Supporting Information for

Nickel(II)/TPMPP Catalyzed Reductive Coupling of Oxalate and

Tetrasulfides: Synthesis of Unsymmetric Disulfides

Ying Chen^a, Daopeng Sheng^b, Fei Wang^a, Weidong Rao,^c Shu-Su Shen,^d and Shun-Yi Wang^{*, a}

^αKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

^bState Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of

Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China

^cKey Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

^dSchool of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district, Suzhou, PR China, 215009

Contents

I. General Information	S2
II. Synthesis of Substrates	S2
III. General Procedure	S3
1. General Procedure A	S3
2. General Procedure B	S3
IV. Product Characterization	S4
V. References	S15
VI. Copies of ¹ H NMR and ¹³ C NMR Spectra	S16

I. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Anhydrous DMSO, was purchased from Beijing InnoChem Science & Technology Co., Ltd. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 300-400 mesh silica gel was used. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl₃. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for ¹H NMR. Chemical shifts of ¹³C NMR are reported relative to CDCl₃ (δ 77.16). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using GCT Premier TOF-MS with EI source. The starting materials were isolated by SepaBean machine Flash Chromatography, which was purchased from Santai Technologies Inc.

II. Synthesis of Substrates

(naphthalen-2-ylmethyl) oxalate.¹

To a solution of DMAP (3.0 mmol, 1.2 equiv.) in CH_2Cl_2 (10 mL) was dropwise added methyl chlorooxoacetate (3.0 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was stirred at room temperature for 5 min, and a solution of naphthalen-2-ylmethanol (2.5 mmol) in CH_2Cl_2 (5 mL) was dropwise added. After stirring for 10 min, the reaction was quenched with water (20 mL), extracted twice with CH_2Cl_2 (20 mL). The combine organic layers was washed with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was purified by flash chromatography on silica gel to afford oxalate.

General procedure for the synthesis of 1,4-di-tert-butyltetrasulfane.^{2,3}

A solution of S_2Cl_2 (2.21 mL, 27.7 mmol) in dry ether (70 mL) is cooled to -78°C in a dry ice/acetone bath. A solution of tert-butylthiol (6.25 mL, 55.4 mmol)

and Et₃N (7.68 mL, 55.4 mmol) in dry ether (70 mL) is added dropwise over 1 hour. After the addition is complete, the solution is stirred at -78°C for an additional 30 minutes after which is warmed to room temperature and quenched with water. The organic layer was separated and washed with water, Na₂CO₃ (sat.) and brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude yellow oil was purified by column chromatography using hexanes as the eluent to yield the product as a yellow oil.

General procedure for the synthesis of 1,4-diphenyltetrasulfane.^{2.4}

Under N_2 atmosphere, the desired thiol (1.0 equiv.) and pyridine (1.0 equiv.) were dissolved in 30 mL of anhydrous ether and cooled to -78 °C. S_2Cl_2 (0.6 equiv.) was added dropwise. A white precipitate formed within a few seconds and the reaction was continued for 2 hours. Then warm to room temperature. The reaction was quenched by adding 30 mL of water. Extract three times with dichloromethane. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography to obtain the target product

III. General Procedure and Product Characterization

1. General Procedure A

A representative procedure synthesis of 1-(tert-butyl)-2-(naphthalen-2-ylmethyl)

disulfane (3a) is shown below.

In glovebox, an oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with Methyl (naphthalen-2-ylmethyl) oxalate 1a (48.8 mg, 0.2 mmol), 1,4-di-tert-butyltetrasulfane 2a (58.1 mg, 0.24 mmol), NiCl₂ (5.0 mol %), Ligand (10 mol %), Mn (1.5 equiv.), DMSO (1 mL) was added via syringe and the mixture was stirred at 40 °C for 24 h. After 24 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product **3a** (85% yield).

2. General Procedure B

The procedure scale-up synthesis of 3a is shown below.

In glovebox, An oven-dried screw-capped 100-mL vial equipped with Methyl (naphthalen-2-ylmethyl) oxalate 1a (732.2 mg, 3 mmol), 1,4-di-tert-butyltetrasulfane 2a (871.3 mg, 3.6 mmol), NiCl₂ (5.0 mol %), Ligand (10 mol %), Mn (1.5 equiv.), DMSO (15.0 mL) was added via syringe. The reaction mixture was stirred for 24 h at 40 °C. After 24 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product **3a** (64 % yield, 0.503 g).

