Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information for

Straightforward access to Fluoroalkyl Tetrazoles from Fluoroalkyl N-sulfonylhydrazones

Zhongxue Fang, ^a Yujie Zhang, ^a Hongwei Wang, ^b Giuseppe Zanoni, ^c Jianxin Li, ^b Xingqi Li, ^b Zhaohong Liu, *^b and Yongquan Ning*^b

^aSchool of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China; ^bJilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China; ^c Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy.

Email: liuzh944@nenu.edu.cn, ningyq508@nenu.edu.cn

Contents

I. General information	.S2
II. The synthesis of fluoroalkyl <i>N</i> -benzenesulfonylhydrazones	.S2
III. Optimization of the reaction conditions for CF ₃ -substituted tetrazole 39	.S3
IV. General procedures for synthesis fluoroalkyl tetrazoles	S3
V. Characterization data of prepared compounds	S5
VI. Copies of NMR spectra	S31

I. General information

All reagents were purchased from commercial sources and used without purification unless otherwise mentioned. The products were purified by column chromatography over silica gel (300-400). NMR spectra were recorded on a Brüker Advance 600 (¹H: 600 MHz, ¹³C: 150 MHz) and Brüker Advance 500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F: 471 MHz) at ambient temperature. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) for ¹H and CDCl₃ (77.0 ppm) for ¹³C. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High-resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. General procedures for the synthesis of fluoroalkyl N-sulfonylhydrazones.

1. Red-Al,THF, 1 h, -5 °C
2. Ethyl fluoroacetate, THF, 3 h, -5 °C
3. 2M HCl, TfsNHNH₂, EA, 3 h, 25 °C

$$H_2C$$
 H

In a -5 °C low temperature bath, a 100 mL bottom flask was placed as the reaction vessel and nitrogen was replaced three times, morpholine (14 mmol) and THF (10 mL) were added to the bottom flask, Red-Al (12 mmol, 4.4 mL) was slowly dropwise into the mixture, the reaction stired at -5 °C for 1 hour. Add ethyl fluoroacetate and THF to the reaction system and continue to stir at -5 °C for 3 h. After that, quench the reaction system with 2M HCl (60 mL) until the solid disappears completely, add 2-(trifluoromethyl)benzenesulfonohydrazide (TfsNHNH₂) (5 mmol) and EA, the mixture was moved to 25 °C and stir for 3 h. The progress of the reaction was monitored by TLC (PE: EA = 5:1 to 4:1). After completion, the reaction mixture was concentrated under reduced pressure and the obtained crude solid was purified by recrystallization with ethyl ether and petroleum ether to obtain the product as a white solid.

A 250 mL bottom flask was charged with fluoropropionaldehyde hydrate (75.0 mmol), 2-(trifluoromethyl)benzenesulfonohydrazide (TfsNHNH₂) (50.0 mmol) and ethyl acetate (200.0 mL). Then acetic acid (5.5 mmol) was added dropwise under N₂ atmosphere and the mixture was stirred at 40 °C for 4-5 h. The progress of the reaction was monitored by TLC (PE: EA = 5:1 to 4:1). After completion, the reaction mixture was concentrated under reduced pressure and the obtained crude solid was purified by column chromatography using PE/EA (5:1 to 4:1) as eluent to afford the product as a white solid.

F_3C N N S CF_3 $+$ MeO N_2BF_4 $Condition$ $N = N$ CF_3 MeO $N = N$ N N CF_3					
TFHZ-Tfs		2	39		
Entry	Base	Solvent	<i>T</i> (°C)	Yield (%) ^[b]	
1	NaH	1,4-dioxane	25	90	
2	Cs ₂ CO ₃	1,4-dioxane	25	85	
3	DBU	1,4-dioxane	25	92	
4	Et ₃ N	1,4-dioxane	25	95	
5	DIPEA	1,4-dioxane	25	98	
6	DIPEA	DMF	25	66	
7	DIPEA	THF	25	95	
8	DIPEA	DCM	25	97	
9	DIPEA	Toluene	25	67	

III. Optimization of the reaction conditions for CF₃-substituted tetrazole 39.

[a] Reaction conditions: TFHZ-Tfs (0.6 mmol), aryl diazonium salts (0.3 mmol), and base (0.6mmol) in solvent (2 mL) at 25 °C under Ar for 2 h. [b] Isolated yield.

IV. General procedures for synthesis fluoroalkyl tetrazoles.

$$Ar - \overset{+}{N_2} \overset{-}{B}F_4 + \overset{+}{F''} \overset{-}{H} H \xrightarrow{Cs_2CO_3 (2.0 \text{ equiv})}_{DMF, Ar, 25 °C} \overset{N=N}{Ar} \overset{-}{N_N} \overset{-}{F''} \overset{-}{F''}$$
$$\overset{+}{F''} = H_2CF, HCF_2, R^f$$

In a 15 mL of Schlenk tube equipped with Teflon coated magnetic stirring bar, aryl diazonium salts (1.0 equiv) in DMF (2 mL) was charged under Ar, then fluoroalkyl *N*-benzenesulfonylhydrazone (2.0 equiv.) and Cs_2CO_3 (2 equiv.) were added in one portion and the reaction was allowed to stirred at 25 °C for 2 h. After completion, water was added to the mixture and was extracted with EtOAc (3×5 mL). The combined organic layer was dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography to afford the pure fluoroalkyl tetrazoles.

In a 15 mL of Schlenk tube equipped with Teflon coated magnetic stirring bar, aryl diazonium salts (1.0 equiv) in 1,4-dioxane (2 mL) was charged under Ar, then Trifluoroacetaldehyde *N*-Triftosylhydrazone (2.0 equiv) and DIPEA (2 equiv) were added in one portion and the reaction was allowed to stirred at 25 °C for 2 h. After completion, water was added to the mixture and was extracted with EtOAc (3×5 mL). The combined organic layer was dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography to afford the pure 2-aryl-5-fluoroalkyl-tetrazoles.

In a 15 mL of Schlenk tube equipped with Teflon coated magnetic stirring bar, was added arylamines (0.3 mmol), HBF_4 (50% in water, 0.6 mmol, 2.0 equiv.), *t*-BuONO (90% tech., 0.33 mmol, 1.1 equiv.), 1,4-dioxane (2.0 mL). Then the reaction was allowed to stir at 0 °C for 15 minutes before the organic base DIPEA (3.0 equiv.) and

fluoroalkyl *N*-benzenesulfonylhydrazone (2.0 equiv.) was added, the mixture was allowed to stir at 25 °C for additional 2 hours. After completion, water was added to the mixture and was extracted with EtOAc (3×5 mL). The combined organic layer was dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography to afford the pure 2-aryl-5-fluoroalkyl-tetrazoles.

