Electronic Supplementary Information

External Oxidant-Free and Selective Thiofunctionalization of Alkenes Enabled by Photoredox-Neutral Catalysis

Rong-Bin Liang,^a Can-Ming Zhu,^a Pei-Qi Song,^a Lei-Min Zhao,^b Qing-Xiao Tong^a and Jian-Ji Zhong^{*a}

^aDepartment of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong 515063, P. R. China.

^bDepartment of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China

*E-mail: jjzhong@stu.edu.cn

Table of Contents

1. Experimental section	3
1) General information	3
2) Preparation of alkenes	4
3) Preparation of <i>N</i> -phenyl-sulfenyl phthalimides	5
4) Preparation of vinyl estrone	6
5) General procedure for the photochemical reactions	7
6) Luminescence quenching experiments	8
7) Radical inhibition experiment	9
8) Isotope labelling experiment	10
9) References	11
2. Characterization data of the products	12
3. NMR spectra for the products	30

1. Experimental section

1) General information

All chemicals, unless otherwise noted, were purchased from commercial sources and were used without further purification. Unless stated otherwise, all reactions were carried out under argon atmosphere. The substrates alkenes (**a**) and *N*-phenyl-sulfenyl phthalimides (**b**) were synthesized according to the literature methods with slight modification.^[1-5] Irradiation with visible light was performed using blue LEDs ($\lambda = 450$ ± 10 nm) illumination instruments (The instruments were designed by ourselves and the actual output power density of the LEDs at 0.5 cm distance is 33.70 mW/cm² detected by CEL-NP2000-10 (Beijing Ceau Light Co. Ltd., China) light power meter). For irradiation, the material of the reaction vessel is common glass; the distance from the light source is about 0.5 cm.

The nuclear magnetic resonance spectra were recorded on the Bruker AscendTM 400 MHz NMR spectrometer with tetramethylsilane (TMS) as an internal standard. High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA). Cyclic voltammogram experiments were measured on the CHI-Instrument CHI660E.

2) Preparation of alkenes^[1-2]

$$R_{1} = R_{2} = R_{1} = R_{2}$$
PPh₃MeBr (1.2 equiv.)
$$R_{1} = R_{2}$$

$$R_{1} = R_{2}$$

$$R_{1} = R_{2}$$

$$R_{1} = R_{2}$$

A solution of methyl triphenylphosphonium bromide (4.28 g, 12.0 mmol) in anhydrous THF (15.0 mL) was cooled to 0 °C, followed by addition of ^{*t*}BuOK (1.35 g, 12.0 mmol). The reaction mixture was stirred at 0 °C for 1 h, and then the ketones (10.0 mmol, 1.0 equiv.) was added. The resulting mixture was warmed gradually to r.t. and kept stirring for 12 h. The resultant reaction solution was filtered over Celite, and the filtrate was concentrated under reduced pressure to yield a residue which was further purified over silica gel flash column chromatography to afford the product.

To a solution of carboxylic acid (1.0 equiv., 5.0 mmol), 4-dimethylaminopyridine (DMAP) (20%, 1.0 mmol, 122 mg) and **a'** (1.1 equiv., 5.5 mmol) in dry DCM (15 mL), followed by adding N,N'-dicyclohexylcarbodiimide (DCC) (1.1 equiv., 5.5 mmol, 1.14 g). The reaction mixture was stirred at room temperature for 12h. Upon completion, the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to afford the desired products.

3) Preparation of N-phenyl-sulfenyl phthalimides^[3-4]

Method A:

A suspension of phthalimide (1.047 g, 10.0 mmol) and diphenyl disulfide (1.30 g, 6.0 mmol) in CH₃CN (5.0 mL) and pyridine (4.0 mL) were treated with a solution of Br₂ (615 μ L in 5.0 mL CH₃CN, 12.0 mmol, 1.2 equiv) dropwise over 30 mins. Upon complete addition of Br₂ solution, the mixture was stirred for 1 h at 0 °C, and was subsequently quenched by dropwise addition of CH₃OH (15.0 mL). Filtration of the suspension and washing of the precipitate with pre-cooled CH₃OH (0 °C, 3 × 10.0 mL). Further purification was achieved by recrystallization from a hexane/CH₂Cl₂ mixture.

Method B:

$$R \stackrel{\text{II}}{=} \overset{\text{SH}}{\longrightarrow} + \underbrace{(1) CH_3CN, Pyridine, 80 °C}_{\text{O}} & \underbrace{(1) CH_3CN, Py$$

A suspension of phthalimide (1.047 g, 10.0 mmol) and thiophenols (11.0 mmol, 1.1 equiv) in CH₃CN (5.0 mL) and pyridine (4.0 mL) was heated to 80 °C and then cooled to room temperature. The mixture was treated with a solution of Br₂ (615 μ L in 5.0 mL CH₃CN, 12.0 mmol, 1.2 equiv) dropwise over 30 mins. Upon complete addition of Br₂ solution, the mixture was stirred for 1 h at 0 °C and was subsequently quenched by dropwise addition of H₂O (15.0 mL). Filtration of the suspension and washing of the precipitate with pre-cooled CH₃OH (0 °C, 3 × 10.0 mL). Further purification was achieved by recrystallization from a hexane/CH₂Cl₂ mixture.

4) Preparation of vinyl estrone^[5]

Estrone (10.0 mmol, 1.0 equiv., 2.70 g), and DIPEA (12.0 mmol, 1.2 equiv.) were dissolved in DCM (30.0 mL) in a two-neck flask with a stir bar under argon atmosphere. The reaction mixture was stirred at 0 °C, and Tf₂O (12.0 mmol, 1.2 equiv., 2.0 mL) was dropwise added into reaction system over 5 min. The reaction mixture was then allowed to warm to room temperature and stirred for 30 min. Upon completion, water (50.0 mL) was added to quench the reaction. The reaction mixture was then extracted with DCM (30.0 mL x 3). The combined organic extracts were dried with anhydrous MgSO₄ and concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel to afford the corresponding product **ES-1** as white solid in 81% yield.

An oven dried 2-neck round bottom flask was charged with triflate (2.01 g, 5 mmol, 1 equiv.), potassium vinyltrifluoroborate (675 mg, 5 mmol, 1 equiv.), PdCl₂ (17.7 mg, 0.1 mmol, 0.02 equiv.), PPh₃ (78.7 mg, 0.3 mmol, 0.06 equiv.), Cs₂CO₃ (4.89 g, 15 mmol, 3 equiv.), THF (9 mL), H₂O (1 mL) and stirred under reflux until completion. Reaction mixture was then diluted with 50 mL H₂O and extracted 3 times with 25 mL DCM. Combined organic phases were dried over magnesium sulfate, filtered through short pad of Celite and concentrated under reduced pressure. Purification by column chromatography (Hexane : EtOAc = 5:1) afforded corresponding product **ES-2** as white solid in 63% yield.

5) General procedure for the photochemical reactions

a (1.0 equiv., 0.2 mmol), **b** (1.1 equiv., 0.22 mmol), *fac*-Ir(ppy)₃ (4.0 mg, 3.0 mol%) were dissolved in 4.0 mL co-solvent (acetone: $H_2O = 20:1 \text{ (v/v)}$) in a 10.0 mL flask equipped with magnetic stirring bar, then the reaction tube was irradiated by blue LEDs ($\lambda = 450 \pm 10 \text{ nm}$) at room temperature for 24 h. After reaction, the solvent was removed by rotary evaporation and purified by column-chromatography on silica gel using hexane/ ethyl acetate as the eluent to afford the desired product **c**.

a (1.0 equiv., 0.2 mmol), **b** (1.1 equiv., 0.22 mmol), NuH (ROH: 8.0-15.0 equiv.; R₂NH: 2.0 equiv.), *fac*-Ir(ppy)₃ (4.0 mg, 3.0 mol%) were dissolved in 4.0 mL dry CH₃CN in a 10.0 mL flask equipped with magnetic stirring bar, then the reaction tube was irradiated by blue LEDs ($\lambda = 450 \pm 10$ nm) at room temperature for 24 h. After reaction, the solvent was removed by rotary evaporation and purified by columnchromatography on silica gel using hexane/ ethyl acetate as the eluent to afford the desired product **c**.

