Electronic Supplementary Information

Electron-Deficient Supramolecular Macrocyclic Host for the Selective Separation of Aromatics and Cyclic Aliphatics

Fei Zeng, ^a* Xin-Sheng Xiao, ^a Shao-Feng Gong, ^a * Lin Yuan, ^a and Lin-Li Tang ^a

^aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China.

E-mail: zengfei@iccas.ac.cn

Contents

1.	Materials and Methods	S2
2.	Synthesis of New compounds	S2
3.	¹ H NMR and ¹³ C NMR Spectral of New compounds	S4
4.	Thermogravimetric analysis of host 1	S6
5.	Stability test	S6
6.	Photos of prepared column	S7
7.	Crystal data for 1	S 7
8.	Crystal data (PhH) ₂ @1	
9.	Crystal data for Tol ₂ @1	
10.	Determination of the Association Constants of the Complexes	

1. Materials and Methods.

All reactions were carried out with oven-dried glassware. Commercial reagents were used without further purification. Flash column chromatography was performed on 100-200 mesh silica gel. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker DMX400 NMR spectrometer. Melting points were determined using WRR melting point apparatus and were uncorrected. High-resolution mass spectra (HRMS) were determined on Bruker Daltonics Inc. APEXIII 7.0 TESLA FTMS. The single crystal X-ray data were measured by direct methods using Bruker SMART APEX II.

Thermogravimetric analysis (TGA) was carried out using a Q5000IR analyzer (TA Instruments) with an automated vertical overhead thermobalance. The samples were heated at 10 °C/min using N2 as the protective gas.

Column packing procedure for GC separation.

The host **1** packed column was prepared by manual filling. The **host 1** (100 mg) was fist dissolved in 15 mL chloroform, then 2g 40-60 mesh red carrier 6201 was added. The above mixture was dried under vacuo and the residue was dried at 120 °C for another 4 h. Carrier that laoded with host **1** was packed into a 1.0 m long, 2.0 mm i.d. stainless steel column. During the filling process, the column was continuously tapped and the packing was compacted, and then the host **1** packed column was obtained. After the column was loaded into the column box, it was activated under 120 °C for 12 hours before use. GC experiments were performed on the Fuli 9790II GC system, the flow rate of carrier gas was 25 ml/min, the injection volume of sample was 0.1 uL.

2. Synthesis of New compounds.

Compound 2 3,3',4,4'-biphenyltetracarboxylic dianhydride (1.47 g, 5 mmol) and 2,5-dimethoxybenzylamine (2.01 g, 12 mmol) were dissolved with anhydrous DMF (35 mL) in a sealed tube and then heated at 110 °C for 12 h on an oil bath. After being cooled to room temperature, the reaction mixture was poured into the water and the resulting yellow-green precipitate was washed with water and then dried under vacuum to afford compound 2 (2.22 g, yield 75%) as yellow solid. M.p.: >300 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 2H), 7.99 (d, *J* = 7.9 Hz, 4H), 6.81 (d, *J* = 9.9 Hz, 2H), 6.76 (d, *J* = 6.7 Hz, 4H), 4.92 (s, 4H), 3.83 (s, 6H), 3.73 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.53, 153.47, 151.37, 145.18, 133.37, 132.94, 131.94, 125.18, 124.18, 122.20, 115.15, 112.56, 111.49, 56.11, 55.73, 37.07. HRMS (APCI) m/z: [M+H]⁺ calcd for C₃₄H₂₉N₂O₈, 593.1924; found, 593.1928.

Host 1 To a mixture of 2 (1.18 g, 2.0 mmol) and paraformaldehyde (180 mg, 6.0 mmol) in dichloromethane (150 mL) was added boron trifluoride diethyl etherate (0.3 mL, 2.4 mmol). The mixture was stirred at 60 °C for 12 h. Then the reaction was quenched by the addition of 150 mL water. The organic layer was separated and dried with anhydrous MgSO₄. The solvent was removed in vacuo and the residue was separated by column chromatography on silica gel (eluent: 1:15 ethyl acetate /DCM) to give 1 (544 mg, 45%) as yellow-green solids. M.p.: >300 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (s, 4H), 7.86 (t, *J* = 5.9 Hz, 8H), 6.90 (s, 4H), 6.69 (s, 4H), 4.85 (s, 8H), 3.87 (s, 4H), 3.76 (s, 12H), 3.69 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.56, 167.19, 151.26, 144.92, 133.32, 132.68, 131.86, 129.86, 123.88, 122.17, 121.80, 114.26, 113.50, 56.30, 56.11, 37.36,

30.23. HRMS (APCI) m/z: $[M+H]^+$ calcd for $C_{70}H_{57}N_4O_{16}$, 1209.3770; found, 1209.3784.

3. ¹H NMR and ¹³C NMR Spectral of New compounds.

