24 g); ¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (s, 1H), 6.78 (s, 1H), 6.15 (s, 1H), 4.81 (td, J = 11.2, 4.4 Hz, 1H), 2.07 (d, J = 12.0 Hz, 1H), 1.94-1.87 (m, 1H), 1.70 (d, J = 10.8 Hz, 2H), 1.55-1.41 (m, 2H), 1.30 (s, 9H), 1.27 (s, 9H), 1.14-0.98 (m, 2H), 0.91 (t, J = 7.6 Hz, 6H), 0.78 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 186.7, 165.4, 151.3, 151.0, 142.0, 133.7, 127.2, 126.4, 74.9, 47.1, 41.0, 35.7, 35.2, 34.2, 31.4, 29.53, 29.46, 26.3, 23.5, 22.0, 20.7, 16.4; **HRMS** Calcd. For C₂₆H₄₁O₃⁺ [M+H]⁺: 401.3056, found: 401.3055. (2*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*S*)-17-((*S*)-2,5-dimethylhexyl)-10,13-dimethyl-2,3,4,7,8,9, 10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-2-yl 2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetate (1v)

Compound **1v** (409.9 mg, 65% yield) was obtained as a orange solid following the *general procedure I* from **S-4** (1.0 mmol, 0.26 g) and Cholesterol (1.5 mmol, 0.58 g); **Mp**: 72-74 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 6.78 (s, 1H), 6.13 (s, 1H), 5.41 (d, J = 4.0 Hz, 1H), 4.79-4.71 (m, 1H), 2.40-2.35 (m, 2H), 2.03-1.96 (m, 2H), 1.95-1.88 (m, 2H), 1.86-1.79 (m, 1H), 1.71-1.64 (m, 1H), 1.57-1.55 (m, 1H), 1.53-1.50 (m, 2H), 1.48-1.43 (m, 2H), 1.41-1.33 (m, 4H), 1.30 (s, 9H), 1.28 (s, 9H), 1.21-1.06 (m, 8H), 1.04 (s, 3H), 1.02-0.94 (m, 3H), 0.92 (d, J = 6.8 Hz, 3H), 0.86 (dd, J = 6.8, 1.6 Hz, 6H), 0.68 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) 186.7, 165.2, 151.2, 151.0, 141.9, 139.3, 133.7, 127.2, 126.4, 123.0, 74.6, 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 38.2, 37.0, 36.6, 36.2, 35.8, 35.7, 35.2, 31.9, 31.8, 29.53, 29.46, 28.2, 28.0, 27.9, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9; **HRMS** Calcd. For C₄₃H₆₇O₃⁺ [M+H]⁺: 631.5090, found: 631.5091.

LBa-d, isothiocyanate and isocyanate were prepared according to the reported literature.^[2,3] Catalysts LB1-LB5, LB7, LB11, LB18-LB20 were known compounds.^[4]

Procedure (*II*): To a solution of **LBa-d** (1.0 eq) in DCM under N₂ atmosphere was added isothiocyanate or isocyanate (1.2 eq), and the reaction mixture was stirred at room temperature for 24 hrs. Solvent was then removed under reduced pressure, and the residue was directly subjected to column chromatographic separation on silica gel (hexane/ethyl acetate = 15:1 to 10:1) to afford chiral phosphines as a white solid.

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(naphthalen-2-yl)thiourea (LB6)

Compound **LB6** (168.8 mg, 74% yield) was obtained as a white solid following the *general procedure II* from **LBa** (0.5 mmol, 136 mg) and 2-isothiocyanatonaphthalene (0.6 mmol, 111 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 8.76-8.67 (m,1H), 8.10 (s, 1H), 7.91-7.84 (m, 2H), 7.56-7.40 (m, 7H), 7.29-7.28 (m, 7H), 5.80 (brs, 1H), 4.62 (brs, 1H), 2.30 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.21 (dd, *J* = 14.4, 8.0 Hz, 1H), 2.06-1.97 (m, 1H), 0.74 (d, *J* = 6.8 Hz, 3H), 0.63 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.8, 134.4, 132.7 (d, *J* = 8.2 Hz), 132.5 (d, *J* = 8.2 Hz), 131.5, 129.7, 128.5, 128.34, 128.30, 128.27, 128.23, 128.18, 127.2, 126.8, 125.5, 125.0, 122.7, 58.0 (d, *J* = 14.5 Hz), 31.4 (d, *J* = 8.6 Hz), 31.1 (d, *J* = 13.5 Hz), 18.6, 17.5; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -24.3; **Mp**: 61-63 °C. **HRMS** Calcd. for C₂₈H₃₀N₂PS⁺[M+H]⁺: 457.1867, found: 457.1852; [α]²⁰_D = +77.7 (c 0.22, CH₂Cl₂).

(S)-1-benzyl-3-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)thiourea (LB8)

LB8

Compound LB8 (196.9 mg, 94% yield) was obtained as a white solid following the general procedure Π from LBa (0.5)mmol, 136 mg) and isothiocyanatomethylbenzene (0.6 mmol, 89.5 mg, 79 ul) stirred for 24 hours. ¹H **NMR** (400 MHz, CDCl₃) δ 7.48-7.28 (m, 13H), 7.22 (d, J = 7.2 Hz, 2H), 7.12-7.02 (m, 1H), 6.07 (brs, 1H), 4.38 (brs, 2H), 2.40-2.27 (m, 2H), 2.06-1.98 (m, 1H), 0.78 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.1, 138.1 (d, J = 12.3 Hz), 137.9, 136.8, 132.6 (d, J = 19.1 Hz), 132.5 (d, J = 18.9 Hz), 128.54, 128.48, 128.33, 128.28 (d, J = 1.1 Hz), 128.2, 127.5, 127.1, 57.6, 47.4, 31.8, 31.1 (d, J = 8.5 Hz), 18.4, 17.6; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.5; Mp: 99-101 °C. HRMS Calcd. for $C_{25}H_{30}N_2PS^+[M+H]^+: 421.1867$, found: 421.1854; $[\alpha]^{20}D = +16.0$ (c 0.21, CH₂Cl₂).

(S)-1-benzyl-3-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)urea (LB9)

LB9

Compound LB9 (301.9 mg, 75% yield) was obtained as a white solid following the general procedure Ш from LBa (0.1)mmol. 272 mg) and (isothiocyanatomethyl)benzene (1.2 mmol, 159.8 mg, 148 µL) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.43 (m, 5H), 7.36-7.31 (m, 6H), 7.24-7.18 (m, 4H), 5.97 (brs, 1H), 5.70 (brs, 1H), 4.18 (d, J = 5.6 Hz, 2H), 3.82 (brs, 1H), 2.22 (d, J = 7.2Hz, 2H), 1.93-1.85 (m, 1H), 0.82 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3 (d, J = 3.3 Hz), 139.6, 138.8 (d, J = 13.8 Hz), 138.6 (d, J = 12.5 Hz), 132.8, 132.6 (d, J = 2.6 Hz), 132.5, 128.32, 128.25, 128.21 (d, J = 1.8 Hz), 128.2, 126.9, 126.6, 52.8 (d, J = 15.0 Hz), 43.8, 32.6 (d, J = 13.8 Hz), 32.4 (d, J = 8.8 Hz), 19.0, 17.2; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -22.0; Mp: 104-105 °C. HRMS Calcd. for $C_{25}H_{30}N_2OP^+[M+H]^+$: 405.2096, found: 405.2085; $[\alpha]^{20}D = +24.1$ (c 0.23, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-phenethylthiourea (LB10)

Compound LB10 (434.0 mg, 99% yield) was obtained as a white solid following the (0.1)272 general procedure II from LBa mmol, mg) and (2-isothiocyanatoethyl)benzene (1.2 mmol, 195.6 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.44 (m, 4H), 7.33-7.28 (m, 8H), 7.22-7.15 (m, 3H), 6.51 (brs, 1H), 4.56 (brs, 1H), 3.51 (brs, 2H), 2.81 (t, *J* = 7.2 Hz, 2H), 2.41-2.34 (m, 2H), 2.09-2.00 (m, 1H), 0.91 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 180.9, 138.0, 137.7 (d, J = 11.2 Hz), 137.5, 132.5 (d, J = 19.0 Hz), 132.3 (d, J = 18.6 Hz), 128.5, 128.3, 128.2, 128.1 (d, J = 1.5 Hz), 126.1, 56.8, 45.0, 34.7, 31.6 (d, J = 8.0 Hz), 31.0 (d, J = 15.5 Hz), 18.4, 17.7; ³¹**P** NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.0; **Mp**: 61-63 °C; **HRMS** Calcd. for C₂₆H₃₂N₂PS⁺ [M+H]⁺: 435.2024, found: 435.2011; $[\alpha]^{20}_{D} = +10.8$ (c 0.20, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(2-methylbenzyl)thiourea (LB12)

LB12

Compound LB12 (183.6 mg, 85% yield) was obtained as a white solid following the *general procedure II* from LBa (0.05 mmol, 136 mg) and 1-(isothiocyanatomethyl)-2-methylbenzene (0.6 mmol, 89.4 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.31 (m, 11H), 7.19-7.12 (m, 4H), 6.68 (brs, 1H),

6.15 (brs, 1H), 4.36 (brs, 2H), 2.42-2.37 (m, 1H), 2.32-2.30 (m, 1H), 2.26 (s, 3H), 2.10-2.01 (m, 1H), 0.82 (d, J = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.1, 138.1 (d, J = 11.5 Hz), 137.8, 136.0, 134.5, 132.7, 132.6, 132.4, 130.4, 128.6, 128.5, 128.28 (d, J = 6.8 Hz), 128.26 (d, J = 6.9 Hz), 127.8, 127.6, 126.0, 57.5, 45.9, 31.8, 31.2 (d, J = 13.6 Hz), 18.9, 18.4, 17.7; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.5; **Mp**: 54-56 °C. **HRMS** Calcd. for C₂₆H₃₂N₂PS⁺ [M+H]⁺: 435.2024, found: 435.2012; [α]²⁰_D = +15.8 (c 0.26, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(2-fluorobenzyl)thiourea (LB13)

Compound LB13 (209.8 mg, 89% yield) was obtained as a white solid following the general procedure Ш from LBa (0.54)mmol. 146 mg) and 1-fluoro-2-(isothiocyanatomethyl)benzene (0.65 mmol, 108 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.29 (m, 11H), 7.25-7.21 (m, 1H), 7.09-6.98 (m, 2H), 6.60 (brs, 1H), 6.10 (brs, 1H), 4.43 (brs, 2H), 2.42-2.26 (m, 2H), 2.07-2.02 (m, 1H), 0.83 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.3, 160.2 (d, J =244.5 Hz), 138.0 (d, J = 11.6 Hz), 137.7, 132.7 (d, J = 19.1 Hz), 132.5 (d, J = 18.9 Hz), 129.6 (d, J = 3.1 Hz), 129.1 (d, J = 8.0 Hz), 128.6, 128.5, 128.3 (d, J = 6.8 Hz), 128.27 (d, J = 6.9 Hz), 124.2 (d, J = 3.1 Hz), 115.0 (d, J = 21.3 Hz), 57.6, 41.0, 31.9 (d, J = 6.5 Hz), 31.2 (d, J = 12.9 Hz), 18.4, 17.7; ³¹P NMR (162 MHz, CDCl₃, 85%) H₃PO₄) δ -23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.3; Mp: 43-45 °C; HRMS Calcd. for $C_{25}H_{29}FN_2PS^+$ [M+H]⁺: 439.1773, found: 439.1761; $[\alpha]^{20}D = +7.8$ (c 0.20, CH_2Cl_2).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(3-fluorobenzyl)thiourea (LB14)

