Supporting Information for

Electrochemical Enantioselective Dihydroxylation Reaction of *N*-Alkenyl nucleobases for the Construction of Chiral Acyclic Nucleosides

Qi-Ying Zhang*^a, Pei-Xian Lu^a, Song-Lin Wang^b Lu-Xin Li^a, Gui-Rong Qu^a, and Hai-Ming Guo*^a

^aNMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

^bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.

E-mail: zhangqiying@htu.edu.cn; ghm@htu.edu.cn

Table of Contents

1. General information	2
2. Experimental Section	2
2.1 Synthesis methods for starting materials ^[1-4]	2
2.2 Graphical guide for the electrochemical set-up	3
2.3 Optimization of reaction conditions	3
2.4 General procedure for electrochemical enantioselective dihydroxylation reaction of N-alke	enyl
nucleobases	4
2.5 Scale-up synthesis of model product 2a	5
3. The X-ray data of 2a	5
4. The analytical and spectral characterization data	7
5. Copies of ¹ H and ¹³ C NMR spectra	26
6. Copies of HPLC spectra for racemic and chiral products	77
7. References	105

1. General information

All the electrochemical oxidations were performed in an undivided cell equipped with carbon felt anode (1.5 cm \times 1.5 cm \times 0.3 cm) and platinum cathode (1.5 cm \times 1.5 cm \times 0.2 mm) unless otherwise noted. Source (HSPY-600) was purchased from Beijing Hansheng Puyuan Technology Co., LTD. All commercial reagents were purchased from TCI, Sigma-Aldrich, laajoo and Adamas-beta of the highest purity grade and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane with the solvent resonance as the internal standard. Data are represented as follows: chemical shift, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (J) are in Hertz (Hz), and integration. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/ ID/OD-H/IC in comparison with the authentic racemates. Chiral HPLC analysis was recorded on Thermo Scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were recorded on Autopol Automatic Polarimeter, and were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in CH₃OH). High resolution mass spectra (HRMS) were recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). Single crystal X-ray crystallography data were obtained on Supernova Atlas S2 CCD detector. Melting point (m.p.) data were obtained on X-5 micro melting point apparatus. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase.

2. Experimental Section

2.1 Synthesis methods for starting materials^[1-4]

To a mixture of nucleobases (10.0 mmol) and K_2CO_3 (2.07 g, 15.0 mmol) in DMF (20.0 mL), the solution of alkenes compounds (12.0 mmol) was added. Then, the resulting mixture was stirred at rt until the starting materials were consumed as indicated by TLC analysis. Afterwards, the resulting mixture was filtered through a Celite pad, and the brine (40 mL) was added into the filtrate. Subsequently, the mixture was extracted with ethyl acetate (30.0 mL×3). The combined organic layers were washed with brine (100.0 mL \times 2), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography with petroleum ether: ethyl acetate (2:1) as the eluant to afford the N-alkenyl nucleobases.

2.2 Graphical guide for the electrochemical set-up

Figure S1. Reaction set-up for milligram-scale electrolysis. The anode is carbon felt electrode (1.5 cm \times 1.5 cm \times 0.3 cm) while the cathode is platinum electrode (1.5 cm \times 1.5 cm \times 0.2 mm).

Figure S2. Reaction set-up for gram-scale electrolysis. The anode is carbon felt electrode (4.0 cm \times 4.0 cm \times 0.6 cm) while the cathode is platinum electrode (4.0 cm \times 4.0 cm \times 0.2 mm).

2.3 Optimization of reaction conditions

Table S1. Screening of Reaction Conditions^a

	CI N N N N N N N N N N N N N)4 (0.1 mol%)), KI (0.5 equiv) (3.0 equiv) 1 ₂ O (1:1), rt 4 mA	N N Ph (OH 2a	
entry	anode	cathode	yield (%) ^b	ee (%) ^c
1	Pt (1.0*1.0 cm ²)	Pt $(1.0*1.0 \text{ cm}^2)$	33	89
2	Pt (1.5*1.0 cm ²)	Pt (1.0*1.0 cm ²)	49	90
3	Pt (1.5*1.5 cm ²)	Pt $(1.0*1.0 \text{ cm}^2)$	56	91
4	Pt (1.5*1.5 cm ²)	Pt $(1.5*1.5 \text{ cm}^2)$	66	91
5	Graphite Felt (1.5*1.5 cm ²)	Pt $(1.5*1.5 \text{ cm}^2)$	94	96
6	RVC ^d (1.5*1.5 cm ²)	Pt (1.5*1.5 cm ²)	56	92
7	Carbon Rod	Pt (1.5*1.5 cm ²)	35	92
8	Ni foam (1.5*1.5 cm ²)	Pt (1.5*1.5 cm ²)	n.r.	n.r.
9	Carbon Rod	Carbon Rod	n.r.	n.r.

^aUnless otherwise noted, the reaction conditions were: **1a** (1.0 mmol), K₂OsO₂(OH)₄ (0.1 mol%), **L4** (DHQD)₂PHAL (10.0 mol%), KI (0.5 equiv), NaHCO₃ (3.0 equiv), t-BuOH/H₂O (20 mL, 1:1), constant current of 4 mA, rt, the reaction time of 40 h, in an undivided cell. ^bIsolated yields. ^cDetermined by chiral HPLC analysis. ^dRVC: Reticulated Vitreous Carbon

2.4 General procedure for electrochemical enantioselective dihydroxylation reaction of N-alkenyl nucleobases

The electrocatalysis was carried out in an undivided cell under air with carbon felt anode (1.5 cm \times 1.5 cm \times 0.3 cm) and platinum cathode (1.5 cm \times 1.5 cm \times 0.2 mm). The N-alkenyl nucleobases (1.0 mmol), K₂OsO₂(OH)₄ (0.001 mmol), L4 (0.1 mmol), KI (0.5 mmol), NaHCO₃ (3.0 mmol) were dissolved in t-BuOH/H₂O (20 mL, 1:1). Electrocatalysis was performed at rt with a constant current of 4.0 mA maintained for 40 h. After the reaction, the electrodes were washed with ethyl acetate (3×10.0 mL). The mixture was dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel with CH₂Cl₂/MeOH (40/1) to afford the corresponding products.

2.5 Scale-up synthesis of model product 2a

The electrocatalysis was carried out in an undivided cell under air with carbon felt anode (4.0 cm \times 4.0 cm \times 0.6 cm) and platinum cathode (4.0 cm \times 4.0 cm \times 0.2 mm). To one vial, **1a** (4.0 mmol), K₂OsO₂(OH)₄ (0.004 mmol), **L4** (0.4 mmol), KI (2.0 mmol), NaHCO₃ (12.0 mmol) and t-BuOH/H₂O (80.0 mL, 1:1) were added. To another vial, **1a** (5.0 mmol), K₂OsO₂(OH)₄ (0.05 mmol), **L4** (0.5 mmol), KI (2.5 mmol), NaHCO₃ (15.0 mmol) and t-BuOH/H₂O (100.0 mL, 1:1) were added. Electrocatalysis was performed at rt with a constant current of 10.0 mA until the starting materials were consumed as indicated by TLC analysis. After these reactions, the electrodes were washed with ethyl acetate (3×30.0 mL). The mixture was dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel with CH₂Cl₂/MeOH (40/1) afforded the product **2a**.