450 nm photoreactor

6) Luminescence Quenching Experiments

General procedure: The luminescence quenching experiments were measured with excitation at 449 nm. A co-solvent (acetone: $H_2O = 20:1 \text{ (v/v)}$) solution of 1×10^{-4} M *fac*-Ir(ppy)₃ and 3.0×10^{-1} M **b1** respectively were prepared. The experiments were conducted in 1.25 cm x 1.25 cm x 4.5 cm quartz cuvette at room temperature. Appropriate volume (the whole solution volume change < 5%) of the quencher **b1** was respectively injected to the co-solvent (acetone: $H_2O = 20:1 \text{ (v/v)}$) solution (3.0 mL) of 1×10^{-4} M *fac*-Ir(ppy)₃ in the quartz cuvette by microsyringe.

Figure S1. Luminescence quenching spectra of fac-Ir(ppy)₃ (1.0 x 10⁻⁴ M) by various concentration of **b1**

7) Radical inhibition experiment

142.00374 <u>158.0</u>2692

180

m/z

160

140

210.05810

220

200

<u>267.1</u>2427

268.11661

280

300

260

240

110.10439

120

98.09643

100

81.06987

80

67.05421

60

5

0-

8) Isotope labelling experiment

9) References

- [1] X.-T. Li and X.-Y. Liu, Angew. Chem. Int. Ed. 2018, 57, 7668.
- [2] X. Lu, S.-J. He and Y. Fu, *Chem. Sci.* 2019, **10**, 809.
- [3] S. E. Denmark, D. J. P. Kornfilt and H. Wang, Nat. Chem. 2014, 6, 1056.
- [4] J. Klose, C. B. Reese and Q. Song, *Tetrahedron* 1997, **53**, 14411.
- [5] C.-Y. Huang and A. G. Doyle, J. Am. Chem. Soc. 2012, 134, 9541.

2. Characterization data of the products

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c1** as a colorless oil (44.9 mg, 92% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (dd, J = 5.2, 3.4 Hz, 2H), 7.37 (dd, J = 11.3, 4.4 Hz, 4H), 7.32 – 7.23 (m, 3H), 7.20 (ddd, J = 7.3, 3.6, 1.2 Hz, 1H), 3.57 (d, J = 13.3 Hz, 1H), 3.39 (d, J = 13.3 Hz, 1H), 2.91 (s, 1H), 1.65 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.2, 136.5, 130.0, 130.0, 128.3, 127.1, 126.4, 124.8, 74.0, 49.6, 29.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{16}OSNa [M+Na]^+$: 267.0814, found: 267.0814.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c2** as a colorless oil (39.4 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H), 7.26 – 7.19 (m, 3H), 7.18 – 7.12 (m, 1H), 7.05 – 6.96 (m, 2H), 6.77 (ddd, J = 8.2, 2.6, 0.8 Hz, 1H), 3.79 (s, 3H), 3.53 (d, J = 13.3 Hz, 1H), 3.32 (d, J = 13.3 Hz, 1H), 2.93 (s, 1H), 1.60 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.6, 148.0, 136.5, 130.0, 129.3, 128.9, 126.4, 117.2, 112.3, 111.0, 74.0, 55.2, 49.5, 29.4.

HRMS (ESI) m/z calcd. for C₁₆H₁₈O₂SNa [M+Na]⁺ : 297.0920, found: 297.0920.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c3** as a pale yellow oil (41.7 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (t, J = 1.8 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.32 (dt, J = 7.3, 1.8 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.24 – 7.17 (m, 3H), 3.52 (d, J = 13.5 Hz, 1H), 3.34 (d, J = 13.5 Hz, 1H), 2.99 (d, J = 20.7 Hz, 1H), 1.61 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 148.4, 136.0, 134.3,

130.3, 129.5, 129.0, 127.2, 126.7, 125.4, 123.1, 73.8, 49.5, 29.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₅ClOSNa [M+Na]⁺ : 301.0424, found: 301.0423.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c4** as a colorless oil (52.2 mg, 81% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (t, J = 1.8 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.29 – 7.23 (m, 2H), 7.22 – 7.15 (m, 2H), 3.56 – 3.47 (m, 1H), 3.34 (d, J = 13.5 Hz, 1H), 3.00 (s, 1H), 1.61 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 148.6, 135.9, 130.3, 130.2, 129.8, 129.0, 128.3, 126.7, 123.6, 122.6, 73.7, 49.4, 29.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₅BrOSNa [M+Na]⁺ : 344.9919, found: 344.9916.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c5** as a pale yellow oil (42.3 mg, 77% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 4H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.20 (d, *J* = 7.3 Hz, 1H), 6.92 – 6.85 (m, 2H), 3.82 (s, 3H), 3.55 (d, *J* = 13.2 Hz, 1H), 3.35 (d, *J* = 13.2 Hz, 1H), 2.90 (s, 1H), 1.63 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 158.6, 138.4, 136.6, 129.9, 130.0, 126.4, 126.1, 113.6, 73.7, 55.3, 49.6, 29.4.

HRMS (ESI) m/z calcd. for C₁₆H₁₈O₂SNa [M+Na]⁺ : 297.0920, found: 297.0917.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c6** as a yellow oil (42.3 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.30 – 7.23 (m, 2H), 7.23 – 7.15 (m, 3H), 3.58 (d, *J* = 13.2 Hz, 1H), 3.37 (d, *J* = 13.2 Hz, 1H), 2.91 (s, 1H), 2.37 (s, 3H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 136.8, 136.7, 129.9, 129.0, 130.0, 126.3, 124.8, 73.9, 49.6, 29.4, 21.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₈OSNa [M+Na]⁺ : 281.0971, found: 281.0971.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c7** as a white solid (58.2 mg, 91% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dt, *J* = 3.1, 2.0 Hz, 2H), 7.54 – 7.46 (m, 4H), 7.45 – 7.38 (m, 2H), 7.36 – 7.29 (m, 3H), 7.23 – 7.17 (m, 2H), 7.16 – 7.11 (m, 1H), 3.56 (d, *J* = 13.4 Hz, 1H), 3.36 (d, *J* = 13.4 Hz, 1H), 2.96 (s, 1H), 1.64 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.3, 140.8, 140.0, 136.4, 130.2, 129.0, 128.8, 127.3, 127.1, 127.0, 126.5, 125.4, 74.0, 49.6, 29.4. **HRMS** (ESI) m/z calcd. for C₂₁H₂₀OSNa [M+Na]⁺ : 343.1127, found: 343.1123

