Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Isothiourea-catalysed Enantioselective Annulation of 2-Aminobenzothiophenes with α , β -Unsaturated Anhydrides

Cheng Niu, Dong-Hua Xie and Da-Ming Du*

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China E-mail: <u>dudm@bit.edu.cn</u>

Supporting Information

Content

1. General information	S1
2. Starting materials	S1
3. Enantioselective synthesis and characterization of compounds 3	S5
4. Synthetic procedure and the characterization data of compounds 4 – 6	S14
5. Crystal data and structure refinement	S17
6. Reference	S18
7. Copies of ¹ H and ¹³ C NMR spectra of new compounds	S19
8. Copies of HPLC chromatograms of new products	S85

1. General information

Commercially available reagents were used without further purification. Some benzo thiophene-2-carboxylic acid were purchased from Shanghai Haohong Scientific Co., Ltd. A Column chromatography was performed with silica gel (200-300 mesh). Melting points were determined with an XT-4 melting-point apparatus and are uncorrected. ¹H NMR spectra were measured with Bruker Ascend 400 MHz spectrometer in CDCl₃, chemical shifts were reported in δ (ppm) units relative to tetramethylsilane (TMS) as the internal standard. ¹³C NMR spectra were measured at 100 MHz (or 176 MHz) with a Bruker Ascend 400 MHz (or 700 MHz) spectrometer, chemical shifts were reported in δ (ppm) relative to tetramethylsilane and referenced to the solvent peak (CDCl₃ at 77.0 ppm). High resolution mass spectra were measured with an Agilent 6520 Accurate-Mass-Q-TOF MS system equipped with an electrospray ionization (ESI) source. Enantiomeric excesses were determined by chiral HPLC analysis using an Agilent 1200 LC instrument with a Daicel Chiralpak AD-H, IA and IB column. Optical rotations were measured with a Krüss P8000 polarimeter at the indicated concentration with the units of grams per 100 mL.

2. Starting materials

2a-2k were prepared according to the literature.^[1] The isothiourea organocatalysts were prepared according to the literature.^[2]

1a–1j were prepared according to the following method.^[3] **1k** were prepared according to the literature.^[4]

$$R^{1} + CO_{2}H \xrightarrow{DPPA, Et_{3}N} R^{1} + S \xrightarrow{NHBoc} \frac{1) HCl (conc), dioxane, rt, 12 h}{2) R^{2}SO_{2}Cl, pyridine, DCM} R^{1} + S \xrightarrow{NHBoc} R^{2}$$

A mixture of benzo[*b*]thiophene-2-carboxylic acid **A** (10 mmol, 1.0 equiv), Et₃N (10.5 mmol, 1.05 equiv), diphenyl azidophosphate (DPPA, 12 mmol, 1.2 equiv), and *t*-BuOH (20 mL) was heated at 80 °C for 8 h. Afterwards the solvent was evaporated by reduce pressure and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford product **B**.

To solution of **B** (5.0 mmol) in dioxane (8.5 mL) followed by HCl (conc., 1.5 mL) was added dropwise, and the resulting suspension was stirred at room temperature for 24 h. Then the mixture was filtered. The precipitate was washed with MTBE (3×5 mL) and drying. To a solution of precipitate (1.0 mmol, 1.0 equiv) in dry DCM (5 mL) and cooled to 0 °C, pyridine (2.5 mmol, 2.5 equiv) followed by the corresponding sulfonyl chloride (1.2 mmol, 1.2 equiv) was added dropwise, and the resulting suspension was stirred at room temperature for about 6

h (monitored by TLC). Then 0.5 N HCl (20 mL) was added and extracted with DCM (3×10 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 to 3:1) to afford compound **1**.

N-(Benzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1a). Pink solid (0.6978 g, 46% yield for three steps), m.p. 104–105 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 1H, ArH), 7.62 – 7.55 (m, 3H, ArH), 7.29 – 7.20 (m, 4H, ArH + NH), 6.91 (s, 1H, ArH), 2.34 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 137.9, 137.6, 136.6, 135.1, 129.7, 127.5, 124.6, 124.2, 123.2, 121.9, 116.3, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₁₅H₁₄NO₂S₂ [M + H]⁺ 304.0460, found 304.0461.

N-(Benzo[*b*]thiophen-2-yl)benzenesulfonamide (1b). Brown solid (0.7959 g, 55% yield for three steps), m.p. 119–121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.0 Hz, 1H, ArH), 7.62 – 7.52 (m, 4H, ArH + NH), 7.43 (t, *J* = 7.6 Hz, 2H, ArH), 7.30 – 7.22 (m, 2H, ArH), 6.93 (s, 1H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 137.9, 137.3, 136.7, 133.4, 129.1, 127.4, 124.7, 124.4, 123.3, 122.0, 116.9 ppm. HRMS (ESI): *m/z* calcd. for C₁₄H₁₂NO₂S₂ [M + H]⁺ 290.0304, found 290.0281.

N-(Benzo[*b*]thiophen-2-yl)methanesulfonamide (1c). Pink solid (0.6364 g, 56% yield for three steps), m.p. 146–147 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.67 (m, 2H, ArH), 7.37 – 7.29 (m, 2H, ArH), 7.13 (s, 1H, ArH), 7.11 (br s, 1H, NH), 3.11 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 138.1, 137.2, 136.5, 125.0, 124.7, 123.5, 122.1, 116.8, 39.3 ppm. HRMS (ESI): *m/z* calcd. for C₉H₁₀NNaO₂S₂ [M + Na]⁺ 249.9967, found 224.9952.

N-(4-Bromobenzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1d). Pink solid (0.7073 g, 37% yield for three steps), m.p. 125–128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H, ArH), 7.55 (d, *J* = 8.0 Hz, 1H, ArH), 7.43 (dd, *J*₁ = 7.6, *J*₂ = 0.8 Hz, 1H, ArH), 7.25 (d, *J* = 8.0 Hz, 2H, ArH), 7.08 (t, *J* = 8.0 Hz, 1H, ArH), 6.98 (s, 1H, ArH), 2.37 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 144.6, 138.7, 137.9, 136.8, 135.0, 129.9, 127.9, 127.5, 125.0, 121.0, 116.6, 115.2, 21.6 ppm. HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₃⁷⁹BrNO₂S₂ [M + H]⁺ 381.9566, found 381.9567, calcd. for C₁₅H₁₃⁸¹BrNO₂S₂ [M + H]⁺ 383.9546, found 383.9546.

