Supporting Information for:

Catalytic Asymmetric Cyclopropanation of Sulfoxonium Ylides

Catalyzed by a Chiral-at-Metal Rhodium Complex

Siliang Ming^{\dagger}, ^a Jian Yang^{\dagger}, ^a Shi Wu, ^a Gang Yao, ^a Hongwei Xiong, ^a Yu Du, ^b and Jun

Gong*a

^{*a*} School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. E-mail: gongjun@hbust.edu.cn

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

[†] These authors contributed equally to this work.

Contents

1. General Information	3
2. Synthesis of Catalysts	4
3. Synthesis of Substrates	5
4. Asymmetric Cyclopropanation Reactions	6
5. Synthetic Transformations	35
6. ¹ H and ¹³ C NMR Spectra	38
7. HPLC Traces on Chiral Stationary Phase	74
8. Single Crystal X-Ray Diffraction Study	106
9. References	108

1. General Information

All non-aqueous reactions were performed in oven-dried glassware and standard Schlenk tubes under an atmosphere of argon. Dichloromethane (DCM) and 1,2-dichloroethane (DCE) were distilled from CaH₂ under inert atmosphere. Tetrahydrofuran (THF) and toluene were distilled from sodium and benzophenone under inert atmosphere. All other solvents and reagents were used as received unless otherwise noted. Thin layer chromatography was performed using silica gel 60 F-254 precoated plates (0.2~0.3 mm) and visualized by short-wave UV (254 nm) irradiation, potassium permanganate, or iodine stain. Column chromatography was performed with silica gel (200-300 mesh, Yantai Jiangyou Silica Gel Development Co., Ltd). The ¹H, ¹³C and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD 400 NMR spectrometer, respectively. Chemical shifts (δ) for ¹H NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform, δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet and br = broad), coupling constant in Hz, and integration. Chemical shifts for ¹³C NMR spectra are recorded in parts per million from tetramethylsilane using the central peak of deuterochloroform (δ 77.00 ppm) as the internal standard. The infrared spectra were recorded on a VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. Optical rotation was recorded on INESA SGW-1 polarimeter at concentrations of 0.1 g/100 mL or 0.2 g/100 mL. Enantiomeric excess was determined by HPLC analysis on Chiralpak column (Daicel Chemical Industries, LTD) on Shimadzu LC-20AD. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry.

2. Synthesis of Catalysts

Racemic rhodium catalyst *rac*-**Rh3** and chiral catalyst **\Lambda-Rh3** were prepared according to reported procedures developed by Meggers' group.^[1] Λ -**Rh1**^[2], Λ -**Rh2**^[3] were synthesized following published procedures.

3. Synthesis of Substrates

3.1 Synthesis of α , β -unsaturated 2-acylimidazoles

 α , β -unsaturated 2-acylimidazoles **1** were prepared by *Aldol* reaction according to a reported procedure.^[3] 2-acetyl-imidazole (10.0 mmol, 1.0 eq.) and ethanol (50 mL) were added to a 100 mL round-bottom flask followed by the aromatic aldehyde (12 mmol, 1.2 eq.) and NaOH (5 mmol, 0.5 eq.). The solution was stirred at room temperature until the substrates consumption (detected by TLC). The reaction mixture was then quenched with saturated aqueous NH₄Cl and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic layer was washed with 50 mL brine and dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by a flash column chromatography on silica gel to afford the desired product **1**.

1n was prepared according to published procedures.^[4] **1q** was prepared according to published procedures.^[5] **1r** was prepared according to published procedures.^[6] **1v** was prepared according to published procedures.^[7] **1w** was prepared according to published procedures.^[8]

3.2 Synthesis of sulfur ylides

The sulfoxonium ylides **2a-2k** were prepared according to a reported method.^[9] **2l** was prepared according to published procedures.^[10] **2m** was prepared according to published procedures.^[11]

4. Asymmetric Cyclopropanation Reactions

4.1 Synthesis of racemic products as HPLC references

General Procedure: A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazoles **1** (0.20 mmol), sulfoxonium ylides **2** (0.24 mmol) and racemic catalyst *rac*-**Rh3** (1.7 mg, 1.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford racemic products as HPLC reference for determination of enantiomeric excess.