Compound LB14 (189.2 mg, 86% yield) was obtained as a white solid following the general procedure Ш from LBa (0.5 mmol,136 mg) and 1-fluoro-3-(isothiocyanatomethyl)benzene (0.6 mmol, 100.3 mg, 82 µL) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) & 7.45-7.30 (m, 10H), 7.24-7.20 (m, 1H), 6.99-6.90 (m, 3H), 6.34 (brs, 1H), 4.44 (brs, 2H), 2.39-2.25 (m, 2H), 2.08-1.99 (m, 1H), 0.79 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.6, 162.8 (d, J = 245.5 Hz), 139.8, 138.1, 132.8, 132.7, 132.5, 130.3 (d, *J* = 9.5 Hz), 130.1 (d, *J* = 8.1 Hz), 128.7 $(d, J = 11.5 \text{ Hz}), 128.44 (d, J = 6.8 \text{ Hz}), 128.41 (d, J = 6.9 \text{ Hz}), 122.8, 114.4 (d, J = 6.9 \text{$ 21.1 Hz), 114.1 (d, *J* = 21.8 Hz), 57.7, 47.1, 30.0, 31.2 (d, *J* = 11.3 Hz), 18.5, 17.7; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.0; Mp: 97-99 °C. HRMS Calcd. for C₂₅H₂₉FN₂PS⁺ [M+H]⁺: 439.1773, found: 439.1762; $[\alpha]^{20}_{D} = +13.5$ (c 0.21, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(4-fluorobenzyl)thioure (LB15)

Compound LB15 (179.6 mg, 82% yield) was obtained as a white solid following the general procedure Π from LBa (0.5)mmol, 136 mg) and 1-fluoro-4-(isothiocyanatomethyl)benzene (0.6 mmol, 100.3 mg, 82 µL) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) & 7.44-7.30 (m, 10H), 7.18-7.15 (m, 2H), 6.98-6.93 (m, 2H), 6.29 (brs, 1H), 4.37 (brs, 2H), 2.40-2.25 (m, 2H), 2.04-1.98 (m, 1H), 0.79 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.2, 161.9 (d, J =244.8 Hz), 138.0 (d, J = 11.3 Hz), 137.7, 132.7, 132.6, 132.4, 128.9 (d, J = 7.9 Hz), 128.6, 128.5, 128.32 (d, J = 6.8 Hz), 128.28 (d, J = 6.9 Hz), 115.3 (d, J = 21.4 Hz), 57.6, 46.7, 31.9, 31.1 (d, J = 13.3 Hz), 18.3, 17.7; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.2; Mp: 93-95 °C. HRMS Calcd. for C₂₅H₂₉N₂FPS⁺ [M+H]⁺: 439.1773, found: 439.1761; [α]²⁰_D = +10.8 (c 0.21, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(4-(trifluoromethyl)benzyl) thiourea (LB16)

Compound LB16 (154.4 mg, 83% yield) was obtained as a white solid following the procedure (0.38 103 general Ш from LBa mmol, mg) and 1-(isothiocyanatomethyl)-4-(trifluoromethyl)benzene (0.76 mmol, 165 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.30 (m, 14H), 7.15 (brs, 1H), 6.39 (brs, 1H), 4.51 (brs, 2H), 2.42-2.24 (m, 2H), 2.05-1.97 (m, 1H), 0.81 (s, 6H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 181.6, 141.5, 138.1 \text{ (d}, J = 10.4 \text{ Hz}), 137.6, 132.7 \text{ (d}, J = 19.1 \text{ Hz})$ Hz), 132.4 (d, *J* = 18.8 Hz), 128.7, 128.5, 128.4 (d, *J* = 6.8 Hz), 128.3 (d, *J* = 7.0 Hz), 127.3, 125.3 (d, J = 3.8 Hz), 123.8 (q, J = 271 Hz), 57.6 (d, J = 16.3 Hz), 46.9, 32.1, 31.3, 18.3, 17.7; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; Mp: 101-103 °C. HRMS Calcd. for C₂₆H₂₉N₂F₃PS⁺ [M+H]⁺: 489.1741, found: 489.1730; $[\alpha]^{20}_{D} = +7.7$ (c 0.15, CH₂Cl₂).

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-(4-methoxybenzyl)thioure a (LB17)

17

Compound LB17 (403.8 mg, 90% yield) was obtained as a white solid following the Ш from LBa (1 mmol, 272 general procedure mg) and 1-(isothiocyanatomethyl)-4-methoxybenzene (1.2 mmol, 215 mg, 198 µL) stirred for 24 hours. ¹**H NMR** (400 MHz, CDCl₃) δ 7.46-7.28 (m, 10H), 7.12 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 4.53 (brs, 2H), 3.69 (s, 3H), 2.37-2.25 (m, 2H), 2.08-1.95 (m, 1H), 0.76 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 180.9, 158.7, 138.0 (d, J = 12.1 Hz), 137.8, 132.6, 132.5, 132.3, 128.4, 128.3, 128.2, 128.14, 128.09, 113.8, 57.4, 54.9, 46.8, 31.7, 31.1 (d, J = 13.9 Hz), 18.3, 17.6; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.5; Mp: 43-45 °C. HRMS Calcd. for C₂₆H₃₂N₂OPS⁺ [M+H]⁺: 451.1973, found: 451.1962; $[\alpha]^{20}_{D} = +18.5$ (c 0.22, CH₂Cl₂).

1-((S)-1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-((R)-1-phenylethyl)thiour ea (LB21)

Compound LB21 (193 mg, 89% yield) was obtained as a white solid following the general procedure II from LBa (0.5)mmol. 136 mg) and (R)-(1-isothiocyanatoethyl)benzene (0.6 mmol, 98 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (t, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.35-7.28 (m, 8H), 7.22 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 6.89 (brs, 1H), 5.11 (brs, 1H), 4.56 (brs, 1H), 3.63 (brs, 1H), 2.37 (dd, *J* = 14.4, 5.2 Hz, 1H), 2.26 (dd, *J* = 14.4, 8.0 Hz, 1H), 1.84-1.79 (m, 1H), 1.31 (d, J = 6.8 Hz, 3H), 0.52 (s, 3H), 0.41 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 179.2, 142.0, 138.2, 132.7 (d, J = 19.3 Hz), 132.4 (d, J =18.9 Hz), 128.9, 128.5, 128.3 (d, J = 3.3 Hz), 128.2 (d, J = 2.6 Hz), 128.1, 127.6, 125.3, 58.1, 52.8, 31.4 (d, J = 9.0 Hz), 30.8 (d, J = 13.0 Hz), 23.6, 17.8, 17.1; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.6; Mp:51-53 °C. HRMS Calcd. for $C_{26}H_{32}N_2PS^+[M+H]^+: 435.2024$, found: 435.2013; $[\alpha]^{20}D = +0.38$ (c 0.26, CH₂Cl₂).

1-((S)-1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-((S)-1-phenylethyl)thioure a (LB22)

Compound LB22 (1.0 g, 88% yield) was obtained as a white solid following the II from LBa (2.62)713 general procedure mmol, mg) and (S)-(1-isothiocyanatoethyl)benzene (3.14 mmol, 512 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) & 7.41-7.30 (m, 14H), 7.24-7.20 (m, 1H), 6.54 (brs, 1H), 5.82 (brs, 1H), 4.83 (brs, 1H), 4.27 (brs, 1H), 2.18-2.00 (m, 3H), 1.48 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.8 Hz, 3H), 0.75 (d, J = 4.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 180.5, 142.2, 137.8 (d, J = 11.9 Hz), 132.6, 132.5, 132.3, 128.7, 128.3, 128.2, 128.1 (d, J = 6.6 Hz), 128.0 (d, J = 6.9 Hz), 127.3, 125.6, 57.1 (d, J = 14.9 Hz), 53.5, 31.3 (d, J = 12.0 Hz), 53.5, 31J = 14.6Hz), 31.0, 22.9, 18.6, 17.0; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.9; **Mp**: 49-51 °C; **HRMS** Calcd. for C₂₆H₃₂N₂PS⁺ [M+H]⁺: 435.2024, found: 435.2011; $[\alpha]^{20}_{D} = +34.4$ (c 0.24 CH₂Cl₂).

1-((*R*)-1-(diphenylphosphaneyl)-3-phenylpropan-2-yl)-3-((*S*)-1-phenylethyl)thiou rea (LB23)

Compound LB23 (216.2 mg, 88% yield) was obtained as a white solid following the *general procedure II* from LBc (0.6 mmol, 194 mg) and

(*S*)-(1-isothiocyanatoethyl)benzene (0.72 mmol, 119 mg) stirred for 24 hours. ¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.31 (m, 14H), 7.22-7.16 (m, 5H), 6.91 (s, 2H), 5.54 (brs, 1H), 4.93 (brs, 1H), 4.05 (brs, 1H), 2.96-2.92 (m, 1H), 2.73 (s, 1H), 2.49-2.45 (m, 1H), 2.28-2.22 (m, 1H), 1.37 (d, J = 6.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.4, 141.9, 137.8 (d, J = 11.8 Hz), 137.3, 136.8, 132.7 (d, J = 19.3 Hz), 132.4 (d, J= 18.9 Hz), 128.9, 128.8, 128.6, 128.5, 128.3 (d, J = 13.6 Hz), 128.2, 128.1, 127.5, 126.0, 125.3, 54.0 (d, J = 14.9 Hz), 52.9, 40.6 (d, J = 9.5 Hz), 32.4 (d, J = 15.3 Hz), 23.5; ³¹**P NMR** (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.7; **Mp**: 53-55 °C; **HRMS** Calcd. for C₃₀H₃₂N₂PS⁺[M+H]⁺: 483.2024, found: 483.2012; [α]²⁰_D = -12.7 (c 0.23 CH₂Cl₂).

1-((S)-2-(diphenylphosphaneyl)-1-phenylethyl)-3-((S)-1-phenylethyl)thiourea (LB24)

Compound LB24 (229 mg, 98% yield) was obtained as a white solid following the II (0.5)general procedure from LBb mmol, 152.5 mg) and (S)-(1-isothiocyanatoethyl)benzene (0.6 mmol, 100 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) & 7.39-7.31 (m, 18H), 7.16-7.14 (m, 2H), 6.64 (brs, 1H), 6.14 (brs, 1H), 5.06 (brs, 1H), 2.74-2.69 (m, 1H), 2.37 (brs, 1H), 1.31 (d, J = 6.8 Hz, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 180.2, 142.3, 140.9 (d, J = 3.0 Hz), 137.4, 136.9, 132.73 (d, J = 15.3 Hz), 132.68 (d, J = 15.3 Hz), 128.8, 128.7 (d, J = 3.6 Hz), 128.4 (d, J = 35.5 Hz), 127.9, 127.6, 126.3, 125.9, 56.5 (d, J = 14.2 Hz), 53.9, 36.7 (d, J = 12.0 Hz), 22.4; ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄) δ -23.7; Mp: 62-64 °C; HRMS Calcd. for $C_{29}H_{30}N_2PS^+[M+H]^+$: 469.1867, found: 469.1856; $[\alpha]^{20}D = +10.5$ (c 0.20 CH₂Cl₂).