3. The X-ray data of 2a

The chiral product of **2a** was recrystallized by ethyl acetate/ petroleum ether/methanol (30/10/1). CCDC 2150120 (**2a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Table 1	Crystal data and structure refinement for 2a.
Identification code	LPX-20211213
Empirical formula	$C_{14}H_{16}ClN_4O_4$

Formula weight	339.76
Temperature/K	293 (2)
Crystal system	monoclinic
Space group	P21
a/Å	10.76520(10)
b/Å	6.84890(10)
c/Å	11.20770(10)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	110.1070(10)
$\gamma^{\prime \circ}$	90
Volume/Å ³	775.977(16)
Z	2
$\rho_{calc}g/cm^3$	1.454
μ/mm^{-1}	2.427
F(000)	354.0
Crystal size/mm ³	$0.01~\times~0.01~\times~0.01$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.402 to 142.808
Index ranges	$-13 \le h \le 13, -8 \le k \le 7, -13 \le l \le 13$
Reflections collected	18673
Independent reflections	2824 [$R_{int} = 0.0417, R_{sigma} = 0.0195$]
Data/restraints/parameters	2824/1/216
Goodness-of-fit on F ²	1.149
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0435, wR_2 = 0.1066$
Final R indexes [all data]	$R_1 = 0.0436, wR_2 = 0.1067$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.62
Flack parameter	0.023(11)

4. The analytical and spectral characterization data

(1) The analytical and spectral characterization data of starting materials

6-chloro-9-(2-phenylallyl)-9H-purine (1a)

White solid, m.p. 87.0-88.5 °C, 1.48 g, 55% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.08 (s, 1H), 7.43-7.40 (m, 2H), 7.30-7.28 (m, 3H), 5.63 (s, 1H), 5.33 (s, 2H), 5.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 151.8, 151.0, 145.1, 141.9, 136.9, 131.3, 128.81, 128.75, 126.0, 116.9, 47.5; HRMS (ESI-TOF): exact mass calcd for C₁₄H₁₁ClN₄ (M+H)⁺ requires m/z 271.0745, found m/z 271.0741.

6-bromo-9-(2-phenylallyl)-9H-purine (1b)

White solid, m.p. 106.7-108.6 °C, 2.01 g, 64% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.72 (s, 1H), 8.09 (s, 1H), 7.42-7.41 (m, 2H), 7.32-7.26 (m, 3H), 5.63 (s, 1H), 5.32 (s, 2H), 5.21 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 152.0, 150.6, 145.0, 143.1, 141.9, 136.9, 133.9, 128.84, 128.79, 126.0, 116.9, 47.6; HRMS (ESI-TOF): exact mass calcd for C₁₄H₁₁BrN₄ (M+H)⁺ requires m/z 315.0240, found m/z 315.0245.

9-(2-phenylallyl)-9H-purine (1c)

White solid, m.p. 61.9-64.0 °C, 1.26 g, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 9.03 (s, 1H), 8.06 (s, 1H), 7.45-7.42 (m, 2H), 7.32-7.27 (m, 3H), 5.63 (s, 1H), 5.32 (s, 2H), 5.18 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 151.4, 148.6, 145.1, 142.2, 137.1, 133.8, 128.8, 128.7, 126.0, 116.5, 46.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₂N₄ (M+H)⁺ requires m/z 237.1135, found m/z 237.1137.

6-methyl-9-(2-phenylallyl)-9H-purine (1d)

White solid, m.p. 66.5-67.2 °C, 0.78 g, 31% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.96 (s, 1H), 7.44-7.41 (m, 2H), 7.32-7.28 (m, 3H), 5.61 (s, 1H), 5.29 (s, 2H), 5.16 (s, 1H), 2.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 152.6, 150.7, 143.7, 142.5, 137.3, 132.9, 128.9, 128.8, 126.1, 116.5, 47.1, 19.6; **HRMS** (ESI-TOF): exact mass calcd for C₁₅H₁₄N₄ (M+H)⁺ requires m/z 251.1291, found m/z 251.1298.

6-ethoxy-9-(2-phenylallyl)-9H-purine (1f)

White solid, m.p. 29.2-32.1 °C, 1.54 g, 55% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.56 (s, 1H), 7.87 (s, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.30-7.26 (m, 3H), 5.59 (s, 1H), 5.27 (s, 2H), 5.12 (s, 1H), 4.67-4.63 (m, 2H), 1.50 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.9, 152.3, 152.1, 142.5, 142.0, 137.3, 128.7, 128.6, 126.0, 121.2, 116.0, 63.2, 47.1, 14.5; HRMS (ESI-TOF): exact mass calcd for C₁₆H₁₆N₄O (M+Na)⁺ requires m/z 303.1216, found m/z 303.1209.

6-(benzyloxy)-9-(2-phenylallyl)-9H-purine (1g)

White solid, m.p. 102.9-104.3 °C, 2.01 g, 59% yield, ¹H NMR (600 MHz, CDCl₃) δ 8.58 (s, 1H), 7.86 (s, 1H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.43-7.41 (m, 2H), 7.36-7.34 (m, 2H), 7.31-7.27 (m, 4H), 5.66 (s, 2H), 5.59 (s, 1H), 5.26 (s, 2H), 5.12 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 160.7, 152.4, 152.2, 142.5, 142.2, 137.3, 136.2, 128.8, 128.7, 128.53, 128.45, 128.2, 126.1, 121.3, 116.2, 68.5, 47.2; **HRMS** (ESI-TOF): exact mass calcd for C₂₁H₁₈N₄O (M+H)⁺ requires m/z 343.1553, found m/z 343.1559.

N,N-dimethyl-9-(2-phenylallyl)-9H-purin-6-amine (1h)

-N N Ph

White solid, m.p. 126.5-127.5 °C, 1.45 g, 52% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.39 (s, 1H), 7.67 (s, 1H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.31-7.27 (m, 3H), 5.58 (s, 1H), 5.20 (s, 2H), 5.08 (s, 1H), 3.51 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 155.0, 152.7, 150.7, 142.8, 138.2, 137.6, 128.7, 128.5, 126.1, 119.9, 115.7, 46.7, 38.6; **HRMS** (ESI-TOF): exact mass calcd for C₁₆H₁₇N₅ (M+H)⁺ requires m/z 280.1557, found m/z 280.1556.