4.2 Substrate Scope

General Procedure: A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazoles **1** (0.20 mmol), sulfoxonium ylides **2** (0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral products.

Following General Procedure, a dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1a** (42.5 mg, 0.20 mmol), sulfoxonium ylide **2a**

(47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3aa** as pale yellow oil (64.1 mg, yield: 97%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 12.841 min, t_r(major) = 15.743 min;

 $[\alpha]_{D}^{25} = -175.8^{\circ} (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 2980, 1671, 1510, 1459, 1432, 1373, 1320, 1284, 1237, 1143 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (d, J = 7.3 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.43 – 7.29 (m, 6H), 7.28 – 7.22 (m, 1H), 7.15 (s, 1H), 7.00 (s, 1H), 4.15 – 4.10 (m, 1H), 3.90 (s, 3H), 3.57 (t, J = 6.3 Hz, 1H), 3.35 (dd, J = 9.6, 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 194.07$, 185.90, 143.34, 138.45, 137.02, 133.15,

 $129.15,\,128.70,\,128.52,\,127.05,\,126.70,\,38.60,\,36.25,\,36.14,\,30.67;$

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₈N₂O₂Na⁺ [M+Na]⁺: 353.1266, found: 353.1261.

Alternatively, **3aa** can also be synthesized with sulfur ylide **2l**. Following **General Procedure**, a dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1a** (42.5 mg, 0.20 mmol), sulfur ylide **2l** (43.2 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (1.6 mg, 1.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3aa** as pale yellow oil (62.8 mg, yield: 95%). Dr = 8:1 was determined by crude ¹H NMR analysis, *ee* = 98% (for the major diastereoisomer).

In the scale-up synthesis, a dried 25 mL flask was charged with α , β -unsaturated 2-acylimidazole **1a** (424.5 mg, 2.0 mmol), sulfoxonium ylide **2a** (471.0 mg, 2.4 mmol) and chiral catalyst **A-Rh3** (8.3 mg, 0.5 mol% or 1.7 mg, 0.1 mol%). The tube was purged with argon, then DCE (5.0 mL) was added. The reaction mixture was stirred at 30°C (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3aa** as pale yellow oil (630.6 mg, 95% yield or 564.0 mg, 85% yield). Enantiomeric excess was determined by HPLC analysis, *ee* = 99%.

Following General Procedure, a dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1b** (45.3 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3ba** as pale yellow oil (66.8 mg, yield: 97%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 12.455 min, t_r(major) = 15.568 min; $[\alpha]_D^{25} = -48.0^\circ$ (c = 0.1, CHCl₃); IR (KBr) v_{max} : 2924, 1658, 1594, 1579, 1514, 1469, 1456, 1441, 1399, 1311, 1286, 1221, 1178, 1157, 1087 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04 - 7.97$ (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.23 - 7.18 (m, 2H), 7.17 - 7.11 (m, 3H), 6.99 (s, 1H), 4.09 (dd, J = 9.6, 6.0 Hz, 1H), 3.90 (s, 3H), 3.54 (t, J = 6.3 Hz, 1H), 3.31 (dd, J = 9.6, 6.6 Hz, 1H), 2.34 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): $\delta = 194.16$, 186.09, 143.47, 137.08, 136.70, 135.41, 133.09, 129.37, 129.24, 128.51, 128.51, 127.00, 126.58, 38.59, 36.18, 36.10, 30.50, 21.08;

HRMS (ESI, *m*/*z*) calcd. for C₂₂H₂₀N₂O₂Na⁺ [M+Na]⁺: 367.1423, found: 367.1417.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole 1c (48.5 mg, 0.20 mmol), sulfoxonium ylide 2a (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3ca** as pale yellow oil (67.0 mg, yield: 93%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column IC, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 80:20, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 24.443 min, t_r(major) = 34.027 min;