4-Methyl-*N***-(5-methylbenzo**[*b*]**thiophen-2-yl)benzenesulfonamide (1e).** Pink solid (0.4920 g, 31% yield for three steps), m.p. 149–150 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H, ArH), 7.51 (d, *J* = 8.0 Hz, 1H, ArH), 7.41 (s, 1H, ArH), 7.24 (d, *J* = 8.4 Hz, 2H, ArH), 7.10 (dd, *J*₁ = 8.2, *J*₂ = 1.0 Hz, 1H, ArH), 6.95 (br s, 1H, NH), 6.87 (s, 1H, ArH), 2.41 (s, 3H, CH₃), 2.38 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 144.3, 138.2, 137.4, 135.3, 134.5, 133.8, 129.7, 127.5, 126.1, 123.4, 121.7, 116.8, 21.6, 21.4 ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₁₆NO₂S₂ [M + H]⁺ 318.0617, found 318.0613.

N-(6-Methoxybenzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1f). Pink solid (0.2506 g, 15% yield for three steps), m.p. 115–116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H, ArH), 7.47 (d, *J* = 8.8 Hz, 1H, ArH), 7.23 (d, *J* = 8.0 Hz, 2H, ArH), 7.17 (s, 1H, NH), 7.10 (d, *J* = 2.4 Hz, 1H, ArH), 6.91 (dd, *J*₁ = 8.4, *J*₂ = 2.4 Hz, 1H, ArH), 6.85 (s, 1H, ArH), 3.81 (s, 3H, CH₃), 2.38 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 157.4, 144.2, 138.5, 135.3, 134.6, 131.6, 129.7, 127.5, 124.2, 117.9, 114.4, 104.8, 55.5, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₁₆NO₃S₂ [M + H]⁺ 334.0566, found 334.0552.

N-(6-Chlorobenzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1g). White solid (0.2871 g, 17% yield for three steps), m.p. 143–145 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.4 Hz, 2H, ArH), 7.58 (d, *J* = 1.6 Hz, 1H, ArH), 7.49 (br s, 1H, NH), 7.47 (d, *J* = 8.4 Hz, 1H, ArH), 7.25 – 7.23 (m, 3H, ArH), 6.88 (s, 1H, ArH), 3.81 (s, 3H, CH₃), 2.38 (s, 3H, CH₃)

ppm. ¹³C NMR (176 MHz, CDCl₃): δ 144.6, 138.0, 137.5, 136.3, 135.0, 130.2, 129.8, 127.5, 125.5, 124.1, 121.6, 115.9, 21.6 ppm. HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₃ClNO₂S₂ [M + H]⁺ 338.0071, found 338.0072.

N-(6-Bromobenzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1h). White solid (0.7646 g, 40% yield for three steps), m.p. 154–155 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.72 (m, 3H, ArH), 7.45 – 7.38 (m, 2H, ArH), 7.25 (d, *J* = 6.8 Hz, 3H, NH + ArH), 6.88 (s, 1H, ArH), 2.39 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 144.6, 138.1, 137.9, 136.6, 135.1, 129.8, 128.1, 127.5, 124.5, 124.4, 117.9, 116.0, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₁₅H₁₃⁷⁹Br NNaO₂S₂ [M + Na]⁺ 403.9385, found 403.9377, calcd. for C₁₅H₁₃⁸¹BrNNaO₂S₂ [M + Na]⁺ 405.9365, found 405.9357.

4-Methyl-*N***-(thieno[2',3':4,5]benzo[1,2-***d***][1,3**]**dioxol-6-yl)benzenesulfonamide (1i).** White solid (0.1911 g, 11% yield for three steps), mp 126–128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.4 Hz, 2H, ArH), 7.24 (d, *J* = 8.4 Hz, 2H, ArH), 7.04 (br s, 1H, NH), 7.01 (s, 1H, ArH), 6.98 (s, 1H, ArH), 6.81 (s, 1H, ArH), 5.96 (s, 2H, CH₂), 2.39 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 146.7, 146.6, 144.3, 135.3, 135.2, 131.9, 130.5, 129.7, 127.5, 118.6, 102.4, 101.4, 101.2, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₁₃NNaO₄S₂ [M + Na]⁺ 370.0178, found 370.0170.

N-(7-Fluorobenzo[*b*]thiophen-2-yl)-4-methylbenzenesulfonamide (1j). White solid (0.8839 g, 55% yield for three steps), m.p. 102–103 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2H, ArH), 7.67 (br s, 1H, NH), 7.36 (d, *J* = 8.0 Hz, 1H, ArH), 7.25 – 7.20 (m, 3H, ArH), 6.96 – 6.92 (m, 2H, ArH), 2.37 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 157.0 (d, ¹*J*_{C-F} = 245.4 Hz), 144.6, 140.9 (d, ³*J*_{C-F} = 4.7 Hz), 138.8 (d, ⁴*J*_{C-F} = 1.3 Hz), 135.0, 129.8, 127.5, 125.9 (d, ³*J*_{C-F} = 6.9 Hz), 123.2 (d, ²*J*_{C-F} = 9.0 Hz), 119.0 (d, ⁴*J*_{C-F} = 3.4 Hz), 116.1 (d, ⁴*J*_{C-F} = 2.3 Hz), 109.4 (d, ²*J*_{C-F} = 18.3 Hz), 21.5 ppm. HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₃FNO₂S₂ [M + H]⁺ 322.0366, found 322.0348.

3. Enantioselective synthesis and characterization of compounds 3

Benzenesulfonamide 1 (0.1 mmol), cinnamic acid anhydride 2 (0.12 mmol), NaHCO₃ (8.4 mg, 0.1 mmol), and catalyst C1 (2.5 mg, 0.01 mmol) were dissolved in toluene (1.0 mL), and the mixture was stirred at room temperature for 24 - 72 h (monitored by TLC). After completion of the reaction, the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1 to 7:1) to afford the pure products **3**. Racemates were prepared following a similar procedure using 2,3-dihydrobenzo[*d*]imidazo[2,1-*b*]thiazole as catalyst (10 mol%).

2,3-dihydrobenzo[d]imidazo[2,1-b]thiazole

(*S*)-4-Phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3aa). White solid (39.9 mg, 92% yield, 96:4 er), m.p. 149–150 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 70:30, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 13.0 (minor), $t_{\rm R}$ = 13.9 min (major); 96:4 er. [α]p²⁵ = +30.1° (*c* = 2.10, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.4 Hz, 2H, ArH), 7.81 – 7.78 (m, 1H, ArH), 7.45 – 7.42 (m, 1H, ArH), 7.31 – 7.29 (m, 2H, ArH), 7.23 (d, *J* = 8.4 Hz, 2H, ArH), 7.09 (t, *J* = 7.2 Hz, 1H, ArH), 6.99 (t, *J* = 7.4 Hz, 2H, ArH), 6.80 (d, *J* = 7.6 Hz, 2H, ArH), 4.43 (dd, *J*₁ = 7.0 Hz, *J*₂ = 1.8 Hz, 1H, CH), 3.18 (dd, *J*₁ = 15.0 Hz, *J*₂ = 7.0 Hz, 1H, CH₂), 2.92 (dd, *J*₁ = 15.0 Hz, *J*₂ = 2.2 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 168.3, 145.6, 139.6, 136.7, 135.4, 135.0, 134.5, 129.4, 128.71, 128.66, 127.1, 126.5, 124.8, 124.4, 121.9, 120.8, 120.6, 41.5, 36.3, 21.7 ppm. HRMS (ESI): *m/z* calcd. for C₂₄H₂₀NO₃S₂ [M + H]⁺434.0879, found 434.0871.