N,N-diethyl-9-(2-phenylallyl)-9H-purin-6-amine (1i)

White solid, m.p. 85.7-87.6 °C, 1.84 g, 60% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.39 (s, 1H), 7.68 (s, 1H), 7.45 (d, J = 7.2 Hz, 2H), 7.32-7.26 (m, 3H), 5.58 (s, 1H), 5.19 (s, 2H), 5.07 (s, 1H), 3.97 (s, 4H), 1.28 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 153.9, 152.8, 150.7, 142.8, 138.2, 137.6, 128.7, 128.4, 126.1, 119.4, 115.6, 46.6, 43.0, 13.6; HRMS (ESI-TOF): exact mass calcd for C₁₈H₂₁N₅ (M+H)⁺ requires m/z 308.1870, found m/z 308.1864.

tert-butyl (tert-butoxycarbonyl)(9-(2-phenylallyl)-9H-purin-6-yl)carbamate (1j)

White solid, m.p. 86.4-89.0 °C, 1.80 g, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.01 (s, 1H), 7.42-7.40 (m, 2H), 7.31-7.25 (m, 3H), 5.61 (s, 1H), 5.32 (s, 2H), 5.19 (s, 1H), 1.39 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 152.2, 150.4, 150.3, 144.6, 142.4, 137.1, 128.8, 128.7, 128.6, 126.1, 116.6, 83.7, 47.3, 27.8; **HRMS** (ESI-TOF): exact mass calcd for C₂₄H₂₉N₅O₄ (M+H)⁺ requires m/z 452.2292, found m/z 452.2282.

9-(2-phenylallyl)-6-(pyrrolidin-1-yl)-9H-purine (1k)

White solid, m.p. 177.7-181.6 °C, 2.01 g, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.67 (s, 1H), 7.46-7.44 (m, 2H), 7.33-7.25 (m, 3H), 5.58 (s, 1H), 5.21 (s, 2H), 5.08 (s, 1H), 4.14 (s, 2H), 3.76 (s, 2H), 2.02 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 153.1, 150.3, 142.9, 138.7, 137.6, 128.8, 128.5, 126.1, 120.1, 115.7, 46.7, 26.3, 24.4; **HRMS** (ESI-TOF): exact mass calcd for C₁₈H₁₉N₅ (M+H)⁺ requires m/z 306.1713, found m/z 306.1714.

6-phenyl-9-(2-phenylallyl)-9H-purine (11)

White solid, m.p. 123.8-125.4 °C, 1.03 g, 33% yield; ¹H NMR (600 MHz, CDCl₃) δ 9.06 (s, 1H), 8.78-8.77 (m, 2H), 8.06 (s, 1H), 7.56-7.50 (m, 3H), 7.46-7.45 (m, 2H), 7.33-7.28 (m, 3H), 5.63 (s, 1H), 5.34 (s, 2H), 5.19 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 155.0, 152.7, 152.6, 144.3, 142.5, 137.4, 135.7, 131.1, 130.9, 129.9, 128.9, 128.8, 126.1, 116.5, 47.1; HRMS (ESI-TOF): exact mass calcd for C₂₀H₁₆N₄ (M+H)⁺ requires m/z 313.1448, found m/z 313.1493.

6-(naphthalen-1-yl)-9-(2-phenylallyl)-9H-purine (1m)

White solid, m.p. 108.8-109.9 °C, 1.41 g, 39% yield; ¹H NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 8.30 (d, *J* = 7.2 Hz, 1H), 8.05-8.03 (m, 2H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.92-7.91 (m, 1H), 7.62 (t, *J* = 6.6, 1H), 7.52-7.47 (m, 4H), 7.35-7.29 (m, 3H), 5.63 (s, 1H), 5.33 (s, 2H), 5.19 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 152.4, 144.7, 142.3, 137.3, 134.1, 132.5, 132.4, 131.1, 130.7, 130.0, 128.8, 128.7, 128.5, 126.8, 126.10, 126.08, 125.8, 125.1, 116.4, 47.0; **HRMS** (ESI-TOF): exact mass calcd for C₂₄H₁₈N₄ (M+H)⁺ requires m/z 363.1604, found m/z 363.1603.

2,6-dichloro-9-(2-phenylallyl)-9H-purine (1n)

White solid, m.p. 114.8-115.6 °C, 1.31 g, 43% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.06 (s, 1H), 7.41-7.39 (m, 2H), 7.32-7.28 (m, 3H), 5.65 (s, 1H), 5.29 (s, 2H), 5.24, (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 153.1, 153.0, 151.6, 145.7, 141.5, 136.6, 130.4, 128.84, 128.82, 125.9, 117.3, 47.7; HRMS (ESI-TOF): exact mass calcd for C₁₄H₁₀Cl₂N₄ (M+H)⁺ requires m/z 305.0355, found m/z

305.0346.

tert-butyl (6-chloro-9-(2-phenylallyl)-9H-purin-2-yl)carbamate (10)

White solid, 149.5-151.9 °C, 2.50 g, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.62 (s, 1H), 7.46-7.44 (m, 2H), 7.33-7.27 (m, 3H), 5.65 (s, 1H), 5.26-5.25 (m, 3H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 152.6, 151.3, 150.3, 144.1, 142.1, 137.0, 128.9, 128.8, 127.6, 126.2, 117.2, 81.8, 47.5, 28.3; HRMS (ESI-TOF): exact mass calcd for C₁₉H₂₀ClN₅O₂ (M+Na)⁺ requires m/z 408.1198, found m/z 408.1208.

1,3-dimethyl-9-(2-phenylallyl)-3,9-dihydro-1H-purine-2,6-dione (1p)

White solid, m.p. 112.3-114.3 °C, 1.94 g, 49% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.44-7.42 (m, 2H), 7.35-7.29 (m, 3H), 5.55 (s, 1H), 5.38 (s, 2H), 5.12 (s, 1H), 3.55 (d, *J* = 1.2 Hz, 3H), 3.41 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 151.8, 148.7, 143.1, 141.3, 137.5, 128.9, 128.7, 126.3, 116.3, 107.0, 50.2, 29.9, 28.1; HRMS (ESI-TOF): exact mass calcd for C₁₆H₁₆N₄O₂ (M+Na)⁺ requires m/z 319.1165, found m/z 319.1162.

6-chloro-9-(2-methylallyl)-9H-purine (1q)

Yellow oil, 1.00 g, 48% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.64-8.62 (m, 1H), 8.07 (s, 1H), 4.91 (s, 1H), 4.75 (s, 2H), 4.68 (s, 1H), 1.64 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 152.0, 151.8, 150.8, 145.4, 139.0, 131.2, 114.6, 49.5, 19.9; **HRMS** (ESI-TOF): exact mass calcd for C₉H₉ClN₄ (M+H)⁺ requires m/z 209.0589, found m/z 209.0598.

6-chloro-9-(2-methylenebutyl)-9H-purine (1r)

Colorless oil; 0.89 g, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.09 (s, 1H), 5.01 (s, 1H), 4.84 (s, 2H), 4.79 (s, 1H), 2.00 (q, *J* = 7.6 Hz, 2H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 152.0, 151.2, 145.4, 144.8, 131.5, 112.8, 48.7, 26.4, 11.8; HRMS (ESI-TOF): exact mass calcd for C₁₀H₁₁ClN₄ (M+H)⁺ requires m/z 223.0745, found m/z 223.0750. **6-chloro-9-(2-cyclohexylallyl)-9H-purine (1s)**

White solid, m.p. 61.4-62.7 °C, 0.74 g, 42% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.09 (s, 1H), 5.02 (s, 1H), 4.86 (s, 2H), 4.70 (s, 1H), 1.81-1.75 (m, 5H), 1.67-1.64 (m, 1H), 1.22-1.17 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 152.1, 151.2, 148.7, 145.5, 131.5, 112.2, 47.7, 41.9, 32.2, 26.5, 26.1; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₇ClN₄ (M+H)⁺ requires m/z 277.1215, found m/z 277.1215.