IR (KBr) v_{max} : 3141, 2956, 2830, 2050, 1672, 1648, 1613, 1597, 1581, 1518, 1450, 1414, 1399, 1324, 1306, 1282, 1261, 1251, 1224 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04 - 7.99$ (m, 2H), 7.54 - 7.48 (m, 1H), 7.39 (td, *J* = 8.3, 7.1 Hz, 2H), 7.26 - 7.21 (m, 2H), 7.14 (d, *J* = 1.0 Hz, 1H), 6.99 (s, 1H), 6.90 - 6.85 (m, 2H), 4.07 (dd, *J* = 9.5, 6.1 Hz, 1H), 3.89 (s, 3H), 3.80 (s, 3H), 3.53 (t, *J* = 6.3 Hz, 1H), 3.29 (dd, *J* = 9.5, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): $\delta = 194.16$, 186.14, 158.71, 143.52, 137.09, 133.09, 130.47, 129.31, 128.51 (overlap, 4C), 127.84, 127.03, 114.10, 55.35, 38.47, 36.13, 36.11, 30.21;

HRMS (ESI, m/z) calcd. for C₂₂H₂₀N₂O₂Na⁺ [M+Na]⁺: 383.1372, found: 383.1366.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1d** (46.1 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3da** as pale yellow oil (66.9 mg, yield: 96%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IC, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 90:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 19.511 min, t_r(major) = 22.872 min; $[\alpha]_D^{25} = -134.2^\circ$ (c = 0.2, CHCl₃); IR (KBr) v_{max} : 3107, 1681, 1673, 1593, 1577, 1515, 1470, 1445, 1403, 1331, 1314, 1275, 1215, 1166, 1160 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04 - 7.98$ (m, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.31 - 7.25 (m, 2H), 7.16 (s, 1H), 7.06 - 6.98 (m, 3H), 4.09 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.89 (s, 3H), 3.56 (t, *J* = 6.3 Hz, 1H), 3.30 (dd, *J* = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.88$, 185.72, 161.93 (d, *J* = 245.4 Hz, 1C), 143.32, 136.97, 134.18 (d, *J* = 3.2 Hz, 1C), 133.20, 129.28, 128.54, 128.49, 128.36 (d, *J* = 8.0 Hz, 2C), 127.13, 115.56 (d, *J* = 21.6 Hz, 2C), 38.37, 36.19, 36.11, 29.81; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -115.50$;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₇FN₂O₂Na⁺ [M+Na]⁺: 371.1172, found: 371.1167.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1e** (46.1 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3ea** as pale yellow oil (66.4 mg, yield: 95%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column ID, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 70:30, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 18.694 min, t_r(major) = 22.170 min;

 $[\alpha]_{D}^{25} = -111.4^{\circ} (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 3113, 2923, 1681, 1661, 1598, 1580, 1498, 1454, 1433, 1399, 1364, 1346, 1319, 1294, 1281, 1240, 1219 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.06 - 8.00$ (m, 2H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.27 - 7.18 (m, 2H), 7.16 - 7.02 (m, 3H), 7.00 (s, 1H), 4.16 (dd, *J* = 9.6, 6.2 Hz, 1H), 3.88 (s, 3H), 3.71 (t, *J* = 6.5 Hz, 1H), 3.42 (dd, *J* = 9.6, 6.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.84$, 185.72, 161.68 (d, *J* = 247.3 Hz, 1C), 143.39, 136.98, 133.13, 129.38, 128.59, 128.49, 128.47, 127.90 (d, *J* = 3.7 Hz, 1C), 127.15, 125.58 (d, *J* = 13.8 Hz, 1C), 124.21 (d, *J* = 3.6 Hz, 1C), 115.60 (d, *J* = 21.6 Hz, 1C), 36.80 (d, *J* = 1.9 Hz, 1C), 36.07, 34.95 (d, *J* = 1.6 Hz, 1C), 24.87 (d, *J* = 3.9 Hz, 1C);