(S)-4-Phenyl-1-(phenylsulfonyl)-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ba). White solid (35.7 mg, 85% yield, 95:5 er), m.p. 193–195 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 95:5, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 52.7 (major), $t_{\rm R}$ = 56.6 min (minor); 95:5 er. [α]_D²⁵ = +23.1° (c = 2.70, CH₂Cl₂). ¹H NMR (400 MHz,

CDCl₃): δ 8.06 – 8.04 (m, 2H, ArH), 7.84 – 7.81 (m, 1H, ArH), 7.64 (t, *J* = 7.6 Hz, 1H, ArH), 7.50 – 7.44 (m, 3H, ArH), 7.33 – 7.31 (m, 2H, ArH), 7.09 (t, *J* = 7.2 Hz, 1H, ArH), 7.00 (t, *J* = 7.4 Hz, 2H, ArH), 6.80 (d, *J* = 7.6 Hz, 2H, ArH), 4.45 (dd, *J*₁ = 7.2 Hz, *J*₂ = 2.0 Hz, 1H, CH), 3.23 (dd, *J*₁ = 15.4 Hz, *J*₂ = 7.2 Hz, 1H, CH₂), 2.95 (dd, *J*₁ = 15.0 Hz, *J*₂ = 2.2 Hz, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 168.3, 139.5, 137.6, 136.8, 135.4, 135.0, 134.4, 128.9, 128.8, 128.7, 127.3, 126.5, 124.9, 124.5, 121.9, 120.8, 120.7, 41.6, 36.4 ppm. HRMS (ESI): *m/z* calcd. for C₂₃H₁₈NO₃S₂ [M + H]⁺ 420.0723, found 420.0723.

(S)-1-(Methylsulfonyl)-4-phenyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ca). White solid (28.6 mg, 80% yield, 96:4 er), m.p. 178–179 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 11.0 (minor), $t_{\rm R}$ = 22.8 min (major); 96:4 er. [α]p²⁵ = +16.9° (c = 1.54, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.76 (m, 1H, ArH), 7.48 – 7.46 (m, 1H, ArH), 7.32 – 7.28 (m, 4H, ArH), 7.26 – 7.24 (m, 1H, ArH), 7.17 (d, J = 7.2 Hz, 2H, ArH), 4.58 (dd, J_1 = 6.8 Hz, J_2 = 2.4 Hz, 1H, CH), 3.37 (s, 3H, CH₃), 3.28 (dd, J_1 = 15.4 Hz, J_2 = 7.0 Hz, 1H, CH₂), 3.16 (dd, J_1 = 15.4 Hz, J_2 = 2.6 Hz, 1H, CH₂) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 169.9, 139.5, 136.7, 134.7, 129.1, 127.7, 126.7, 124.9, 124.5, 121.9, 120.9, 120.2, 42.4, 41.6, 35.9 ppm. HRMS (ESI): m/z calcd. for C₁₈H₁₆NO₃S₂ [M + H]⁺ 358.0566, found 358.0564.

(S)-5-Bromo-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3da). White solid (48.7 mg, 95% yield, 96:4 er), m.p. 199–201 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.3 (major), $t_{\rm R}$ = 10.9 min (minor); 96:4 er. [α] $_{\rm D}^{25}$ = +95.1° (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.4 Hz, 2H, ArH), 7.77 (dd, J_1 = 8.0 Hz, J_2 = 0.8 Hz, 1H, ArH), 7.50 (dd, J_1 = 7.8 Hz, J_2 = 1.0 Hz, 1H, ArH), 7.20 (d, J = 8.0 Hz, 2H, ArH), 7.14 (t, J = 7.8 Hz, 1H, ArH), 7.07 (t, J = 7.4 Hz, 1H, ArH), 6.99 (t, J = 7.6 Hz, 2H, ArH), 6.81 (d, J = 7.6 Hz, 2H, ArH), 5.44 (dd, J_1 = 6.4 Hz, J_2 = 2.0 Hz, 1H, CH), 3.13 (dd, J_1 = 15.0 Hz, J_2 = 6.6 Hz, 1H, CH₂), 2.94 (dd, J_1 = 15.0 Hz, J_2 = 2.2 Hz, 1H, CH₂), 2.41 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 145.6, 139.7, 139.0, 137.7, 134.5, 132.3, 130.4, 129.4, 128.7, 128.5, 127.0, 126.8, 125.1,

121.9, 121.3, 115.7, 41.5, 36.4, 21.7 ppm. HRMS (ESI): m/z calcd. for C₂₄H₁₉⁷⁹Br NO₃S₂ [M + H]⁺511.9984, found 511.9982, calcd. for C₂₄H₁₉⁸¹BrNO₃S₂ [M + H]⁺513.9964, found 513.9966.

(S)-6-Methyl-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ea). White solid (35.8 mg, 80% yield, 98:2 er), m.p. 83–84 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.1 (minor), $t_{\rm R}$ = 10.6 min (major); 98:2 er. [α]p²⁵ = +69.7° (*c* = 1.71, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.4 Hz, 2H, ArH), 7.68 (d, *J* = 8.0 Hz, 1H, ArH), 7.24 – 7.22 (m, 3H, ArH), 7.14 (dd, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H, ArH), 7.09 (t, *J* = 7.4 Hz, 1H, ArH), 6.99 (t, *J* = 7.6 Hz, 2H, ArH), 6.80 (d, *J* = 7.6 Hz, 2H, ArH), 4.41 (dd, *J*₁ = 7.0 Hz, *J*₂ = 1.8 Hz, 1H, CH), 3.17 (dd, *J*₁ = 15.2 Hz, *J*₂ = 7.2 Hz, 1H, CH₂), 2.91 (dd, *J*₁ = 15.2 Hz, *J*₂ = 2.0 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃), 2.38 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 145.5, 139.6, 135.6, 135.2, 134.7, 134.6, 134.0, 129.4, 128.72, 128.67, 127.1, 126.6, 126.1, 121.6, 120.8, 120.4, 41.6, 36.3, 21.7, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₂₅H₂₂NO₃S₂ [M + H]⁺448.1036, found 448.1031.