2,6-dichloro-9-(2-methylallyl)-9H-purine (1t)

White solid, 66.6-67.1 °C, 1.52 g, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 5.05 (s, 1H), 4.80 (s, 1H), 4.78 (s, 2H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 153.3, 152.0, 146.0, 138.7, 130.7, 115.3, 49.8, 20.1; HRMS (ESI-TOF): exact mass calcd for C₉H₈Cl₂N₄ (M+H)⁺ requires m/z 243.0199, found m/z 243.0205.

1-(2-phenylallyl)-1H-benzo[d]imidazole (1x)

White solid, m.p. 106.4-108.4 °C, 1.24 g, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.81-7.79 (m, 1H), 7.40-7.36 (m, 3H), 7.35-7.20 (m, 6H), 5.51 (s, 1H), 5.12 (s, 2H), 4.94 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.4, 142.3, 138.0, 128.8, 128.6, 126.7, 126.0, 123.1, 122.3, 120.5, 115.3, 110.1, 48.7; HRMS (ESI-TOF): exact mass calcd for C₁₆H₁₄N₂ (M+H)⁺ requires m/z 235.1230, found m/z 235.1237.

6-chloro-9-cinnamyl-9H-purine (3a)

White solid, m.p. 80.1-83.6 °C, 1.70 g, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.21 (s, 1H), 7.38-7.26 (m, 5H), 6.68 (d, J = 16.0 Hz, 1H), 6.40-6.33 (m, 1H), 5.07 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 151.8, 151.1, 145.0, 135.5, 135.3, 131.7, 128.8, 128.7, 126.7, 121.5, 46.1; HRMS (ESI-TOF): exact mass calcd for C₁₄H₁₁ClN₄ (M+Na)⁺ requires m/z 293.0564, found m/z 293.0556.

2,6-dichloro-9-cinnamyl-9H-purine (3b)

White solid, m.p. 136.8-138.0 °C, 1.52 g, 50% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.39-7.28 (m, 5H), 6.70 (d, J = 15.6 Hz, 1H), 6.37-6.30 (m, 1H), 5.03 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 153.1, 152.0, 145.6, 136.1, 135.2, 130.9, 128.9, 126.9, 121.0, 46.4; HRMS (ESI-TOF): exact mass calcd for C₁₄H₁₀Cl₂N₄ (M+H)⁺ requires m/z 305.0355, found m/z 305.0352.

(E)-6-chloro-9-(pent-2-en-1-yl)-9H-purine (3c)

White solid, m.p. 26.6-29.7 °C, 0.98 g, 44% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.69 (s, 1H), 8.08 (s, 1H), 5.80-5.76 (m, 1H), 5.58-5.54 (m, 1H), 4.88 (d, *J* = 7.2 Hz, 2H), 2.25-2.20 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 151.9, 151.7, 150.9, 144.7, 138.8, 131.6, 120.9, 40.8, 20.9, 13.9; **HRMS** (ESI-TOF): exact mass calcd for C₁₀H₁₁ClN₄ (M+H)⁺ requires m/z 223.0745, found m/z 223.0741.

(2) The analytical and spectral characterization data of the products

(S)-3-(6-chloro-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2a)

White solid, m.p. 66.2-69.2 °C, 288.8 mg, 95% yield, 96% ee; $[\alpha]_D^{20} = 21.79$ (c = 0.257, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 11.053 min, 17.538 min; **TLC**: R_f = 0.25 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 8.57 (s, 1H), 8.30 (s, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.18 (dt, *J* = 36.6, 7.8 Hz, 3H), 4.76 (s, 2H), 3.90 (d, *J* = 11.4 Hz, 1H), 3.75 (d, *J* = 11.4 Hz, 1H); ¹³**C NMR** (150 MHz, CD₃OD) δ 153.8, 152.6, 150.8, 149.1, 142.4, 131.3, 129.1, 128.6, 126.8, 77.5, 68.6, 52.0; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₃ClN₄O₂ (M+H)⁺ requires m/z 305.0800, found m/z 305.0801.

(S)-3-(6-bromo-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2b)

Brown oil, 327.1 mg, 94% yield, 95% ee; $[\alpha]_D^{22} = 22.73$ (c = 0.274, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 12.903 min, 17.563 min; **TLC**: R_f = 0.27 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (400 MHz, CD₃OD) δ 8.52 (s, 1H), 8.30 (s, 1H), 7.44-7.42 (m, 2H), 7.18 (dt, *J* = 25.2, 7.2 Hz, 3H), 4.75 (s, 2H), 3.90 (d, *J* = 11.6 Hz, 1H), 3.75 (d, *J* = 11.6 Hz, 1H); ¹³**C NMR** (100 MHz, CD₃OD) δ 152.5, 148.9, 142.7, 142.4, 134.0, 129.1, 128.6, 126.8, 77.5, 68.6, 52.0; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₃BrN₄O₂ (M+H)⁺ requires m/z 349.0295, found m/z 349.0292.

(S)-2-phenyl-3-(9H-purin-9-yl)propane-1,2-diol (2c)

White solid, m.p. 107.6-108.9 °C, 72.9 mg, 27% yield, 84% ee; $[\alpha]_D^{21} = 56.73$ (c = 0.241, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 10.295 min, 17.490 min; **TLC**: $R_f = 0.32$ (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.94 (s, 1H), 8.79 (s, 1H), 8.29 (s, 1H), 7.45-7.44 (m,

2H), 7.16 (dt , J = 37.8, 7.2 Hz, 3H), 4.76 (dd, J = 16.8, 14.4 Hz, 2H), 3.89 (d, J = 11.4 Hz, 1H), 3.76 (d, J = 11.4 Hz, 1H); ¹³C NMR (150 MHz, CD₃OD) δ 153.3, 152.9, 149.2, 148.1, 142.6, 134.0, 129.1, 128.5, 126.8, 77.6, 68.6, 51.4; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₄N₄O₂ (M+H)⁺ requires m/z 271.1190, found m/z 271.1193.

(S)-3-(6-methyl-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2d)

White solid, m.p. 161.9-162.9 °C, 264.2 mg, 93% yield, 94% ee; $[\alpha]_D^{20} = 9.49$ (c = 0.260, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 9.499 min, 13.586 min; **TLC**: R_f = 0.29 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.65 (s, 1H), 8.21 (s, 1H), 7.46-7.44 (m, 2H), 7.19 (dt, J = 37.2, 7.2 Hz, 3H), 4.74 (s, 2H), 3.86 (d, J = 11.4 Hz, 1H), 3.73 (d, J = 11.4 Hz, 1H), 2.74 (s, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 159.4, 152.51, 152.47, 147.9, 142.7, 132.8, 129.1, 128.5, 126.9, 77.6, 68.7, 51.6, 18.9; **HRMS** (ESI-TOF): exact mass calcd for C₁₅H₁₆N₄O₂ (M+H)⁺ requires m/z 285.1346, found m/z 285.1343.