IV. Product Characterization

1-(tert-butyl)-2-(naphthalen-2-ylmethyl)disulfane (3a)

Yield: 85% (89.1 mg). White solid. **IR** (neat, v, cm⁻¹): 2957, 2920, 2853, 2369, 1732, 1507, 1361, 1271, 1162, 817, 750, 468. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.82 (m, 3H), 7.77 – 7.75 (m, 1H), 7.52 – 7.47 (m, 3H), 4.13 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 134.8, 133.3, 132.7, 128.4, 127.9, 127.8, 127.7, 127.3, 126.2, 125.9, 48.2, 46.1, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₅H₁₈S₂: 262.0850, found 262.0855.

6-((tert-butyldisulfaneyl)methyl)naphthalen-2-yl pivalate (3b)

Yield: 68% (98.5 mg). White solid. **IR** (neat, v, cm⁻¹): 2968, 2898, 2357, 1750, 1474, 1362, 1148, 1129, 907, 823, 480. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.9 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 1.6 Hz, 1H), 7.49 (d, *J* = 2.3 Hz, 1H), 7.44 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.17 (dd, *J* = 8.8, 2.3 Hz, 1H), 4.06 (s, 2H), 1.39 (s, 9H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.3, 148.9, 134.7, 133.1, 131.3, 129.2, 128.1, 128.1, 127.9, 121.6, 118.4, 48.2, 45.9, 39.2, 30.2, 27.3. **HRMS** (CI) m/z (M⁺) calcd for C₂₀H₂₆O₂S₂: 362.1374, found 362.1376.

6-((tert-butyldisulfaneyl)methyl)naphthalen-2-yl cyclopropanecarboxylate (3c) Yield: 55% (76.1 mg). White solid. IR (neat, v, cm⁻¹): 2917, 2853, 1730, 1374, 1212, 1147, 893, 479. ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.9 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.69 (s, 1H), 7.52 (d, J = 2.3 Hz, 1H), 7.44 (dd, J = 8.4, 1.8 Hz, 1H), 7.22 (dd, J = 8.7, 2.4 Hz, 1H), 4.05 (s, 2H), 1.87 (dq, J = 8.3, 4.6, 4.1 Hz, 1H), 1.33 (s, 9H), 1.18 (dt, J = 6.8, 3.5 Hz, 2H), 1.02 (dq, J = 7.6, 4.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 148.6, 134.7, 133.1, 131.3, 129.2, 128.2, 128.1, 127.8, 121.6, 118.5, 48.2, 45.9, 30.2, 13.2, 9.4. HRMS (CI) m/z (M⁺) calcd for C₁₉H₂₂O₂S₂: 346.1061, found 346.1059.

6-((tert-butyldisulfaneyl)methyl)naphthalen-2-yl cyclobutanecarboxylate (3d) Yield: 25% (36.0 mg). White solid. **IR** (neat, v, cm⁻¹): 2956, 2921, 2856, 1753, 1360, 1205, 1130, 1133, 896, 824, 478. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.75 (d, *J* = 1.7 Hz, 1H), 7.56 (d, *J* = 2.3 Hz, 1H), 7.49 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.25 (dd, *J* = 8.8, 2.3 Hz, 1H), 4.11 (s, 2H), 3.47 (pd, *J* = 8.5, 1.1 Hz, 1H), 2.59 – 2.46 (m, 2H), 2.39 (tdd, *J* = 10.3, 5.3, 2.2 Hz, 2H), 2.20 – 2.00 (m, 2H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 148.7, 134.8, 133.1, 131.4, 129.3, 128.2, 128.1, 127.9, 121.6, 118.5, 48.3, 46.0, 38.3, 30.2, 25.5, 18.6. HRMS (CI) m/z (M⁺) calcd for C₂₀H₂₄O₂S₂: 360.1218, found 360.1223.

6-((tert-butyldisulfaneyl)methyl)naphthalen-2-ol (3d')

Yield: 40% (44.5 mg). White solid. **IR** (neat, v, cm⁻¹): 3215, 2957, 2359, 1508, 1361, 1205, 1158, 864, 808, 470. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8.7 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.39 (dd, J = 8.5, 1.8 Hz, 1H), 7.12 – 7.05 (m, 2H), 5.33 (s, 1H), 4.06 (s, 2H), 1.35 (s, 9H).¹³**C NMR** (101 MHz, CDCl₃) δ 153.7, 134.0, 132.5, 129.8, 128.9, 128.1, 128.0, 127.0, 118.2, 109.6, 48.3, 46.1, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₅H₁₈OS₂: 278.0799, found 278.0795.