IV. Characterization data of prepared compounds

(1a) ¹H NMR (500 MHz, DMSO) δ 12.22 (s, 1H), 8.06-7.88 (m, 4H), 7.52 (s, 1H), 4.93 (d, J = 47.0, 2H). ¹³C NMR (125 MHz, DMSO) δ 144.8 (d, J = 21.3 Hz), 138.3, 134.1, 133.9, 131.6, 129.1 (q, J = 6.3 Hz), 126.9 (q, J = 32.5 Hz), 82.3 (d, J = 160.0 Hz). ¹⁹F NMR (471 MHz, DMSO) δ -56.36 (s), (-221.38)-(-221.60) (m).

(1f) ¹H NMR (500 MHz, DMSO) δ 13.08 (s, 1H), 8.13-8.10 (m, 1H), 8.04-7.99 (m, 1H), 7.94-7.89 (m, 2H), 7.56-7.53 (m, 1H). ¹³C NMR (150 MHz, DMSO) δ 137.3, 134.7, 134.0, 132.7 (t, *J* = 30.0 Hz), 132.3, 129.1 (q, *J* = 6.0 Hz), 127.1 (q, *J* = 34.5 Hz), 119.5 (qt, *J* = 285.0, 45.0 Hz), 110.3 (tq, *J* = 249.0, 39.0 Hz). ¹⁹F NMR (471 MHz, DMSO) δ -56.65 (s), -83.02 (s), -115.71 (s).

(1g) ¹H NMR (500 MHz, CDCl₃) δ 9.14 (m, 1H), 8.35-8.32 (m, 1H), 7.92-7.90 (m, 1H), 7.80-7.77 (m, 2H), 7.21-7.18 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 135.6, 134.2, 133.4, 133.0 (t, J = 28.8 Hz), 132.7, 128.5 (q, J = 6.3 Hz), 127.9 (q, J = 32.5 Hz), 119.3-107.9 (m). ¹⁹F NMR (471 MHz, DMSO) δ -53.34 (s), (-80.63)-(-80.66) (m), (-115.95)-(-115.99) (m), -127.65 (s).

(1j) ¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.36-8.34 (m, 1H), 7.92-7.90 (m, 1H), 7.80-7.78 (m, 2H), 7.19-7.16 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 137.5, 134.6, 133.7, 132.7 (t, J = 26.3 Hz), 132.6, 129.0 (q, J = 6.3 Hz), 127.5 (q, J = 33.8 Hz), 120.9-110.1 (m). ¹⁹F NMR (471 MHz, DMSO) δ -(-58.31)-(-58.43) (m), (-81.01)-(-81.11) (m), (-115.03)-(-115.08) (m), (-124.14)-(-124.25) (m), (-125.79)-(-125.88) (m).

(1i) ¹H NMR (500 MHz, DMSO) δ 13.14 (s, 1H), 8.13-8.12 (m, 1H), 8.03-7.98 (m, 1H), 7.94-7.88 (m, 2H), 7.56-7.52 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 137.1, 134.7, 134.0, 133.8, 132.6 (t, *J* = 27.5 Hz), 132.4, 129.1-110.1 (m). ¹⁹F NMR (471 MHz, DMSO) δ -56.89 (s), -80.70 (s), -113.93 (s), -122.39 (s), -123.65 (s), 126.34 (s).

(1j) ¹H NMR (500 MHz, DMSO) δ 8.12-8.11 (m, 1H), 7.96-7.95 (m, 1H), 7.89-7.83 (m, 2H), 7.52-7.50 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 137.2, 134.5, 133.9, 133.7, 132.6 (t, *J* = 27.5 Hz), 132.4, 128.9-108.6 (m). ¹⁹F NMR (471 MHz, DMSO) δ -57.13 (s), -81.24 (s), (-104.36)-(-126.68) (m).

(1k) ¹H NMR (500 MHz, DMSO) δ 8.12-8.10 (m, 1H), 7.93-7.91 (m, 1H), 7.85-7.81 (m, 2H), 7.50-7.47 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 137.2, 134.3, 134.0, 133.5, 132.6 (t, *J* = 27.5 Hz), 132.4, 128.8-108.9 (m). ¹⁹F NMR (471 MHz, DMSO) δ -57.30 (s), -81.75 (s), (-104.95)-(-126.26) (m).

(3) White solid, m.p. 61–62 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.02 (m, 2H), 7.05-7.02 (m, 2H), 5.73 (d, J = 47.5 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (d, J = 20.0 Hz), 160.8, 130.1, 121.5, 114.7, 75.2 (d, J = 167.5 Hz), 55.6. ¹⁹F NMR (471 MHz, CDCl₃) δ - 216.73 (t, J = 48.0 Hz). HRMS (ESI) m/z calcd. for C₉H₉FN₄ONa [M+Na]⁺ 231.0760, found 231.0768.

(4) White solid, m.p. 53–54 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.58-7.58 (m, 2H), 5.75 (d, J = 47.5 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (d, J = 20.0 Hz), 153.6, 134.2, 126.6, 119.7, 75.2 (d, J = 167.5 Hz), 34.9, 31.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -216.87 (t, J = 47.6 Hz). HRMS (ESI) m/z calcd. for C₁₂H₁₅FN₄Na [M+Na]⁺ 257.1289, found 257.1287.

(5) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.14-8.13 (m, 2H), 7.58-7.50 (m, 3H), 5.76 (d, *J* = 47.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.7 (d, *J* = 20.0 Hz), 136.6, 130.1, 129.7, 120.0, 75.2 (d, *J* = 167.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -217.15 (t, *J* = 48.5 Hz). HRMS (ESI) m/z calcd. for C₈H₇FN₄Na [M+Na]⁺ 201.0548, found 201.0542.

(6) White solid, m.p. 58–60 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.09 (m, 2H), 7.56-7.54 (m, 2H), 5.75 (d, J = 47.5 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 161.9 (d, J = 24.5 Hz), 136.1, 135.0, 130.0, 121.2, 75.1 (d, J = 201.8 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -217.52 (t, J = 46.9

(7) White solid, m.p. 71–73 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13-8.11 (m, 2H), 7.69-7.67 (m, 2H), 5.76 (d, J = 47.5 Hz, 2H), 3.23 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.9 (d, J = 21.3 Hz), 136.2, 133.5, 124.2, 119.8, 82.0, 79.8, 75.1 (d, J = 168.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -217.54 (t, J = 47.6 Hz). HRMS (ESI) m/z calcd. for C₁₀H₇FN₄Na [M+Na]⁺ 225.0548, found 225.0549.

(8) White solid, m.p. 125–126 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.26-8.22 (m, 4H), 5.77 (d, J = 47.0 Hz, 2H), 4.43 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.2, 162.0 (d, J = 19.5 Hz), 139.3, 131.9, 131.2, 119.7, 75.0 (d, J = 169.5 Hz), 61.6, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -217.83 (t, J = 47.6 Hz). HRMS (ESI) m/z calcd. for C₁₁H₁₁FN₄O₂Na [M+Na]⁺ 273.0951, found 273.0955.