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c8** as a colorless oil (41.7 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.28 (m, 2H), 7.28 – 7.14 (m, 5H), 3.49 (d, J = 13.4 Hz, 1H), 3.31 (d, J = 13.4 Hz, 1H), 2.93 (s, 1H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 136.1, 132.9, 130.2, 129.0, 128.3, 126.6, 126.4, 73.8, 49.6, 29.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₅ClOSNa [M+Na]⁺ : 301.0424, found: 301.0420.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c9** as a colorless oil (48.9 mg, 76% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.36 – 7.29 (m, 4H), 7.29 – 7.18 (m, 3H), 3.51 (d, J = 13.4 Hz, 1H), 3.34 (d, J = 13.4 Hz, 1H), 2.99 (s, 1H), 1.61 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.2, 136.0, 131.3, 130.3, 129.0, 126.8, 126.6, 121.1, 73.8, 49.5, 29.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₅BrOSNa [M+Na]⁺ : 344.9919, found: 344.9914.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c10** as a pale yellow oil (50.3 mg, 68% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.31 – 7.26 (m, 2H), 7.24 – 7.13 (m, 5H), 3.48 (d, *J* = 13.4 Hz, 1H), 3.29 (d, *J* = 13.4 Hz, 1H), 2.95 (s, 1H), 1.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 137.3, 136.0, 130.3, 129.0, 127.1, 126.6, 92.8, 73.8, 49.4, 29.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{15}IOSNa [M+Na]^+$: 392.9780, found: 392.9781.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c11** as a colorless oil (46.2 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.30 – 7.23 (m, 3H), 7.23 – 7.17 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 3.58 (d, *J* = 13.2 Hz, 1H), 3.37 (d, *J* = 13.2 Hz, 1H), 2.89 (s, 1H), 2.28 (d, *J* = 4.8 Hz, 6H), 1.64 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.7, 136.7, 136.4, 135.4, 129.9, 129.6, 128.9, 126.3, 126.1, 122.2, 73.8, 49.6, 29.5, 20.0, 19.4.

HRMS (ESI) m/z calcd. for C₁₇H₂₀OSNa [M+Na]⁺ : 295.1127, found: 295.1122.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c12** as a brown oil (49.5 mg, 86% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.25 (ddd, J = 6.1, 5.5, 2.1 Hz, 2H), 7.22 – 7.16 (m, 1H), 6.96 (d, J = 1.8 Hz, 1H), 6.92 (dd, J = 8.1, 1.9 Hz, 1H), 6.77 (dd, J = 7.7, 4.0 Hz, 1H), 5.95 (dd, J = 3.1, 1.4 Hz, 2H), 3.52 (d, J = 13.3 Hz, 1H), 3.32 (d, J = 13.3 Hz, 1H), 2.94 (s, 1H), 1.60 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 147.6, 146.5, 140.4, 136.4, 130.0, 128.9, 126.4, 118.1, 107.9, 106.0, 101.0, 73.9, 49.7, 29.5.

HRMS (ESI) m/z calcd. for C₁₆H₁₆O₃SNa [M+Na]⁺ : 311.0812, found: 377.0709.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c13** as a colorless oil (38.8 mg, 66% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 – 7.73 (m, 3H), 7.52 – 7.41 (m, 3H), 7.34 – 7.28 (m, 2H), 7.20 – 7.07 (m, 3H), 3.63 (d, *J* = 13.3 Hz, 1H), 3.41 (d, *J* = 13.3 Hz, 1H), 3.05 (s, 1H), 1.68 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 136.4, 133.2, 132.5, 130.1, 129.0, 128.3, 128.1, 127.5, 126.5, 126.2, 126.0, 123.6, 123.3, 74.2, 49.5, 29.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₈OSNa [M+Na]⁺ : 317.0971, found: 317.0963.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c14** as a yellow oil (27.0 mg, 55% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, *J* = 2.3 Hz, 1H), 8.44 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.84 – 7.72 (m, 1H), 7.37 – 7.27 (m, 2H), 7.25 – 7.13 (m, 4H), 3.71 (dt, *J* = 25.7, 12.9 Hz, 1H), 3.49 (d, *J* = 13.4 Hz, 1H), 3.37 (d, *J* = 13.4 Hz, 1H), 1.65 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 148.1, 146.8, 141.7, 135.9, 132.9, 130.2, 129.0, 126.7, 123.0, 72.9, 49.33, 29.2.

HRMS (ESI) m/z calcd. for C₁₄H₁₆NOS [M+H]⁺ : 246.0947, found: 246.0947

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c15** as a colorless oil (55.1 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.39 – 7.28 (m, 4H), 7.25 (dd, J = 13.1, 6.1 Hz, 2H), 7.21 – 7.14 (m, 2H), 3.55 (d, J = 13.4 Hz, 1H), 3.35 (d, J = 13.4 Hz, 1H), 2.96 (s, 1H), 1.89 (qq, J = 14.5, 7.4 Hz, 2H), 0.79 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.9, 136.0, 130.4, 130.0, 129.7, 129.0, 128.9, 126.7, 124.2, 122.6, 76.2, 48.7, 34.7, 8.0.

HRMS (ESI) m/z calcd. for C₁₆H₁₇BrOSNa [M+Na]⁺ :359.0076, found: 359.0076.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c16** as a colorless oil (37.4 mg, 60% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (dd, J = 5.3, 3.4 Hz, 2H), 7.37 – 7.30 (m, 4H), 7.26 (ddd, J = 14.6, 5.2, 3.8 Hz, 3H), 7.18 (ddd, J = 7.4, 3.6, 1.2 Hz, 1H), 3.81 (d, J = 12.9 Hz, 1H), 3.46 (d, J = 12.9 Hz, 1H), 2.93 (s, 1H), 1.91 (d, J = 12.7 Hz, 1H), 1.80 – 1.66 (m, 3H), 1.57 (dd, J = 13.1, 10.6 Hz, 2H), 1.26 – 0.96 (m, 5H); ¹³**C NMR** (101 MHz, CDCl₃) δ 144.1, 136.8, 130.1, 128.9, 127.8, 126.9, 126.4, 126.2, 78.0, 48.2, 46.4, 27.6, 27.1, 26.6, 26.5, 26.3. **HRMS** (ESI) m/z calcd. for C₂₀H₂₄OSNa [M+Na]⁺ : 335.1440, found: 335.1437

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c17** as a yellow oil (31.2 mg, 50% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 5.3, 3.5 Hz, 2H), 7.45 – 7.36 (m, 4H), 7.35 – 7.30 (m, 3H), 7.29 – 7.22 (m, 2H), 7.00 – 6.94 (m, 2H), 3.98 (d, *J* = 13.5 Hz, 1H), 3.91 – 3.84 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.5, 144.4, 136.2, 130.5, 129.1, 128.4, 127.8, 126.9, 126.7, 125.7, 125.5, 124.7, 76.6, 50.4.

HRMS (ESI) m/z calcd. for $C_{18}H_{16}OS_2Na [M+Na]^+$: 335.0535, found: 335.0534.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c18** as a white solid (53.2 mg, 87% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 4H), 7.48 – 7.42 (m, 2H), 7.42 – 7.35 (m, 4H), 7.32 (ddd, J = 8.7, 5.5, 1.4 Hz, 4H), 7.28 – 7.22 (m, 1H), 3.95 (s, 2H), 3.67 (s, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.2, 136.6, 130.3, 129.1, 128.4, 127.4, 126.7, 126.2, 77.8, 49.1.

HRMS (ESI) m/z calcd. for C₂₀H₁₈OSNa [M+Na]⁺ : 329.0971, found: 329.0967.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c19** as a colorless oil (59.5 mg, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (qd, J = 3.2, 1.9 Hz, 2H), 7.46 – 7.33 (m, 6H), 7.32 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 7.18 (d, J = 7.9 Hz, 2H), 3.94 (d, J = 13.3 Hz, 1H), 3.88 (d, J = 13.3 Hz, 1H), 3.58 (s, 1H), 2.37 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.4, 142.3, 137.1, 136.7, 130.2, 129.0, 129.0, 128.3, 127.3, 126.6, 126.2, 77.6, 49.1, 21.1.

HRMS (ESI) m/z calcd. for C₂₁H₂₀OSNa [M+Na]⁺ : 343.1127, found: 343.1128.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c20** as a white solid (68.8 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.58 (m, 8H), 7.55 – 7.46 (m, 4H), 7.46 – 7.39 (m, 3H), 7.39 – 7.30 (m, 3H), 7.27 (dd, J = 8.4, 6.1 Hz, 1H), 4.04 – 3.95 (m, 2H), 3.75 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 144.3, 140.7, 140.2, 136.6, 130.4, 129.1, 128.9, 128.5, 127.5, 127.4, 127.2, 127.1, 126.8, 126.3, 77.7, 49.1.