¹⁹F NMR (376 MHz, CDCl₃): δ = -117.75;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₇FN₂O₂Na⁺ [M+Na]⁺: 371.1172, found: 371.1167.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1f** (49.4 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3fa** as white solid (69.3 mg, yield: 95%), mp 121–122 °C. Enantiomeric excess was determined by HPLC analysis, *ee* > 99%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, tr(minor) = 14.443 min, tr(major) = 16.722 min;

 $[\alpha]_{D}^{25} = -81.9^{\circ} (c = 0.1, CHCl_3);$

IR (KBr) v_{max} : 2923, 1666, 1595, 1577, 1497, 1451, 1407, 1360, 1293, 1270, 1223, 1154, 1110, 1082, 1051, 1015 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.03 - 7.98$ (m, 2H), 7.54 - 7.48 (m, 1H), 7.44 - 7.35 (m, 2H), 7.32 - 7.21 (m, 4H), 7.15 (d, *J* = 1.0 Hz, 1H), 7.00 (s, 1H), 4.10 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.87 (s, 3H), 3.55 (t, *J* = 6.3 Hz, 1H), 3.29 (dd, *J* = 9.7, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.65$, 185.61, 143.41, 137.08, 136.93, 133.22, 132.78, 129.48, 128.81, 128.55, 128.49, 128.13, 127.20, 38.30, 36.12, 36.08, 29.76; HRMS (ESI, *m/z*) calcd. for C₂₁H₁₇ClN₂O₂Na⁺ [M+Na]⁺: 387.0877, found: 387.0870.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1g** (49.4 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3ga** as pale yellow oil (70.0 mg, yield: 96%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IC, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 90:10, flow rate: 1.0 mL/min, 30 °C, tr(minor) = 17.213 min, tr(major) = 19.312 min;

 $[\alpha]_{D}^{25} = -109.9^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) v_{max} : 2940, 1678, 1605, 1563, 1499, 1430, 1402, 1338, 1291, 1262, 1209, 1169, 1130, 1047 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04 - 7.98$ (m, 2H), 7.54 - 7.48 (m, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.31 - 7.18 (m, 4H), 7.16 (d, J = 0.9 Hz, 1H), 7.01 (s, 1H), 4.12 (dd, J = 9.7, 6.1 Hz, 1H), 3.87 (s, 3H), 3.55 (t, J = 6.3 Hz, 1H), 3.33 (dd, J = 9.7, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.61, 185.41, 143.23, 140.62, 136.87, 134.61, 133.27, 129.94, 129.30, 128.56, 128.51, 127.23, 127.19, 126.80, 125.10, 37.56, 36.22, 36.11, 29.89;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₇ClN₂O₂Na⁺ [M+Na]⁺: 387.0877, found: 387.0872.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1h** (58.2 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford chiral product **3ha** as white solid (73.7 mg, yield: 90%), mp 104–105 °C. Enantiomeric excess was determined by HPLC analysis, *ee* > 99%, Chiralpak column

AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 15.243 min, t_r(major) = 17.464 min;

 $[\alpha]_{D}^{25} = -128.7^{\circ} (c = 0.2, CHCl_3);$

IR (KBr) v_{max} : 2923, 1677. 1658, 1594, 1580, 1489, 1458, 1440, 1403, 1286, 1221, 1180, 1158 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.02 - 7.97$ (m, 2H), 7.53 - 7.48 (m, 1H), 7.47 - 7.36 (m, 4H), 7.20 - 7.13 (m, 3H), 6.99 (s, 1H), 4.09 (dd, J = 9.7, 6.1 Hz, 1H), 3.87 (s, 3H), 3.53 (t, J = 6.3 Hz, 1H), 3.29 (dd, J = 9.7, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.66, 185.58, 143.37, 137.61, 136.91, 133.24, 131.76, 129.44, 128.56, 128.49, 128.48, 127.20, 120.81, 38.30, 36.09 (overlap, 2C), 29.83;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₈BrN₂O₂⁺ [M+H]⁺: 409.0552, found: 409.0546.