(S)-3-(6-methoxy-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2e)

White solid, m.p. 140.9-142.6 °C, 285.1 mg, 95% yield, 96% ee; $[\alpha]_D^{22} = 11.27$ (c = 0.284, CH₃OH); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 75/25, flow rate = 0.8 mL/min, $\lambda = 254$ nm, retention time: 18.705 min, 19.487 min; **TLC**: R_f = 0.28 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.37 (s, 1H), 8.01 (s, 1H), 7.46-7.44 (m, 2H), 7.23-7.14 (m, 3H), 4.68 (dd, *J* = 30.0, 21.0 Hz, 2H), 4.10 (s, 3H), 3.77 (dd, *J* = 64.2, 16.8 Hz, 2H), 3.35 (s, 2H); ¹³C NMR (150 MHz, CD₃OD) δ 162.0, 153.6, 152.8, 145.6, 142.7, 129.1, 128.4, 126.8, 121.0, 77.6, 68.5, 54.8, 51.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₅H₁₆N₄O₃ (M+H)⁺ requires m/z 301.1295, found m/z 301.1292.

(S)-3-(6-ethoxy-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2f)

White solid, m.p. 142.9-143.8 °C, 279.6 mg, 89% yield, 93% ee; $[\alpha]_D^{21} = 16.48$ (c = 0.267, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 11.142 min, 23.589 min; **TLC**: R_f = 0.31 (dichloromethane: methanol = 20:1) [UV]; ¹H **NMR** (600 MHz, CD₃OD) δ 8.38 (s, 1H), 8.02 (s, 1H), 7.46 (d, *J* = 7.2 Hz, 2H), 7.20 (dt, *J* = 38.4, 7.8 Hz, 3H), 4.69 (dd, *J* = 21.6, 14.4 Hz, 2H), 4.60 (dd, *J* = 13.8, 7.2 Hz, 2H), 3.82 (d, *J* = 12.0 Hz, 2H), 3.71 (d, *J* = 12.0 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR** (150 MHz, CD₃OD) δ 161.7, 153.7, 152.8, 145.5, 142.8, 129.1, 128.5, 126.9, 121.0, 77.6, 68.6, 64.3, 51.7, 14.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₆H₁₈N₄O₃ (M+H)⁺ requires m/z 315.1452, found m/z 315.1447.

(S)-3-(6-(benzyloxy)-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2g)

White solid, m.p. 135.3-138.1 °C, 331.0 mg, 88% yield, 93% ee; $[\alpha]_D^{20} = 17.16$ (c = 0.268, CH₃OH); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 10.383 min, 18.422 min; **TLC**: R_f = 0.25 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (400 MHz, CD₃OD) δ 8.40 (s, 1H), 8.01 (s, 1H), 7.49-7.44 (m, 4H), 7.35-7.28 (m, 3H), 7.23-7.13 (m, 3H), 5.58 (s, 2H), 4.68 (dd, J = 21.6, 14.4 Hz, 2H), 3.76 (dd, J = 45.2, 11.6 Hz, 2H); ¹³**C NMR** (100 MHz, CD₃OD) δ 161.4, 153.8, 152.7, 145.7, 142.7, 137.5, 129.5, 129.4, 129.2, 129.1, 128.5, 126.8, 121.0, 77.5, 69.7, 68.5, 51.7; **HRMS** (ESI-TOF): exact mass calcd for C₂₁H₂₀N₄O₃ (M+H)⁺ requires m/z 377.1608, found m/z 377.1610.

(S)-3-(6-(dimethylamino)-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2h)

White solid, m.p. 112.1-113.3 °C, 291.2 mg, 93% yield, 95% ee; $[\alpha]_D^{22} = 21.62$ (c = 0.260, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda =$

256 nm, retention time: 9.975 min, 13.920 min; **TLC**: $R_f = 0.32$ (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (400 MHz, CD₃OD) δ 8.13 (s, 1H), 7.74 (s, 1H), 7.50-7.48 (m, 2H), 7.22 (dt, J = 28.8, 7.2 Hz, 3H), 4.57 (dd, J = 36.4, 14.4 Hz, 2H), 3.69 (dd, J = 37.2, 11.2 Hz, 2H), 3.42 (s, 6H); ¹³C NMR (100 MHz, CD₃OD) δ 156.0, 152.6, 151.8, 143.2, 142.0, 129.1, 128.4, 126.9, 120.1, 77.6, 68.4, 51.5, 39.0; **HRMS** (ESI-TOF): exact mass calcd for C₁₆H₁₉N₅O₂ (M+H)⁺ requires m/z 314.1612, found m/z 314.1609.

(S)-3-(6-(diethylamino)-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2i)

White solid, m.p. 78.3-82.0 °C, 276.4 mg, 81% yield, 92% ee; $[\alpha]_D^{22} = -32.68$ (c = 0.284, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 7.002 min, 10.013 min; **TLC**: R_f = 0.32 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (400 MHz, CD₃OD) δ 8.15 (s, 1H), 7.75 (s, 1H), 7.52-7.49 (m, 2H), 7.30-7.19 (m, 3H), 4.59 (dd, *J* = 44.0, 14.4 Hz, 2H), 3.94 (s, 4H), 3.69 (dd, *J* = 35.6, 11.2 Hz, 2H), 1.24 (t, *J* = 6.8 Hz, 6H); ¹³**C NMR** (100 MHz, CD₃OD) δ 154.9, 152.8, 151.9, 143.3, 142.1, 129.1, 128.4, 126.9, 119.6, 77.6, 68.4, 51.4, 44.3, 13.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₈H₂₃N₅O₂ (M+H)⁺ requires m/z 342.1925, found m/z 342.1926.

tert-butyl

(S)-(tert-butoxycarbonyl)(9-(2,3-dihydroxy-2-phenylpropyl)-9H-purin-6-yl)carbamate (2j)

White solid, m.p. 145.9-149.6 °C, 470.6 mg, 97% yield, 95% ee; $[\alpha]_D^{22} = 29.64$ (c = 0.227, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 75/25, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 9.779 min, 11.579 min; **TLC**: R_f = 0.29 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.73 (s, 1H), 8.34 (s, 1H), 7.47 (d, *J* = 7.8 Hz, 2H), 7.17 (dt, *J* = 40.2, 7.2 Hz, 3H), 4.89 (d, *J* = 14.4 Hz, 1H), 4.77 (d, *J* = 14.4 Hz, 1H), 3.93 (d, *J* = 11.4 Hz, 1H), 3.77 (d, *J* = 11.4 Hz, 1H), 1.33 (s, 18H); ¹³C NMR (150 MHz, CD₃OD) δ 155.4, 152.4, 151.2, 150.4, 149.0, 142.4, 129.2, 129.1, 128.5, 126.9, 85.08, 85.06, 77.6, 68.9, 51.8, 28.0;

HRMS (ESI-TOF): exact mass calcd for $C_{24}H_{31}N_5O_6$ (M+H)⁺ requires m/z 486.2347, found m/z 486.2340.