(9) Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.33-8.31 (m, 2H), 7.91-7.89 (m, 2H), 5.77 (d, J = 47.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 162.3 (d, J = 19.5 Hz), 139.0, 133.9, 120.4, 117.4, 114.0, 74.9 (d, J = 169.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -218.34 (t, J = 47.5 Hz). HRMS (ESI) m/z calcd. for C₉H₆FN₅Na [M+Na]⁺ 226.0514, found 226.0518.

(10) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.22-8.19 (m, 2H), 7.44-7.42 (m, 2H), 5.76 (d, J = 47.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 162.0 (d, J = 21.0 Hz), 150.1, 134.8, 122.2, 121.6, 121.2 (q, J = 256.5 Hz), 75.0 (d, J = 168.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -57.95 (s), -217.68 (t, J = 46.9 Hz). HRMS (ESI) m/z calcd. for C₉H₆F₄N₄ONa [M+Na]⁺ 285.0513, found 285.0516.

(11) Yellow solid, m.p. 75–76 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.88-7.87 (m, 1H), 7.47-7.44 (m, 1H), 7.37-7.35 (m, 1H), 5.75 (d, J = 47.5 Hz, 2H), 2.57 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.7 (d, J = 19.5 Hz), 141.6, 137.0, 129.9, 127.5, 116.9, 116.1, 75.0 (d, J = 168.0 Hz), 15.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -217.26 (t, J = 47.5 Hz). HRMS (ESI) m/z calcd. for C₉H₉FN₄SNa [M+Na]⁺ 247.0432, found 247.0430.

(12) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.59 (m, 1H), 7.48-7.45 (m, 1H), 7.42-7.37 (m, 2H), 5.77 (d, J = 47.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (d, J = 20.0 Hz), 136.1, 133.0, 131.9, 130.6, 126.9, 125.2, 75.2 (d, J = 167.5 Hz), 18.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -217.27 (t, J = 48.5 Hz). HRMS (ESI) m/z calcd. for C₉H₉FN₄Na [M+Na]⁺ 215.0733, found 215.0739.

(13) White solid, m.p. 63–65 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.68-7.54 (m, 4H), 7.28-7.24 (m, 3H), 7.06-7.04 (m, 2H), 5.60 (d, J = 47.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (d, J = 47.0 Hz, 2H).

21.3 Hz), 138.4, 137.1, 134.8, 131.4, 131.2, 128.5, 128.3, 128.2, 127.9, 126.4, 74.9 (d, J = 167.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -216.77 (t, J = 47.1 Hz). HRMS (ESI) m/z calcd. for C₁₄H₁₁FN₄Na [M+Na]⁺ 277.0955, found 277.0952.

(14) Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.06 (m, 1H), 7.58-7.51 (m, 2H), 7.34-7.31 (m, 1H), 5.80 (d, J = 47.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.7 (d, J = 20.0 Hz), 140.7, 139.9, 132.4, 129.2, 127.6, 92.5, 75.1 (d, J = 168.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -217.33 (t, J = 47.1 Hz). HRMS (ESI) m/z calcd. for C₈H₆FIN₄Na [M+Na]⁺ 326.9602, found 326.9607.

(15) White solid, m.p. 106–108 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.29 (m, 2H), 6.57-6.56 (m, 1H), 5.74 (d, J = 47.5 Hz, 2H), 3.87 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (d, J = 21.3 Hz), 161.5, 137.9, 102.4, 98.3, 75.2 (d, J = 167.5 Hz), 55.8. ¹⁹F NMR (471 MHz, CDCl₃) δ - 217.22 (t, J = 48.0 Hz). HRMS (ESI) m/z calcd. for C₁₀H₁₁FN₄O₂Na [M+Na]⁺ 261.0853, found 261.0850.

(16) Yellow solid, m.p. 123–125 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 1H), 8.14 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.44-7.35 (m, 2H), 5.76 (d, J = 47.5 Hz, 2H), 3.98 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 161.6 (d, J = 19.5 Hz), 144.6, 143.7, 140.1, 135.1, 127.8, 127.2, 125.2, 120.6, 120.4, 119.0, 116.8, 75.1 (d, J = 168.0 Hz), 37.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -217.00 (t, J = 48.0 Hz). HRMS (ESI) m/z calcd. for C₁₅H₁₁FN₄Na [M+Na]⁺ 289.0977, found 289.9073.

(17) White solid, m.p. 133–134 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, J = 2.0 Hz, 1H), 8.26 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.62 (s, 1H), 5.77 (d, J = 47.5 Hz, 2H), 4.48 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.8 (d, J = 20.0 Hz), 158.9, 155.6, 148.0, 133.1, 127.7, 119.8, 114.5, 113.6, 75.2 (d, J = 168.8 Hz), 62.0, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -216.82 (t, J = 47.1 Hz). HRMS (ESI) m/z calcd. for C₁₃H₁₁FN₄O₃Na [M+Na]⁺ 313.0832, found 313.0835.

(18) Yellow solid, m.p. 164–165 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.81 (d, J = 2.0 Hz, 1H), 8.23 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H), 8.17 (d, J = 7.5 Hz, 1H), 7.57-7.46 (m, 3H), 7.32 (t, J = 7.5 Hz, 2H), 5.80 (d, J = 47.5 Hz, 2H), 4.34 (q, J = 7.5 Hz, 2H), 1.50 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.4 (d, J = 21.0 Hz), 140.8, 140.2, 129.1, 126.9, 123.2, 122.6, 120.9, 119.8, 117.8, 112.6, 109.0, 108.9, 75.3 (d, J = 201 Hz), 37.9, 13.8. ¹⁹F NMR (565 MHz, CDCl₃) δ - 216.36 (t, J = 58.2 Hz). HRMS (ESI) m/z calcd. for C₁₆H₁₄FN₅Na [M+Na]⁺ 318.0744, found 318.0740.

(19) Yellow solid, m.p. 153–155 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.98 (t, J = 2.5 Hz, 1H), 8.32 (dd, J = 8.5 Hz, J = 1.5 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.74 (t, J = 8.5 Hz, 1H), 7.57 (dd, J = 8.5 Hz, J = 4.5 Hz, 1H), 5.86 (d, J = 47.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.7 (d, J = 17.5 Hz), 152.3, 142.2, 136.2, 134.0, 131.5, 129.1, 127.3, 125.7, 122.6, 75.2 (d, J = 140.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -216.88 (t, J = 39.6 Hz). HRMS (ESI) m/z calcd. for C₁₁H₈FN₅Na [M+Na]⁺ 252.0316, found 252.0315.