1-((R)-1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-((S)-1-phenylethyl)thiour

ea (LB25)

Compound LB25 (205.5 mg, 95% yield) was obtained as a white solid following the general procedure II from LBd (0.5)mmol, 136 mg) and (S)-(1-isothiocyanatoethyl)benzene (0.6 mmol, 97.8 mg) stirred for 24 hours. ¹H NMR (400 MHz, CDCl₃) & 7.54-7.28 (m, 12H), 7.23-7.15 (m, 3H), 7.00 (brs, 1H), 5.10 (brs, 1H), 4.56 (brs, 1H), 3.61 (brs, 1H), 2.36 (dd, *J* = 14.4, 4.8 Hz, 1H), 2.26 (dd, J = 14.4, 8.4 Hz, 1H), 1.85-1.77 (m, 1H), 1.30 (d, J = 6.4 Hz, 3H), 0.50 (s, 3H), 0.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 142.0, 138.3, 132.6 (d, J = 26.7 Hz), 132.4 (d, J = 26.2 Hz), 128.9, 128.5, 128.3, 128.2 (d, J = 1.9 Hz), 128.1, 127.6, 125.3, 58.1, 52.8, 31.5 (d, J = 9.4 Hz), 30.8 (d, J = 14.4 Hz), 23.6, 17.9, 17.1; ³¹P NMR (162) MHz, CDCl₃, 85% H₃PO₄) δ -23.5; Mp: 51-56 °C. HRMS Calcd. for C₂₆H₃₂N₂PS⁺ $[M+H]^+$: 435.2024, found: 435.2012; $[\alpha]^{20}_D = -4.7$ (c 0.23, CH₂Cl₂).

General procedure (III) for the synthesis of R-C compounds 3

Procedure (III): To a solution of compound **1** (0.1 mmol, 1.0 eq.) and chiral phosphine LB22 (0.01 mmol, 0.1 eq.) in toluene (1.0 mL) was added vinyl ketone **2** (0.15 mmol, 1.5 eq.) under nitrogen atmosphere at 0 °C. TLC monitor until the compound **1** consumed after six hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 20/1 to 10/1, $R_f = 0.5-0.6$) to afford the corresponding product **3**.

Methyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3a)

Compound **3a** (34.5 mg, 99% yield) was obtained as a white solid following the *general procedure III* from **1a** (0.1 mmol, 27.6 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.22 (s, 1H), 5.57 (s, 1H), 5.20 (s, 1H), 4.77 (s, 1H), 3.69 (s, 3H), 2.40 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 173.0, 153.2, 148.1, 136.1, 128.4, 126.4, 125.5, 52.3, 51.7, 34.3, 30.2, 25.9; **Mp**: 111-113 °C; **HRMS** Calcd. for C₂₁H₂₉O₄⁻ [M-H]⁻: 345.2066, found: 345.2078.

 $[\alpha]^{20}_{D} = -106.4$ (c 0.16, CH₂Cl₂) for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 15.167 \text{ min}, t_{major} = 11.200 \text{ min}.$

Racemic Sample 3a

Enantiomeric Sample 3a

Ethyl (S)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3b)

Compound **3b** (39.8 mg, 94% yield) was obtained as a white solid following the *general procedure III* from **1b** (0.1 mmol, 34.1 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.20 (s, 1H), 5.56-5.55 (m, 1H), 5.18 (s, 1H), 4.75 (s, 1H), 4.23-4.08 (m, 2H), 2.39 (s, 3H), 1.41 (s, 18H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 172.4, 153.1, 148.3, 136.1, 128.1, 126.6, 125.5, 61.0, 51.9, 34.3, 30.2, 25.8, 14.1; **Mp**: 108-110 °C; **HRMS** Calcd. for C₂₂H₃₁O₄⁻ [M-H]⁻: 359.2222, found: 359.2218.

 $[\alpha]^{20}_{D} = -112.9$ (c 0.14, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 12.179 \text{ min}, t_{major} = 9.930 \text{ min}.$

Racemic Sample 3b

Chromatogram

??? <mark>A 23</mark> 0n	m	Peak Tab	ole	
Peak#	Ret. Time	Area	Height	Area%
1	9.903	8131440	555040	50.149
2	12.102	8083260	482457	49.851
Total		16214701	1037497	100.000

Enantiomeric Sample 3b

mV

Chromatogram

D				
Pag	7	0	h	0
I Ca	Λ.	la	U	

222 A 230m	m	I Cuk Iuo		
Peak#	Ret. Time	Area	Height	Area%
1	9.930	6538877	464195	95.506
2	12.179	307692	20954	4.494
Total		6846570	485148	100.000

Isopropyl

(S)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3c)

Compound 3c (36.6 mg, 98% yield) was obtained as a white solid following the general procedure III from 1c (0.1 mmol, 30.4 mg) and 2a (0.15 mmol, 10.5 mg, 12.5 μL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.97 (s, 2H), 6.18 (s, 1H), 5.52 (s, 1H), 5.16 (s, 1H), 5.07-4.97 (m, 1H), 4.72 (s, 1H), 2.39 (s, 3H), 1.41 (s, 18H), 1.25 (d, J = 6.4 Hz, 3H), 1.16 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 171.8, 153.0, 148.5, 136.0, 127.8, 126.8, 125.5, 68.2, 52.2, 34.3, 30.3, 25.8, 21.7, 21.4; **Mp**: 111-112 °C; **HRMS** Calcd. for C₂₃H₃₃O₄⁻ [M-H]⁻: 373.2384, found: 373.2390. $[\alpha]^{20}_{D} = -86.4$ (c 0.30, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 10.901 \text{ min}, t_{major} = 9.440 \text{ min}.$

Racemic Sample 3c

mV 200Chromatogram

Enantiomeric Sample 3c

Cyclopropylmethyl (S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3d)

Compound **3d** (35.2 mg, 91% yield) was obtained as a white solid following the *general procedure III* from **1d** (0.1 mmol, 31.6 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 2H), 6.21 (s, 1H), 5.57 (s, 1H), 5.17 (s, 1H), 4.79 (s, 1H), 3.98-3.89 (m, 2H), 2.40 (s, 3H), 1.41 (s, 18H), 1.14-1.07 (m, 1H), 0.54-0.49 (m, 2H), 0.24 (q, *J* = 5.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 172.6, 153.1, 148.3, 136.0, 128.0, 126.7, 125.6, 69.6, 52.0, 34.3, 30.3, 25.9, 9.7, 3.3, 3.1; **Mp**: 106-109 °C; **HRMS** Calcd. for C₂₄H₃₃O₄⁻ [M-H]⁻: 385.2379, found: 385.2373.

 $[\alpha]^{20}_{D} = -4.4$ (c 0.07, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 13.709 \text{ min}, t_{major} = 10.864 \text{ min}.$

Racemic Sample 3d

-		-		
Peal	κ΄	a	h	e
1 000		1		-

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.835	4838777	357510	50.338
2	13.644	4773867	290278	49.662
Total		9612644	647788	100.000

Enantiomeric Sample 3d

000 1

220

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.864	5429406	390440	95.424
2	13.709	260377	16014	4.576
Total		5689784	406454	100.000

Cinnamyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3e)

Compound 3e (37.6 mg, 83% yield) was obtained as a white solid following the

general procedure III from **1e** (0.1mmol, 37.8 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 4H), 7.25-7.21 (m, 1H), 7.01 (s, 2H), 6.56 (d, J = 16.0 Hz, 1H), 6.27-6.20 (m, 2H), 5.59 (s, 1H), 5.18 (s, 1H), 4.82 (s, 1H), 4.77 (d, J = 6.4 Hz, 2H), 2.41 (s, 3H), 1.39 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 172.2, 153.2, 148.1, 136.2, 136.1, 133.9, 128.5, 128.3, 127.9, 126.6, 126.4, 125.6, 123.1, 65.4, 51.9, 34.3, 30.2, 25.8; Mp: 104-106 °C; HRMS Calcd. for C₂₉H₃₅O₄⁻ [M-H]⁻: 447.2541, found: 447.2550.

 $[\alpha]^{20}_{D} = -88.9$ (c 0.18, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 22.167 \text{ min}, t_{major} = 18.444 \text{ min}.$

Racemic Sample 3e

mV

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	18.567	1865395	80606	49.947
2	22.219	1869350	65604	50.053
Total		3734745	146210	100.000

Enantiomeric Sample 3e

Chromatogram

Compound **3f** (36.3 mg, 98% yield) was obtained as a white solid following the *general procedure III* from **1f** (0.1mmol, 30.0 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.23 (s, 1H), 5.58 (s, 1H), 5.20 (s, 1H), 4.80 (s, 1H), 4.73-4.64 (m, 2H), 2.43-2.42 (m, 1H), 2.40 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 171.6, 153.3, 147.8, 136.2, 128.5, 125.9, 125.6, 77.6, 74.8, 52.4, 51.6, 34.3, 30.2, 25.8; **Mp**: 103-105 °C; **HRMS** Calcd. for C₂₃H₂₉O₄⁻ [M-H]⁻: 369.2066, found: 369.2066.

 $[\alpha]^{20}_{D} = -100.8$ (c 0.13, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 19.404 \text{ min}, t_{major} = 13.592 \text{ min}.$

Racemic Sample 3f

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	13.425	3904637	228424	50.147
2	19.330	3881680	159480	49.853
Total		7786317	387904	100.000

Enantiomeric Sample 3f

222 1 220	122	Peak Tal	ble	
Peak#	Ret. Time	Area	Height	Area%
1	13.592	4163916	239148	95.556
2	19.404	193645	8198	4.444
Total		4357561	247346	100.000

mV

Compound **3g** (24.6 mg, 97% yield) was obtained as a white solid following the *general procedure III* from **1g** (0.06 mmol, 21.5 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.27 (m, 4H), 7.26-7.25 (m, 1H), 6.96 (s, 2H), 6.21 (s, 1H), 5.59 (s, 1H), 5.17 (s, 1H), 5.14 (s, 2H), 4.83 (s, 1H), 2.39 (s, 3H), 1.38 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 172.3, 153.2, 148.0, 136.1, 136.0, 128.4, 128.3, 127.97, 127.95, 126.4, 125.6, 66.5, 51.9, 34.3, 30.2, 25.8; **Mp**: 108-110 °C; **HRMS** Calcd. for C₂₇H₃₃O₄⁻ [M-H]⁻: 421.2379, found: 421.2373.