A dried 25 mL Schlenk tube was charged with α,β-unsaturated 2-acylimidazole **1i** (47.5 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **Λ-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ia** as white solid (67.5 mg, yield: 95%), mp 103–104 °C. Enantiomeric excess was determined by HPLC analysis, *ee* = 97%, Chiralpak column IA, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 70:30, flow rate: 1.0 mL/min, 30 °C, t_r(major) = 20.275 min, t_r(minor) = 26.743 min; [*α*]_D²⁵= -59.9° (*c* = 0.2, CHCl₃);

IR (KBr) *v*_{max}: 2924, 2853, 2225, 1692, 1659, 1609. 1595, 1578, 1512, 1448, 1416, 1398, 1346, 1327, 1310, 1290, 1275, 1220, 1178, 1153 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 7.5 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 – 7.37 (m, 4H), 7.18 (s, 1H), 7.03 (s, 1H), 4.20 (dd, J =9.7, 6.1 Hz, 1H), 3.89 (s, 3H), 3.61 (t, J = 6.3 Hz, 1H), 3.39 (dd, J = 9.8, 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.20$, 184.83, 144.21, 142.96, 136.67, 133.44, 132.52, 129.21, 128.63, 128.50, 127.50, 127.35, 118.73, 110.81, 38.53, 36.48, 36.16, 29.96;

HRMS (ESI, *m*/*z*) calcd. for C₂₂H₁₇N₃O₂Na⁺ [M+Na]⁺: 378.1219, found: 378.1213.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1j** (57.7 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3ja** as pale yellow oil (78.8 mg, yield: 97%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 80:20, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 14.026 min, t_r(major) = 16.803 min;

 $[\alpha]_{D}^{25} = -71.3^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 3060, 3027, 2285, 1682, 1656, 1597, 1579, 1488, 1445, 1404, 1341, 1287, 1218, 1176, 1155 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, J = 7.3 Hz, 2H), 7.62 – 7.50 (m, 5H), 7.47 – 7.32 (m, 7H), 7.16 (s, 1H), 7.00 (s, 1H), 4.20 – 4.13 (dd, J = 9.6, 6.1 Hz, 1H), 3.91 (s, 3H), 3.62 (t, J = 6.3 Hz, 1H), 3.38 (dd, J = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.96$, 185.94, 143.52, 140.68, 139.99, 137.64, 137.06, 133.17, 129.43, 128.83, 128.55, 128.54, 127.41, 127.33, 127.13, 127.03, 38.56, 36.31, 36.10, 30.42 (one aryl peak lost for overlap);

HRMS (ESI, m/z) calcd. for C₂₇H₂₂N₂O₂Na⁺ [M+Na]⁺: 429.1579, found: 429.1574.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1k** (52.5 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3ka** as white solid (73.9 mg, yield: 97%), mp 139–140 °C.

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 13.706 min, t_r(major) = 16.806 min;

 $[\alpha]_{D}^{25} = -67.7^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) v_{max} : 2920, 2852, 1685, 1661, 1598, 1510, 1468, 1451, 1429, 1404, 1285, 1222 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.07 - 8.01$ (m, 2H), 7.85 - 7.75 (m, 4H), 7.54 - 7.37 (m, 6H), 7.16 (s, 1H), 7.00 (s, 1H), 4.25 (dd, J = 9.6, 6.0 Hz, 1H), 3.91 (s, 3H), 3.74 (t, J = 6.3 Hz, 1H), 3.45 (dd, J = 9.6, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.91, 185.93, 143.51, 137.01, 135.93, 133.39, 133.15, 132.52, 129.40, 128.52 (overlap, 4C), 128.45, 127.67, 127.57, 127.09, 126.36, 125.74, 125.32, 124.85, 38.72, 36.16, 36.10, 30.76;