Figure S2.¹³C NMR spectrum (101 MHz, CDCl₃, 298K) of 2.

Figure S4.¹³C NMR spectrum (101 MHz, CDCl₃, 298K) of host 1.

4. Thermogravimetric analysis of host 1

Figure S5. Thermogravimetric analysis of 1.

5. Stability test

Figure S6. GC chromatograms of (a) cyclohexane/benzene (1/1, V/V) and (b) methylcyclohexane/toluene (1/1, V/V) on the **host 1** packed column obtained after two months on the same column using the same conditions, respectively.

6. Photos of prepared column

Figure S7. (a) photo of host 1 packed column. (b) red carrier 6201 that loaded 5% wt host 1.

7. Crystal data for 1

Identification code	11_a			
Empirical formula	$C_{36}H_{29}Cl_3N_2O_8$			
Formula weight	723.96			
Temperature/K	296.15			
Crystal system	triclinic			
Space group	P-1			
a/Å	9.344(6)			
b/Å	12.709(8)			
c/Å	15.488(9)			
$\alpha/^{\circ}$	77.638(6)			
β/°	80.102(6)			
γ/°	87.490(6)			
Volume/Å ³	1769.8(19)			
Z	2			
$ ho_{calc}g/cm^3$	1.358			
µ/mm ⁻¹	0.312			
F(000)	748.0			
Crystal size/mm ³	$0.42\times0.23\times0.15$			
Radiation	MoKa ($\lambda = 0.71073$)			
20 range for collection/°	data 2.73 to 55.214			

 $\begin{array}{ll} \mbox{Index ranges} & -12 \le h \le 12, -16 \le k \le 16, -20 \le l \le 19 \\ \mbox{Reflections collected} & 16687 \\ \mbox{Independent reflections} & 7737 \ [R_{int} = 0.0430, R_{sigma} = 0.0744] \\ \mbox{Data/restraints/parameters} & 7737/0/446 \\ \mbox{Goodness-of-fit on } F^2 & 1.034 \\ \mbox{Final } R \ indexes \ [I>=2\sigma \\ R_1 = 0.0871, \ wR_2 = 0.2421 \\ \mbox{(I)]} \\ \mbox{Final } R \ indexes \ [all \ data] \ R_1 = 0.1661, \ wR_2 = 0.3003 \\ \mbox{Largest \ diff. \ peak/hole \ / \ e} \\ \mbox{A-3} \\ \end{array}$

8. Crystal data (PhH)₂@1

Identification code	11			
Empirical formula	$C_{82}H_{70}N_4O_{16}$			
Formula weight	1367.42			
Temperature/K	296.15			
Crystal system	triclinic			
Space group	P-1			
a/Å	9.468(7)			
b/Å	13.913(10)			
c/Å	16.060(12)			
α/\circ	96.956(10)			
β/°	95.231(10)			
$\gamma/^{\circ}$	94.568(9)			
Volume/Å ³	2083(3)			
Z	1			
$\rho_{calc}g/cm^3$	1.090			
μ/mm^{-1}	0.076			
F(000)	718.0			
Crystal size/mm ³	$? \times ? \times ?$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/	° 2.962 to 52.99			
Index ranges	-11 $\leq h \leq$ 11, -17 $\leq k \leq$ 17, -20 $\leq l \leq$			
index ranges	20			
Reflections collected	22184			
Independent reflections	8537 [$R_{int} = 0.0392, R_{sigma} = 0.0565$]			
Data/restraints/parameters	8537/252/494			
Goodness-of-fit on F ²	0.968			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0731, wR_2 = 0.2016$			
Final R indexes [all data]	$R_1 = 0.1204, wR_2 = 0.2413$			
Largest diff. peak/hole / e Å ⁻³ 0.55/-0.25				

9. Crystal data for Tol₂@1.

Identification code	22050921
Empirical formula	$C_{84}H_{72}N_4O_{16}$
Formula weight	1393.45
Temperature/K	293(2)
Crystal system	triclinic