 $[\alpha]^{20}_{D} = -122.8$ (c 0.22, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 28.510 \text{ min}, t_{major} = 14.157 \text{ min}.$

Racemic Sample 3g

Chromatogram

???A 230n	ım	Peak Tab	ole	
Peak#	Ret. Time	Area	Height	Area%
1	14.096	4454080	243864	50.127
2	28.225	4431558	102105	49.873
Total		8885638	345969	100.000

Enantiomeric Sample 3g

Chromatogram

Compound 3h (41.8 mg, 84% yield) was obtained as a white solid following the general procedure III from 1h (0.1 mmol, 42.8 mg) and 2a (0.15 mmol, 10.5 mg, 12.5 μL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 5H), 7.21-7.20 (m, 3H), 7.11-7.09 (m, 2H), 6.93 (s, 2H), 6.86 (s, 1H), 6.21 (s, 1H), 5.63 (s, 1H), 5.16 (s, 1H), 4.96 (s, 1H), 2.36 (s, 3H), 1.36 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 171.3, 153.1, 147.7, 140.0, 139.8, 136.0, 128.4, 128.2, 128.0, 127.8, 127.6, 127.2, 127.0, 126.3, 125.6, 77.2, 51.9, 34.3, 30.2, 25.8; Mp: 99-101 °C; HRMS Calcd. for C₃₃H₃₇O₄- [M-H]⁻: 497.2692, found: 497.2709.

 $[\alpha]^{20}_{D} = -73.6$ (c 0.38, CH₂Cl₂) for 78% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 20.419 \text{ min}, t_{major} = 11.165 \text{ min}.$

Racemic Sample 3h

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	11.054	6187971	282085	49.758
2	19.984	6248188	134032	50.242
Total		12436158	416117	100.000

Enantiomeric Sample 3h

mV

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	11.165	20124349	890450	88.839
2	20.419	2528370	60645	11.161
Total		22652720	951095	100.000

Furan-2-ylmethyl

(S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3i)

Compound **3i** (20.2 mg, 98% yield) was obtained as a white solid following the *general procedure III* from **1i** (0.05 mmol, 17.1 mg) and **2a** (0.075 mmol, 5.26 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 0.8 Hz, 1H), 6.94 (s, 2H), 6.36 (d, J = 2.8 Hz, 1H), 6.33-6.31(m, 1H), 6.20 (s, 1H), 5.55 (s, 1H), 5.16 (s, 1H), 5.09 (s, 2H), 4.79 (s, 1H), 2.38 (s, 3H), 1.38 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 172.0, 153.2, 149.5, 148.0, 143.0, 136.0, 128.3, 126.2, 125.6, 110.6, 110.5, 58.5, 51.7, 34.3, 30.2, 25.8; **Mp**: 66-67 °C; **HRMS** Calcd. for C₂₅H₃₁O₅⁻ [M-H]⁻: 411.2171, found: 411.2184.

 $[\alpha]^{20}_{D} = -85.6$ (c 0.13, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 26.416 \text{ min}, t_{major} = 18.209 \text{ min}.$

Racemic Sample 3i

mV

Chromatogram

Peal	k	Tal	h	le
I Ca	N	Ia	U.	LC.

???A 2341	nm			
Peak#	Ret. Time	Area	Height	Area%
1	18.260	6408256	230644	49.964
2	26.383	6417413	173327	50.036
Total		12825669	403971	100.000

Enantiomeric Sample 3i

Chromatogram

222 A 224		Peak Tab	le	
Peak#	Ret. Time	Area	Height	Area%
1	18.209	13391237	488112	96.106
2	26.416	542536	16117	3.894
Total	6 - 6	13933773	504229	100.000

Phenyl (S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3j)

Compound **3j** (18.7 mg, 92% yield) was obtained as a white solid following the *general procedure III* from **1j** (0.05 mmol, 15.4 mg) and **2a** (0.075 mmol, 5.26 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 7.10 (s, 2H), 7.06 (d, J = 8.4 Hz, 2H), 6.27 (s, 1H), 5.63 (s, 1H), 5.24 (s, 1H), 4.95 (s, 1H), 2.44 (s, 3H), 1.44 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 171.1, 153.4, 151.0, 148.0, 136.3, 129.3, 128.7, 126.0, 125.71, 125.65, 121.5, 52.2, 34.4, 30.3, 25.8; **Mp**: 100-102 °C; **HRMS** Calcd. for C₂₆H₃₁O₄⁻ [M-H]⁻: 407.2228, found: 407.2235.

 $[\alpha]^{20}_{D} = -104.7$ (c 0.12, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 22.126 \text{ min}, t_{major} = 14.505 \text{ min}.$

Racemic Sample 3j

mV

Peak Table

		I Cak Tau			
???A 230nm					
Peak#	Ret. Time	Area	Height	Area%	
1	14.021	4076636	244908	50.237	
2	21.000	4038091	151943	49.763	
Total		8114727	396851	100.000	

Enantiomeric Sample 3j

mV

Chromatogram

Peak Table

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	14.505	4232976	241099	95.413
2	22.126	203524	7871	4.587
Total		4436500	248969	100.000

(S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*-ethyl-*N*-methyl-3-methylene-4-oxope ntanamide (3k)

Compound **3k** (21.9 mg, 59% yield) was obtained as a white solid following the *general procedure III* from **1k** (0.05 mmol, 16 mg) and **2a** (0.075 mmol, 5.26 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 4.8 Hz, 2H), 6.13 (d, J = 5.6 Hz, 1H), 5.35 (d, J = 32.0 Hz, 1H), 5.16 (s, 1H), 5.02 (d, J = 16.8 Hz, 1H), 3.67-3.33 (m, 1H), 3.26-3.11 (m, 1H), 2.88 (d, J = 5.2 Hz, 3H), 2.40 (s, 3H), 1.41 (s, 18H), 1.07-0.99 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.03, 199.98, 171.3, 171.1, 152.9, 152.8, 150.0, 149.8, 136.2, 127.41, 127.36, 127.3, 126.9, 125.7, 125.6, 53.4, 50.0, 49.6, 44.8, 43.0, 35.2, 34.4, 33.0, 30.3, 26.1, 12.7, 12.0; Mp: 151-153 °C; HRMS Calcd. for C₂₃H₃₄NO₃⁻ [M-H]⁻: 372.2539, found: 372.2540.

 $[\alpha]^{20}_{D} = -105.2$ (c 0.13, CH₂Cl₂) for 85% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 234 nm, $t_{minor} = 43.920$ min, $t_{major} = 13.580$ min.

Racemic Sample 3k

Chromatogram

Peak#	Ret. Time	Area	Height	Area%
1	13.553	4371257	170388	49.985
2	42.076	4373801	29723	50.015
Total		8745058	200111	100.000

Enantiomeric Sample 3k

Chromatogram

(*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-diethyl-3-methylene-4-oxopentana mide (3l)

Compound **31** (27.5mg, 71% yield) was obtained as a yellow solid following the *general procedure III* from **11** (0.1 mmol, 31.7 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.95 (s, 2H), 6.13 (d, J = 0.4 Hz, 1H), 5.31 (d, J = 1.6 Hz, 1H), 5.15 (s, 1H), 5.00 (s, 1H), 3.70-3.61 (m, 1H), 3.35-3.26 (m, 1H), 3.15-2.96 (m, 2H), 2.40 (s, 3H), 1.40 (s, 18H), 1.07 (td, J = 7.2, 3.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 170.8, 152.9, 150.1, 136.3, 127.6, 127.5, 125.7, 49.9, 42.6, 40.6, 34.5, 30.5, 26.2, 13.7, 12.8; **Mp**: 131-133 °C; **HRMS** Calcd. for C₂₄H₃₆NO₃⁻[M-H]⁻: 386.2695, found: 386.2701.

 $[\alpha]^{20}_{D} = -115$.0 (c 0.10, CH₂Cl₂) for 81% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, t_{minor} = 19.882 min, t_{major} = 10.512 min.

Racemic Sample 31

min

???A 230n	m	Peak Tab	le	
Peak#	Ret. Time	Area	Height	Area%
1	10.430	1904710	101003	50.375
2	20.506	1876365	62894	49.625
Total		3781075	163897	100.000

Enantiomeric Sample 31

Chromatogram

mV

mV

Peak Table

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.512	3068306	153352	90.478
2	19.882	322923	12222	9.522
Total		3391230	165574	100.000

(S)-N,N-dibutyl-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentana mide (3m)

Compound **3m** (43.8 mg, 99% yield) was obtained as a white solid following the *general procedure III* from **1m** (0.1 mmol, 37.3 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 2H), 6.11 (s, 1H), 5.28 (s, 1H), 5.15 (s, 1H), 4.98 (s, 1H), 3.64-3.57 (m, 1H), 3.25-3.17 (m, 1H), 3.02-2.90 (m, 2H), 2.40 (s, 3H), 1.64-1.58 (m, 1H), 1.56-1.49 (m, 2H), 1.40 (s, 18H), 1.29-1.14 (m, 5H), 0.89-0.83 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 171.1, 152.8, 150.1, 136.2, 127.6, 127.1, 125.7, 50.3, 48.0, 45.8, 34.3, 30.3, 29.7, 26.1, 20.1, 13.9, 13.8; **Mp**: 114-116 °C; **HRMS** Calcd. for C₂₈H₄₄NO₃⁻ [M-H]⁻: 442.3321, found: 442.3333.

 $[\alpha]^{20}_{D} = -60.5$ (c 0.16, CH₂Cl₂) for 55% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 11.064$ min, $t_{major} = 7.608$ min.

Racemic Sample 3m

Chromatogram

			T	1	1
\mathbf{p}_{c}	n	1	10	h	0
	a		10	U.	

???A 230r	nm		12	
Peak#	Ret. Time	Area	Height	Area%
1	7.789	2282418	186649	50.050
2	11.111	2277868	142787	49.950
Total		4560287	329436	100.000

Enantiomeric Sample 3m

Compound **3n** (21.9 mg, 99% yield) was obtained as a white solid following the *general procedure III* from **1n** (0.05 mmol, 16.6 mg) and **2a** (0.075 mmol, 5.3 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 2H), 6.17 (s, 1H), 5.35 (s, 1H), 5.20 (s, 1H), 5.01 (s, 1H), 3.83-3.66 (m, 2H), 3.56-3.33 (m, 5H), 3.03 (t, *J* = 8.4 Hz, 1H), 2.42 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 170.3, 153.0, 149.4, 136.5, 127.6, 126.8, 125.6, 66.8, 66.2, 49.6, 46.6, 42.5, 34.4, 30.3, 26.0;

Mp: 141-143 °C; **HRMS** Calcd. for $C_{24}H_{34}NO_4^{-}[M-H]^{-}$: 400.2488, found: 400.2498. [α]²⁰_D = -84.4 (c 0.16, CH₂Cl₂) for 81% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, tminor = 54.764 min, tmajor = 28.587 min.