6-((tert-butyldisulfaneyl)methyl)naphthalen-2-yl (tert-butoxycarbonyl)-L-valinate (3e)

Yield: 30% (57.3 mg). White solid. **IR** (neat, v, cm⁻¹): 3443, 2966, 1747, 1713, 1360, 1154, 1074, 482. ¹**H NMR** (400 MHz, CDCl₃)) δ 7.82 (d, *J* = 8.9 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.72 (s, 1H), 7.53 (d, *J* = 2.2 Hz, 1H), 7.47 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.22 (dd, *J* = 8.9, 2.3 Hz, 1H), 5.13 (d, *J* = 9.1 Hz, 1H), 4.52 (dd, *J* = 9.1, 4.8 Hz, 1H), 4.07 (s, 2H), 2.50 – 2.25 (m, 1H), 1.48 (s, 9H), 1.37 – 1.30 (m, 9H), 1.12 (d, *J* = 6.8

Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.4, 155.9, 148.3, 135.1, 133.1, 131.5, 129.5, 128.2, 127.9, 121.3, 118.4, 80.2, 58.9, 48.3, 45.9, 31.5, 30.2, 28.5, 19.3, 17.9. **HRMS** (CI) m/z (M⁺) calcd for C₂₅H₃₅NO₄S₂: 477.2007, found 477.2005.

1-(tert-butyl)-2-((6-methoxynaphthalen-2-yl)methyl)disulfane (3f)

Yield: 86% (99.8 mg). White solid. **IR** (neat, v, cm⁻¹): 2959, 2892, 2359, 1389, 1360, 1265, 1211, 1158, 1026, 857, 723, 472. ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.7 Hz, 2H), 7.53 (d, *J* = 1.7 Hz, 1H), 7.30 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.02 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.98 (d, *J* = 2.6 Hz, 1H), 3.95 (s, 2H), 3.76 (s, 3H), 1.25 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.8, 133.9, 132.4, 129.3, 128.8, 127.9, 127.9, 127.3, 119.0, 105.8, 55.3, 48.1, 46.1, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₆H₂₀OS₂: 290.0956, found 292.0963.

1-(tert-butyl)-2-(naphthalen-1-ylmethyl)disulfane (3g)

Yield: 67% (70.2 mg). White solid. **IR** (neat, v, cm⁻¹): 3045, 2957, 2920, 2855, 2359, 1509, 1361, 1162, 774, 528, 413. ¹**H NMR** 1H NMR (400 MHz, CDCl₃) δ 8.11 (dq, *J* = 8.5, 0.9 Hz, 1H), 7.83 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.76 (dd, *J* = 7.3, 2.1 Hz, 1H), 7.54 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.47 (ddd, *J* = 8.0, 6.8, 1.3 Hz, 1H), 7.42 – 7.36 (m, 2H), 4.39 (s, 2H), 1.34 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 134.1, 133.2, 131.5, 128.9, 128.6, 128.0, 126.4, 126.0, 125.4, 124.2, 48.3, 44.2, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₅H₁₈S₂: 262.0850, found 262.0855.

6-((tert-butyldisulfaneyl)methyl)quinoline (3h)

Yield: 70% (73.7 mg). White solid. **IR** (neat, v, cm⁻¹): 2958, 2355, 1498, 1361, 1160, 892, 845, 778, 471. ¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.3, 1.7 Hz, 1H), 8.12 (dt, J = 8.3, 1.2 Hz, 1H), 8.10 – 8.02 (m, 1H), 7.69 (d, J = 7.4 Hz, 2H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 4.10 (s, 2H), 1.35 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.5, 147.8, 136.0, 136.0, 131.1, 130.0, 128.2, 127.8, 121.5, 48.3, 45.6, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₄H₁₇NS₂: 263.0802, found 263.0802.

8-((tert-butyldisulfaneyl)methyl)quinoline (3i)

Yield: 79% (83.1 mg). White solid. **IR** (neat, v, cm⁻¹): 3003, 2360, 1709, 1359, 1220, 1092, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 8.93 (dd, J = 4.2, 1.8 Hz, 1H), 8.09 (dd, J = 8.2, 1.8 Hz, 1H), 7.74 – 7.65 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 4.62 (s, 2H), 1.35 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.8, 146.2, 136.4, 136.3, 130.0, 128.5, 127.6, 126.1, 121.3, 48.1, 41.8, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₄H₁₇NS₂: 263.0802, found 263.0807.