HRMS (ESI) m/z calcd. for $C_{26}H_{22}OSNa \ [M+Na]^+$: 405.1284, found: 405.1279

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c21** as a colorless oil (60.9 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.35 (m, 6H), 7.32 – 7.26 (m, 2H), 7.26 – 7.20 (m, 1H), 7.05 – 6.98 (m, 2H),

6.91 – 6.85 (m, 2H), 3.92 - 3.86 (m, 1H), 3.84 - 3.78 (m, 4H), 3.63 (d, J = 4.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (d, J = 247.0 Hz), 158.9, 141.3 (d, J = 3.2 Hz), 137.2, 136.4, 130.4, 129.1, 128.0 (d, J = 8.1 Hz), 127.5, 126.8, 115.0 (d, J = 21.4 Hz), 113.7, 77.2, 55.3, 49.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.40.

HRMS (ESI) m/z calcd. for $C_{21}H_{19}FO_2SNa \ [M+Na]^+$: 377.0982, found: 377.0982.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c22** as a pale-yellow oil (61.2 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 4H), 7.38 – 7.34 (m, 2H), 7.32 – 7.23 (m, 7H), 3.80 (s, 2H), 3.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 135.7, 131.5, 130.7, 129.2, 127.9, 127.1, 121.7, 77.2, 48.8.

HRMS (ESI) m/z calcd. for $C_{20}H_{16}Br_2OSNa [M+Na]^+$: 486.9160, found: 486.9166.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c23** as a pale-yellow oil (54.4 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 2.8 Hz, 2H), 7.26 – 7.12 (m, 7H), 7.08 (d, *J* = 7.4 Hz, 2H), 3.93 (s, 2H), 3.57 (s, 1H), 3.39 (ddd, *J* = 14.0, 8.7, 4.9 Hz, 2H), 3.04 – 2.92 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.3, 138.5, 135.7, 130.5, 130.5, 128.8, 127.9, 126.8, 126.5, 126.4, 77.2, 50.5, 34.3.

HRMS (ESI) m/z calcd. for C₂₂H₂₀OSNa [M+Na]⁺ : 355.1127, found: 355.1124.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c24** as a colorless oil (43.2 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ

7.66 – 7.58 (m, 1H), 7.45 (dt, J = 8.5, 1.8 Hz, 2H), 7.38 – 7.28 (m, 2H), 7.27 – 7.19 (m, 3H), 7.15 – 7.08 (m, 1H), 3.51 (d, J = 13.4 Hz, 1H), 3.41 (dd, J = 13.4, 0.9 Hz, 1H), 2.89 – 2.74 (m, 2H), 2.70 (s, 1H), 2.29 (ddd, J = 10.5, 7.1, 2.9 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.80 – 1.66 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.6, 137.0, 136.9, 129.8, 129.0, 128.9, 127.6, 126.4, 126.4, 126.3, 74.0, 53.0, 35.1, 29.2, 19.6.

HRMS (ESI) m/z calcd. for $C_{17}H_{18}OSNa \ [M+Na]^+$: 293.0971, found: 293.0967.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c25** as a colorless oil (36.8 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.42 (m, 2H), 7.42 – 7.31 (m, 7H), 7.30 – 7.24 (m, 1H), 4.75 (dd, J = 9.4, 1.3 Hz, 1H), 3.35 (dd, J = 13.8, 3.6 Hz, 1H), 3.13 (dd, J = 13.8, 9.4 Hz, 1H), 2.98 (d, J = 1.8 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.2, 135.0, 130.2, 129.2, 128.,6 128.0, 126.8, 125.9, 71.7, 44.0.

HRMS (ESI) m/z calcd. for $C_{14}H_{14}OSNa [M+Na]^+$: 253.0658, found: 253.0657.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c26** as a colorless oil (42.9 mg, 88% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (dd, J = 7.6, 0.8 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.40 – 7.33 (m, 2H), 7.29 (tdd, J = 9.8, 5.2, 4.2 Hz, 2H), 7.23 (td, J = 7.4, 1.4 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 4.96 (dd, J = 9.7, 2.5 Hz, 1H), 3.31 (dd, J = 13.9, 3.1 Hz, 1H), 3.06 (dd, J = 13.9, 9.7 Hz, 1H), 2.98 (s, 1H), 2.21 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 140.2, 134.9, 134.5, 130.7, 130.5, 129.2, 127.7, 127.0, 126.5, 125.4, 68.2, 43.2, 18.9.

HRMS (ESI) m/z calcd. for $C_{15}H_{16}OS$ [M]⁺ : 244.0922, found: 244.0914.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c27** as a colorless oil (26.9 mg, 51% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.3, 1.1 Hz, 2H), 7.39 – 7.31 (m, 3H), 7.31 – 7.25 (m, 3H), 7.24 (dd, J = 2.6, 1.2 Hz, 1H), 4.69 (dt, J = 9.5, 2.8 Hz, 1H), 3.32 (dd, J = 13.9, 3.4 Hz, 1H), 3.05 (dd, J = 13.9, 9.5 Hz, 1H), 2.99 (s, 1H); ¹³**C** NMR (101 MHz, CDCl₃) δ 144.1, 136.9, 134.5, 130.5, 129.8, 129.2, 128.1, 127.1, 126.1, 124.0, 71.0, 44.2.

HRMS (ESI) m/z calcd. for $C_{14}H_{13}ClOSNa \ [M+Na]^+$: 287.0268, found: 287.0266.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c28** as a colorless oil (50.0 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.40 – 7.29 (m, 4H), 7.26 (dt, *J* = 9.4, 4.4 Hz, 1H), 7.06 (t, *J* = 9.2 Hz, 2H), 4.72 (dd, *J* = 9.3, 3.2 Hz, 1H), 3.36 – 3.25 (m, 1H), 3.07 (dt, *J* = 16.2, 10.6 Hz, 2H), 2.31 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 169.7, 150.0, 142.2, 134.8, 129.4, 128.4, 127.7, 125.9, 121.9, 71.2, 41.9, 21.3.

HRMS (ESI) m/z calcd. for C₁₆H₁₆O₃SNa [M+Na]⁺ : 311.0712, found: 311.0713.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c29** as a white solid (55.1 mg, 90% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 4H), 7.51 – 7.43 (m, 6H), 7.42 – 7.32 (m, 3H), 7.31 – 7.25 (m, 1H), 4.80 (d, J = 9.2 Hz, 1H), 3.39 (dd, J = 13.8, 3.6 Hz, 1H), 3.17 (dd, J = 13.8, 9.4 Hz, 1H), 3.03 (s, 1H); ¹³**C** NMR (101 MHz, CDCl₃) δ 141.2, 140.9, 140.8, 134.9, 130.3, 129.2, 128.8, 127.4, 127.3, 127.1, 126.8, 126.4, 71.5, 44.0.

HRMS (ESI) m/z calcd. for $C_{20}H_{18}OSNa [M+Na]^+$: 329.0971, found: 329.0966.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c30** as a colorless oil (38.7 mg, 63% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.40 (dt, J = 3.4, 2.0 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.25 (dt, J = 4.8, 1.9 Hz, 1H), 7.23 – 7.17 (m, 2H), 4.65 (dd, J = 9.3, 3.6 Hz, 1H), 3.26 (dd, J = 13.9, 3.6 Hz, 1H), 3.07 – 3.01 (m, 1H), 2.99 (s, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.1, 134.5, 131.6, 130.4, 129.2, 127.6, 127.0, 121.8, 71.0, 44.0.