Racemic Sample 3n

mV

Chromatogram

Peak Table

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	28.505	3077414	49045	49.906
2	54.923	3089056	35146	50.094
Total		6166470	84190	100.000

Enantiomeric Sample 3n

mV

Chromatogram

Peak Table

222 A 230m	m			
Peak#	Ret. Time	Area	Height	Area%
1	28.587	23153758	498985	90.332
2	54.764	2477982	29268	9.668
Total		25631740	528254	100.000

(S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-1-(piperidin-1-yl)pentane-1,4-dione (30)

Compound **3o** (20.1 mg, 99% yield) was obtained as a white solid following the *general procedure III* from **1o** (0.05 mmol, 16.45 mg) and **2a** (0.075 mmol, 5.26 mg, 7 µL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 2H), 6.12 (s, 1H), 5.33 (s, 1H), 5.16 (s, 1H), 5.06 (s, 1H), 3.84 (d, *J* = 13.2 Hz, 1H), 3.40 (d, *J* = 13.2 Hz, 1H), 3.27-3.19 (m, 2H), 2.42 (s, 3H), 1.56-1.49 (m, 4H), 1.40 (s, 18H), 1.38-1.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 169.8, 152.8, 149.9, 136.2, 127.4, 126.9, 125.7, 50.0, 47.2, 43.3, 34.4, 30.3, 26.1, 25.6, 25.3, 24.5; Mp: 147-149 °C; HRMS Calcd. for C₂₅H₃₆NO₃⁻[M-H]⁻: 398.2695, found: 398.2705.

 $[\alpha]^{20}_{D} = -31.3$ (c 0.48, CH₂Cl₂) for 75% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 99/1, 0.5 mL/min, 230nm, t_{minor} = 31.083 min, t_{major} = 35.919 min.

Chromatogram

???A 2301	ım			
Peak#	Ret. Time	Area	Height	Area%
1	29.515	2549499	41576	49.689
2	33.998	2581397	32972	50.311
Total		5130896	74548	100.000

Enantiomeric Sample 30

Chromatogram

(S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-1-(pyrrolidin-1-yl)pentane -1,4-dione (3p)

Compound **3p** (10.2 mg, 53% yield) was obtained as a white solid following the *general procedure III* from **1p** (0.05 mmol, 16.5 mg) and **2a** (0.075 mmol, 5.3 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 2H), 6.17 (s, 1H), 5.48 (s, 1H), 5.16 (s, 1H), 4.90 (s, 1H), 3.69-3.62 (m, 1H), 3.57-3.50 (m, 1H), 3.39-3.33 (m, 1H), 3.26-3.20 (m, 1H), 2.40 (s, 3H), 1.97-1.92 (m, 1H), 1.86-1.74 (m, 3H), 1.42 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 170.1, 152.9, 149.4, 136.0, 127.8, 127.0, 125.8, 50.9, 46.5, 46.0, 34.3, 30.3, 26.1, 24.3; **Mp**: 155-157 °C; **HRMS** Calcd. for C₂₄H₃₄NO₃⁻[M-H]⁻: 384.2544, found: 384.2550.

 $[\alpha]^{20}_{D} = -73.3$ (c 0.09, CH₂Cl₂) for 73% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 99/1, 0.5 mL/min, 230nm, t_{minor} = 37.907 min, t_{major} = 41.120 min.

Racemic Sample 3p

Peak Table

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	36.386	674123	9765	50.549
2	40.216	659480	8305	49.451
Total		1333603	18070	100.000

Enantiomeric Sample 3p

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	37.907	890358	12553	13.700
2	41.120	5608502	62908	86.300
Total		6498860	75461	100.000

Compound **3q** (21.3 mg, 99% yield) was obtained as a white solid following the *general procedure III* from **1q** (0.05 mmol, 15.3 mg) and **2a** (0.075 mmol, 5.3 mg, 7

μL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 2H), 6.21 (s, 1H), 5.52 (s, 1H), 5.25 (s, 1H), 5.15 (s, 1H), 3.56 (s, 3H), 3.17 (s, 3H), 2.40 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 173.1, 152.9, 148.9, 136.0, 128.3, 126.9, 125.8, 60.9, 48.4, 34.3, 30.3, 26.0; Mp: 121-123 °C; HRMS Calcd. for C₂₂H₃₂NO₄⁻ [M-H]⁻: 374.2337, found: 374.2342.

 $[\alpha]^{20}_{D} = -108.8$ (c 0.16, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 25.825 \text{ min}, t_{major} = 14.922 \text{ min}.$

Racemic Sample 3q

mV

Chromatogram

Peak Table

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	14.973	3256441	130244	50.150
2	25.938	3236959	103058	49.850
Total		6493400	233302	100.000

Enantiomeric Sample 3q

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	14.922	17579680	666610	95.367
2	25.825	854037	30085	4.633
Total	13	18433717	696695	100.000

S-phenyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanethioate (3r)

Compound **3r** (8.4 mg, 47% yield) was obtained as a yellow viscous liquid following the *general procedure III* from **1r** (0.042 mmol, 14.75 mg) and **2a** (0.063 mmol, 4.4 mg, 5.3 µL) stirred for 6 hours. **¹H NMR** (400 MHz, CDCl₃) δ 7.38 (s, 5H), 7.01 (s, 2H), 6.26 (s, 1H), 5.75 (d, J = 1.2 Hz, 1H), 5.22 (s, 1H), 5.19 (s, 1H), 2.39 (s, 3H), 1.42 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 197.0, 153.4, 147.5, 136.1, 134.6, 129.3, 129.1, 128.8, 128.2, 126.0, 125.9, 58.6, 34.4, 30.3, 25.9; **HRMS** Calcd. for C₂₆H₃₁O₃S⁻[M-H]⁻: 423.1999, found: 423.2009.

 $[\alpha]^{20}_{D} = -68.1$ (c 0.12, CH₂Cl₂) for 82% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 16.993$ min, $t_{major} = 11.776$ min.

Racemic Sample 3r

mV

Chromatogram

Peak#	Ret. Time	Area	Height	Area%
1	11.912	2841123	187004	50.257
2	17.106	2812060	125068	49.743
Total		5653184	312072	100.000

Enantiomeric Sample 3r

Chromatogram

D		÷	-			
Ρ	69	1	1	9	h	P
1	va.	N	1	a	υ.	IU

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	11.776	2479919	172628	91.067
2	16.993	243273	11767	8.933
Total		2723192	184395	100.000

Compound **3s** (10.5 mg, 32% yield) was obtained as a yellow viscous liquid following the *general procedure III* from **1u** (0.076 mmol, 27.8 mg) and **2a** (0.09 mmol, 6.3 mg, 7.5 µL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 5H), 6.96 (s, 2H), 6.27 (s, 1H), 5.71 (d, J = 1.2 Hz, 1H), 5.18 (s, 1H), 5.10 (s, 1H), 4.17 (d, J = 14.0Hz, 1H), 4.05 (d, J = 14.0 Hz, 1H), 2.40 (s, 3H), 1.38 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 198.0, 153.3, 147.5, 137.6, 136.0, 129.0, 128.8, 128.5, 127.1, 126.3, 125.7, 58.9, 34.3, 33.5, 30.2, 25.9; **HRMS** Calcd. for C₂₇H₃₃O₃S⁻ [M-H]⁻: 437.2156, found: 437.2162.

 $[\alpha]^{20}_{D} = -13.1$ (c 0.54, CH₂Cl₂) for 84% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 27.489 \text{ min}, t_{major} = 12.685 \text{ min}.$

Racemic Sample 3s

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.758	1240664	77635	50.043
2	27.493	1238531	24625	49.957
Total		2479195	102259	100.000

Chromatogram

Enantiomeric Sample 3s

mV

???A 230r	ım	Peak Tab	ole	
Peak#	Ret. Time	Area	Height	Area%
1	12.685	8899540	548362	92.012
2	27.489	772576	18531	7.988
Total		9672116	566893	100.000

Methyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxohexanoate (3t)

Compound 3t (28.9 mg, 94% yield) was obtained as a white solid following the

general procedure III from **1a** (0.1 mmol, 27.6 mg) and **2b** (0.15 mmol, 12.6 mg, 14.8 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.21 (s, 1H), 5.51 (d, J = 1.2 Hz, 1H), 4.78 (s, 1H), 3.69 (s, 3H), 2.78 (q, J = 7.2 Hz, 2H), 1.41 (s, 18H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 173.1, 153.2, 147.6, 136.1, 126.9, 126.5, 125.6, 52.2, 52.0, 34.3, 30.8, 30.2, 8.2; Mp: 92-94 °C; HRMS Calcd. for C₂₂H₃₃O₄⁺ [M+H]⁺: 361.2373, found: 361.2379.

 $[\alpha]^{20}_{D} = -125.2$ (c 0.14, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, tminor = 10.759 min, tmajor = 15.462 min.

Racemic Sample 3t

mV

Chromatogram

		Peak Tab	le	
???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.810	606309	40986	50.317
2	15.601	598659	30130	49.683
Total		1204968	71116	100.000

Enantiomeric Sample 3t

1 1

		Peak lat	ble	
???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	10.759	2869975	172716	95.187
2	15.462	145129	7302	4.813
Total		3015104	180018	100.000

Ethyl (S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxohexanoate (3u)

3u

Compound **3u** (30.7 mg, 82% yield) was obtained as a white solid following the *general procedure III* from **1b** (0.1 mmol, 30.6 mg) and **2b** (0.15 mmol, 12.6 mg, 15 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 2H), 6.20 (s, 1H), 5.49 (d, *J* = 1.6 Hz, 1H), 5.18 (s, 1H), 4.76 (s, 1H), 4.22-4.08 (m, 2H), 2.78 (q, *J* = 7.2 Hz, 2H), 1.41 (s, 18H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 172.5, 153.1, 147.8, 136.0, 126.9, 126.6, 125.5, 61.0, 52.2, 34.3, 30.8, 30.2, 14.1, 8.3; **Mp**: 65-67 °C; **HRMS** Calcd. for C₂₂H₃₃O₄⁻ [M-H]⁻: 373.2384, found: 373.2390.

 $[\alpha]^{20}_{D} = -92.4$ (c 0.15, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 12.749 \text{ min}, t_{major} = 9.759 \text{ min}.$

Racemic Sample 3u

Peak Table

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	9.762	2598217	184158	50.805
2	12.763	2515854	149360	49.195
Total		5114070	333518	100.000

Enantiomeric Sample 3u

Chromatogram

Peak Table

???A 230r	ım			
Peak#	Ret. Time	Area	Height	Area%
1	9.759	5564462	414562	95.581
2	12.749	257267	15607	4.419
Total		5821730	430169	100.000

Methyl (S)-3-benzoyl-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)but-3-enoate (3v)

Compound 3v (36.2 mg, 89% yield) was obtained as a white solid following the

52

general procedure III from **1a** (0.1 mmol, 27.6 mg) and **2c** (0.15 mmol, 19.8 mg, 19 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.09 (s, 2H), 5.80 (s, 1H), 5.58 (s, 1H), 5.22 (s, 1H), 5.06 (s, 1H), 3.69 (s, 3H), 1.44 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 173.0, 153.3, 147.3, 137.5, 136.2, 132.3, 129.7, 128.5, 128.1, 126.3, 125.7, 53.0, 52.3, 34.3, 30.3; **Mp**: 136-138 °C; **HRMS** Calcd. for C₂₆H₃₃O₄⁺ [M+H]⁺: 409.2373, found: 409.2378.