(20) Yellow solid, m.p. 153–155 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.16 (s, 1H), 8.90 (d, J = 1.5 Hz, 1H), 8.29 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 5.79 (d, J = 47.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.9 (d, J = 20.0 Hz), 156.8, 153.6, 135.4, 135.2, 123.2, 117.5, 115.1, 75.1 (d, J = 167.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -217.32 (t, J = 48.5 Hz). HRMS (ESI) m/z calcd. for C₉H₆FN₅SNa [M+Na]⁺ 258.0316, found 258.0315.

(21) Yellow solid, m.p. 132–134 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.70 (d, J = 2.4 Hz, 1H), 8.88 (d, J = 2.2 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.69 (t, J = 7.5 Hz, 1H), 5.77 (d, J = 47.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.2 (d, J = 20.0 Hz), 148.4, 142.1, 131.2, 123.0, 129.8, 128.5, 128.5, 127.0, 126.2, 74.5. (d, J = 168.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -217.89 (t, J = 47.5Hz). HRMS (ESI) m/z calcd. for C₁₁H₈FN₅Na [M+Na]⁺ 252.0661, found 252.0663.

(22) Yellow solid, m.p. 92–94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.01 (t, J = 53.0 Hz, 1H), 6.78-6.75 (m, 2H), 3.06 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 159.5 (t, J = 28.5 Hz), 151.5, 125.9, 121.3, 111.8, 107.9 (t, J = 237.0 Hz), 40.3. ¹⁹F NMR (471 MHz, CDCl₃) δ - 116.76 (d, J = 44.3 Hz). HRMS (ESI) m/z calcd. for C₁₀H₁₁F₂N₅Na [M+Na]⁺ 262.0971, found 262.0976.

(23) White solid, m.p. 46–47 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.04 (m, 2H), 7.07-7.04 (m, 2H), 7.02 (t, J = 53.0 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 159.9 (t, J = 27.5 Hz), 129.8, 121.7, 114.8, 107.8 (t, J = 237.5 Hz), 55.7. ¹⁹F NMR (471 MHz, CDCl₃) δ - 116.97 (d, J = 51.8 Hz). HRMS (ESI) m/z calcd. for C₉H₈F₂N₄ONa [M+Na]⁺ 249.0645, found 249.0651.

(24) White solid, m.p. 66–67 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.04 (m, 2H), 7.60-7.58 (m, 2H), 7.03 (t, J = 53.0 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 160.1 (t, J = 27.0 Hz), 154.2, 134.0, 126.7, 119.8, 107.8 (t, J = 237.0 Hz), 35.0, 31.2. ¹⁹F NMR (565 MHz, CDCl₃) δ - 117.02 (d, J = 53.1 Hz). HRMS (ESI) m/z calcd. for C₁₂H₁₄F₂N₄Na [M+Na]⁺ 275.1174, found 275.1172.

(25) Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 8.15-8.13 (m, 2H), 7.59-7.53 (m, 3H), 7.04 (t, J = 52.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.2 (t, J = 28.8 Hz), 136.3, 130.5, 129.8, 120.1, 107.7 (t, J = 237.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.11 (d, J = 53.2 Hz). HRMS (ESI) m/z calcd. for C₈H₆F₂N₄Na [M+Na]⁺ 219.0573, found 219.0571.

(26) Yellow solid, m.p. 53–55 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.04 (m, 2H), 7.75-7.72 (m, 2H), 7.04 (t, J = 52.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.4 (t, J = 27.5 Hz), 135.2, 133.1,

124.7, 121.5, 107.6 (t, J = 238.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.18 (d, J = 52.8 Hz). HRMS (ESI) m/z calcd. for C₈H₅BrF₂N₄Na [M+Na]⁺ 296.9646, found 296.9651.

(27) White solid, m.p. 83–84 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14-8.13 (m, 2H), 7.70-7.68 (m, 2H), 7.04 (t, J = 53.0 Hz, 1H), 3.25 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 160.3 (t, J = 28.5 Hz), 136.0, 133.6, 124.7, 120.0, 107.6 (t, J = 238.5 Hz), 81.9, 80.1. ¹⁹F NMR (565 MHz, CDCl₃) δ - 117.19 (d, J = 52.5 Hz). HRMS (ESI) m/z calcd. For C₁₀H₆F₂N₄Na [M+Na]⁺ 243.0573, found 243.0575.

(28) Yellow solid, m.p. 135–136 °C ¹H NMR (500 MHz, DMSO) δ 8.42-8.40 (m, 2H), 8.26-8.24 (m, 2H), 7.65 (t, J = 52.0 Hz, 1H), 3.35 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 164.7 (t, J = 27.0 Hz), 146.9, 143.4, 133.8, 125.7, 112.6 (t, J = 235.5 Hz), 47.8. ¹⁹F NMR (565 MHz, DMSO) δ - 118.21 (d, J = 52.5 Hz). HRMS (ESI) m/z calcd. for C₉H₈F₂N₄O₂SNa [M+Na]⁺ 297.0315, found 297.0318.

(29) Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.35-8.33 (m, 2H), 7.93-7.91 (m, 2H), 7.05 (t, J = 53.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.7 (t, J = 28.8 Hz), 138.8, 134.0, 120.7, 117.3, 114.5, 107.4 (t, J = 238.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.37 (d, J = 52.8 Hz). HRMS (ESI) m/z calcd. for C₉H₅F₂N₅Na [M+Na]⁺ 244.0537, found 244.0541.

(30) White solid, m.p. 106–107 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.28-8.26 (m, 2H), 8.18-8.16 (m, 2H), 7.04 (t, J = 53.0 Hz, 1H), 2.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.3, 160.5 (t, J = 27.5 Hz), 139.0, 138.3, 130.0, 120.1, 107.5 (t, J = 238.8 Hz), 26.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.29 (d, J = 52.8 Hz). HRMS (ESI) m/z calcd. for C₁₀H₈F₂N₄ONa [M+Na]⁺ 261.0655, found 261.0658.

(31) White solid, m.p. 77–79 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.50-8.47 (m, 2H), 8.42-8.39 (m, 2H), 7.06 (t, J = 53.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.9 (t, J = 28.8 Hz), 148.5, 140.0, 125.6, 120.8, 107.4 (t, J = 238.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.44 (d, J = 52.3 Hz). HRMS (ESI) m/z calcd. for C₈H₅F₂N₅O₂Na [M+Na]⁺ 264.0435, found 264.0433.

(32) Yellow solid, m.p. 53–54 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.90 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.03 (t, J = 53.0 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.2 (t, J = 28.5 Hz), 141.9, 136.8, 130.0, 128.0, 117.1, 116.3, 107.7 (t, J = 237.0 Hz), 15.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -117.12 (d, J = 54.2 Hz). HRMS (ESI) m/z calcd. for C₉H₈F₂N₄SNa [M+Na]⁺ 265.0417, found 265.0411.