1-(tert-butyl)-2-(1-(naphthalen-2-yl)ethyl)disulfane (3j)

Yield: 16% (17.7 mg). Yellow solid. **IR** (neat, v, cm⁻¹): 3029, 2960, 2921, 2855, 2361, 1455, 1361, 1164, 824, 746, 476. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (dt, *J* = 7.0, 2.8 Hz, 3H), 7.74 – 7.72 (m, 1H), 7.50 – 7.44 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 1H), 1.76 (d, *J* = 7.0 Hz, 3H), 1.32 (s, 9H).¹³**C NMR** (101 MHz, CDCl₃) δ 139.9, 133.4, 133.0, 128.5, 128.0, 127.8, 126.5, 126.3, 126.0, 125.9, 51.5, 48.1, 30.3, 21.4. **HRMS** (CI) m/z (M⁺) calcd for C₁₆H₂₀S₂: 276.1006, found 276.1010.

(3-((tert-butyldisulfaneyl)methyl)-1H-indol-1-yl)(phenyl)methanone (3k) Yield: 76% (108.0 mg). White solid. IR (neat, v, cm⁻¹): 3442, 2965, 2359, 1747, 1713, 1359, 1153, 1073, 890, 482. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.72 (s, 1H), 7.53 (d, *J* = 2.2 Hz, 1H), 7.47 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.22 (dd, *J* = 8.9, 2.3 Hz, 1H), 5.13 (d, *J* = 9.1 Hz, 1H), 4.52 (dd, *J* = 9.1, 4.8 Hz, 1H), 4.07 (s, 2H), 2.50 – 2.25 (m, 1H), 1.48 (s, 9H), 1.37 – 1.30 (m, 9H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.07 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 155.9, 148.3, 135.1, 133.1, 131.5, 129.5, 128.2, 127.9, 121.3, 118.4, 80.2, 58.9, 48.3, 45.9, 31.5, 30.2, 28.5, 19.3, 17.9. HRMS (CI) m/z (M⁺) calcd for C₂₀H₂₁NOS₂: 355.1065, found 355.1058.

1-benzyl-2-(tert-butyl)disulfane (5a)

Yield: 53% (45.0 mg). White solid. **IR** (neat, v, cm⁻¹): 2960, 2360, 1708, 1361, 1220, 1165, 763, 696, 529, 472. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 3.3 Hz, 4H), 7.28 – 7.23 (m, 1H), 3.93 (s, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 129.3, 128.7, 127.5, 48.2, 45.9, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₆S₂: 212.0693, found 212.0697.

1-(tert-butyl)-2-(2-methylbenzyl)disulfane (5b)

Yield: 64% (57.9 mg). Pale yellow solid. **IR** (neat, v, cm⁻¹): 3401, 2960, 1709, 1456, 1361, 1219, 1165, 763, 727, 529, 443. ¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 1H), 7.18 – 7.11 (m, 3H), 3.96 (s, 2H), 2.41 (s, 3H), 1.34 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.9, 135.3, 130.6, 130.5, 127.9, 126.1, 48.1, 44.2, 30.2, 19.5. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₈S₂: 226.0850, found 226.0854.

1-(tert-butyl)-2-(3-methylbenzyl)disulfane (5c)

Yield: 62% (56.1 mg). White solid. **IR** (neat, v, cm⁻¹): 3393, 2959, 2920, 1608, 1455, 1361, 1218, 1164, 880, 786, 718, 702, 434. ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.4 Hz, 1H), 7.13 – 7.02 (m, 3H), 3.91 (s, 2H), 2.34 (s, 3H), 1.37 – 1.31 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.3, 137.3, 130.0, 128.5, 128.3, 126.4, 48.2, 46.0, 30.2, 21.5. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₈S₂: 226.0850, found 226.0854.

1-(tert-butyl)-2-(4-methylbenzyl)disulfane (5d)

Yield: 66% (59.7 mg). Pale yellow solid. **IR** (neat, v, cm⁻¹): 2957, 2921, 2855, 1510, 1455, 1360, 1163, 822, 728, 510, 472. ¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 3.90 (s, 2H), 2.32 (s, 3H), 1.34 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.2, 134.4, 129.3, 129.2, 48.1, 45.6, 30.2, 21.3. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₈S₂: 226.0850, found 226.0853.

1-(tert-butyl)-2-(4-methoxybenzyl)disulfane (5e)

Yield: 75% (72.6 mg). White solid. **IR** (neat, v, cm⁻¹): 2958, 2834, 1608, 1509, 1455, 1360, 1302, 1246, 1162, 1030, 820, 518. ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.90 (s, 2H), 3.78 (d, *J* = 0.9 Hz, 3H), 1.34 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.1, 130.5, 129.5, 114.1, 55.4, 48.1, 45.3, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₈OS₂: 242.0799, found 242.0804.