HRMS (ESI) m/z calcd. for $C_{14}H_{13}BrOSNa [M+Na]^+$: 330.9763, found: 330.9753.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c34** as a colorless oil (37.7 mg, 73% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.40 – 7.31 (m, 3H), 7.28 (d, J = 7.9 Hz, 1H), 7.18 – 7.09 (m, 3H), 3.52 (d, J = 13.0 Hz, 1H), 3.33 (d, J = 13.0 Hz, 1H), 2.90 (s, 1H), 2.39 (s, 3H), 1.66 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.3, 138.3, 135.6, 130.2, 129.8, 128.3, 127.1, 126.6, 126.4, 124.8, 74.0, 48.9, 29.5, 20.7.

HRMS (ESI) m/z calcd. for C₁₆H₁₈OSNa [M+Na]⁺ : 281.0971, found: 281.0971.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c35** as a colorless oil (38.7 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.37 (t, *J* = 4.3 Hz, 2H), 7.31 – 7.24 (m, 1H), 7.21 – 7.12 (m, 3H), 7.02 (d, *J* = 1.0 Hz, 1H), 3.56 (d, *J* = 13.3 Hz, 1H), 3.38 (d, *J* = 13.3 Hz, 1H), 2.99 (s, 1H), 2.32 (s, 3H), 1.66 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.3, 138.7, 136.2, 130.7, 128.8, 128.3, 127.4, 127.1, 124.9, 74.0, 49.6, 29.4, 21.3.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}OSNa \ [M+Na]^+$: 281.0971, found: 281.0971

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v)

afforded **c36** as a brown oil (36.6 mg, 71% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 8.1 Hz, 3H), 7.09 (d, J = 7.9 Hz, 2H), 3.55 (d, J = 13.3 Hz, 1H), 3.35 (d, J = 13.3 Hz, 1H), 2.86 (s, 1H), 2.34 (s, 3H), 1.64 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.3, 136.6, 132.9, 130.6, 129.8, 128.3, 127.1, 124.9, 74.0, 50.3, 29.4, 21.0.

HRMS (ESI) m/z calcd. for $C_{16}H_{18}OSNa \ [M+Na]^+$: 281.0971, found: 281.0969.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c37** as a yellow oil (36.2 mg, 66% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.38 (m, 2H), 7.38 – 7.21 (m, 5H), 6.79 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 3.49 (d, *J* = 13.3 Hz, 1H), 3.27 (d, *J* = 13.3 Hz, 1H), 3.01 (s, 1H), 1.60 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.0, 146.3, 133.4, 128.2, 127.0, 126.8, 124.8, 114.6, 74.0, 55.4, 51.5, 29.4. **HRMS** (ESI) m/z calcd. for C₁₆H₁₈O₂SNa [M+Na]⁺ : 297.0920, found: 297.0918.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c38** as a colorless oil (39.0 mg, 65% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.29 (m, 4H), 7.27 (dd, *J* = 5.7, 3.5 Hz, 1H), 3.59 (d, *J* = 13.3 Hz, 1H), 3.37 (d, *J* = 13.3 Hz, 1H), 3.02 (s, 1H), 1.66 (s, 3H), 1.34 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 149.8, 146.3, 132.8, 130.3, 128.3, 127.1, 126.1, 124.9, 74.0, 50.1, 34.5, 31.3, 29.5.

HRMS (ESI) m/z calcd. for $C_{19}H_{24}OSNa [M+Na]^+$: 323.1440, found: 323.1136.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c39** as a yellow oil (35.2 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.52 – 7.46 (m, 5H), 7.43 (ddd, J = 8.6, 3.8, 2.1 Hz, 3H), 7.40 – 7.33

(m, 3H), 7.29 (tt, J = 5.3, 1.2 Hz, 1H), 3.61 (d, J = 13.3 Hz, 1H), 3.42 (d, J = 13.3 Hz, 1H), 2.95 (s, 1H), 1.68 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.2, 140.3, 139.4, 135.6, 130.4, 128.8, 128.3, 127.6, 127.4, 127.1, 126.9, 124.9, 74.0, 49.6, 29.5. **HRMS** (ESI) m/z calcd. for C₂₁H₂₀OSNa [M+Na]⁺ : 343.1127, found: 343.1122.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c40** as a colorless oil (45.0 mg, 81% yield). ¹**H NMR** (400 MHz, CD₃CN) δ 7.40 (d, *J* = 7.7 Hz, 2H), 7.34 – 7.20 (m, 4H), 7.21 – 7.14 (m, 1H), 7.05 (pd, *J* = 7.3, 1.6 Hz, 2H), 3.49 (d, *J* = 13.1 Hz, 1H), 3.26 (d, *J* = 13.1 Hz, 1H), 2.85 (s, 1H), 1.59 (s, 3H); ¹³**C NMR** (101 MHz, CD₃CN) δ 140.7, 130.1, 129.5, 125.6, 124.5, 123.0, 122.2, 121.9, 121.9, 119.5, 68.7, 43.1, 24.2.

HRMS (ESI) m/z calcd. for C₁₅H₁₅ClOSNa [M+Na]⁺ : 301.0424, found: 301.0419.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c41** as a colorless oil (50.0 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 8.1, 1.0 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.27 – 7.20 (m, 2H), 7.18 – 7.12 (m, 1H), 7.12 – 7.07 (m, 2H), 3.50 (d, J = 13.3 Hz, 1H), 3.31 (d, J = 13.3 Hz, 1H), 2.82 (s, 1H), 1.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 138.7, 134.6, 129.7, 129.3, 128.3, 127.7, 127.3, 126.4, 124.8, 74.0, 49.1, 29.4.

HRMS (ESI) m/z calcd. for $C_{15}H_{15}ClOSNa [M+Na]^+$: 301.0424, found: 301.0422.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c42** as a yellow oil (45.6 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.34 – 7.27 (m, 2H), 7.27 – 7.18 (m, 3H), 7.18 – 7.13 (m, 2H), 3.48 (d, J = 13.3 Hz, 1H), 3.29 (d, J = 13.3 Hz, 1H), 2.85 (s, 1H), 1.60 (s, 3H); ¹³**C NMR** (101

MHz, CDCl₃) δ 146.0, 135.1, 132.4, 131.3, 129.0, 128.3, 127.2, 124.8, 74.0, 49.8, 29.4. **HRMS** (ESI) m/z calcd. for C₁₅H₁₅ClOSNa [M+Na]⁺ : 301.0424, found: 301.0420.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c43** as a yellow oil (45.6 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.1, 1.0 Hz, 2H), 7.37 – 7.23 (m, 5H), 6.98 – 6.88 (m, 2H), 3.52 (d, J = 13.3 Hz, 1H), 3.34 – 3.26 (m, 1H), 2.98 (s, 1H), 1.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, J = 247.7 Hz), 146.06, 132.8 (d, J = 8.1 Hz), 131.4(d, J = 3.4 Hz), 128.29, 127.14, 124.86, 116.0 (d, J = 22.0 Hz), 74.04, 50.78, 29.41; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.05.

HRMS (ESI) m/z calcd. for C₁₅H₁₅FOSNa [M+Na]⁺ : 285.0720, found: 285.0721.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c44** as a yellow oil (60.0 mg, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.41 – 7.32 (m, 4H), 7.31 – 7.24 (m, 1H), 7.23 – 7.15 (m, 2H), 3.52 (d, J = 13.3 Hz, 1H), 3.33 (d, J = 13.3 Hz, 1H), 2.87 (s, 1H), 1.65 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.0, 135.8, 131.9, 131.5, 128.3, 127.2, 124.8, 120.3, 74.0, 49.6, 29.4. **HRMS** (ESI) m/z calcd. for C₁₅H₁₅BrOSNa [M+Na]⁺ : 344.9919, found: 344.9918.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c45** as a colorless oil (37.0 mg, 50% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 2H), 7.45 (dt, *J* = 3.4, 2.2 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.25 (m, 1H), 7.08 – 7.02 (m, 2H), 3.52 (d, *J* = 13.3 Hz, 1H), 3.33 (d, *J* = 13.3 Hz, 1H), 2.80 (s, 1H), 1.64 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 146.0, 137.8, 136.7, 131.5, 128.4, 127.2, 124.8, 91.2, 74.0, 49.3, 29.4.