(S)-7-Methoxy-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3fa). White solid (44.5 mg, 96% yield, 97:3 er), m.p. 88–89 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 13.6 (major), $t_{\rm R}$ = 16.2 min (minor); 97:3 er. [α]_D²⁵ = +91.4° (*c* = 3.13, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.4 Hz, 2H, ArH), 7.31 – 7.28 (m, 2H, ArH), 7.23 (d, *J* = 8.4 Hz, 2H, ArH), 7.08 (t, *J* = 7.2 Hz, 1H, ArH), 6.98 (t, *J* = 7.6 Hz, 2H, ArH), 6.92 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.4 Hz, 1H, ArH), 6.79 (d, *J* = 7.6 Hz, 2H, ArH), 4.37 (dd, *J*₁ = 7.0 Hz, *J*₂ = 2.2 Hz, 1H, CH), 3.85 (s, 3H, CH₃), 3.17 (dd, *J*₁ = 15.0 Hz, *J*₂ = 7.0 Hz, 1H, CH₂), 2.90 (dd, *J*₁ = 15.0 Hz, *J*₂ = 2.2 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 157.4, 145.5, 139.6, 138.3, 134.5, 132.7, 129.4, 128.8, 128.7, 128.6, 127.1, 126.5, 121.6, 120.5, 114.5, 104.6, 55.6, 41.5, 36.4, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₂₅H₂₂NO₄S₂ [M + H]⁺464.0985, found 464.0979.

(S)-7-Chloro-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ga). White solid (43.1 mg, 92% yield, 90:10 er), m.p. 110–112 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 11.6 (minor), $t_{\rm R}$ = 12.6 min (major); 90:10 er. [α]p²⁵ = +95.1° (c = 2.24, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 1.6 Hz, 1H, ArH), 7.32 (d, J = 8.4 Hz, 1H, ArH), 7.27 – 7.23 (m, 3H, ArH), 7.11 (t, J = 7.4 Hz, 1H, ArH), 7.00 (t, J = 7.6 Hz, 2H, ArH), 6.78 (d, J = 7.6 Hz, 2H, ArH), 4.40 (dd, J_1 = 7.0 Hz, J_2 = 2.2 Hz, 1H, CH), 3.19 (dd, J_1 = 15.2 Hz, J_2 = 7.2 Hz, 1H, CH₂), 2.92 (dd, J_1 = 15.2 Hz, J_2 = 2.4 Hz, 1H, CH₂), 2.43 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 168.0, 145.7, 139.3, 137.7, 135.8, 134.4, 133.4, 130.3, 129.5, 128.8, 128.7, 127.3, 126.5, 125.6, 121.7, 121.5, 120.1, 41.4, 36.4, 21.7 ppm. HRMS (ESI): m/z calcd. for C₂₄H₁₉ClNO₃S₂ [M + H]⁺468.0489, found 468.0490.

(S)-7-Bromo-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(**3ha**). White solid (44.1 mg, 86% yield, 92:8 er), m.p. 161–162 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 12.5 (minor), $t_{\rm R}$ = 13.7 min (major); 92:8 er. [α]p²⁵ = +99.9° (c = 3.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.93 – 7.90 (m, 3H, ArH), 7.39 (dd, J_1 = 8.4 Hz, J_2 = 1.6 Hz, 1H, ArH), 7.27 – 7.25 (m, 3H, ArH), 7.11 (t, J = 7.4 Hz, 1H, ArH), 7.01 (t, J = 7.6 Hz, 2H, ArH), 6.78 (d, J = 7.6 Hz, 2H, ArH), 4.40 (dd, J_1 = 7.0 Hz, J_2 = 2.2 Hz, 1H, CH), 3.20 (dd, J_1 = 15.2 Hz, J_2 = 7.2 Hz, 1H, CH₂), 2.92 (dd, J_1 = 15.2 Hz, J_2 = 2.4 Hz, 1H, CH₂), 2.43 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.9, 145.7, 139.3, 138.1, 135.8, 134.4, 133.8, 129.5, 128.8, 128.7, 128.2, 127.3, 126.4, 124.3, 122.0, 120.1, 117.9, 41.4, 36.4, 21.7 ppm. *m*/*z* calcd. for C₂₄H₁₉⁷⁹Br NO₃S₂ [M + H]⁺ 511.9984, found 511.9971, calcd. for C₂₄H₁₉⁸¹BrNO₃S₂ [M + H]⁺ 513.9964, found 513.9956.

(S)-9-Phenyl-6-tosyl-8,9-dihydro-[1,3]dioxolo[4",5":4',5']benzo[1',2':4,5]thieno[2,3-

b]pyridin-7(*6H*)-one (3ia). White solid (112.1 mg, 80% yield, 97:3 er), m.p. 126–129 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_R = 17.3$ (minor), $t_R = 19.9$ min (major); 97:3 er. [α]D²⁵ = +65.7° (c = 2.57, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H, ArH), 7.24 (d, J = 8.8 Hz, 2H, ArH), 7.19 (s, 1H, ArH), 7.10 (t, J = 7.4 Hz, 1H, ArH), 7.00 (t, J = 7.6 Hz, 2H, ArH), 6.81 – 6.77 (m, 3H, ArH), 5.98 (d, J = 1.2 Hz, 1H, CH₂), 5.94 (d, J = 0.8 Hz, 1H, CH₂), 4.30 (dd, $J_1 = 7.2$ Hz, $J_2 = 2.0$ Hz, 1H, CH), 3.19 (dd, $J_1 = 15.0$ Hz, $J_2 = 7.0$ Hz, 1H, CH₂), 2.90 (dd, $J_1 = 15.0$ Hz, J_2 = 2.2 Hz, 1H, CH₂), 2.43 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 146.9, 146.4, 145.5, 139.5, 134.5, 133.4, 130.1, 129.4, 128.7, 128.6, 127.1, 126.5, 120.6, 101.35, 101.27, 100.1, 41.5, 36.6, 21.6 ppm. HRMS (ESI): *m*/*z* calcd. for C₂₅H₂₀NO₅S₂ [M + H]⁺ 478.0777, found 478.0780.

(*S*)-8-Fluoro-4-phenyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3ja). White solid (37.0 mg, 82% yield, 76:24 er), m.p. 212–214 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 85:15, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 17.8 (minor), $t_{\rm R}$ = 19.5 min (major); 76:24 er. [α]p²⁵ = +55.5° (*c* = 0.73, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 2H, ArH), 7.29 – 7.26 (m, 3H, ArH), 7.22 (t, *J* = 7.6 Hz, 1H, ArH), 7.11 (t, *J* = 7.4 Hz, 3H, ArH), 6.80 (d, *J* = 7.2 Hz, 2H, ArH), 4.43 (dd, *J*₁ = 7.2 Hz, *J*₂ = 2.0 Hz, 1H, CH), 3.22 (dd, *J*₁ = 15.2 Hz, *J*₂ = 7.2 Hz, 1H, CH₂), 2.44 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.0, 157.2 (d, ¹*J*_{C-F} = 246.2 Hz), 145.8, 139.3, 138.2 (d, ³*J*_{C-F} = 4.8 Hz), 136.6 (d, ⁴*J*_{C-F} = 1.3 Hz), 134.5, 129.5, 128.85, 128.77, 127.3, 126.5, 126.3 (d, ³*J*_{C-F} = 7.0 Hz), 123.5 (d, ²*J*_{C-F} = 17.8 Hz), 120.8 (d, ⁴*J*_{C-F} = 2.3 Hz), 116.7 (d, ⁴*J*_{C-F} = 3.4 Hz), 109.4 (d, ²*J*_{C-F} = 18.4 Hz), 41.4, 36.6, 21.7 ppm. HRMS (ESI): *m/z* calcd. for C₂₄H₁₉FNO₃S₂ [M + H]⁺ 452.0785, found 452.0785.