(33) Yellow solid, m.p. 149–151 °C; ¹H NMR (500 MHz, DMSO) & 10.30 (s, 1H), 8.00 (s, 1H),

7.85 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.61 (t, J = 52.5 Hz, 1H), 7.45 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H), 3.11 (s, 3H). ¹³**C NMR** (125 MHz, DMSO) δ 164.4 (t, J = 28.8 Hz), 144.6, 141.0, 135.8, 125.4, 119.5, 114.8, 112.7 (t, J = 236.3 Hz). ¹⁹**F NMR** (471 MHz, DMSO) δ - 113.24 (d, J = 51.3 Hz). HRMS (ESI) m/z calcd. for C₉H₉F₂N₅O₂SNa [M+Na]⁺ 312.0473, found 312.0477.

(34) White solid, m.p. 83–85 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.95 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.02 (t, J = 52.5 Hz, 1H), 2.45 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.2 (t, J = 27.5 Hz), 139.1, 135.6, 134.9, 131.9, 120.7, 118.1, 107.6 (t, J = 237.5 Hz), 19.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.19 (d, J = 53.2 Hz). HRMS (ESI) m/z calcd. for C₉H₇ClF₂N₄Na [M+Na]⁺ 267.0349, found 267.0352.

(35) White solid, m.p. 95–97 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 1H), 7.74 (dd, J = 8.5 Hz, J = 2.5 Hz, 1H), 7.68-7.64 (m, 3H), 7.53 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 6.77 (t, J = 52.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 192.0, 160.2 (t, J = 28.8 Hz), 137.3, 135.6, 135.1, 133.9, 132.4, 131.7, 130.2, 129.1, 128.7, 125.1, 107.1 (t, J = 238.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.53 (d, J = 53.2 Hz). HRMS (ESI) m/z calcd. for C₁₅H₉ClF₂N₄ONa [M+Na]⁺ 357.0742, found 357.0742.

(36) White solid, m.p. 46–47 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 1H), 8.01-7.94 (m, 2H), 7.87 (d, J = 7.5 Hz, 1H), 7.64-7.61 (m, 3H), 7.14 (t, J = 53.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.2 (t, J = 28.8 Hz), 134.2, 132.9, 131.9, 128.5, 127.3, 126.8, 124.8, 123.6,

122.2, 107.8 (t, J = 237.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -116.88 (d, J = 52.8 Hz). HRMS (ESI) m/z calcd. for C₁₂H₈F₂N₄Na [M+Na]⁺ 269.0239, found 269.0236.

(37) White solid, m.p. 104–105 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.27 (dd, J = 9.0 Hz, J = 1.5 Hz, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.62 (s, 1H), 7.05 (t, J = 53.0 Hz, 1H), 4.48 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.3 (t, J = 28.5 Hz), 158.8, 155.8, 148.1, 132.8, 127.8, 119.8, 114.8, 113.8, 113.6, 107.6 (t, J = 238.5 Hz), 62.0, 14.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -117.12 (d, J = 53.1 Hz). HRMS (ESI) m/z calcd. for $C_{13}H_{10}F_{2}N_{4}O_{3}Na$ [M+Na]⁺ 331.0535, found 331.0533.

(38) White solid, m.p. 124–125 °C; ¹H NMR (600 MHz, DMSO) δ 13.54 (s, 1H), 8.56 (s, 1H), 8.32 (s, 1H), 8.08 (dd, J = 9.0 Hz, J = 1.8 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.61 (t, J = 52.2 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 164.4 (t, J = 27.0 Hz), 144.5, 139.6, 133.9, 127.0, 123.4, 117.9, 116.3, 112.8 (t, J = 235.5 Hz). ¹⁹F NMR (565 MHz, DMSO) δ -117.78 (d, J = 53.1 Hz). HRMS (ESI) m/z calcd. for C₉H₆F₂N₆Na [M+Na]⁺ 259.0648, found 259.0651.

(39)^[2] Yellow solid, m.p. 49–50 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.08-7.06 (m, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.0, 157.1 (q, *J* = 40.5 Hz), 121.8, 119.4 (d, *J* = 268.5 Hz), 114.9, 55.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.56 (s). HRMS (ESI) m/z calcd. for C₉H₈F₃N₄O [M+H]⁺ 245.0645, found 245.0643.

(40)^[2] Yellow solid, m.p. 44–45 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.05 (m, 2H), 7.62-7.59 (m, 2H), 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 157.3 (q, *J* = 40.6 Hz), 154.6, 133.8, 126.8, 119.9, 119.6 (q, *J* = 273.8 Hz), 35.0, 31.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.58 (s). HRMS (ESI) m/z calcd. for C₁₂H₁₃F₃N₄ [M]⁺ 270.1087, found 270.1093.

(41)^[2] Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 7.63-7.56 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.4 (q, J = 33.8 Hz), 136.2, 130.9, 130.0, 120.2, 119.4 (q, J = 223.8 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -63.65 (s). HRMS (ESI) m/z calcd. for C₈H₆F₃N₄ [M+H]⁺ 215.0539, found 215.0541.

(42) White solid, m.p. 63–65 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.16-8.14 (m, 2H), 7.72-7.69 (m, 2H), 3.27 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 157.4 (q, *J* = 41.3 Hz), 135.7, 133.7, 125.1, 120.1, 118.3 (q, *J* = 270.0 Hz), 81.8, 80.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.64 (s). HRMS (ESI) m/z calcd. for C₁₀H₅F₃N₄Na [M+Na]⁺ 261.0573, found 261.0572.

(43)^[2] Yellow solid, m.p. 36–37 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.12 (m, 2H), 7.61-7.58 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 157.4 (q, J = 35.0 Hz), 135.1, 133.2, 125.1, 121.6, 119.2 (q, J = 223.8 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -63.62 (s). HRMS (ESI) m/z calcd. for

C₈H₄BrF₃N₄ [M]⁺ 291.9566, found 291.9569.

(44)^[2] White solid, m.p. 52–54 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.30-8.26 (m, 4H), 4.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.4, 157.6 (q, J = 41.3 Hz), 138.8,132.4, 131.4, 120.0, 119.3 (q, J = 268.8 Hz), 52.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.70 (s). HRMS (ESI) m/z calcd. for C₁₀H₇F₃N₄O₂ [M]⁺ 272.0516, found 272.0518.

(45)^[2] Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.36-8.35 (m, 2H), 7.96-7.94 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 157.9 (q, J = 40.5 Hz), 138.5, 134.1, 120.8, 119.0 (q, J = 268.5 Hz), 117.1, 114.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.71 (s). HRMS (ESI) m/z calcd. for C₉H₄F₃N₃ [M-N₂]⁺ 211.0352, found 211.0354.