Space group	P-1			
a/Å	9.332(3)			
b/Å	12.278(3)			
c/Å	15.500(3)			
$\alpha/^{\circ}$	77.024(17)			
β/°	82.21(2)			
$\gamma/^{\circ}$	86.73(2)			
Volume/Å ³	1713.9(7)			
Ζ	1			
$\rho_{calc}g/cm^3$	1.350			
μ/mm^{-1}	0.094			
F(000)	732.0			
Crystal size/mm ³	$? \times ? \times ?$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/°	3.406 to 49.996			
Index ranges	$-11 \le h \le 11, -14 \le k \le 14, -18 \le l \le 18$			
Reflections collected	15483			
Independent reflections	5994 [$R_{int} = 0.1135$, $R_{sigma} = 0.1576$]			
Data/restraints/parameters	5994/202/490			
Goodness-of-fit on F ²	1.078			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1199, wR_2 = 0.2695$			
Final R indexes [all data]	$R_1 = 0.2770, wR_2 = 0.3469$			
Largest diff. peak/hole / e Å ⁻³ 0.43/-0.36				

10. Determination of the Association Constants of the Complexes.

In the ¹H NMR titrations, CDCl₃ was chosen to dissolve the host and the guests. Chemical shifts were reported in parts per million (*ppm*). By a mole ratio plot, each stoichiometry was determined. Titration curve-fitting and association constant values were calculated by employing the BindFit program developed by Prof. Pall Thordarson of UNSW. 1:2 Binding stoichiometry was chosen in the BindFit program. This program employs a nonlinear least-squares regression analysis and is available free of cost online through the following link: http://supramolecular.org.

w state in the state sta	П		
v 11	 		
5			
P	 		
n i i i i	 		
n	 		
k I			
h		1	-
9	 		
f		Ì	
e			
		Î	
		Î	
	. ll	Î	
a		Â	
	 		-

Figure S8. ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of **1** at a concentration of 1.0 mM with different concentrations of **PhH**: (a) 0.00 mM; (b) 0.2 mM; (c) 0.4 mM; (d) 0.6 mM; (e) 0.8 mM; (f) 1.0 mM; (g) 1.2 mM; (h) 1.4 mM; (i) 1.6mM; (j) 1.8 mM; (k) 2.0 mM; (l) 2.2 mM; (m) 2.4 mM; (n) 2.6 mM; (o) 2.8 mM; (p)3.0 mM; (q) 3.2 mM; (r) 4.0 mM; (s) 6.0 mM; (t) 8.0 mM; (u) 10.0 mM; (v) 30.0 mM; (w) 50.0 mM.

Figure S9. Zoomed in view of Figure S8

Figure S10. Mole ratio plot of the complexation of 1 and PhH in CDCl₃ at 298 K.

Figure S11. Plot of chemical shift (ppm) for the H1 of 1 and PhH in CDCl3 at 298 K.

	1						
w	L			. 11			
v							
u							
t							
s							
<u>r</u>	he						
9	hu						
p	her						
<u> </u>	here						
<u>n</u>							
<u>m</u>	he						
Lu_	her						
<u>k</u> u				ų			
<u>i</u>				^ll			
<u> </u>							
<u>h</u>							
g				l			
fu				<u>ı</u> ll			
<u>e</u>							
d <u>u</u>							
<u> </u>							
<u>b</u>							
<u>a</u>						/	
8	7	6	5	4	3	2	1

Figure S13. ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of 1 at a concentration

of 1.0 mM with different concentrations of **Tol**: (a) 0.00 mM; (b) 0.2 mM; (c) 0.4 mM; (d) 0.6 mM; (e) 0.8 mM; (f) 1.0 mM; (g) 1.2 mM; (h) 1.4 mM; (i) 1.6mM; (j) 1.8 mM; (k) 2.0 mM; (l) 2.2 mM; (m) 2.4 mM; (n) 2.6 mM; (o) 2.8 mM; (p)3.0 mM; (q) 3.2 mM; (r) 4.0 mM; (s) 6.0 mM; (t) 8.0 mM; (u) 10.0 mM; (v) 30.0 mM; (w) 50.0 mM.

Figure S14. Zoomed in view of Figure S13

Figure S15. Mole ratio plot of the complexation of 1 and Tol in CDCl3 at 298 K.

Figure S16. Plot of chemical shift (ppm) for the H1 of 1 and Tol in CDCl3 at 298 K.

Figure S17. Screenshot of data fit for Tol₂@1