1-(tert-butyl)-2-(3,4-dimethoxybenzyl)disulfane (5f)

Yield: 75% (81.6 mg). Pale yellow solid. **IR** (neat, v, cm⁻¹): 2959, 2898, 2360, 1508, 1456, 1257, 1140, 1022, 812, 550. ¹**H NMR** (400 MHz, CDCl₃) δ 6.87 – 6.78 (m, 3H), 3.90 (s, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 1.35 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.9, 148.4, 129.8, 121.5, 112.2, 111.0, 55.9, 55.9, 48.1, 45.8, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₃H₂₀O₂S₂: 272.0905, found 272.0908.

1-(tert-butyl)-2-(4-fluorobenzyl)disulfane (5g)

Yield: 47% (43.3 mg). White solid. **IR** (neat, v, cm⁻¹): 3413, 2963, 1710, 1509, 1361, 1220, 1157, 837, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 3.89 (s, 2H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.2 (*J* = 244.5), 133.3 (*J* = 3.3), 130.9 (*J* = 8.0), 115.5 (*J* = 21.4), 48.2, 44.8, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₅FS₂: 230.0599, found 230.0598.

1-(tert-butyl)-2-(4-chlorobenzyl)disulfane (5h)

Yield: 80% (78.7 mg). White solid. **IR** (neat, v, cm⁻¹): 2959, 2920, 2859, 2359, 1489, 1455, 1361, 1164, 1092, 1015, 831, 806, 497. ¹H **NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 3.87 (s, 2H), 1.33 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 136.4, 133.6, 131.0, 129.1, 48.6, 45.1, 30.4. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₅ClS₂: 246.0304, found 246.0303.

1-(tert-butyl)-2-(3-fluorobenzyl)disulfane (5i)

Yield: 49% (45.1 mg). White solid. **IR** (neat, v, cm⁻¹): 3003, 2359, 1710, 1359, 1220, 1092, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (td, J = 8.0, 4.0 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 7.02 (dt, J = 9.5, 2.1 Hz, 1H), 6.95 (td, J = 8.5, 2.7 Hz, 1H), 3.89 (s, 2H), 1.38 (s, 1H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.9 (J = 248.0), 140.1 (J = 7.3), 130.1 (J = 8.2), 125.0 (J = 2.9), 116.2 (J = 21.3), 114.4 (J = 20.9), 49.1, 48.3, 45.2, 45.2, 42.7, 42.7, 30.1, 30.0. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₅FS₂: 230.0599, found 230.0602.

1-(tert-butyl)-3-(3-fluorobenzyl)trisulfane (5i')

Yield: 5% (5.2 mg). **HRMS** (CI) m/z (M⁺) calcd for $C_{11}H_{15}FS_3$: 262.0320, found 262.0322.

1-(tert-butyl)-2-(3,4-difluorobenzyl)disulfan(5j)

Yield: 74% (73.4 mg). White solid. **IR** (neat, v, cm⁻¹): 3003, 2967, 2359, 1710, 1360, 1220, 778, 529. ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.05 (m, 2H), 7.00 (ddt, J = 8.1, 3.7, 1.6 Hz, 1H), 3.84 (s, 2H), 1.37 (s, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5 (J = 12.7), 151.0 (J = 12.5), 149.0 (J = 12.8), 148.6 (J = 12.4), 134.7 (J = 3.9), 125.3 (J = 3.6), 118.2 (J = 17.2), 117.3 (J = 17.1), 49.2, 48.3, 44.5, 44.5, 42.1, 30.1, 30.0. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₄F₂S₂: 248.0505, found 248.0509.

1-(tert-butyl)-3-(3,4-difluorobenzyl)trisulfane (5j')

Yield: 5% (5.6 mg). HRMS (CI) m/z (M⁺) calcd for $C_{11}H_{14}F_2S_3$: 280.0226, found 280.0229.

1-(tert-butyl)-2-(3,4-dichlorobenzyl)disulfane (5k)

Yield: 81% (90.7 mg). White solid. **IR** (neat, v, cm⁻¹): 2963, 2359, 1709, 1360, 1220, 900, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 2H), 7.13 (dd, *J* = 8.2, 2.1 Hz, 1H), 3.82 (s, 2H), 1.37 (s, 1H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.9, 132.5, 131.5, 131.1, 130.5, 128.7, 48.4, 44.2, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₄Cl₂S₂: 279.9914, found 279.9916.