 $[\alpha]^{20}_{D} = -12.8$ (c 0.13, CH₂Cl₂) for 20% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 25.423 \text{ min}, t_{major} = 12.923 \text{ min}.$

Racemic Sample 3v

mV

Chromatogram

222A 230m	ım	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	12.900	4278375	227685	50.517
2	25.310	4190744	118559	49.483
Total	2	8469119	346244	100.000

Enantiomeric Sample 3v

Chromatogram

Methyl (S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-formylbut-3-enoate (3w)

Compound **3w** (16 mg, 96% yield) was obtained as a white solid following the *general procedure III* from **1a** (0.05 mmol, 13.8 mg) and acrolein **2d** (0.075 mmol, 4.2 mg, 5 µL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.03 (s, 2H), 6.20 (d, *J* = 9.6 Hz, 2H), 5.20 (s, 1H), 4.70 (s, 1H), 3.71 (s, 3H), 1.42 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 172.2, 153.3, 148.7, 136.6, 136.2, 125.8, 125.3, 52.4, 49.6, 34.4, 30.2; **Mp**: 131-134 °C; **HRMS** Calcd. for C₂₀H₂₉O₄⁺ [M+H]⁺: 333.2066, found: 333.2065.

 $[\alpha]^{20}_{D} = -74.1$ (c 0.32, CH₂Cl₂) for 86% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 11.231$ min, $t_{major} = 10.565$ min.

54

Racemic Sample 3w

Chromatogram

Peak Table

222 A 230m	m	I cur Iuo		
Peak#	Ret. Time	Area	Height	Area%
1	10.492	2930001	239888	49.275
2	11.149	3016259	233636	50.725
Total		5946260	473524	100.000

Enantiomeric Sample 3w

mV

Chromatogram

D 1	T	1 1	
Peak	12	hle	3
1 Cun			-

?	??A 230n	ım			
Γ	Peak#	Ret. Time	Area	Height	Area%
	1	10.565	7601215	617370	92.971
	2	11.231	574657	45186	7.029
	Total		8175872	662556	100.000

4-ethyl-1-methyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylenesuccinate (3x).

3x

Compound **3x** (21.4 mg, 55% yield) was obtained as a white solid following the *general procedure III* from **1a** (0.1 mmol, 27.6 mg) and ethyl acrylate **2e** (0.15 mmol, 15 mg, 16 µL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ (s, 2H), 6.38 (s, 1H), 5.35 (s, 1H), 5.20 (s, 1H), 4.72 (s, 1H), 4.28-4.19 (m, 2H), 3.71 (d, *J* = 1.2 Hz, 3H), 1.42 (d, *J* = 1.2 Hz, 18H), 1.30 (td, *J* = 7.2, 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 166.5, 153.3, 139.8, 136.1, 127.8, 126.1, 125.6, 61.0, 53.0, 52.3, 34.3, 30.2, 14.1; **Mp**: 104-106 °C; **HRMS** Calcd. for C₂₂H₃₃O₅⁺ [M+H]⁺: 377.2323, found: 377.2328.

 $[\alpha]^{20}_{D} = -3.0$ (c 0.10, CH₂Cl₂) for 86% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 10.840$ min, $t_{major} = 9.518$ min.

Racemic Sample 3x

mV

Chromatogram

Peak Table

???A 230n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	9.531	2766647	220079	49.075
2	10.844	2870933	206730	50.925
Total		5637580	426809	100.000

Enantiomeric Sample 3x

Chromatogram

		Peak Tab	le	
??A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	9.518	3388542	255515	92.855
2	10.840	260748	18165	7.145
Total	11.1.2	3649290	273680	100.000

(*R*)-2-(6-methoxynaphthalen-2-yl)propyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3y)

Compound **3y** (44.7 mg, 84% yield, >20:1 dr) was obtained as a white solid following the *general procedure III* from **1t** (0.1 mmol, 46 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 2.0 Hz, 1H), 7.65 (s, 1H), 7.56 (s, 1H), 7.29 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.14-7.09 (m, 2H), 7.00 (s, 2H), 6.17 (d, *J* = 1.2 Hz, 1H), 5.58 (d, *J* = 1.6 Hz, 1H), 5.19 (s, 1H), 4.77 (s, 1H), 4.32-4.18 (m, 2H), 3.91 (s, 3H), 3.21 (h, *J* = 6.8 Hz, 1H), 2.31 (s, 3H), 1.41 (s, 18H), 1.31-1.29 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 172.4, 157.3, 153.1, 147.9, 138.2, 136.0, 133.4, 129.1, 128.9, 128.1, 126.8, 126.5, 126.4, 125.6, 125.5, 118.7, 105.4, 69.9, 55.3, 52.0, 38.7, 34.3, 30.2, 25.8, 17.9; Mp: 126-128 °C. HRMS Calcd. for C₃₄H₄₁O₅⁻ [M-H]⁻: 529.2960, found: 529.2969; [α]²⁰_D = -95.1 (c 0.20, CH₂Cl₂).

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl

(S)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3z)

Compound **3z** (16 mg, 68% yield, >20:1 dr) was obtained as a white solid following the *general procedure III* from **1r** (0.05 mmol, 20 mg) and **2a** (0.075 mmol, 5.26 mg, 12.5 µL) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 2H), 6.21 (s, 1H), 5.62 (s, 1H), 5.15 (s, 1H), 4.67 (s, 1H), 4.61-4.55 (m, 1H), 2.39 (s, 3H), 2.06 (d, *J* = 12.0 Hz, 1H), 1.65-1.59 (m, 3H), 1.40 (s, 18H), 1.32-1.25 (m, 3H), 1.08-0.96 (m, 2H), 0.89 (d, *J* = 6.4 Hz, 3H), 0.66 (d, *J* = 6.8 Hz, 3H), 0.49 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 172.1, 153.1, 148.0, 136.0, 128.0, 126.6, 125.7, 74.6, 52.5, 46.9, 40.8, 34.3, 31.4, 30.3, 25.9, 23.5, 22.0, 20.4, 16.2; **Mp**: 100-102 °C; **HRMS** Calcd. for C₃₀H₄₅O₄⁻ [M-H]⁻: 469.3323, found: 469.3330; [α]²⁰_D = -126.4 (c 0.13, CH₂Cl₂).

(*3R*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-17-((*S*)-2,5-dimethylhexyl)-10,13-dimethyl-2,3,4,7,8, 9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3za)

Compound **3za** (60.5 mg, 85% yield, >20:1 dr) was obtained as a white solid following the *general procedure III* from **1s** (0.1 mmol, 63.07 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 2H), 6.18 (s, 1H), 5.52 (s, 1H), 5.36 (d, J = 4.4 Hz, 1H), 5.16 (s, 1H), 4.73 (s, 1H),

4.72-4.61 (m, 1H), 2.39 (s, 3H), 2.36-2.31 (m, 2H), 2.01-1.93 (m, 2H), 1.87-1.77 (m, 3H), 1.53-1.45 (m, 8H), 1.41 (s, 18H), 1.33-1.32 (m, 3H), 1.17-1.05 (m, 7H), 1.03-0.99 (m, 5H), 0.91 (d, J = 6.4 Hz, 4H), 0.86 (d, J = 6.4 Hz, 6H), 0.66 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 198.9, 171.7, 153.0, 148.5, 139.6, 136.0, 127.8, 126.8, 125.5, 122.6, 74.5, 56.6, 56.1, 52.2, 50.0, 42.3, 39.7, 39.5, 37.9, 36.9, 36.5, 36.1, 35.8, 34.3, 31.9, 30.3, 28.2, 28.0, 27.4, 25.9, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8; **Mp**: 191-193 °C; **HRMS** Calcd. for C₄₇H₇₁O₄⁻ [M-H]⁻: 699.5358, found: 699.5367; $[\alpha]^{20}_{D} = -68.3$ (c 0.17, CH₂Cl₂).

(*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-formyl-*N*-methoxy-*N*-methylbut-3-en amide (3zb)

Compound **3zb** (15.4 mg, 85% yield) was obtained as a white solid following the *general procedure III* from **1q** (0.05 mmol, 15.3 mg) and acrolein **2d** (0.075 mmol, 4.2 mg, 5 μ L) stirred for 8 hours. ¹H NMR (500 MHz, CDCl₃) δ 9.60 (s, 1H), 7.06 (s, 2H), 6.21 (s, 1H), 6.15 (s, 1H), 5.16 (s, 1H), 3.58 (s, 3H), 3.19 (s, 3H), 1.41 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 193.6, 153.1, 149.4, 137.1, 136.1, 126.4, 125.6, 61.1, 46.0, 34.4, 30.3; **Mp**: 114-115 °C; **HRMS** Calcd. for C₂₁H₃₀NO₄⁻ [M-H]⁻: 360.2175, found: 360.2176.

 $[\alpha]^{20}_{D} = -83.2$ (c 0.51, CH₂Cl₂) for 88% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 16.304 \text{ min}, t_{major} = 14.738 \text{ min}.$

Racemic Sample 3zb

Peak Table

222 A 230n	m	I cur Iuo		
Peak#	Ret. Time	Area	Height	Area%
1	14.705	2395275	93720	49.650
2	16.263	2429055	80638	50.350
Total		4824330	174359	100.000

Enantiomeric Sample 3zb

mV

Chromatogram

SPREAT AND AND ADDRESS		I cun Iuo	ic .	
??A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	14.738	9702234	391916	94.080
2	16.304	610558	22329	5.920
Total	X	10312792	414246	100.000

Ethyl

(S)-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-4-(methoxy(methyl)amino)-2-methylen e-4-oxobutanoate (3zc)

Compound **3zc** (10.0 mg, 24% yield) was obtained as a yellow viscous liquid following the *general procedure III* from **1q** (0.1 mmol, 30.6 mg) and ethyl acrylate **2e** (0.15 mmol, 15 mg, 16 µL) stirred for 8 hours. ¹H NMR (500 MHz, CDCl₃) δ 7.04 (s, 2H), 6.38 (s, 1H), 5.32 (s, 1H), 5.30 (s, 1H), 5.15 (s, 1H), 4.27-4.17 (m, 2H), 3.54 (s, 3H), 3.19 (s, 3H), 1.41 (s, 18H), 1.29 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 153.0, 140.6, 136.0, 127.8, 126.7, 125.9, 61.0, 60.9, 49.5. 34.3, 30.4, 14.2; HRMS Calcd. for C₂₃H₃₄NO₅⁻ [M-H]⁻: 404.2437, found: 404.2433. [α]²⁰_D = -37.6 (c 0.19, CH₂Cl₂) for 77% ee; Enantiomeric excess was determined by

HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 11.380 \text{ min}, t_{major} = 13.036 \text{ min}.$

Racemic Sample 3zc

mV

Chromatogram

	Peak Table				
???A 230n	m				
Peak#	Ret. Time	Area	Height	Area%	
1	11.417	6874910	274700	49.253	
2	13.082	7083433	276882	50.747	
Total		13958343	551582	100.000	

Enantiomeric Sample 3zc

Methyl (*S*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxoheptanoate (3zd)

Compound **3zd** (28.9 mg, 77% yield) was obtained as a colorless viscous liquid following the *general procedure III* from **1a** (0.1 mmol, 27.6 mg) and hex-1-en-3-one **2f** (0.15 mmol, 14.7 mg, 19 µL) stirred for 8 hours. ¹H NMR (500 MHz, CDCl₃) δ 6.99 (s, 2H), 6.20 (s, 1H), 5.52 (d, J = 2.0 Hz, 1H), 5.18 (s, 1H), 4.78 (s, 1H), 3.68 (s, 3H), 2.77-2.66 (m, 2H), 1.70-1.63 (m, 2H), 1.41 (s, 18H), 0.93 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 201.2, 173.0, 153.2, 148.0, 136.1, 126.9, 126.5, 125.6, 52.2, 52.0, 39.6, 34.3, 30.3, 17.8, 13.7; HRMS Calcd. for C₂₃H₃₃O₄⁻ [M-H]⁻: 373.2379, found: 373.2380.