HRMS (ESI) m/z calcd. for C₁₅H₁₅IOSNa [M+Na]⁺ : 392.9780, found: 392.9779.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c46** as a colorless oil (33.2 mg, 61% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.2, 1.0 Hz, 2H), 7.37 (dd, J = 10.3, 4.8 Hz, 2H), 7.28 (ddd, J = 7.2, 5.7, 1.2 Hz, 1H), 6.98 (s, 2H), 6.83 (s, 1H), 3.56 (d, J = 13.2 Hz, 1H), 3.37 (d, J = 13.2 Hz, 1H), 3.01 (s, 1H), 2.28 (s, 6H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 138.58, 135.85, 128.42, 128.23, 127.83, 127.07, 124.88, 73.97, 49.63, 29.45, 21.20. **HRMS** (ESI) m/z calcd. for C₁₇H₂₀OSNa [M+Na]⁺ : 295.1127, found: 295.1126.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c47** as a pale-yellow oil (43.8 mg, 74% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (dt, J = 3.2, 2.0 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 6.92 (td, J = 8.0, 1.2 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 3.29 (d, J = 13.4 Hz, 1H), 2.94 (s, 1H), 1.65 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 157.0 (d, J = 247.7 Hz), 145.6, 131.2, 129.5, 128.2, 127.2, 125.0 (d, J = 17.4 Hz), 124.8, 124.5 (d, J = 5.0 Hz), 121.5 (d, J = 19.1 Hz), 74.0, 48.7, 29.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -109.47.

HRMS (ESI) m/z calcd. for C₁₅H₁₄ClFOSNa [M+Na]⁺ : 319.0330, found: 319.0329.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c48** as a yellow oil (41.2 mg, 70% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.76 – 7.68 (m, 2H), 7.54 – 7.41 (m, 5H), 7.38 – 7.31 (m, 2H), 7.26 (ddt, J = 6.5, 5.2, 1.3 Hz, 1H), 3.65 (d, J = 13.3 Hz, 1H), 3.48 (d, J = 13.3 Hz, 1H), 2.94 (s, 1H), 1.68 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.2, 133.9, 133.7, 131.9, 128.5,

128.3, 128.1, 127.8, 127.7, 127.2, 126.6, 125.9, 124.9, 74.1, 49.4, 29.4.

HRMS (ESI) m/z calcd. for C₁₉H₁₈OSNa [M+Na]⁺ : 317.0971, found: 317.0968.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **c49** as a colorless oil (48.0 mg, 93% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.50 (dd, J = 8.2, 1.0 Hz, 2H), 7.42 (dd, J = 10.4, 4.9 Hz, 2H), 7.33 (dd, J = 10.1, 4.2 Hz, 3H), 7.27 (dd, J = 10.7, 5.1 Hz, 2H), 7.18 (dd, J = 10.5, 4.2 Hz, 1H), 3.47 (d, J = 12.5 Hz, 1H), 3.35 (d, J = 12.5 Hz, 1H), 3.20 (s, 3H), 1.78 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.5, 137.6, 129.3, 128.8, 128.4, 127.6, 126.4, 125.8, 79.1, 50.9, 47.6, 22.5. **HRMS** (ESI) m/z calcd. for C₁₆H₁₈OSNa [M+Na]⁺ : 281.0971, found: 281.0973.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **c50** as a colorless oil (49.0 mg, 90% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.24 (dd, J = 10.3, 4.9 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.12 – 7.06 (m, 2H), 7.03 – 6.97 (m, 1H), 3.31 (d, J = 12.5 Hz, 1H), 3.25 (dq, J = 8.6, 6.9 Hz, 1H), 3.18 (d, J = 12.5 Hz, 1H), 3.09 (dq, J = 8.6, 7.0 Hz, 1H), 1.62 (d, J = 6.8 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 144.3, 137.8, 129.2, 128.8, 128.3, 127.4, 126.2, 125.7, 78.8, 58.4, 47.6, 23.3, 15.7.

HRMS (ESI) m/z calcd. for C₁₇H₂₀OSNa [M+Na]⁺ : 295.1127, found: 295.1127.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 30/1, v/v) afforded **c51** as a colorless oil (42.9 mg, 75% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.57 – 7.51 (m, 2H), 7.38 (td, J = 8.2, 6.7 Hz, 2H), 7.31 (ddd, J = 9.8, 7.5, 3.3 Hz, 3H), 7.27 – 7.20 (m, 2H), 7.15 (ddt, J = 7.7, 6.5, 3.3 Hz, 1H), 3.61 (hept, J = 6.1 Hz, 1H), 3.44 (d, J = 12.4 Hz, 1H), 3.32 (d, J = 12.4 Hz, 1H), 1.82 (d, J = 6.9 Hz, 3H), 1.19 (t, J

= 6.4 Hz, 3H), 1.06 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.4, 137.8, 136.5, 129.2, 128.7, 128.0, 126.9, 125.6, 79.2, 66.0, 48.2, 25.0, 24.5, 23.2. HRMS (ESI) m/z calcd. for C₁₈H₂₂OSNa [M+Na]⁺ : 309.1284, found: 309.1284.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 40/1, v/v) afforded **c52** as a colorless oil (51.6 mg, 86% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 7.38 (dd, J = 10.2, 4.8 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.25 (dd, J = 10.3, 4.9 Hz, 2H), 7.15 (dd, J = 8.3, 6.3 Hz, 1H), 3.46 (d, J = 12.5 Hz, 1H), 3.36 – 3.28 (m, 2H), 3.17 (dt, J = 8.6, 6.7 Hz, 1H), 1.76 (s, 3H), 1.58 (dt, J = 14.7, 6.7 Hz, 2H), 1.44 – 1.34 (m, 2H), 0.93 (dd, J = 9.3, 5.4 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 144.2, 137.8, 129.2, 128.7, 128.2, 127.3, 126.3, 125.6, 78.5, 62.6, 47.6, 32.4, 23.1, 19.4, 14.0.

HRMS (ESI) m/z calcd. for C₁₉H₂₄OSNa [M+Na]⁺ : 323.1440, found: 323.1440.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 30/1, v/v) afforded **c53** as a colorless oil (57.1 mg, 82% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 12H), 7.27 – 7.19 (m, 3H), 3.65 – 3.56 (m, 1H), 3.53 – 3.47 (m, 1H), 3.48 – 3.40 (m, 1H), 3.35 (d, J = 12.6 Hz, 1H), 2.96 (dd, J = 14.0, 6.9 Hz, 2H), 1.80 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 144.0, 139.2, 137.8, 129.4, 129.2, 128.8, 128.3, 127.4, 126.4, 126.3, 126.2, 125.8, 79.0, 64.2, 47.8, 36.9, 23.0.