1-(tert-butyl)-3-(3,4-dichlorobenzyl)trisulfane (5k')

Yield: 5% (6.2 mg). HRMS (CI) m/z (M⁺) calcd for $C_{11}H_{14}Cl_2S_3$: 311.9635, found 311.9645.

1-(tert-butyl)-2-(3-chlorobenzyl)disulfane (5l)

Yield: 72% (70.9 mg). White solid. **IR** (neat, v, cm⁻¹): 2958, 2916, 2360, 1571, 1473, 1455, 1360, 1159, 1075, 884, 859, 792, 718, 689, 675, 433. ¹H NMR (400 MHz, CDCl₃) δ 16.29 (d, J = 2.1 Hz, 1H), 16.25 – 16.21 (m, 2H), 16.17 (dt, J = 5.4, 1.6 Hz, 1H), 12.86 (s, 2H), 10.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 134.3, 129.9,

129.4, 127.6, 127.5, 48.3, 45.0, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₁H₁₅ClS₂: 246.0304, found 246.0308.

2-((tert-butyldisulfaneyl)methyl)furan (5m)

Yield: 82% (66.3 mg). Pale yellow solid. **IR** (neat, v, cm⁻¹): 2960, 2922, 1772, 1456, 1362, 1162, 1069, 1020, 872, 785, 729, 599. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 6.42 – 6.38 (m, 1H), 3.77 (s, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 140.7, 121.2, 111.1, 48.1, 35.6, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₉H₁₄OS₂: 202.0486, found 202.0490.

3-((tert-butyldisulfaneyl)methyl)furan (5n)

Yield: 72% (58.2 mg). White solid. **IR** (neat, v, cm⁻¹): 2965, 1710, 1359, 1220, 1092, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (dd, J = 1.9, 0.9 Hz, 1H), 6.30 (dd, J = 3.3, 1.9 Hz, 1H), 6.23 (dd, J = 3.2, 0.8 Hz, 1H), 3.99 – 3.90 (m, 2H), 1.32 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.8, 142.5, 110.7, 108.6, 48.2, 37.9, 30.0. **HRMS** (CI) m/z (M⁺) calcd for C₉H₁₄OS₂: 202.0486, found 202.0490.

2-((tert-butyldisulfaneyl)methyl)thiophene (50)

Yield: 82% (71.5 mg). White solid. **IR** (neat, v, cm⁻¹): 2950, 2920, 2859, 1455, 1361, 1221, 1164, 850, 697, 480. ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.00 – 6.88 (m, 2H), 4.14 (s, 2H), 1.35 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.0, 127.0, 126.9, 125.4, 48.4, 40.0, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₉H₁₄S₃: 218.0258, found 218.0263.

3-((tert-butyldisulfaneyl)methyl)pyridine (5p)

Yield: 81% (69.0 mg). White solid. **IR** (neat, v, cm⁻¹): 2965, 1709, 1360, 1220, 714, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (dd, J = 8.6, 3.6 Hz, 2H), 7.63 (d, J = 7.9 Hz, 1H), 7.29 – 7.17 (m, 1H), 3.86 (s, 2H), 1.31 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.2, 148.6, 136.7, 133.3, 123.5, 48.2, 42.0, 30.0. **HRMS** (CI) m/z (M⁺) calcd for C₁₀H₁₅NS₂: 213.0646, found 213.0652.

1-(tert-butyl)-2-(4-(trifluoromethyl)benzyl)disulfane (5q)

Yield: 67% (75.1 mg). White solid. **IR** (neat, v, cm⁻¹):3378, 2963, 1617, 1417, 1363, 1321, 1162, 1120, 1065, 1019, 843, 618, 499. ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 3.93 (s, 2H), 1.34 (s, 9H).¹³**C NMR** (101 MHz, CDCl₃) δ 141.8 (J = 1.6), 129.6, 129.6 (J = 32.3), 128.3, 125.6 (J = 3.6), 122.9, 120.2, 48.4, 44.9, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₅F₃S₂: 280.0567, found 280.0571.

4-((tert-butyldisulfaneyl)methyl)benzonitrile (5r)

Yield: 83% (78.7 mg). White solid. **IR** (neat, v, cm⁻¹): 2961, 2360, 2229, 1710, 1361, 1220, 1165, 552, 529. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 3.91 (s, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 132.3, 130.0, 118.8, 111.2, 48.4, 44.8, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₅NS₂: 237.0646, found 237.0651.