HRMS (ESI, m/z) calcd. for C₂₅H₂₀N₂O₂Na⁺ [M+Na]⁺: 403.1423, found: 403.1417.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **11** (40.4 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3la** as pale yellow oil (52.7 mg, yield: 82%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column ID, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =75:25, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 25.252 min, t_r(major) = 28.334 min;

 $[\alpha]_D^{25} = -170.3^\circ (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 3435, 3138, 3070, 3029, 2922, 1675, 1657, 1597, 1510, 1453, 1423, 1401, 1287, 1249, 1224, 1178, 1152 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.06 - 7.97$ (m, 2H), 7.51 (td, J = 7.2, 1.4 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 1.8 Hz, 1H), 7.15 (s, 1H), 6.99 (s, 1H), 6.35 -

6.30 (m, 1H), 6.26 (d, J = 3.2 Hz, 1H), 4.18 (dd, J = 9.7, 5.9 Hz, 1H), 3.87 (s, 3H), 3.57 (t, J = 6.2 Hz, 1H), 3.47 (dd, J = 9.7, 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.49$, 185.49, 151.71, 143.41, 141.46, 136.89, 133.19, 129.47, 128.55, 128.52, 127.12, 110.70, 106.59, 36.22, 36.07, 34.45, 23.97; HRMS (ESI, m/z) calcd. for C₁₉H₁₆N₂O₃Na⁺ [M+Na]⁺: 343.1059, found: 343.1053.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1m** (43.7 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3ma** as pale yellow oil (63.3 mg, yield: 94%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column OD-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =90:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 11.247 min, t_r(major) = 15.682 min;

 $[\alpha]_D^{25} = -235.9^\circ (c = 0.3, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 3271, 2944, 1703, 1667, 1604, 1527, 1442, 1430, 1407, 1391, 1373, 1352, 1277, 1204, 1157 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.04 - 8.00$ (m, 2H), 7.55 - 7.48 (m, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.18 - 7.14 (m, 2H), 7.02 - 6.98 (m, 2H), 6.96 (dd, *J* = 5.1, 3.5 Hz, 1H), 4.10 (dd, *J* = 9.7, 5.9 Hz, 1H), 3.89 (s, 3H), 3.74 (t, 1H, *J* = 6.2 Hz), 3.37 (dd, *J* = 9.7, 6.5 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.45, 185.34, 143.34, 142.41, 136.86, 133.22, 129.43, 128.53 (overlap, 4C), 127.11 (overlap, 2C), 124.70, 123.75, 39.38, 37.29, 36.08, 25.93;

HRMS (ESI, *m*/*z*) calcd. for C₁₉H₁₆N₂O₂SNa⁺ [M+Na]⁺: 359.0830, found: 359.0830.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1n** (30.1 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3na** as colorless oil (45.6 mg, yield: 85%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column ID, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =75:25, flow rate: 1.0 mL/min, 30 °C, t_r(major) = 14.494 min, t_r(minor) = 17.270 min;

 $[\alpha]_D^{25} = +74.2^\circ (c = 0.1, CHCl_3);$

IR (KBr) v_{max} : 2979, 1681, 1595, 1571, 1549, 1511, 1464, 1456, 1412, 1383, 1339, 1278, 1220, 1189, 1167, 1072 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.07 - 8.01$ (m, 2H), 7.60 - 7.54 (m, 1H), 7.51 - 7.44 (m, 2H), 7.24 - 7.18 (m, 1H), 7.07 (s, 1H), 4.09 (dd, J = 5.7, 4.6 Hz, 1H), 3.99 (s, 3H), 3.45 (dd, J = 9.7, 4.7 Hz, 1H), 2.26 (dp, J = 9.7, 6.2 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃): δ = 195.47, 189.60, 143.29, 138.02, 133.02, 129.81, 128.59, 128.26, 127.29, 36.16, 35.36, 32.99, 29.56, 11.30;

HRMS (ESI, *m*/*z*) calcd. for C₁₆H₁₆N₂O₂Na⁺ [M+Na]⁺: 291.1109, found: 291.1102.