 $[\alpha]^{20}_{D} = -91.0$ (c 0.58, CH₂Cl₂) for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm,

 $t_{minor} = 12.015 \text{ min}, t_{major} = 9.273 \text{ min}.$

Racemic Sample 3zd

mV

Chromatogram

Peak Table

??A 230nm						
Peak#	Ret. Time	Area	Height	Area%		
1	9.282	11678746	732848	49.563		
2	11.997	11884774	633609	50.437		
Total		23563519	1366457	100.000		

Enantiomeric Sample 3zd

mV

Chromatogram

Peak Table

???A 230n	m	1 0000 1000		
Peak#	Ret. Time	Area	Height	Area%
1	9.273	26668420	1713806	96.454
2	12.015	980415	60057	3.546
Total		27648835	1773863	100.000

Methyl (*R*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (3a')

A stirred solution of 1a (0.05 mmol), LB25 (0.075 mmol) in 1 mL of toluene was cooled to 0 °C. Subsequently, methyl vinyl ketone 2a (0.075 mmol) was added through a syringe. The mixture was stirred at this temperature for 6 hours. After completion of the reaction, the reaction mixture was directly purified by silica gel chromatography using petroleum ether/EtOAc as the eluent to afford the desired products.

Compound **3a'** (17.2 mg, 99% yield) was obtained as a white solid following the *general procedure III*a from **1a** (0.05 mmol, 13.8 mg) and **2b** (0.075 mmol, 5.3 mg, 7 μ L) stirred for 6 hours. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.22 (d, J = 1.2 Hz, 1H), 5.57 (d, J = 1.6 Hz, 1H), 5.20 (s, 1H), 4.77 (s, 1H), 3.69 (s, 3H), 2.40 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 173.0, 153.2, 148.1, 136.1, 128.4, 126.4, 125.5, 52.3, 51.7, 34.3, 30.2, 25.9; Mp: 79-81 °C; HRMS Calcd. for C₂₁H₂₉O₄⁻[M-H]⁻: 345.2066, found: 345.2078.

 $[\alpha]^{20}_{D}$ = +98.5 (c 0.33, CH₂Cl₂) for -95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, t_{minor} = 10.233 min, t_{major} = 12.937 min.

Racemic Sample 3a'

Peak Table

???A 230nm						
Peak#	Ret. Time	Area	Height	Area%		
1	10.092	2589020	206559	49.763		
2	13.071	2613693	164067	50.237		
Total		5202713	370626	100.000		

Enantiomeric Sample 3a'

mV

Chromatogram

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.223	708129	58332	2.263
2	12.937	30584592	1814626	97.737
Total		31292721	1872958	100.000

Peak Table

3. Synthetic applications

a) Scale-up experiment for the synthesis of 3a

The scale up experiment was followed the general procedure *III*. To a solution of compound **1a** (2.0 mmol, 1.0 eq.) and chiral phosphine **LB22** (0.1 mmol, 0.05 eq.) in toluene (10 mL) was added vinyl ketone **2** (3.0 mmol, 1.5 eq.) under nitrogen atmosphere at 0 °C. TLC monitor until the compound **1a** consumed after 6 hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 20/1 to 10/1, $R_f = 0.5$ -0.6) to afford the corresponding product **3a** (0.57 g, 83% yield, 92% ee) as a white solid.

b) de-tert-butylation

Procedure (*IV*): To a solution of **3a** (1.0 equiv.) in dry toluene was added AlCl₃ (6.0 equiv.) under nitrogen. The reaction mixture was stirred at ambient temperature for 15 min. The mixture was then quenched with water and extracted twice with EtOAc, the organic layers were combined and dried over Na₂SO₄. The residue obtained was purified by column chromatography (petroleum ether/EtOAc) to afford the product **4a** in 88% yield with 92% ee.

Methyl (S)-2-(3-(*tert*-butyl)-4-hydroxyphenyl)-3-methylene-4-oxopentanoate (4a). Compound 4 (25.6 mg, 88% yield) was obtained as colorless viscous liquid following the *procedure IV* from **3a** (0.1 mmol, 34.6 mg) and AlCl₃ (0.6 mmol, 80 mg) stirred for 15 min. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 8.0, 2.0 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.24 (d, J = 0.8 Hz, 1H), 5.59 (d, J = 1.6 Hz, 1H), 4.78 (s, 1H), 3.69 (s, 3H), 2.40 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 173.1, 153.9, 147.9, 136.6, 128.6, 128.0, 127.4, 127.1, 116.8, 52.4, 51.4, 34.6, 29.4, 25.8; **HRMS** Calcd. for C₁₇H₂₁O₄- [M-H]-: 289.1445, found: 289.1450.

 $[\alpha]^{20}_{D} = -104.9$ (c 0.25, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230nm, $t_{minor} = 25.104 \text{ min}, t_{major} = 27.982 \text{ min}.$

Racemic Sample 4a

Peak#	Ret. Time	Area	Height	Area%	
1	25.213	744923	24566	49.944	
2	28.143	746596	21898	50.056	
Total		1491519	46464	100.000	

Enantiomeric Sample 4a

000 4 000		Peak Tal	ole	
Peak#	Ret. Time	Area	Height	Area%
1	25.104	224331	7307	4.227
2	27.982	5083146	143465	95.773
Total		5307477	150772	100.000

To a solution of **3a** (0.1 mmol, 34.6 mg) in benzene was added AlCl₃ (6.0 equiv.) under nitrogen. The reaction mixture was stirred at 60 °C for 3 h. The mixture was then quenched with water and extracted twice with EtOAc, the organic layers were combined and dried over Na₂SO₄. The residue obtained was purified by column chromatography (petroleum ether/EtOAc) to afford the product **4b** in 41% yield with 92% ee.

Methyl (S)-2-(4-hydroxyphenyl)-3-methylene-4-oxopentanoate (4b)

Compound **4b** (9.7 mg, 41% yield) was obtained as white solid following the *procedure IV* from **3a** (0.1 mmol, 34.6 mg) and AlCl₃ (0.6 mmol, 80 mg) stirred for 3 h. ¹**H NMR** (500 MHz, CDCl₃) δ 7.09 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.23 (s, 1H), 5.62 (d, J = 1.5 Hz, 1H), 4.79 (s, 1H), 3.68 (s, 3H), 2.39 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 199.0, 172.9, 155.3, 147.7, 130.3, 128.2, 128.0, 115.8, 52.4, 51.1, 25.8; **Mp**: 123-125 °C; **HRMS** Calcd. for C₁₃H₁₃O₄⁻[M-H]⁻: 233.0814, found: 233.0820.

 $[\alpha]^{20}_{D} = -94.9$ (c 0.32, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 30.734$ min, $t_{major} = 32.878$ min.

Racemic Sample 4b

Chromatogram

Peak Table

???A 230n	nm			
Peak#	Ret. Time	Area	Height	Area%
1	30.550	7515348	152775	50.209
2	32.903	7452852	140378	49.791
Total		14968201	293153	100.000

Enantiomeric Sample 4b

???A 230n	m	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	30.734	344859	7834	4.174
2	32.878	7917386	149297	95.826
Total		8262244	157131	100.000

c) Synthesis of compound 5

Procedure (V): Add $BnNH_2$ to a solution of 3a in anhydrous DCM with a reflux

reactor, then the mixture was heated to 40 °C for 24 hours. After conversion, the mixture was purified by column chromatography (petroleum ether/EtOAc = 5/1) to afford the product 5 in 44% yield with 92% ee.

(3*S*,4*R*)-4-acetyl-1-benzyl-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)pyrrolidin-2-one (5)

Compound **5** (93.1 mg, 44% yield) was obtained as a white solid following the *procedure V* from **3a** (0.5 mmol, 173 mg) and BnNH₂ (0.75mmol, 80.4 mg, 80 µL) stirred at 40 °C for 24 hours. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.29 (m, 5H), 7.00 (s, 2H), 5.22 (s, 1H), 4.81 (d, *J* = 14.4 Hz, 1H), 4.30 (d, *J* = 14.4 Hz, 1H), 3.83 (d, *J* = 7.6 Hz, 1H), 3.49 (dd, *J* = 7.6, 1.2 Hz, 2H), 3.33 (q, *J* = 7.6 Hz, 1H), 2.11 (s, 3H), 1.43 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 173.1, 153.1, 136.2, 136.1, 129.6, 128.7, 128.1, 127.7, 124.5, 53.4, 50.8, 46.8, 45.7, 34.3, 30.1, 29.3; Mp: 146-148 °C; HRMS Calcd. for C₂₇H₃₄NO₃⁻ [M-H]⁻: 420.2544, found: 420.2553.

 $[\alpha]^{20}_{D} = -112.7$ (c 0.16, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230nm, $t_{minor} = 26.588 \text{ min}, t_{major} = 36.085 \text{ min}.$

Racemic Sample 5

mV

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	26.310	2674822	76516	50.001
2	35.926	2674686	48554	49.999
Total		5349509	125070	100.000

Enantiomeric Sample 5

Peak#	Ret. Time	Area	Height	Area%
1	26.588	646553	19107	4.675
2	36.085	13183006	228520	95.325
Total		13829559	247627	100.000

d) Preparation of compound 6

Procedure (VI): Compound **3a** was dissolved in ethanol, and then 5% Pd/CaCO₃ was added. The mixture was stirred overnight under a hydrogen balloon at room temperature. Then the mixture was filtered through a Celite pad and the solvent removed in vacuum, the residue obtained was purified by column chromatography (petroleum ether/EtOAc) to afford the product **6** in 80% yield with 91% ee.

Methyl (2*S*,3*R*)-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methyl-4-oxopentanoate (6).

Compound **6** (27.7 mg, 80% yield) was obtained as colorless viscous liquid following the *procedure VI* from **3a** (0.1 mmol, 34.6 mg) and 5% Pd/CaCO₃ (0.05 mmol, 5.5 mg) stirred overnight. ¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (s, 2H), 5.16 (s, 1H), 3.69 (d, J = 10.8 Hz, 1H), 3.67 (s, 3H), 3.33 (dq, J = 10.8, 6.8 Hz, 1H), 1.81 (s, 3H), 1.40 (s, 18H), 1.16 (d, J = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 210.8, 173.3, 153.1, 135.9, 127.2, 124.7, 54.1, 51.9, 50.0, 34.3, 30.19, 30.16, 15.6; **HRMS** Calcd. for $C_{21}H_{31}O_{4}^{-}$ [M-H]⁻: 347.2228, found: 347.2233.