3-((tert-butyldisulfaneyl)methyl)benzonitrile (5s)

Yield: 88% (83.4 mg). White solid. **IR** (neat, v, cm⁻¹): 2964, 2230, 1709, 1419, 1360, 1220, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 1.8 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.43 (t, *J* = 7.7 Hz, 1H), 3.89 (s, 2H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.4, 133.7, 132.8, 131.1, 129.4, 118.7, 112.6, 48.4, 44.3, 30.1. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₅NS₂: 237.0646, found 237.0652.

(R)-1-(tert-butyl)-2-(1-phenylethyl)disulfane (5t)

Yield: 20% (18.1 mg). White solid. **IR** (neat, v, cm⁻¹): 2923, 2359, 1708, 1360, 1220, 1092, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (d, *J* = 4.3 Hz, 4H), 7.26 (q, *J* = 5.0, 4.6 Hz, 1H), 4.01 (q, *J* = 7.0 Hz, 1H), 1.67 (d, *J* = 7.0 Hz, 3H), 1.31 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.5, 128.6, 127.8, 127.6, 51.3, 48.0, 30.2, 21.3. **HRMS** (CI) m/z (M⁺) calcd for C₁₂H₁₈S₂: 226.0850, found 226.0855.

1-(tert-butyl)-2-cinnamyldisulfane (5v)

Yield: 64% (61.0 mg). Pale yellow liquid. **IR** (neat, v, cm⁻¹): 3004, 1710, 1419, 1359, 1219, 529. ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.37 – 7.33 (m, 2H), 7.30 – 7.27 (m, 1H), 6.53 (d, *J* = 15.7 Hz, 1H), 6.28 (ddd, *J* = 15.6, 8.2, 7.1 Hz, 1H), 3.57 (dd, J = 7.6, 1.2 Hz, 2H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.8, 133.6, 128.7, 127.8, 126.6, 124.8, 48.0, 43.9, 30.2. **HRMS** (CI) m/z (M⁺) calcd for C₁₃H₁₈S₂: 238.0850, found 238.0852.

1-cyclopentyl-2-(naphthalen-2-ylmethyl)disulfane (6a)

Yield: 55% (60.3 mg). White solid. **IR** (neat, v, cm⁻¹): 3413, 2955, 2866, 1709, 1350, 1220, 816, 748, 529, 478. ¹H **NMR** (400 MHz, CDCl₃) δ 7.73 (dt, J = 8.2, 3.6 Hz, 3H), 7.68 (dd, J = 10.0, 1.7 Hz, 1H), 7.39 (qd, J = 5.7, 5.2, 2.2 Hz, 3H), 3.99 (s, 2H), 2.93 (tt, J = 7.3, 5.5 Hz, 1H), 1.85 – 1.69 (m, 2H), 1.66 – 1.57 (m, 2H), 1.57 – 1.49 (m, 2H), 1.46 – 1.39 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 135.1, 133.4, 132.8, 128.4, 128.1, 127.9, 127.8, 127.4, 126.3, 126.0, 50.2, 44.6, 33.1, 24.8. **HRMS** (CI) m/z (M⁺) calcd for C₁₆H₁₈S₂: 274.0850, found 274.0856.

1-cyclohexyl-2-(naphthalen-2-ylmethyl)disulfane (6b)

Yield: 55% (63.4 mg). White solid. **IR** (neat, v, cm⁻¹): 3051, 2925, 2850, 2359, 1710, 1360, 1220, 749, 529. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 5.5, 3.6 Hz, 3H), 7.66 (d, J = 1.7 Hz, 1H), 7.40 – 7.36 (m, 3H), 3.97 (s, 2H), 2.27 (tt, J = 11.0, 3.7 Hz, 1H), 1.84 (dt, J = 13.1, 3.8 Hz, 2H), 1.61 (dt, J = 12.7, 3.7 Hz, 2H), 1.22 – 0.96 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 133.3, 132.7, 128.3, 128.0, 127.8, 127.7, 127.3, 126.2, 125.9, 49.5, 45.1, 32.9, 26.1, 25.6. **HRMS** (CI) m/z (M⁺) calcd for C₁₇H₂₀S₂: 288.1006, found 288.1013.

1-isopropyl-2-(naphthalen-2-ylmethyl)disulfane (6c)

Yield: 55% (54.6 mg). White solid. **IR** (neat, v, cm⁻¹): 2961, 2360, 1709, 1360, 1220, 818, 751, 529, 479. ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.71 (m, 3H), 7.66 (d, *J* = 1.7 Hz, 1H), 7.41 – 7.37 (m, 3H), 3.98 (s, 2H), 2.64 (p, *J* = 6.7 Hz, 1H), 1.14 (d, *J* = 6.7 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.0, 133.3, 132.7, 128.4, 128.0, 127.8, 127.7, 127.3, 126.2, 125.9, 45.0, 41.0, 22.6. **HRMS** (CI) m/z (M⁺) calcd for C₁₄H₁₆S₂: 248.0693, found 248.0692.