(46)^[2] White solid, m.p. 53–55 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.52-8.49 (m, 2H), 8.45-8.42 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.1 (q, J = 41.3 Hz), 148.8, 139.8, 125.6, 121.0, 119.2 (q, J = 268.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.71 (s). HRMS (ESI) m/z calcd. for C₈H₄F₃N₃O₂ [M-N₂]⁺ 231.0251, found 231.0250.

(47)^[2] White solid, m.p. 146–148 °C; ¹H NMR (500 MHz, DMSO) & 8.30-8.24 (m, 4H), 2.68 (s,

3H). ¹³C NMR (150 MHz, DMSO) δ 197.4, 156.7 (q, J = 33.8 Hz), 138.9, 138.8, 130.7, 121.3, 119.8 (q, J = 223.8 Hz), 27.4. ¹⁹F NMR (565 MHz, DMSO) δ -62.73 (s). HRMS (ESI) m/z calcd. for C₁₀H₇F₃N₄O [M]⁺ 256.0567, found 256.0568.

(48)^[3] Red oil; ¹H NMR (500 MHz, CDCl₃) δ 8.26-8.23 (m, 2H), 7.47 (d, J = 8.5 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 157.6 (q, J = 42.0 Hz), 150.7, 134.3, 122.3, 121.9, 121.2 (q, J = 213.8Hz), 119.2 (q, J = 268.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -58.00 (s), -63.71 (s). HRMS (ESI) m/z calcd. for C₁₂H₁₃F₃N₄O [M+H]⁺ 299.0362, found 299.0366.

(49) Yellow solid, m.p. 60–62 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 2.60 (s, 3H) . ¹³C NMR (150 MHz, CDCl₃) δ 157.3 (q, J = 40.5 Hz), 142.1, 136.6, 130.0, 128.2, 119.3 (q, J = 270.0 Hz), 117.1, 116.3, 15.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.60 (s). HRMS (ESI) m/z calcd. for C₉H₇F₃N₄SNa [M+Na]⁺ 283.0357, found 283.0359.

(50)^[2] Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.45-7.40 (m, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.2 (q, J = 40.0 Hz), 135.7, 133.1, 132.1, 131.2, 127.1, 125.3, 119.6 (q, J = 268.8 Hz), 18.6. ¹⁹F NMR (565 MHz, CDCl₃) δ - 63.48 (s). HRMS (ESI) m/z calcd. for C₉H₈F₃N₄ [M+H]⁺ 229.0696, found 229.0702.

(51)^[2] Red solid, m.p. 39–41 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.07 (m, 1H), 7.61-7.54 (m, 2H), 7.38-7.35 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 157.5 (q, J = 37.5 Hz), 140.8, 139.3, 132.9, 129.3, 127.6, 118.4 (q, J = 268.8 Hz), 92.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.42 (s). HRMS (ESI) m/z calcd. for C₈H₄IF₃N₄ [M]⁺ 339.9428, found 339.9435.

(52)^[3] White solid, m.p. 87–89 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 2.0 Hz, 2H), 6.58 (t, J = 2.5 Hz, 1H), 3.87 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 161.6, 157.0 (q, J = 40.5 Hz), 137.4, 119.3 (q, J = 268.5 Hz), 102.9, 98.4, 55.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.67 (s). HRMS (ESI) m/z calcd. for C₁₀H₁₀F₃N₄O₂ [M+H]⁺ 275.0750, found 275.0750.

(53)^[3] Red oil; ¹H NMR (500 MHz, CDCl₃) δ 7.03 (s, 2H), 2.37 (s, 3H), 1.94 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 157.3 (q, J = 40.0 Hz), 141.8, 134.8, 133.0, 129.4, 119.6 (q, J = 268.8 Hz), 21.2, 17.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.47 (s). HRMS (ESI) m/z calcd. for C₁₁H₁₂F₃N₄ [M+H]⁺ 257.1008, found 257.1009.

(54)^[2] White solid, m.p. 44–45 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.5 Hz, 1H), 8.00-7.99 (m, 1H), 7.94-7.92 (m, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.64-7.61 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.3 (q, J = 41.3 Hz), 134.2, 132.6, 132.2, 128.7, 128.5, 127.4, 126.6, 124.7, 123.7, 122.1, 119.6 (q, J = 268.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.34 (s). HRMS (ESI) m/z calcd. for C₁₂H₇F₃N₄ [M]⁺ 264.0618, found 264.0618.

(55) Yellow solid, m.p. 84–86 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 8.0 Hz, 2H), 8.21 (t, J = 6.5 Hz, 2H), 8.15-8.13 (m, 3H), 8.07-8.03 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 157.4 (q, J = 41.3 Hz), 133.2, 130.9, 130.5, 130.3, 129.7, 129.0, 126.9, 126.7, 126.5, 124.9, 124.8, 124.6, 123.8, 122.6, 120.5, 118.8 (q, J = 268.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.23 (s). HRMS (ESI) m/z calcd. for C₁₈H₉F₃N₄Na [M+Na]⁺ 361.0735, found 361.0733.

(56) Yellow solid, m.p. 135–137 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.75-8.73 (m, 1H), 8.19-8.11 (m, 2H), 7.56-7.53 (m, 1H), 7.48-7.43 (m, 2H), 7.32-7.29 (m, 1H), 4.40-4.36 (m, 2H), 1.49-1.46 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.0 (q, J = 40.5 Hz), 140.8, 140.5, 128.4, 127.1, 123.2, 122.4, 120.9, 119.9, 119.6 (q, J = 223.8 Hz), 112.6, 109.1, 109.0, 37.8, 13.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.41 (s). HRMS (ESI) m/z calcd. for C₁₆H₁₂F₃N₅Na [M+Na]⁺ 354.0341, found 351.0342.

(57)^[2] Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 5.0 Hz, 1H), 7.39 (d, J = 5.5 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.0 (q, J = 40.5 Hz), 135.1, 131.2, 128.8, 126.0, 119.2 (q, J = 268.5 Hz), 52.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.52 (s). HRMS (ESI) m/z calcd. for C₈H₆F₃N₄O₂S [M+H]⁺ 279.0158, found 279.0163.

(58) White solid, m.p. 71–73 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 158.0 (q, J = 42.0 Hz), 137.3, 121.9, 119.1 (q, J = 268.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -63.70 (s). HRMS (ESI) m/z calcd. for C₁₀H₄F₆N₈Na [M+Na]⁺ 373.0252, found 373.0251.

(59) White solid, m.p. 94–96 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 9.0 Hz, 4H), 7.89 (d, J = 9.0 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 157.6 (q, J = 40.0 Hz), 141.8, 136.0, 128.7, 120.9, 119.5 (q, J = 268.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.56 (s). HRMS (ESI) m/z calcd. for C₁₆H₈F₆N₈Na [M+Na]⁺ 449.0766, found 449.0771.