 $[\alpha]^{20}_{D} = -69.2$ (c 0.42, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230nm, $t_{minor} = 9.833$ min, $t_{major} = 8.736$ min.

Racemic Sample 6

mV

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	8.717	6111826	457673	49.929
2	9.815	6129184	435426	50.071
Total		12241009	893099	100.000

Enantiomeric Sample 6

mV

1000 1 ???A 230nm 0 8.0 8.5 9.0 9.5 10.0 10.5 min

Chromatogram

???A 230r	ım		57	50 C
Peak#	Ret. Time	Area	Height	Area%
1	8.736	14358530	1146532	95.332
2	9.833	703133	57673	4.668
Total		15061663	1204205	100.000

Peak Table

d) Preparation of 7 and 7'

Procedure (VII): A solution of LiAlH₄ in anhydrous THF was cooled to 0 °C under nitrogen atomasphere, the solution of **3a** in anhydrous THF was added dropwised while mataining temperature at 0°C, then the mixture was warmed to room temperature for full conversion. The mixture was then quenched with water and extracted twice with EtOAc, the organic layers were combined and dried over anhydrous Na₂SO₄. The residue obtained was purified by column chromatography (petroleum ether/EtOAc) to afford the product **7** in 27% yield with 90% ee and the product **7** in in 53% yield with 99% ee.

(2S,4R)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylenepentane-1,4-diol (7)

Compound 7 (17.0 mg, 27% yield) was obtained as colorless viscous liquid following the *procedure VII* from **3a** (0.2 mmol, 69.2 mg) and LiAlH₄ (0.4 mmol, 15.2 mg) stirred until full conversion. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 2H), 5.38 (s, 1H), 5.13 (s, 1H), 5.08 (s, 1H), 4.20 (q, *J* = 6.4 Hz, 1H), 3.97 (dd, *J* = 10.8, 8.0 Hz, 1H), 3.85 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.52 (t, *J* = 7.2 Hz, 1H), 1.91 (brs, 2H), 1.42 (s, 18H), 1.26 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 152.7, 136.0, 130.4, 124.5, 109.6, 70.2, 66.1, 49.8, 34.4, 30.3, 22.5; HRMS Calcd. for C₂₀H₃₁O₃⁻ [M-H]⁻: 319.2273, found: 319.2284.

 $[\alpha]^{20}_{D}$ = +34.6 (c 0.24, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, t_{minor} = 40.092 min, t_{major} = 30.504 min.

Racemic Sample 7

Chromatogram

Peak Table

<u>///A 230r</u>	nm			
Peak#	Ret. Time	Area	Height	Area%
1	30.040	11288094	272142	49.988
2	39.880	11293366	212889	50.012
Total		22581460	485031	100.000

Chromatogram

Enantiomeric Sample 7

250 - 1 ???A 230nm 0 - 30 35 40 45 min

Peak Table

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	30.504	12383138	261003	95.177
2	40.092	627528	11655	4.823
Total		13010666	272658	100.000

(2S,4S)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylenepentane-1,4-diol (7')

Compound 7' (33.9 mg, 53% yield) was obtained as white solid following the *procedure VII* from **3a** (0.2 mmol, 69.2 mg) and LiAlH₄ (0.4 mmol, 15.2 mg) stirred until full conversion. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 2H), 5.36 (s, 1H), 5.09 (s, 1H), 4.18 (q, *J* = 6.4 Hz, 1H), 3.90 (dd, *J* = 10.8, 8.0 Hz, 1H), 3.82 (dd, *J* = 10.8, 6.8 Hz, 1H), 3.61 (t, *J* = 7.2 Hz, 1H), 2.19 (brs, 2H), 1.42 (s, 18H), 1.23 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 152.7, 135.9, 130.3, 124.7, 109.8, 70.6, 66.1, 50.2, 34.4, 30.2, 22.2; **Mp**: 102-104 °C; **HRMS** Calcd. for C₂₀H₃₁O₃⁻[M-H]⁻:

mV

000 1 000

mV

319.2273, found: 319.2284.

 $[\alpha]^{20}_{D}$ = +65.9 (c 0.14, CH₂Cl₂) for 99% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, t_{major} = 15.921 min.

Racemic Sample 7'

Enantiomeric Sample 7'

Peak#	Ret. Time	Area	Height	Area%
1	15.921	4658443	143539	100.000
Total		4658443	143539	100.000

4. References

- [1] (a) R. Zhuge, L. Wu, M. Quan, N. Butt, G. Yang, W. Zhang, Adv. Synth. Catal.,
 2017, 359, 1028-1036; (b) P. Nesvadba, Synth. Commun., 2000, 30, 2825-2832.
- [2] (a) M. Ito, A. Osaku, C. Kobayashi, A. Shiibashi, T. Ikariya, Organometallics 2009, 28, 390-393.
- [3] G. Bian, W. Shan, W. Su, J. Chem. Res., 2005, 585-586.
- [4] (a) H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang, W. Liu, J.-K. Zhang, G. Zhao, *Angew. Chem., Int. Ed.*, **2010**, *49*, 4467; (b) X. Han, Y. Wang, F. Zhong, Y. Lu, J. *Am. Chem. Soc.*, **2011**, *133*, 1726; (c) X. Han, Y. Wang, F. Zhong, Y. Lu, *Org. Biomol. Chem.*, **2011**, *9*, 6734-6740; (d) F. Zhong, Y. Wang, X. Han, K.-W. Huang, Yixin Lu, *Org. Lett.*, **2011**, *13*, 1310-1313; (b) J. Gong, T. Li, K. Pan, X. Wu, *Chem. Commun.*, **2011**, *47*, 1491-1493; (c) H. Zhang, C. Jiang, J. Tan, H. Hu, Y. Chen, X. Ren, H. Zhang, T. Wang, *ACS Catal.*, **2020**, *10*, 5698-5706; (e) H. Deng, Y. Wei, M. Shi, *Adv. Synth. Catal.*, **2012**, *354*, 783-789; (f) Y. Jiang, Y. Yang, Q. He, W. Du, Y. Chen, *J. Org. Chem.*, **2020**, *85*, 10760–10771.

5. X-ray data of compound 3e and 5

Table 1. Crystal data and structure refinement for Orth-full_a-finalcif.

Identification code	Orth-full_a	
Empirical formula	C29 H36 O4	
Formula weight	448.58	
Temperature	100(2) K	
Wavelength	1.54178 ?	
Crystal system	Orthorhombic	
Space group	P21212	
Unit cell dimensions	a = 18.9096(6) ?	a= 90?
	b = 22.5975(8)?	b=90?
	c = 5.9615(2)?	g = 90?
Volume	2547.41(15) ? ³	
Z	4	
Density (calculated)	1.170 Mg/m ³	
Absorption coefficient	0.604 mm ⁻¹	
F(000)	968	
Crystal size	0.25 x 0.08 x 0.06 mm ³	
Theta range for data collection	3.912 to 72.210?	
Index ranges	-23<=h<=22, -27<=k<=	27, -7<=l<=7
Reflections collected	30354	
Independent reflections	5037 [R(int) = 0.0454]	
Completeness to theta = 67.679 ?	99.9 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.964 and 0.944	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	5037 / 3 / 308	
Goodness-of-fit on F ²	1.073	
Final R indices [I>2sigma(I)]	R1 = 0.0300, wR2 = 0.0	780
R indices (all data)	R1 = 0.0324, wR2 = 0.0	794
Absolute structure parameter	-0.01(6)	
Extinction coefficient Largest diff. peak and hole 0.187 and -(n/a).241 e.? ⁻³	

Table 1. Crystal data and structure refinement for ORTH-FULL2_a-finalcif.

Identification code	ORTH-FULL2_a	
Empirical formula	C27 H35 N O3	
Formula weight	421.56	
Temperature	100(2) K	
Wavelength	1.54178 ?	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 10.0735(3) ?	a= 90?
	b = 10.4515(3)?	b=90?
	c = 22.6325(7)?	g = 90?
Volume	2382.82(12) ? ³	
Z	4	
Density (calculated)	1.175 Mg/m ³	
Absorption coefficient	0.593 mm ⁻¹	
F(000)	912	
Crystal size	$0.2 \ x \ 0.15 \ x \ 0.12 \ mm^3$	
Theta range for data collection	3.906 to 72.378?	
Index ranges	-11<=h<=12, -12<=k<=12, -27	<=l<=27
Reflections collected	54308	
Independent reflections	4703 [R(int) = 0.0575]	
Completeness to theta = 67.679 ?	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.931 and 0.899	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4703 / 1 / 290	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	R1 = 0.0284, wR2 = 0.0694	
R indices (all data)	R1 = 0.0306, wR2 = 0.0709	
Absolute structure parameter	0.07(6)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.162 and -0.166 e.? ⁻³	

6. NMR Spectra

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1d

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1f

 $^1\mathrm{H}~\mathrm{and}^{13}\mathrm{C}~\mathrm{NMR}$ spectra of compound 1h

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1j

¹H and¹³C NMR spectra of compound 1k

 $^1\mathrm{H}~\mathrm{and}^{13}\mathrm{C}~\mathrm{NMR}$ spectra of compound 1q

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1r

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1t

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1u

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1v

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB6

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB8

¹H, ¹³C and ³¹P NMR spectra of compound LB10

100 80 60 40 20 0 -20 -40 -60 -80 -100 -140 -160 -180 -200 -220 -240 -260 -280 -300 fl (ppm)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -120 -200 -220 -240 -260 -280 -300 f1 (ppm)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB14

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 fl (ppm)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB15

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB16

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB17

100 90 fl (ppm)

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB22

100 90 fl (ppm)

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB24

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3a

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3b}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3c

¹H and¹³C NMR spectra of compound **3d**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3e

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3f

¹H and¹³C NMR spectra of compound **3g**

 1 H and 13 C NMR spectra of compound **3h**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3i

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3j

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3l}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3m

¹H and ¹³C NMR spectra of compound **30**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3q}$

-198.880 -172.431 -172.431 -172.431 -172.431 -133.114 -133.564 -133.564 -135.564 -135.564 -135.564 -135.564 -135.564 -155.564 -155.564 -155.564 -155.564 -155.564 -55.748 -55.247 -51.980 -55.748

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3z

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3zd

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{4b}$

1D NOE of compound 6

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7

- 4.40 4.35 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.00 3.55 3.00 3.45 3.40 3.35 f1 (ppm)

1D NOE of compound 7

1D NOE of compound 7'

7. Additives effects

Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, t_{minor} = 9.285 min, t_{major} = 8.661 min. **Racemic Sample of HFIP as addictive**

Enantiomeric Sample of HFIP as addictive

Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 99/1, 0.5 mL/min, 230 nm, t_{minor} = 24.694 min, t_{major} = 20.823 min. <u>Racemic Sample of HFIP as addictive</u>

Enantiomeric Sample of HFIP as addictive

(//A 234nm				
Peak#	Ret. Time	Area	Height	Area%
1	20.823	10192368	182771	92.985
2	24.694	768973	11070	7.015
Total		10961341	193841	100.000