(S)-2-phenyl-3-(6-(pyrrolidin-1-yl)-9H-purin-9-yl)propane-1,2-diol (2k)

White solid, m.p. 136.7-139.4 °C, 287.4 mg, 85% yield, 97% ee; $[\alpha]_D^{22} = 24.69$ (c = 0.243, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 11.884 min, 16.558 min; **TLC**: R_f = 0.29 (dichloromethane: methanol = 30:1) [UV]; ¹H NMR (600 MHz, **DMSO-***d*⁶) δ 8.17 (s, 1H), 7.87 (s, 1H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.21 (dt, *J* = 45.6, 7.8 Hz, 3H), 5.76 (s, 1H), 5.32 (t, *J* = 6.0 Hz, 1H), 4.55 (dd, *J* = 39.6, 14.4 Hz, 2H), 3.99 (s, 2H), 3.86-3.46 (m, 4H), 1.90 (d, *J* = 33.0 Hz, 4H); ¹³C NMR (150 MHz, **DMSO-***d*⁶) δ 152.4, 151.8, 150.3, 142.9, 141.0, 127.6, 126.8, 126.0, 118.6, 76.0, 67.4, 49.6, 48.4, 47.0, 43.2, 25.7, 23.7; **HRMS** (ESI-TOF): exact mass calcd for C₁₈H₂₁N₅O₂ (M+H)⁺ requires m/z 340.1768, found m/z 340.1763.

(S)-2-phenyl-3-(6-phenyl-9H-purin-9-yl)propane-1,2-diol (2l)

White solid, m.p. 117.0-119.9 °C, 308.0 mg, 89% yield, 98% ee; $[\alpha]_D^{22} = 39.78$ (c = 0.238, CH₃OH); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 256 nm, retention time: 20.137 min, 21.135 min; **TLC**: R_f = 0.35 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (400 MHz, CD₃OD) δ 8.78 (s, 1H), 8.54-8.52 (m, 2H), 8.20 (s, 1H), 7.51-7.46 (m, 5H), 7.24-7.13 (m, 3H), 4.72 (dd, *J* = 22.0, 14.4 Hz, 2H), 3.80 (dd, *J* = 44.0, 11.2 Hz, 2H); ¹³**C NMR** (100 MHz, CD₃OD) δ 155.6, 154.2, 152.7, 148.3, 142.7, 136.5, 132.0, 131.1, 130.8, 129.6, 129.1, 128.5, 126.9, 77.6, 68.5, 51.5; **HRMS** (ESI-TOF): exact mass calcd for C₂₀H₁₈N₄O₂ (M+H)⁺ requires m/z 347.1503, found m/z 347.1504.

(S)-3-(6-(naphthalen-1-yl)-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2m)

White solid, m.p. 83.3-86.0 °C, 273.3 mg, 69% yield, 99% ee; $[\alpha]_D^{22} = 13.22$ (c = 0.227, CH₃OH); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 24.455 min, 27.318 min; **TLC**: R_f = 0.27 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 8.92 (s, 1H), 8.25 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.81-7.77 (m, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.53-7.48 (m, 3H), 7.45-7.42 (m, 1H), 7.24 (t, *J* = 7.8 Hz, 2H), 7.17 (t, *J* = 7.8 Hz, 1H), 4.79 (s, 2H), 3.91 (d, *J* = 11.4 Hz, 1H), 3.78 (d, *J* = 11.4 Hz, 1H); ¹³**C NMR** (150 MHz, CD₃OD) δ 158.3, 154.0, 152.7, 148.9, 142.7, 135.3, 133.6, 132.7, 132.3, 131.5, 130.1, 129.5, 129.1, 128.5, 127.7, 127.3, 126.9, 126.5, 126.2, 77.7, 68.6, 51.7; **HRMS** (ESI-TOF): exact mass calcd for C₂₄H₂₀N₄O₂ (M+H)⁺ requires m/z 397.1659, found m/z 397.1660.

(S)-3-(2,6-dichloro-9H-purin-9-yl)-2-phenylpropane-1,2-diol (2n)

White solid, m.p. 167.8-169.3 °C, 189.3 mg, 56% yield, 94% ee; $[\alpha]_D^{22} = -29.69$ (c = 0.274, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 10.197 min, 14.640 min; **TLC**: R_f = 0.32 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.28 (s, 1H), 7.41-7.39 (m, 2H), 7.18 (dt, *J* = 34.2, 7.2 Hz, 3H), 4.69 (dd, *J* = 18.6, 14.4 Hz, 2H), 3.95 (d, *J* = 11.4 Hz, 1H), 3.77 (d, *J* = 11.4 Hz, 1H); ¹³C NMR (150 MHz, CD₃OD) δ 155.2, 153.4, 151.3, 149.7, 142.2, 130.6, 129.1, 128.6, 126.9, 77.4, 68.5, 52.4; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₂Cl₂N₄O₂ (M+H)⁺ requires m/z 339.0410, found m/z 339.0401.

tert-butyl-(S)-(6-chloro-9-(2,3-dihydroxy-2-phenylpropyl)-9H-purin-2-yl)carbamate (20)

White solid, m.p. 161.7-164.3 °C, 373.0 mg, 89% yield, 98% ee; $[\alpha]_D^{22} = -29.76$ (c = 0.336, CH₃OH); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 11.552 min, 13.834 min; **TLC**: R_f = 0.34 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 7.99 (s, 1H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.24 (dt, *J* = 39.6, 7.2 Hz, 3H), 4.77 (d, *J* = 15.0 Hz, 1H), 4.67 (d, *J* = 15.0 Hz, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 3.62 (d, *J* = 11.4 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (150 MHz, CD₃OD) δ 154.6, 154.2, 153.3, 151.4, 148.0, 143.1, 129.1, 128.5, 127.5, 127.0, 82.3, 77.2, 68.0, 51.5, 28.5; **HRMS** (ESI-TOF): exact mass calcd for C₁₉H₂₂ClN₅O₄ (M+H)⁺ requires m/z 420.1433, found m/z 420.1430.

(S)-9-(2,3-dihydroxy-2-phenylpropyl)-1,3-dimethyl-3,9-dihydro-1H-purine-2,6-dione (2p)

White solid, m.p. 138.0-140.3 °C, 280.6 mg, 85% yield, 88% ee; $[\alpha]_D^{22} = 22.81$ (c = 0.300, CH₃OH); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 12.671 min, 14.628 min; **TLC**: R_f = 0.30 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 7.60 (s, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 2H), 4.85 (d, *J* = 13.2 Hz, 1H), 4.72 (d, *J* = 14.4 Hz, 1H), 3.82 (d, *J* = 11.4 Hz, 1H), 3.71 (d, *J* = 11.4 Hz, 1H), 3.44 (s, 3H), 3.29 (s, 3H); ¹³C **NMR** (150 MHz, CD₃OD) δ 157.1, 152.9, 149.2, 144.6, 142.5, 129.1, 128.5, 126.8, 108.7, 77.6, 68.5, 53.9, 30.1, 28.3; **HRMS** (ESI-TOF): exact mass calcd for C₁₆H₁₈N₄O₄ (M+H)⁺ requires m/z 331.1401, found m/z 331.1392.