HRMS (ESI) m/z calcd. for $C_{23}H_{24}OSNa [M+Na]^+$: 371.1440, found: 371.1440.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 40/1, v/v)

afforded **c54** as a colorless oil (54.4 mg, 83% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (dt, J = 3.2, 2.1 Hz, 2H), 7.43 – 7.36 (m, 2H), 7.35 – 7.28 (m, 3H), 7.28 – 7.22 (m, 2H), 7.18 – 7.13 (m, 1H), 3.47 (d, J = 12.5 Hz, 1H), 3.37 – 3.28 (m, 2H), 3.17 (dt, J =8.5, 6.8 Hz, 1H), 1.77 (d, J = 4.5 Hz, 3H), 1.65 – 1.51 (m, 2H), 1.41 – 1.28 (m, 6H), 0.93 (t, J = 7.0 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 144.3, 137.9, 129.2, 128.7, 128.2, 127.3, 126.3, 125.6, 78.6, 62.9, 47.6, 31.8, 30.2, 25.9, 23.1, 22.7, 14.1. **HRMS** (ESI) m/z calcd. for C₂₁H₂₈OSNa [M+Na]⁺ : 351.1753, found: 351.1754.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c55** as a white solid (65.4 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.1, 4.3 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.73 – 7.67 (m, 2H), 7.57 – 7.51 (m, 2H), 7.44 – 7.33 (m, 4H), 7.33 – 7.25 (m, 1H), 7.15 – 7.03 (m, 3H), 4.65 (d, J = 13.0 Hz, 1H), 3.85 (d, J = 13.0 Hz, 1H), 2.25 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.8, 143.8, 137.9, 135.5, 135.4, 134.7, 133.9, 131.3, 128.6, 127.6, 126.6, 126.3, 125.3, 124.9, 120.2, 67.8, 42.9, 25.1.

HRMS (ESI) m/z calcd. for $C_{22}H_{19}NO_3S_2Na [M+Na]^+$: 432.0699, found: 432.0699.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c56** as a white solid (75.7 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.74 – 7.68 (m, 2H), 7.62 – 7.54 (m, 6H), 7.47 – 7.39 (m, 4H), 7.35 (t, J = 7.3 Hz, 1H), 7.14 – 7.00 (m, 3H), 4.67 (d, J = 13.0 Hz, 1H), 3.89 (d, J = 13.0 Hz, 1H), 2.28 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.9, 142.7, 140.5, 140.3, 135.5,

134.7, 134.3, 133.9, 131.4, 128.7, 128.6, 127.4, 127.2, 127.1, 126.6, 125.8, 124.9, 123.6, 120.3, 67.8, 43.1, 25.0.

HRMS (ESI) m/z calcd. for C₂₈H₂₃NO₃S₂Na [M+Na]⁺ : 508.1012, found: 508.1014.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c57** as a white solid (53.6 mg, 55% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 7.7 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.69 (ddt, J = 10.2, 3.6, 1.4 Hz, 3H), 7.50 – 7.44 (m, 1H), 7.42 – 7.34 (m, 3H), 7.19 (t, J = 8.0 Hz, 1H), 7.14 – 7.01 (m, 3H), 4.57 (d, J = 13.1 Hz, 1H), 3.80 (d, J = 13.1 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 146.1, 137.8, 135.2, 134.8, 134.0, 131.4, 130.7, 130.1, 128.6, 128.6, 126.8, 126.2, 124.9, 124.2, 122.7, 120.3, 67.3, 42.8, 24.8.

HRMS (ESI) m/z calcd. for C₂₂H₁₈BrNO₃S₂Na [M+Na]⁺: 509.9804, found: 509.9806.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c58** as a white solid (42.1 mg, 61% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.36 – 7.29 (m, 3H), 7.27 – 7.03 (m, 9H), 6.64 (dd, *J* = 7.6, 0.8 Hz, 1H), 4.37 (d, *J* = 13.5 Hz, 1H), 4.15 – 4.09 (m, 1H), 2.27 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.8, 141.6, 135.9, 132.2, 130.5, 128.8, 128.7, 128.4, 126.6, 126.6, 126.1, 123.6, 120.0, 112.0, 67.8, 47.0, 26.5.

HRMS (ESI) m/z calcd. for $C_{21}H_{19}N_3SNa [M+Na]^+$: 368.1192, found: 368.1192.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c59** as a white solid (40.5 mg, 54% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.3 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.19 – 7.03 (m, 6H), 6.84 (dd, *J* = 8.0, 2.2 Hz, 1H), 6.80 – 6.74 (m, 1H), 6.74 – 6.68 (m, 2H), 4.36 (d, *J* = 13.5 Hz, 1H), 4.10 (d, *J* = 13.5 Hz, 1H), 3.69 (s, 3H), 2.24 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.8, 146.8, 143.2, 135.9, 132.2, 130.6, 129.9, 128.7, 126.7, 126.6, 123.6, 120.0, 118.4, 113.1, 112.7, 112.0, 67.7, 55.3, 46.9, 26.4.

HRMS (ESI) m/z calcd. for C₂₂H₂₁N₃OSNa [M+Na]⁺ : 398.1298, found: 398.1298.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **c60** as a white solid (43.8 mg, 52% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.50 (m, 2H), 7.46 (dd, *J* = 8.1, 6.9 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.28 – 7.21 (m, 3H), 7.17 (ddd, *J* = 4.9, 3.9, 2.3 Hz, 3H), 7.14 – 7.07 (m, 3H), 6.75 (d, *J* = 8.4 Hz, 1H), 4.41 (d, *J* = 13.5 Hz, 1H), 4.19 (d, *J* = 13.5 Hz, 1H), 2.31 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.9, 141.1, 140.4, 140.0, 135.9, 132.3, 130.7, 128.9, 128.7, 127.7, 127.4, 127.0, 126.7, 126.7, 126.6, 123.6, 120.1, 112.1, 67.8, 47.2, 26.4.

HRMS (ESI) m/z calcd. for C₂₇H₂₃N₃SNa [M+Na]⁺ : 444.1505, found: 444.1505.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c61** as a white solid (39.5 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 4H), 7.39 – 7.30 (m, 6H), 7.30 – 7.24 (m, 1H), 7.10 – 7.04 (m, 2H), 7.03 – 6.96 (m, 1H), 4.61 (d, J = 13.4 Hz, 1H), 3.65 (d, J = 13.4 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 145.5, 135.9, 133.8, 131.7, 130.9, 128.7, 128.6, 127.2, 126.4, 124.6, 123.0, 64.9, 44.7, 27.6.

HRMS (ESI) m/z calcd. for $C_{23}H_{19}NO_2SNa \ [M+Na]^+$: 396.1029, found: 396.1028.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c62** as a colorless oil (58.8 mg, 73% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.72 – 7.61 (m, 4H), 7.35 – 7.29 (m, 2H), 7.26 (td, *J* = 7.9, 3.4 Hz, 1H), 7.07 (dd, *J* = 10.3, 4.7 Hz, 2H), 7.01 – 6.92 (m, 2H), 6.90 (t, *J* = 2.1 Hz, 1H), 6.79 (dd, *J* = 8.2, 2.2 Hz, 1H), 4.60 (d, *J* = 13.4 Hz, 1H), 3.77 (s, 3H), 3.66 – 3.59 (m, 1H), 2.18 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 169.1, 159.7, 147.2, 135.9, 133.8, 131.7, 130.8, 129.6, 128.7, 126.4, 123.0, 117.0, 111.6, 111.4, 64.8, 55.2, 44.6, 27.5.

HRMS (ESI) m/z calcd. for $C_{24}H_{21}NO_3SNa \ [M+Na]^+$: 426.1134, found: 426.1134.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c64** as a white solid (50.3 mg, 56% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.64 (m, 4H), 7.60 – 7.55 (m, 4H), 7.44 (ddd, J = 8.6, 6.9, 2.1 Hz, 4H), 7.38 – 7.32 (m, 3H), 7.12 – 7.05 (m, 2H), 7.04 – 6.97 (m, 1H), 4.64 (d, J = 13.4 Hz, 1H), 3.71 (d, J = 13.4 Hz, 1H), 2.24 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.2, 144.4, 140.5, 140.0, 135.9, 133.8, 131.7, 130.9, 128.8, 128.7, 127.3, 127.3, 127.1, 126.4, 125.1, 123.0, 64.8, 44.8, 27.5.