(R)-4-(2-Chlorophenyl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ab). White solid (44.5 mg, 95% yield, 97:3 er), m.p. 153–154 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 6.8 (minor), t_R = 8.6 min (major); 97:3 er. [α] $_D^{25}$ = +152.5° (c = 1.94, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.4 Hz, 2H, ArH), 7.81 (dd, J_1 = 6.8 Hz, J_2 = 1.6 Hz, 1H, CH₂), 7.35 – 7.28 (m, 6H, ArH), 7.04 (td, J_1 = 7.6 Hz, J_2 = 1.3 Hz, 1H, ArH), 6.58 (t, J = 7.4 Hz, 1H, ArH), 6.28 (dd, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H, ArH), 4.93 (dd, J_1 = 7.6 Hz, J_2 = 2.0 Hz, 1H, CH), 3.20 (dd, J_1 = 15.2 Hz, J_2 = 7.6 Hz, 1H, CH₂), 2.93 (dd, J_1 = 15.2 Hz, J_2 = 2.0 Hz, 1H, CH₂), 2.44 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 145.8, 136.6, 136.3, 134.7, 133.0, 130.1, 129.5, 128.8, 128.7, 127.6, 126.9, 124.9, 124.5, 121.8, 120.7, 118.9, 40.0, 33.4, 21.7 ppm. HRMS (ESI): m/z calcd. for C₂₄H₁₉ClNO₃S₂ [M + H]⁺ 468.0489, found 468.0496.

(R)-4-(2-Bromophenyl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ac). White solid (46.1 mg, 90% yield, 96:4 er), m.p. 148–149 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 7.0 (minor), $t_{\rm R}$ = 9.1 min (major); 96:4 er. [α]_D²⁵ = +115.5° (*c* = 3.06, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.4 Hz, 2H, ArH), 7.81 (dd, *J*₁ = 6.2 Hz, *J*₂ = 1.8 Hz, 1H, CH₂), 7.53 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H, CH₂), 7.34 – 7.28 (m, 5H, ArH), 6.95 (td, *J*₁ = 7.7 Hz, *J*₂ = 1.6 Hz, 1H, ArH), 6.61 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.1 Hz, 1H, ArH), 6.27 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1H, ArH), 4.91 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H, CH₂), 2.93 (dd, *J*₁ = 15.0 Hz, *J*₂ = 1.8 Hz, 1H, CH₂), 2.44 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 145.8, 137.9, 136.5, 134.70, 134.67, 133.4, 129.6, 129.0, 128.8, 127.7, 127.5, 124.9, 124.5, 123.5, 121.8, 120.7, 119.1, 40.1, 36.0, 21.7 ppm. HRMS (ESI): *m/z* calcd. for C₂₄H₁₉⁷⁹Br NO₃S₂ [M + H]⁺ 511.9984, found 511.9985, calcd. for C₂₄H₁₉⁸¹BrNO₃S₂ [M + H]⁺ 513.9966.

(*S*)-4-(*m*-Tolyl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3ad). White solid (43.0 mg, 96% yield, 96:4 er), m.p. 85–86 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 9.2 (minor), $t_{\rm R}$ = 10.6 min (major); 96:4 er. [α]p²⁵ = +74.5° (*c* = 3.01, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.4 Hz, 2H, ArH), 7.82 – 7.78 (m, 1H, ArH), 7.45 – 7.42 (m, 1H, ArH), 7.32 – 7.28 (m, 2H, ArH), 7.25 (d, *J* = 8.0 Hz, 2H, ArH), 6.91 – 6.85 (m, 2H, ArH), 6.66 (s, 1H, ArH), 6.58 (d, *J* = 7.2 Hz, 1H, ArH), 4.40 (dd, *J*₁ = 7.2 Hz, *J*₂ = 2.0 Hz, 1H, CH), 3.19 (dd, *J*₁ = 15.2 Hz, *J*₂ = 7.2 Hz, 1H, CH₂), 2.91 (dd, *J*₁ = 15.2 Hz, *J*₂ = 2.0 Hz, 1H, CH₂), 2.41 (s, 3H, CH₃), 2.08 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 145.5, 139.7, 138.5, 136.7, 135.3, 135.1, 134.7, 129.5, 128.7, 128.6, 128.0, 127.2, 124.8, 124.3, 123.6, 121.8, 120.8, 120.4, 41.5, 36.4, 21.7, 21.3 ppm. HRMS (ESI): *m/z* calcd. for C₂₅H₂₂NO₃S₂ [M + H]⁺ 448.1036, found 448.1036.

(S)-4-(3-Methoxyphenyl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ae). White solid (95.8 mg, 82% yield, 96:4 er), m.p. 79–80 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 11.9 (minor), $t_{\rm R}$ = 14.3 min (major); 96:4 er. [α]p²⁵ = +77.0° (c = 1.81, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 8.0 Hz, 2H, ArH), 7.81 (dd, J_1 = 6.0 Hz, J_2 = 3.2 Hz, 1H, ArH), 7.45 (dd, J_1 = 6.0 Hz, J_2 = 3.2 Hz, 1H, ArH), 7.31 (dd, J_1 = 6.0 Hz, J_2 = 3.2 Hz, 1H, ArH), 7.45 (dd, J_1 = 8.8 Hz, 2H, ArH), 6.91 (t, J = 8.0 Hz, 1H, ArH), 6.64 (dd, J_1 = 8.2 Hz, J_2 = 2.2 Hz, 1H, ArH), 6.50 (t, J = 1.8 Hz, 1H, ArH), 6.37 (d, J = 7.6 Hz, 1H, ArH), 4.42 (dd, J_1 = 7.2 Hz, J_2 = 2.0 Hz, 1H, CH), 3.64 (s, 3H, CH₃), 3.19 (dd, J_1 = 15.2 Hz, J_2 = 7.2 Hz, 1H, CH₂), 2.95 (dd, J_1 = 15.2 Hz, J_2 = 2.0 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 159.8, 145.5, 141.3, 136.7, 135.5, 135.0, 134.6, 129.8, 129.4, 128.6, 124.8, 124.4, 121.9, 120.8, 120.4, 118.7, 112.7, 112.3, 55.0, 41.3, 36.3, 21.7 ppm. HRMS (ESI): *m/z* calcd. for C₂₅H₂₂NO₄S₂ [M + H]⁺ 464.0985, found 464.0990.