1-benzyl-2-(3-chlorobenzyl)disulfane (6d)

Yield: 46% (51.5 mg). White solid. **IR** (neat, v, cm⁻¹): 3061, 2924, 1597, 1454, 1228, 1076, 877, 787, 698, 472. ¹H **NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 3H), 7.31 – 7.26 (m, 4H), 7.22 (q, J = 1.4 Hz, 1H), 7.12 (ddd, J = 5.0, 3.6, 1.7 Hz, 1H), 3.68 (s, 2H), 3.53 (s, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 139.4, 139.3, 137.2, 134.2, 129.7, 129.5, 129.4, 128.6, 127.6, 127.5, 43.4, 42.5. **HRMS** (CI) m/z (M⁺) calcd for C₁₄H₁₃ClS₂: 280.0147, found 280.0154.

V. References

- [1] He, R.-D.; Li, C.-L.; Pan, Q.-Q.; Guo, P.; Liu, X.-Y.; Shu, X.-Z. Reductive Coupling between C–N and C–O Electrophiles. J. Am. Chem. Soc. 2019, 141, 12481–12486.
- [2] Wu, Z.; Pratt, D. A. Radical Substitution Provides a Unique Route to Disulfides. J. Am. Chem. Soc. 2020, 142, 10284–10290.
- [3] Chauvin, J. P. R.; Griesser, M.; Pratt, D. A. Chem. Sci. 2019, 10, 4999.
- [4] Cerda, M. M.; Hammers, M. D.; Earp, M. S.; Zakharov, L. N.; Pluth, M. D. Org. Lett. 2017, 19, 2314–2317.

VI. Copies of ¹H NMR and ¹³C NMR Spectra

¹H NMR Spectra of **3a** (400 MHz, CDCl₃)

fl (ppm)

¹H NMR Spectra of **3b** (400 MHz, CDCl₃)

¹H NMR Spectra of **3c** (400 MHz, CDCl₃)

¹H NMR Spectra of **3d** (400 MHz, CDCl₃)

¹H NMR Spectra of **3d'** (400 MHz, CDCl₃)

S20

S21

¹H NMR Spectra of **3g** (400 MHz, CDCl₃)

¹H NMR Spectra of **3h** (400 MHz, CDCl₃)

¹H NMR Spectra of **3i** (400 MHz, CDCl₃)

¹H NMR Spectra of **3j** (400 MHz, CDCl₃)

¹H NMR Spectra of **3k** (400 MHz, CDCl₃)

¹H NMR Spectra of **5a** (400 MHz, CDCl₃)

¹H NMR Spectra of **5b** (400 MHz, CDCl₃)

¹H NMR Spectra of **5c** (400 MHz, CDCl₃)

¹H NMR Spectra of **5d** (400 MHz, CDCl₃)

¹H NMR Spectra of **5e** (400 MHz, CDCl₃)

¹H NMR Spectra of **5f** (400 MHz, CDCl₃)

¹H NMR Spectra of **5g** (400 MHz, CDCl₃)

¹H NMR Spectra of **5h** (400 MHz, CDCl₃)

¹H NMR Spectra of **5i** (400 MHz, CDCl₃)

¹H NMR Spectra of **5j** (400 MHz, CDCl₃)

¹H NMR Spectra of **5k** (400 MHz, CDCl₃)

¹H NMR Spectra of **5l** (400 MHz, CDCl₃)

¹H NMR Spectra of **5m** (400 MHz, CDCl₃)

¹H NMR Spectra of **5n** (400 MHz, CDCl₃)

¹H NMR Spectra of **50** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectra of **5p** (400 MHz, CDCl₃)

¹H NMR Spectra of **5q** (400 MHz, CDCl₃)

¹H NMR Spectra of **5r** (400 MHz, CDCl₃)

¹H NMR Spectra of **5s** (400 MHz, CDCl₃)

¹H NMR Spectra of **5t** (400 MHz, CDCl₃)

 1 H NMR Spectra of **5v** (400 MHz, CDCl₃)

¹H NMR Spectra of **6a** (400 MHz, CDCl₃)

¹H NMR Spectra of **6b** (400 MHz, CDCl₃)

¹H NMR Spectra of **6c** (400 MHz, CDCl₃)

¹H NMR Spectra of **6d** (400 MHz, CDCl₃)