(60) White solid, m.p. 111–113 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 9.0 Hz, 4H), 7.54 (d, J = 9.0 Hz, 4H), 2.40-2.38 (m, 4H), 1.66-1.57 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 157.4 (q, J = 40.0 Hz), 151.0, 134.1, 128.7, 120.4, 119.5 (q, J = 268.8 Hz), 46.6, 37.0, 26.0, 22.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.58 (s). HRMS (ESI) m/z calcd. for C₂₂H₁₈F₆N₈Na [M+Na]⁺ 531.1578, found 531.1577.

(61) Yellow solid; mp: 138-139 °C; ¹H NMR (600 MHz, DMSO) δ 8.44-8.42 (m, 4H), 8.39-8.36 (m, 4H). ¹³C NMR (125 MHz, DMSO) δ 156.7 (q, J = 40.0 Hz), 142.6, 139.6, 130.5, 122.7, 119.1 (q, J = 267.5 Hz). ¹⁹F NMR (565 MHz, DMSO) δ -62.81 (s). HRMS (ESI) m/z calcd. for C₁₆H₈F₆N₈O₂SNa [M+Na]⁺ 513.0383, found 513.0388.

(62) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.08-7.05 (m, 2H), 3.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 156.2 (t, J = 28.8 Hz), 129.6, 121.8, 119.3 (qt, J = 285.0, 36.3 Hz), 108.8 (tq, J = 252.0, 40.5 Hz), 55.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -83.99 (s), -114.68 (s). HRMS (ESI) m/z calcd. for C₁₀H₇F₅N₄ONa [M+Na]⁺ 317.0118, found 317.0119.

(63) Yelow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.05 (m, 2H), 7.45-7.43 (m, 2H), 3.05-2.99 (m, 1H), 7.75 (d, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 156.4 (t, J = 28.8 Hz), 152.4, 134.1, 127.9, 120.3, 119.4 (qt, J = 285.0, 35.0 Hz), 108.8 (tq, J = 253.8, 40.0 Hz), 34.0, 23.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -84.05 (s), -114.75 (s). HRMS (ESI) m/z calcd. for C₁₂H₁₁F₅N₄Na [M+Na]⁺ 329.0934, found 329.0932.

(64) Red oil; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.92 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ

156.7 (t, J = 28.5 Hz), 139.2, 135.7, 121.7, 119.1 (qt, J = 285.0, 36.0 Hz), 108.6 (tq, J = 253.5, 40.5 Hz), 96.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -83.91 (s), -114.72 (s). HRMS (ESI) m/z calcd. for C₉H₄F₅IN₄Na [M+Na]⁺ 412.9433, found 412.9436.

(65) White solid, m.p. 56–57 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 2.5 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.52 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.7 (t, J = 30.0 Hz), 138.6, 132.7, 131.3, 130.1, 128.3, 128.3, 119.3 (qt, J = 283.8, 35.0 Hz), 108.6 (tq, J = 253.8, 41.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -84.02 (s), -114.70 (s). HRMS (ESI) m/z calcd. for C₉H₃Cl₂F₅N₄Na [M+Na]⁺ 354.9642, found 354.9646.

(66) White solid, m.p. 41–42 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.5 Hz, 1H), 8.02-7.99 (m, 1H), 7.95-7.90 (m, 1H), 7.90 (dd, J = 7.5 Hz, J = 1.5 Hz, 1H), 7.67-7.63 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.6 (t, J = 30.0 Hz), 134.2, 132.5, 132.2, 128.7, 128.5, 127.4, 126.6, 124.7, 123.7, 122.0, 119.4 (qt, J = 285.0, 35.0 Hz), 108.8 (tq, J = 253.8, 40.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -83.83 (s), -114.43 (s). HRMS (ESI) m/z calcd. for C₁₃H₇F₅N₄Na [M+Na]⁺ 337.0297, found 337.0293.

(67) Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 5.5 Hz, 1H), 7.40 (d, J = 5.5 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.5, 156.3 (t, J = 28.5 Hz), 135.0, 131.2, 129.2, 126.0, 119.1 (qt, J = 283.5, 36.0 Hz), 108.6 (tq, J = 255.0, 40.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -88.79 (s), -119.52 (s). HRMS (ESI) m/z calcd. for C₉H₅F₅N₄O₂SNa [M+Na]⁺ 351.0071, found

351.0072.

(68) White solid; mp: 53-54 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 157.1 (t, J = 30.0 Hz), 137.3, 121.9, 119.2 (qt, J = 285.0, 35.0 Hz), 108.6 (tq, J = 253.8, 41.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -83.86 (s), -114.76 (s). HRMS (ESI) m/z calcd. for C₁₂H₄F₁₀N₈Na [M+Na]⁺ 473.0392, found 473.0390.

(69) White solid, m.p. 92–93 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 9.0 Hz, 4H), 7.58 (d, J = 9.0 Hz, 4H), 2.43-2.41 (m, 4H), 1.68-1.58 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 156.5 (t, J = 28.5 Hz), 151.1, 134.0, 128.7, 120.4, 119.1 (qt, J = 285.0, 34.5 Hz), 108.7 (tq, J = 253.5, 40.5 Hz), 46.6, 36.9, 25.9, 22.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -84.09 (s), -114.82 (s). HRMS (ESI) m/z calcd. for C₂₄H₁₈F₁₀N₈Na [M+Na]⁺ 631.1488, found 631.1485.

(70) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.05 (m, 2H), 7.07-7.04 (m, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.5, 156.3 (t, J = 28.5 Hz), 129.6, 121.8, 118.6 (qt, J = 286.5, 33.0 Hz), 114.9, 110.6 (tt, J = 256.5, 31.5 Hz), 110.2-106.2 (m), 55.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -80.16 (t, J = 7.9 Hz), (-112.53)-(-112.58) (m), -126.66 (s). HRMS (ESI) m/z calcd. for

C₁₁H₇F₇N₄ONa [M+Na]⁺ 367.0546, found 367.0549.

(71) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.07 (m, 2H), 7.09-7.05 (m, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.6, 156.5 (t, J = 28.5 Hz), 129.6, 121.8, 118.3 (qt, J = 286.5, 33.0 Hz), 114.9, 110.2 (tt, J = 256.5, 33.0 Hz), 109.8-106.6 (m), 55.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (-80.97)-(-81.01) (m), (-111.80)-(-111.84) (m), (-123.07)-(-113.12) (m), (-125.65)-(-125.68) (m). HRMS (ESI) m/z calcd. for C₁₂H₇F₉N₄ONa [M+Na]⁺ 417.0489, found 417.0488.