HRMS (ESI) m/z calcd. for C₂₉H₂₃NO₂SNa [M+Na]⁺: 472.1342, found: 472.1344.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c63** as a yellow oil (39.1 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.73 – 7.67 (m, 2H), 7.48 – 7.39 (m, 4H), 7.34 – 7.28 (m, 3H), 7.17 – 7.06 (m, 5H), 6.86 – 6.78 (m, 2H), 4.63 (q, *J* = 12.9 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 158.8, 141.2, 136.8, 134.1, 133.0, 131.8, 130.1, 129.4, 128.6, 127.9, 127.8, 127.5, 126.1, 123.2, 113.1, 69.4, 55.2, 46.4.

HRMS (ESI) m/z calcd. for C₂₉H₂₃NO₃SNa [M+Na]⁺ : 488.1291, found: 488.1291.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c65** as a white solid (37.5 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.62 (m, 4H), 7.31 (dt, J = 3.3, 1.9 Hz, 2H), 7.12 – 7.05 (m, 2H), 7.03 – 6.97 (m, 1H), 6.86 – 6.79 (m, 2H), 6.77 – 6.72 (m, 1H), 5.93 (ddd, J = 5.3, 3.6, 1.6 Hz, 2H), 4.58 –

4.49 (m, 1H), 3.61 (dd, *J* = 13.1, 7.4 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 147.8, 146.5, 139.4, 133.8, 131.7, 130.8, 128.7, 126.4, 122.9, 117.9, 108.0, 105.8, 101.2, 100.0, 64.8, 45.0, 27.3.

HRMS (ESI) m/z calcd. for C₂₄H₁₉NO₄SNa [M+Na]⁺ : 440.0928, found: 440.0928.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **c66** as a colorless oil (37.3 mg, 52% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.73 – 7.66 (m, 2H), 7.54 – 7.48 (m, 2H), 7.40 (dt, J = 8.0, 1.6 Hz, 2H), 7.35 – 7.33 (m, 1H), 7.33 – 7.28 (m, 2H), 7.27 – 7.21 (m, 2H), 7.19 – 7.14 (m, 1H), 5.49 (dd, J = 11.2, 4.8 Hz, 1H), 4.32 (dt, J = 14.0, 9.4 Hz, 1H), 3.59 (ddd, J = 14.2, 9.5, 4.8 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.2, 138.6, 133.9, 131.8, 131.4, 129.0, 128.7, 128.2, 128.0, 127.1, 125.9, 123.3, 54.7, 36.1.

HRMS (ESI) m/z calcd. for C₂₂H₁₇NO₂SNa [M+Na]⁺ : 382.0872, found: 382.0872.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 3/1, v/v) afforded **c67** as a white solid (61.9 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.25 (t, J = 7.5 Hz, 2H), 7.19 (d, J = 7.3 Hz, 1H), 5.48 (s, 1H), 4.43 (s, 1H), 3.49 (dd, J = 13.2, 6.0 Hz, 1H), 3.34 (t, J = 11.1 Hz, 1H), 3.20 (s, 1H), 1.61 (s, 3H), 1.50 – 1.45 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 156.2, 142.1, 136.9, 136.7, 129.9, 129.0, 126.3, 125.5, 119.7, 80.5, 73.9, 50.8, 49.4, 29.2, 28.4, 18.0.

HRMS (ESI) m/z calcd. for C₂₃H₃₀N₂O₄SNa [M+Na]⁺ : 453.1818, found: 453.1809.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 3/1, v/v) afforded **c68** as a white solid (68.8 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 7H), 7.30 – 7.23 (m, 7H), 7.21 – 7.15 (m, 1H), 5.81 (s, 1H), 4.75 (s, 1H), 3.49 (d, J = 13.1 Hz, 1H), 3.43 – 2.98 (m, 4H), 1.62 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 156.2, 142.3, 136.7, 134.2, 129.9, 129.4, 129.0, 128.7, 126.9, 126.3, 125.5, 123.5, 120.0, 80.5, 73.9, 56.8, 49.4, 38.8, 29.2, 28.4.

HRMS (ESI) m/z calcd. for C₂₉H₃₄N₂O₄SNa [M+Na]⁺ : 529.2132, found: 529.2127.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 3/1, v/v) afforded **c67** as a white solid (84.3 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 7.95 (m, 3H), 7.88 (s, 1H), 7.81 (d, J = 7.4 Hz, 1H), 7.73 (dd, J = 10.5, 4.1 Hz, 1H), 7.64 (d, J = 7.2 Hz, 3H), 7.46 (d, J = 7.2 Hz, 2H), 7.42 – 7.29 (m, 6H), 7.05 (d, J = 6.8 Hz, 1H), 4.25 – 4.14 (m, 1H), 3.63 (d, J = 13.4 Hz, 1H), 3.48 (d, J = 13.4 Hz, 1H), 3.13 (s, 1H), 1.82 (d, J = 6.3 Hz, 3H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 172.7, 150.9, 148.4, 140.5, 138.3, 137.6, 134.4, 132.7, 131.7, 130.3, 129.4, 129.1, 128.9, 128.5, 126.7, 123.7, 122.6, 120.1, 118.2, 74.0, 49.5, 45.7, 29.5, 18.7.

HRMS (ESI) m/z calcd. for $C_{31}H_{28}O_4SNa \ [M+Na]^+$: 519.1601, found: 519.1600.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 3/1, v/v) afforded **c67** as a white solid (57.6 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44

(d, J = 7.4 Hz, 2H), 7.33 (dd, J = 12.5, 4.7 Hz, 3H), 7.27 (d, J = 7.2 Hz, 1H), 7.15 (dd, J = 8.1, 6.5 Hz, 2H), 4.72 (dd, J = 9.2, 3.4 Hz, 1H), 3.35 (dd, J = 13.7, 3.7 Hz, 1H), 3.15 (dd, J = 13.7, 9.3 Hz, 1H), 2.99 (s, 1H), 2.94 (dd, J = 8.9, 4.0 Hz, 2H), 2.59 – 2.42 (m, 2H), 2.32 (dd, J = 13.5, 7.1 Hz, 1H), 2.22 – 2.01 (m, 4H), 1.68 – 1.49 (m, 6H), 0.94 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 221.0, 139.7, 136.8, 134.3, 130.1, 129.1, 126.7, 126.5, 125.6, 123.6, 123.4, 71.5, 50.5, 48.0, 44.4, 43.7, 38.1, 35.9, 31.6, 29.5, 26.5, 25.7, 21.6, 13.9.

HRMS (ESI) m/z calcd. for C₂₆H₃₀O₂SNa [M+Na]⁺ : 429.1859, found: 429.1858.
3. NMR spectra for the products

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

90 80 f1 (ppm)

90 80 f1 (ppm)

90 80 fl (ppm)

90 80 f1 (ppm)

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 fl (ppm)

90 80 fl (ppm)

f1 (ppm)

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1(f1 (ppm)

90 80 f1 (ppm)

4.0 5.5 pm)

4.5 4.0 f1 (ppm)

7.8 7.4 7.0 1.4 6.2 5.8 5.4 5.0 4.6 f1 (ppm) 3.8 3.0 2.6 6.6 4.2 3.4 2.2 1.8

...,

-1.6445

(ppm)

5.0 4.5 f1 (ppm) 4.0

3.07 <u>⊣</u> 9.01 <u>⊣</u> 7.02 7.07 1.14 1.00 0.79 0.74 14.08⊣ 3. 5 4.5 4.0 f1 (ppm) 8.5 7.5 5.0 3.0 1.0 8.0 7.0 6.5 6.0 5.5 2.5 2.0 1.5 0.5 0.0 -0