(S)-3-(6-chloro-9H-purin-9-yl)-2-methylpropane-1,2-diol (2q)

White solid, m.p. 128.0-130.2 °C, 222.7 mg, 92% yield, 57% ee; $[\alpha]_D^{22} = -10.67$ (c = 0.300 CH₃OH); **HPLC** CHIRALCEL IC, *n*-hexane/2-propanol = 75/25, flow rate = 0.8 mL/min, $\lambda = 254$ nm, retention time: 13.296 min, 14.619 min; **TLC**: R_f = 0.22 (dichloromethane: methanol = 20:1) [UV]; ¹**H** NMR (600 MHz, CD₃OD) δ 8.72 (s, 1H), 8.53 (s, 1H), 4.41 (dd, *J* = 25.2, 10.8 Hz, 2H), 3.43-3.39 (m, 2H), 1.11 (s, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 154.0, 152.9, 151.1, 149.5,

131.7, 73.3, 68.4, 51.5, 22.5; **HRMS** (ESI-TOF): exact mass calcd for $C_9H_{11}ClN_4O_2$ (M+H)⁺ requires m/z 243.0643, found m/z 243.0644.

(S)-2-((6-chloro-9H-purin-9-yl)methyl)butane-1,2-diol (2r)

White solid, m.p. 98.7-100.7 °C, 225.3 mg, 88% yield, 84% ee; $[\alpha]_D^{21} = -18.59$ (c = 0.283, CH₃OH); **HPLC** CHIRALCEL IC, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 11.190 min, 12.856 min; **TLC**: R_f = 0.32 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 8.71 (s, 1H), 8.52 (s, 1H), 4.42 (dd, J = 21.6, 14.4 Hz, 2H), 3.43 (d, J = 11.4 Hz, 1H), 3.31 (d, J = 11.4 Hz, 1H), 1.61-1.54 (sext, J = 7.2 Hz, 1H), 1.48-1.42 (sext, J = 7.2 Hz, 1H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 154.0, 152.8, 151.1, 149.6, 131.7, 75.1, 64.9, 50.3, 28.5, 7.5; **HRMS** (ESI-TOF): exact mass calcd for C₁₀H₁₃ClN₄O₂ (M+H)⁺ requires m/z 257.0800, found m/z 257.0791.

(S)-3-(6-chloro-9H-purin-9-yl)-2-cyclohexylpropane-1,2-diol (2s)

White solid, m.p. 158.8-159.3 °C, 272.9 mg, 88% yield, 75% ee; $[\alpha]_D^{22} = 18.45$ (c = 0.300, CH₃OH); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 14.102 min, 15.310 min; **TLC**: R_f = 0.36 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (400 MHz, CD₃OD) δ 8.73 (s, 1H), 8.53 (s, 1H), 4.49 (dd, *J* = 30.0, 14.4 Hz, 2H), 3.42 (d, *J* = 11.6 Hz, 1H), 3.34 (d, *J* = 11.2 Hz, 1H), 2.03-1.91 (m, 2H), 1.79 (s, 2H), 1.67 (s, 1H), 1.49-1.43 (m, 1H), 1.28-1.12 (m, 6H); ¹³C NMR (100 MHz, CD₃OD) δ 154.2, 152.8, 151.1, 149.9, 131.7, 76.3, 64.0, 44.2, 28.0, 28.0, 27.93, 27.86, 27.8, 27.5; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₉ClN₄O₂ (M+H)⁺ requires m/z 311.1269, found m/z 311.1266.

(S)-3-(2,6-dichloro-9H-purin-9-yl)-2-methylpropane-1,2-diol (2t)

White solid, m.p. 149.1-149.9 °C, 237.4 mg, 86% yield, 68% ee; $[\alpha]_D^{20} = -22.31$ (c = 0.260, CH₃OH); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 7.564 min, 8.475 min; **TLC**: R_f = 0.35 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 8.51 (s, 1H), 4.36 (dd, J = 22.2, 7.8 Hz, 2H), 3.43 (dd, J = 14.4, 11.4 Hz, 2H), 1.11 (s, 3H); ¹³C **NMR** (150 MHz, CD₃OD) δ 155.4, 153.7, 151.7, 150.2, 131.0, 73.3, 68.4, 51.7, 22.4; **HRMS** (ESI-TOF): exact mass calcd for C₉H₁₀Cl₂N₄O₂ (M+H)⁺ requires m/z 277.0254, found m/z 277.0251.

(S)-N-(1-(2,3-dihydroxy-2-methylpropyl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (2u)

White solid, m.p. 177.2-178.3 °C, 245.5 mg, 81% yield, 80% ee; $[\alpha]_D^{25} = -31.6$ (c = 0.336, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 27.841 min, 31.883 min; **TLC**: R_f = 0.26 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (400 MHz, CD₃OD) δ 8.04 (d, *J* = 10.8 Hz, 1H), 7.98-7.96 (m, 2H), 7.65-7.51 (m, 4H), 4.05 (dd, *J* = 20.4, 14.0 Hz, 2H), 3.35 (dd, *J* = 14.4, 11.6 Hz, 2H), 1.20 (s, 3H); ¹³C **NMR** (100 MHz, CD₃OD) δ 169.1, 164.8, 159.8, 152.9, 134.7, 134.1, 129.8, 129.1, 98.2, 74.0, 68.2, 56.6, 22.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₅H₁₇N₃O₄ (M+H)⁺ requires m/z 304.1292, found m/z 304.1290.

(S)-N-(1-(2,3-dihydroxy-2-phenylpropyl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (2v)

White solid, m.p. 147.5-148.2 °C, 204.4 mg, 56% yield, 95% ee; $[\alpha]_D^{25} = -38.3$ (c = 0.283, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 18.002 min, 26.105 min; **TLC**: R_f = 0.29 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (400 MHz, CD₃OD) δ 7.96-7.94 (m, 2H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.65-7.61 (m, 1H), 7.57-7.51 (m, 4H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.36-7.33 (m, 2H), 7.28-7.25 (m, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.61 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H), 3.78 (d, *J* = 11.6 Hz, 1H), 3.69 (d, *J* = 14.0 Hz, 1H), 4.17 (d, *J* = 14.0 Hz, 1H)

11.6 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 164.7, 152.7, 143.3, 134.7, 134.1, 129.8, 129.3, 129.1, 128.6, 127.0, 98.0, 78.0, 68.4, 57.3; HRMS (ESI-TOF): exact mass calcd for C₂₀H₁₉N₃O₄ (M+H)⁺ requires m/z 366.1448, found m/z 366.1446.

(S)-3-benzoyl-1-(2,3-dihydroxy-2-phenylpropyl)-5-methylpyrimidine-2,4(1H,3H)-dione (2w)

White solid, m.p. 138.4-139.2 °C, 315.5 mg, 83% yield, 98% ee; $[\alpha]_D^{25} = 59.5$ (c = 0.600, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 17.108 min, 23.746 min; **TLC**: $R_f = 0.31$ (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 7.67 (t, *J* = 7.8 Hz, 2H), 7.53-7.48 (m, 6H), 7.35-7.48 (m, 3H), 4.19 (s, 2H), 3.86 (d, *J* = 11.4 Hz, 1H), 3.71 (d, *J* = 11.4 Hz, 1H), 1.82 (s, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 170.2, 164.9, 151.9, 144.6, 142.7, 136.2, 132.7, 131.3, 130.3, 129.7, 129.5, 129.21, 129.16, 128.9, 128.6, 127.0, 109.8, 78.0, 68.6, 54.83, 54.79, 12.2; **HRMS** (ESI-TOF): exact mass calcd for C₂₁H₂₀N₂O₅ (M+Na)⁺ requires m/z 403.1264, found m/z 403.1261.