(*S*)-4-(*p*-Tolyl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3af). White solid (39.8 mg, 89% yield, 96:4 er), m.p. 199–200 °C. HPLC (Daicel Chiralpak IA, *n*-hexane/2-propanol = 95:5, flow rate 1.0 mL/min, detection at 254 nm): $t_R = 25.3$ (major), $t_R = 28.0$ min (minor); 96:4 er. [α]p²⁵ = +84.5° (c = 1.78, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H, ArH), 7.81 – 7.78 (m, 1H, ArH), 7.44 – 7.42 (m, 1H, ArH), 7.31 – 7.28 (m, 2H, ArH), 7.25 – 7.23 (m, 2H, ArH), 6.79 (d, J = 8.0 Hz, 2H, ArH), 6.68 (d, J = 8.0 Hz, 2H, ArH), 4.41 (dd, $J_1 = 6.8$ Hz, $J_2 = 2.0$ Hz, 1H, CH), 3.15 (dd, $J_1 = 15.2$ Hz, $J_2 = 7.2$ Hz, 1H, CH₂), 2.89 (dd, $J_1 = 15.0$ Hz, $J_2 = 2.2$ Hz, 1H, CH₂), 2.43 (s, 3H, CH₃), 2.21 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃) δ 168.4, 145.5, 136.75, 136.73, 136.5, 135.3, 135.0, 134.6, 129.41, 129.38, 128.7, 126.4, 124.8, 124.3, 121.8, 120.9, 120.8, 41.6, 36.0, 21.6, 20.9 ppm. HRMS (ESI): m/z calcd. for C₂₅H₂₂NO₃S₂ [M + H]⁺ 448.1036, found 448.1034.

(S)-1-Tosyl-4-(4-(trifluoromethyl)phenyl)-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-

2(1*H***)-one (3ag)**. Yellow solid (45.6 mg, 91% yield, 96:4 er), m.p. 172–173 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 8.6 (major), $t_{\rm R}$ = 9.7 min (minor); 96:4 er. [α]p²⁵ = +65.2° (c = 1.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.4 Hz, 2H, ArH), 7.84 – 7.81 (m, 1H, ArH), 7.46 – 7.44 (m, 1H, ArH), 7.35 – 7.32 (m, 2H, ArH), 7.22 (d, J = 8.4 Hz, 4H, ArH), 6.92 (d, J = 8.4 Hz, 2H, ArH), 4.50 (d, J = 6.0 Hz, 1H, CH), 3.22 (dd, J_1 = 15.2 Hz, J_2 = 6.8 Hz, 1H, CH₂), 2.95 (dd, J_1 = 15.0 Hz, J_2 = 2.2 Hz, 1H, CH₂), 2.41 (s, 3H, CH₃) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 167.9, 145.9, 143.5, 136.9, 136.0, 134.6, 134.4, 129.5, 129.4 (q, ² $J_{\rm C-F}$ = 32.4 Hz), 128.6, 126.9, 125.6, 125.0, 124.6, 123.8 (q, ¹ $J_{\rm C-F}$ = 271.9 Hz), 122.0, 120.5, 120.0, 41.1, 35.7, 21.4 ppm. HRMS (ESI): m/z calcd. for C₂₅H₁₈F₃NO₃S₂ [M + H]⁺ 502.0753, found 502.0752.

(S)-4-(Naphthalen-2-yl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-b]pyridin-2(1H)-one

(3ah). White solid (35.3 mg, 73% yield, 95:5 er), m.p. 180–182 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 12.8 (major), t_R = 15.1 min (minor); 95:5 er. [α] $_D$ ²⁵ = +90.0° (c = 1.14, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.85 –7.80 (m, 3H, ArH), 7.71 –7.69 (m, 1H, ArH), 7.55 (d, J = 8.4 Hz, 1H, ArH), 7.52 –7.49 (m, 1H, ArH), 7.42 –7.39 (m, 3H, ArH), 7.34 –7.31 (m, 2H, ArH), 7.16 (s, 1H, ArH), 7.07 –7.01 (m, 3H, ArH), 4.60 (dd, J_1 = 6.6 Hz, J_2 = 1.8 Hz, 1H, CH), 3.25 (dd, J_1 = 15.2 Hz, J_2 = 6.8 Hz, 1H, CH₂), 3.09 (dd, J_1 = 15.2 Hz, J_2 = 2.4 Hz, 1H, CH₂), 2.25 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 145.5, 137.1, 136.9, 135.7, 135.1, 134.5, 133.1, 132.4, 129.3, 128.8, 128.5, 127.8, 127.4, 126.0, 125.9, 125.0, 124.9, 124.5, 122.0, 120.9, 120.8, 41.1, 36.1, 21.6 ppm. HRMS (ESI): *m/z* calcd. for C₂₈HNO₃S₂ [M + H]⁺484.1036, found 484.1034.

(*R*)-4-(Furan-2-yl)-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3ai). White solid (39.0 mg, 92% yield, 96:4 er), m.p. 149–150 °C HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 8.6 (minor), t_R = 10.6 min (major); 96:4 er. [α]_D²⁵ = +50.1° (c = 1.64, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 7.2 Hz, 2H, ArH), 7.79 (d, J = 8.0 Hz, 1H, ArH), 7.59 (d, J = 8.0 Hz, 1H, ArH), 7.39 – 7.31 (m, 2H, ArH), 7.25 (d, J = 8.0 Hz, 2H, ArH), 6.95 (s, 1H, ArH), 6.00 – 5.99 (m, 1H, ArH), 5.67 (s, 1H, ArH), 4.46 (d, J = 6.4 Hz, 1H, CH), 3.11 – 3.05 (m, 1H, CH₂), 2.99 (d, J = 15.2 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 152.4, 145.4, 142.1, 136.7, 135.6, 134.7, 134.6, 129.3, 128.7, 124.8, 124.4, 121.9, 120.6, 118.7, 110.0, 105.8, 38.6, 30.2, 21.6 ppm. HRMS (ESI): *m*/*z* calcd. for C₂₂H₁₈NO₄S₂ [M + H]⁺ 424.0672, found 424.0669.