(72) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.05 (m, 2H), 7.06-7.04 (m, 2H), 3.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 156.5 (t, J = 28.8 Hz), 129.6, 121.8, 118.4 (qt, J = 286.3, 32.5 Hz), 114.1-108.3 (m), 55.6. ¹⁹F NMR (471 MHz, CDCl₃) δ (-81.09)-(-81.13) (m), (-111.81)-(-111.87) (m), (-122.45)-(-122.58) (m), (-126.37)-(-126.45) (m). HRMS (ESI) m/z calcd. for C₁₃H₇F₁₁N₄ONa [M+Na]⁺ 467.0355, found 467.0353.

(73) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.07 (m, 2H), 7.07-7.06 (m, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.6, 156.6 (t, J = 28.5 Hz), 129.7, 121.8, 118.2 (qt, J = 286.5, 33.0 Hz), 113.2-108.0 (m), 55.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (-81.01)-(-81.05) (m), (-111.70)-(-111.75) (m), (-121.58)-(-121.62) (m), (-122.27)-(-122.31) (m), (-122.87)-(-122.90) (m), (-126.23)-(-126.29) (m). HRMS (ESI) m/z calcd. for C₁₄H₇F₁₃N₄ONa [M+Na]⁺ 517.0438, found

517.0441.

(74) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.04 (m, 2H), 7.06-7.03 (m, 2H), 3.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 156.6 (t, J = 28.8 Hz), 129.7, 121.8, 118.3 (qt, J = 286.3, 32.5 Hz), 113.8-108.1 (m), 55.6. ¹⁹F NMR (471 MHz, CDCl₃) δ (-81.18)-(-81.22) (m), (-111.80)-(-111.85) (m), (-121.47)-(-121.59) (m), (-122.15)-(-122.37) (m), (-122.89)-(-122.98) (m), (-126.37)-(-126.45) (m). HRMS (ESI) m/z calcd. for C₁₅H₇F₁₅N₄ONa [M+Na]⁺ 567.0395, found 567.0391.

(75) Red oil; ¹H NMR (500 MHz, CDCl₃) δ 8.08 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.60-7.53 (m, 2H), 7.37 (td, J = 7.0 Hz, 1.5 Hz, 1H), 7.08 (t, J = 53.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.2 (t, J = 27.5 Hz), 140.8, 139.6, 132.7, 129.2, 127.6, 107.5 (t, J = 237.5 Hz), 92.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.05 (d, J = 53.2 Hz). HRMS (ESI) m/z calcd. for C₈H₅F₂IN₄Na [M+Na]⁺ 344.9545, found 344.9546.

(76) Yellow solid; mp: 147-149 °C; ¹H NMR (600 MHz, DMSO) δ 12.29 (s, 1H), 8.53 (d, J = 5.0 Hz, 2H), 8.37 (d, J = 8.5 Hz, 2H), 8.29 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 5.0 Hz, 1H). ¹³C NMR (125 MHz, DMSO) δ 158.9, 157.4, 156.7 (q, J = 40.0 Hz), 143.3, 138.6, 130.2, 121.6, 119.9 (q, J = 267.5 Hz), 116.0. ¹⁹F NMR (565 MHz, DMSO) δ -62.80 (s). HRMS (ESI) m/z calcd. for C₁₂H₈F₃N₇O₂SNa [M+Na]⁺ 394.0483, found 394.0484.

(77) White solid; mp: 125-126 °C; ¹H NMR (500 MHz, DMSO) δ 11.15 (s, 1H), 8.32 (t, J = 8.5 Hz, 2H), 8.23 (t, J = 7.5 Hz, 1H), 5.18 (dd, J = 13.0 Hz, J = 5.5 Hz, 1H), 2.90-2.83 (m, 1H), 2.62-2.58 (m, 1H), 2.53-2.44 (m, 2H), 2.09-2.05 (m, 1H). ¹³C NMR (150 MHz, DMSO) δ 173.2, 170.0, 166.0, 163.9, 156.6 (q, J = 40.5 Hz), 137.4, 133.6, 132.5, 130.9, 127.4, 125.7, 119.8 (q, J = 268.5 Hz), 49.9, 31.4, 22.2. ¹⁹F NMR (565 MHz, DMSO) δ -62.69 (s). HRMS (ESI) m/z calcd. for C₁₅H₉F₃N₆O₄Na [M+Na]⁺ 417.0736, found 417.0735.

(78) White solid; mp: 136-137 °C; ¹H NMR (600 MHz, DMSO) δ 12.76 (s, 1H), 8.32 (d, J = 9.0 Hz, 2H), 8.18 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 4.8 Hz, 1H), 7.82-7.79 (m, 1H), 7.28 (d, J = 9.0 Hz, 1H), 6.87 (d, J = 6.6 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 156.6 (q, J = 40.0 Hz), 154.5, 145.6, 142.4, 138.0, 129.4, 129.0, 127.0, 121.8, 119.8 (q, J = 268.0 Hz), 115.4. ¹⁹F NMR (565 MHz, DMSO) δ -62.81 (s). HRMS (ESI) m/z calcd. for C₁₃H₉F₃N₆O₂SNa [M+Na]⁺ 393.0710, found 393.0711.

V. References

- [1] a) X. Zhang, Z. Liu, X. Yang, Y. Dong, M. Virelli, G. Zanoni, E. A. Anderson, X. Bi, *Nat. Commun.* 2019, *10*, 284-292; b) Y. Ning, Y. Gai, X. Zhang, Y. Dong, P. Sivaguru, Y. Wang, B. R. P. Reddy, G. Zanoni, X. Bi, *Angew. Chem. Int. Ed.* 2020, *59*, 6473-6481; *Angew. Chem. Int. Ed.* 2020, *132*, 6535-6543; c) Y. Ning, H. Wang, P. Sivaguru, S. Li, G. Zanoni, S. P. Nolan, X. Bi, *Green Chem.* 2021, *23*, 7976-7981.
- [2] Z Chen, S Q Fan, Y Zheng, J A Ma, Chem. Commun. 2015, 51, 16545-16548.

[3] X Lin, B Luo, W He, Q Lu, L Li, H Zheng, W Wu, and Z Weng, *Tetrahedron Lett.* 2022, 95, 153717.

VI. Copies of NMR spectra

S32

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

137.21 133.24 133.96 133.96 133.55 132.55 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.55 10

30 20

10

0 -10

5

-20 -30

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

-217.435 -217.518 -217.604

S52

-40

-3

-1

-2

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -11 (ppm)

S62

40 30 20

10

0 -10 -20 -30 -40

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

S67

30 20

10 0 -10 -20 -30

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

S79

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260

<-117.290</pre>

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

-94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

S92

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppa)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

io 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

S133

8.132 8.115 8.115 8.010 8.010 8.005 8.005 8.001 8.001 8.010 8.001 7.995 7.995 7.995 7.9916 7.932 8.899 7.9916 7.9916 7.9916 7.9916 7.9916 7.9916 7.9916 7.7916 7.916 7.916 7.7917

S138

S147

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -220 -220 -240 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

78