(S)-3-(1H-benzo[d]imidazol-1-yl)-2-phenylpropane-1,2-diol (2x)

White solid, m.p. 137.7-140.2 °C, 185.0 mg, 69% yield, 85% ee; $[\alpha]_D^{22} = 17.20$ (c = 0.283, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 9.235 min, 13.211 min; **TLC**: R_f = 0.34 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (600 MHz, CD₃OD) δ 7.82 (s, 1H), 7.56-7.54 (m, 1H), 7.41-7.37 (m, 3H), 7.25-7.13 (m, 5H), 4.58 (dd, *J* = 59.4, 14.4 Hz, 2H), 3.81 (dd, *J* = 71.4, 11.4 Hz, 2H); ¹³C NMR (150 MHz, CD₃OD) δ 145.7, 143.4, 143.0, 129.2, 128.5, 126.9, 123.8, 123.0, 119.5, 112.1, 77.6, 67.9, 52.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₆H₁₆N₂O₂ (M+H)⁺ requires m/z 269.1285, found m/z 269.1285.

3-(6-chloro-9H-purin-9-yl)-1-phenylpropane-1,2-diol (4a)

White solid, m.p. 140.0-141.7 °C, 273.6 mg, 90% yield, >20/1 dr, 97% ee; $[\alpha]_D^{21} = 9.61$ (c = 0.222, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 9.170 min, 10.773 min; **TLC**: R_f = 0.31 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 8.66 (s, 1H), 8.46 (s, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.34-7.24 (m, 3H), 4.70 (d, *J* = 4.8 Hz, 1H), 4.42 (dd, *J* = 14.4, 3.0 Hz, 1H), 4.29-4.25 (m, 1H), 4.19-4.16 (m, 1H); ¹³**C NMR** (150 MHz, CD₃OD) δ 153.34, 153.31, 152.7, 150.9, 149.2, 142.6, 132.1, 129.3, 128.8, 128.0, 76.2, 74.1, 48.5; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₃ClN₄O₂ (M+H)⁺ requires m/z 305.0800, found m/z305.0791.

3-(2,6-dichloro-9H-purin-9-yl)-1-phenylpropane-1,2-diol (4b)

White solid, m.p. 63.1-65.9 °C, 202.8 mg, 60% yield, >20/1 dr, 93% ee; $[\alpha]_D^{21} = 20.58$ (c = 0.243, CH₃OH); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 8.786 min, 10.319 min; **TLC**: R_f = 0.30 (dichloromethane: methanol = 20:1) [UV]; ¹**H NMR** (600 MHz, CD₃OD) δ 8.45 (s, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.29 (dt, *J* = 45.0, 7.2 Hz, 3H), 4.69 (d, *J* = 4.8 Hz, 1H), 4.37 (dd, *J* = 13.8, 3.0 Hz, 1H), 4.26-4.22 (m, 1H), 4.17-4.14 (m, 1H); ¹³**C NMR** (150 MHz, CD₃OD) δ 154.7, 153.5, 151.5, 149.8, 142.4, 131.3, 129.2, 128.7, 128.0, 76.0, 74.0; **HRMS** (ESI-TOF): exact mass calcd for C₁₄H₁₂Cl₂N₄O₂ (M+H)⁺ requires m/z 339.0410, found m/z 339.0403.

1-(6-chloro-9H-purin-9-yl)pentane-2,3-diol (4c)

White solid, m.p. 72.4-75.1 °C, 227.9 mg, 89% yield, >20/1 dr, 53% ee; $[\alpha]_D^{22} = -23.35$ (c = 0.260, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 6.624 min, 7.814 min; **TLC**: R_f = 0.38 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (400 MHz, CD₃OD) δ 8.73 (s, 1H), 8.53 (s, 1H), 4.71 (dd, *J* = 14.4, 3.2 Hz, 1H),

4.34-4.28 (m, 1H), 3.80-3.76 (m, 1H), 3.41-3.37 (m, 1H), 1.83-1.76 (m, 1H), 1.51-1.43 (s, 1H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 153.6, 152.8, 151.0, 149.4, 132.2, 75.6, 73.5, 27.3, 10.3; **HRMS** (ESI-TOF): exact mass calcd for C₁₀H₁₃ClN₄O₂ (M+H)⁺ requires m/z 257.0800, found m/z 257.0806.

1-(6-chloro-9H-purin-9-yl)-3-methylbutane-2,3-diol (4d)

White solid, m.p. 98.1-100.2 °C, 197.2 mg, 77% yield, 92% ee; $[\alpha]_D^{22} = 37.77$ (c = 0.274, CH₃OH); **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 254 nm, retention time: 7.685 min, 8.924 min; **TLC**: R_f = 0.23 (dichloromethane: methanol = 20:1) [UV]; ¹H NMR (400 MHz, CD₃OD) δ 8.73 (s, 1H), 8.54 (s, 1H), 4.74 (dd, *J* = 14.0, 2.4 Hz, 1H), 4.26-4.20 (m, 1H), 3.72 (dd, *J* = 10.4, 2.4 Hz, 1H), 1.30 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CD₃OD) δ 153.5, 152.8, 150.9, 149.4, 132.2, 76.8, 72.8, 47.5, 26.7, 24.8; **HRMS** (ESI-TOF): exact mass calcd for C₁₀H₁₃ClN₄O₂ (M+H)⁺ requires m/z 257.0800, found m/z 257.0807.

5. Copies of ¹H and ¹³C NMR spectra

(1) Copies of NMR spectra of starting materials

(2) Copies of NMR spectra of products

S61

S67

S71

6. Copies of HPLC spectra for racemic and chiral products

	min	mAU*min	mAU	%	%
1	12.933	1136.935	1862.039	50.26	56.99
2	17.127	1125.214	1405.105	49.74	43.01
Total:		2262.149	3267.144	100.00	100.00

2093.742

100.00

100.00

830.347

Total:

7. References

- 1. M. Kim, B. Park, M. Shin, S. Kim, J. Kim, M. H. Baik and S. H. Cho, Copper-catalyzed enantiotopic-group-selective allylation of *gem*-diborylalkanes, *J. Am. Chem. Soc.*, **2021**, *143*, 1069-1077.
- J. Y. See, H. Yang, Y. Zhao, M. W Wong, Z. Ke and Y. Y. Yeung, Desymmetrizing enantio-and diastereoselective selenoetherification through supramolecular catalysis, ACS *Catal.*, 2018, 8, 850-858.
- 3. J. Chen and T. Hayashi, Asymmetric synthesis of alkylzincs by rhodium-catalyzed enantioselective arylative cyclization of 1, 6-enynes with arylzincs, *Angew. Chem. Int. Ed.*, **2020**, *59*, 18510-18514.
- 4. K. Jindrich, L.-L. Gundersen, Synthesis of N-alkenylpurines by rearrangements of the corresponding N-allyl isomers: scopes and limitations, *Eur. J. Org. Chem.* **2013**, *10*, 2008-2019.