(*R*)-4-Methyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3aj). White solid (35.3 mg, 95% yield, 98:2 er), m.p. 52–53 °C HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 7.5 (minor), t_R = 8.0 min (major); 98:2 er. [α]p²⁵ = +40.8° (*c* = 2.75, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.0 Hz, 2H, ArH), 7.79 (d, *J* = 8.0 Hz, 1H, ArH), 7.56 (d, *J* = 8.0 Hz, 1H, ArH), 7.38 (t, *J* = 7.4 Hz, 1H, ArH), 7.34 – 7.29 (m, 3H, ArH), 3.35 – 3.28 (m, 1H,CH), 2.91 (dd, *J*₁ = 15.2 Hz, *J*₂ = 6.4 Hz, 1H, CH₂), 2.58 (d, *J* = 15.2 Hz, 1H, CH₂), 2.41 (s, 3H, CH₃), 1.00 (d, *J* = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 145.6, 136.8, 134.9, 134.5, 133.6, 129.4, 128.5, 124.7, 124.2, 123.7, 121.9, 120.2, 40.9, 25.6, 21.7, 19.5 ppm. HRMS (ESI): *m/z* calcd. for C₁₉H₁₈NO₃S₂ [M + H]⁺ 372.0723, found 372.0725.

(*R*)-4-Propyl-1-tosyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (3ak). White solid (32.8 mg, 82% yield, 98:2 er), m.p. 158–159 °C. HPLC (Daicel Chiralpak IB, *n*-hexane/EtOAc = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 4.2 (major), t_R = 7.2 min (minor); 98:2 er. [α]p²⁵ = +64.5° (*c* = 1.73, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.4 Hz, 2H, ArH), 7.79 (d, *J* = 7.6 Hz, 1H, ArH), 7.55 (d, *J* = 7.6 Hz, 1H, ArH), 7.40 – 7.29 (m, 4H, ArH), 3.20 – 3.15 (m, 1H, CH), 2.85 (dd, *J*₁ = 15.2 Hz, *J*₂ = 6.4 Hz, 1H, CH₂), 2.58 (dd, *J*₁ = 15.4 Hz, *J*₂ = 1.8 Hz, 1H, CH₂), 2.42 (s, 3H, CH₃) 1.29 – 1.07 (m, 4H, CH₂), 0.70 (t, *J* = 7.0 Hz, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 145.6, 137.0, 135.2, 134.7, 134.0, 129.4, 128.6, 124.6, 124.2, 123.7, 121.9, 120.7, 39.5, 36.5, 30.7, 21.6, 20.1, 13.8 ppm. HRMS (ESI): *m/z* calcd. for C₂₁H₂₂NO₃S₂ [M + H]⁺400.1036, found 400.1032.

4. Synthetic procedure and the characterization data of compounds 4-6

To solution of 3aa (43.4 mg, 0.1 mmol) in dry MeOH (5 mL) followed by Mg powder (12.0

mg, 0.5 mmol) was added, and the resulting suspension was stirred at room temperature for 6 h. Then the mixture was diluted with CH_2Cl_2 and filtered. The filtrate was concentrated and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford compound **4**.

Methyl (*S*)-3-(2-((4-methylphenyl)sulfonamido)benzo[*b*]thiophen-3-yl)-3-phenylpropanoate (4). White solid (41.9 mg, 90% yield, 96:4 er), m.p. 88–90 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 80:20, flow rate 1.0 mL/min, detection at 254 nm): *t*_R = 13.3 (major), t_R = 22.8 min (minor); 96:4 er. [α]p²⁵ = +125.5° (*c* = 1.58, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (s, 1H, NH), 7.82 (d, *J* = 8.0 Hz, 2H, ArH), 7.67 (d, *J* = 8.0 Hz, 1H, ArH), 7.20 – 7.16 (m, 3H, ArH), 7.12 – 7.01 (m, 5H, ArH), 6.67 (d, *J* = 7.2 Hz, 2H, ArH), 4.66 (dd, *J*₁ = 11.2 Hz, *J*₂ = 3.6 Hz, 1H, CH₂), 3.62 (s, 3H, CH₃), 3.28 (dd, *J*₁ = 16.8 Hz, *J*₂ = 3.6 Hz, 1H, CH₂), 3.11 (dd, *J*₁ = 16.8 Hz, *J*₂ = 11.2 Hz, 1H, CH₂), 2.35 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 144.0, 139.6, 137.3, 136.4, 135.4, 134.8, 129.8, 128.4, 128.2, 127.5, 126.9, 126.5, 124.1, 123.9, 122.7, 122.4, 52.3, 36.9, 35.9, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₂₅H₂₄NO4S₂ [M + H]⁺ 466.1141, found 66.1139.

To solution of naphthalene (128.2 mg, 1.0 mmol) in dry THF (5 mL) and cooled to 0 °C under argon atmosphere, Na (23.0 mg, 1.0 mmol) was added, and the resulting suspension was stirred at 0 °C for 1 h, and the solution turned dark green. Then, **3aa** (86.7 mg, 0.2 mmol) was added to the solution and the reaction was stirred at 0 °C for 15 min. Then H₂O (10 mL) was added and extracted with DCM (3×10 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 to 2:1) to afford compound **5**.

(*S*)-4-Phenyl-3,4-dihydrobenzo[4,5]thieno[2,3-*b*]pyridin-2(1*H*)-one (5). Yellow solid (18.4mg, 33% yield, 95:5 er). m.p. 219–221 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): $t_{\rm R}$ = 6.7 (major), $t_{\rm R}$ = 9.4 min (minor); 95:5 er. [α]_D²⁵ = +142.2° (*c* = 1.93, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H, NH), 7.71 – 7.69 (m, 1H, ArH), 7.30 – 7.28 (m, 2H, ArH), 7.24 – 7.17 (m, 6H, ArH), 4.50 (dd, J_1 = 7.8 Hz, J_2 = 3.8 Hz, 1H, CH), 3.22 (dd, J_1 = 16.4 Hz, J_2 = 8.0 Hz, 1H, CH₂), 2.96 (dd, J_1 = 16.4 Hz, J_2 = 4.0 Hz, 1H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 141.6, 137.3, 137.0, 133.8, 129.0, 127.3, 127.0, 125.0, 123.1, 122.5, 120.6, 114.4, 39.5, 37.5 ppm. HRMS (ESI): *m/z* calcd. for C₁₇H₁₄NOS [M + H]⁺ 280.0791, found 280.0789.

To solution of **3aa** (43.4 mg, 0.1 mmol) in dry THF (5 mL) and cooled to 0 °C under argon atmosphere, LiAlH₄ (0.2 mmol, 7.6 mg) was added, and the resulting suspension was stirred at 0 °C for 3 h. Then quenched with water (10 mL) and extracted with DCM (3×10 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. In the next step, the residue was dissolved in dry DCM, Et₃SiH (23.2 mg, 0.2 mmol) and BF₃·OEt₂ (21.3 mg, 0.15 mmol) were added. The resulting mixture was stirred at room temperature for 2 h. Then quenched with trace water and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to afford compound **6**.

(*S*)-4-Phenyl-1-tosyl-1,2,3,4-tetrahydrobenzo[4,5]thieno[2,3-*b*]pyridine (6). White solid (34.8 mg, 83% yield, 95:5 er). m.p. 80–82 °C. HPLC (Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 60:40, flow rate 1.0 mL/min, detection at 254 nm): t_R = 5.3 (minor), t_R = 5.7 min (major); 95:5 er. [α]p²⁵ = +18.1° (*c* = 1.40, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H, ArH), 7.65 (d, *J* = 8.0 Hz, 1H, ArH), 7.16 – 7.12 (m, 3H, ArH), 7.10 – 7.05 (m, 3H, ArH), 6.98 – 6.96 (m, 2H, ArH), 6.67 (dd, *J*₁ = 7.0 Hz, *J*₁ = 1.4 Hz, 2H, ArH), 4.43 (dd, *J*₁ = 12.4 Hz, *J*₂ = 4.4 Hz, 1H, CH), 3.89 – 3.85 (m, 1H, CH₂), 3.21 (td, *J* = 11.4 Hz, *J*₂ = 2.7 Hz, 1H, CH₂), 2.59 – 2.51 (m, 1H, CH₂), 2.33 (s, 3H, CH₃), 2.17 – 2.10 (m, 1H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 141.4, 137.4, 136.1, 135.7, 134.7, 129.9, 128.4, 128.0, 127.5, 127.2, 126.0, 124.0, 123.7, 123.1, 122.3, 60.1, 36.7, 32.2, 21.5 ppm. HRMS (ESI): *m/z* calcd. for C₂₄H₂₂NO₂S₂ [M + H]⁺ 420.1086, found 420.1028.

5	
Identification code	1_a (CCDC 2180150)
Empirical formula	$C25H_{21}NO_3S_2$
Formula weight	447.55
Temperature/K	296(2)
Wavelength/Å	0.71073
Crystal system	Orthorhombic
Space group	P212121
a/Å	6.4600(17)
b/Å	13.975(4)
c/Å	24.315(6)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2195.2(10)
Ζ	4
$\rho_{calc}g/cm^3$	1.354
μ/mm^{-1}	0.270
F(000)	936
Crystal size/mm ³	$0.200\times0.200\times0.200$
Completeness to theta = 25.117°	99.7 %
Θ range for data collection/°	2.905 to 25.117
Index ranges	$-7 \le h \le 6, -16 \le k \le 16, -26 \le l \le 28$
Reflections collected	25109
Independent reflections	3905 $[R_{(int)} = 0.1295]$
Data/restraints/parameters	3905/0/246
Goodness-of-fit on F ²	1.004
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0639, wR_2 = 0.1316$
Final R indexes [all data]	$R_1 = 0.1646, wR_2 = 0.1811$
Largest diff. peak/hole / e Å ⁻³	0.233/-0.318
Absolute structure parameter	-0.10(8)

5. Crystal data and structure refinement

Crystal data and structure refinement for 3fa

6. Reference

- E. R. T. Robinson, C. Fallan, C. Simal, A. M. Z. Slawin and A. D. Smith, Anhydrides as α, β-unsaturated acyl ammonium precursors: isothiourea-promoted catalytic asymmetric annulation processes, *Chem. Sci.*, 2013, 4, 2193-2200. b) E. R. T. Robinson, D. M. Walden, C. Fallan, M. D. Greenhalgh, P. H.-Y. Cheong and A. D. Smith, Non-bonding 1,5-S...O interactions govern chemo- and enantioselectivity in isothiourea-catalyzed annulations of benzazoles, *Chem. Sci.*, 2016, 7, 6919-6927.
- [2] a) L. C. Morrill, J. Douglas, T. Lebl, A. M. Z. Slawin, D. J. Fox and A. D. Smith, Isothiourea-mediated asymmetric Michael-lactonisation of trifluoromethylenones: a synthetic and mechanistic study, *Chem. Sci.*, 2013, 4, 4146-4155. b) Y. Fukata, K. Asano and S. Matsubara, Facile net cycloaddition approach to optically active 1,5benzothiazepines, *J. Am. Chem. Soc.*, 2015, 137, 5320-5323. c) N. R. Guha, R. M. Neyyappadath, M. D. Greenhalgh, R. Chisholm, S. M. Smith, M. L. McEvoy, C. M. Young, C. Rodríguez-Escrich, M. A. Pericàs, G. Hähner and A. D. Smith, Evaluating polymersupported isothiourea catalysis in industrially-preferable solvents for the acylative kinetic resolution of secondary and tertiary heterocyclic alcohols in batch and flow, *Green Chem.*, 2018, 20, 4537-4546.
- [3] a) C. Galvez, F. Garcia, M. Veiga and P. Viladoms, A convenient preparation of haloaminobenzo[b]thiophene derivatives, *Synthesis-Stuttgart*, 1983, 932-933. b) J. K. Augustine, A. Bombrun, A. B. Mandal, P. Alagarsamy, R. N. Atta and P. Selvam, Propylphosphonic anhydride (T3P[®])-mediated one-pot rearrangement of carboxylic acids to carbamates, *Synthesis-Stuttgart*, 2011, 1477-1483.
- [4] H. Liu, A. M. Z. Slawin and A. D. Smith, Isothiourea-Catalyzed Enantioselective Synthesis of Tetrahydro-alpha-carbolinones, *Org. Lett.*, 2020, 22, 1301-1305.

7. Copies of ¹H and ¹³C NMR spectra of new compounds

S60

S73

8. Copies of HPLC chromatograms of new products

Peak	Ret Time	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	-	-	-			
	1 9.09	7 BV	0.2665	427.37720	24.86376	1.6111
	2 10.61	8 VV	0.3157	2.60999e4	1291.80615	98.3889

Peak	Ret Time	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.808	BV	0.1952	1.14534e4	920.02765	49.4340
2	8.580	VB	0.2501	1.17157e4	734.54230	50.5660

Peak	Ret Time	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.878	BB	0.1940	3723.20972	297.44339	49.6803
2	8.817	BB	0.2532	3771.12158	232.58052	50.3197

1	9.246	BB	0.2720	4864.70068	278.26459	48.7113
2	10.505	BB	0.3099	5122.10645	257.64487	51.2887

Peak #	Ret Time [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.638	BV	0.2624	1.22939e4	730.13788	50.7255
2	9.649	VB	0.2949	1.19422e4	630.75793	49.2745

Peak	Ret Time	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1		I	I			
1	8.583	VB	0.2460	1099.68030	69.72155	3.7774
2	10.643	BB	0.3170	2.80126e4	1390.42419	96.2226

----|-----|-----|------|------|------| 1 5.296 BV 0.1541 119.09898 11.96582 4.6832 2 5.696 VB 0.1676 2424.03784 225.17192 95.3168