3oa

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **10** (54.9 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **30a** as pale yellow oil (76.9 mg, yield: 98%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IB, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =90:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 11.333 min, t_r(major) = 15.550 min;

 $[\alpha]_{D}^{25} = +21.9^{\circ} (c = 0.1, CHCl_3);$

IR (KBr) *v*_{max}: 3453, 2922, 1677, 1596, 1580, 1503, 1497, 1445, 1429, 1399, 1310, 1274, 1217 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ = 8.02 – 7.97 (m, 2H), 7.54 – 7.48 (m, 1H), 7.43 – 7.21 (m, 11H), 7.15 – 7.08 (m, 3H), 4.07 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.46 (t, *J* = 6.3 Hz, 1H), 3.37 (dd, *J* = 9.5, 6.5 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.84, 184.56, 143.28, 138.46, 137.99, 136.96, 133.12, 129.80, 128.87, 128.66, 128.54, 128.50, 128.46, 127.02, 126.98, 126.58, 125.62, 38.58, 36.00, 30.40;

HRMS (ESI, m/z) calcd. for C₂₆H₂₀N₂O₂Na⁺ [M+Na]⁺: 415.1422, found: 415.1417.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated 2-acylimidazole **1p** (54.1 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3pa** as colorless oil (62.4 mg, yield: 80%).

Enantiomeric excess was determined by HPLC analysis, ee > 99%, Chiralpak column IA, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =80:20, flow rate: 1.0 mL/min, 30 °C, t_r(major) =

15.107 min, $t_r(minor) = 23.330 min;$

 $[\alpha]_{D}^{25} = -49.2^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) v_{max} : 3439, 2935, 1687, 1659, 1613, 1597, 1580, 1517, 1450, 1414, 1394, 1306, 1279, 1250, 1217, 1197, 1176 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (dd, J = 8.1, 1.5 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 – 7.20 (m, 3H), 7.18 (s, 1H), 6.90 – 6.84 (m, 2H), 5.42 (m, J = 6.7 Hz, 1H), 4.14 (dd, J = 9.6, 6.0 Hz, 1H), 3.80 (s, 3H), 3.53 (t, J = 6.3 Hz, 1H), 3.26 (dd, J = 9.6, 6.6 Hz, 1H), 1.37 (d, J = 6.7 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 194.18$, 186.16, 158.67, 142.82, 137.08, 133.03, 130.59, 129.79, 128.48, 128.45, 127.87, 121.22, 114.08, 55.34, 49.17, 38.50, 36.60, 30.02, 23.45, 23.40;

HRMS (ESI, *m*/*z*) calcd. for C₂₄H₂₄N₂O₃Na⁺ [M+Na]⁺: 411.1685, found: 411.1682.

A dried 25 mL Schlenk tube was charged with **1q** (41.9 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3qa** as white solid (49.4 mg, yield: 75%), mp 93–94 °C.

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =90:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 15.938 min, t_r(major) = 20.009 min;

 $[\alpha]_{D}^{25} = -143.8^{\circ} (c = 0.3, \text{CHCl}_3);$

IR (KBr) v_{max} : 3014, 1702, 1649, 1588, 1521, 1469, 1456, 1432, 1417, 1396, 1378, 1335, 1270, 1219, 1165, 1154 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.72$ (d, J = 4.6 Hz, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.99 (d, J = 7.7 Hz, 2H), 7.87 (t, J = 7.6 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.43 – 7.32 (m, 6H), 7.31 – 7.26 (m, 1H), 4.27 (dd, J = 9.5, 6.2 Hz, 1H), 3.60 (t, J = 6.2 Hz, 1H), 3.48 (dd, J = 9.4, 6.5 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 194.81, 194.18, 152.53, 148.19, 138.55, 137.91,
136.83, 133.18, 128.73, 128.52, 128.50, 127.38, 127.07, 126.70, 122.56, 39.19, 34.86,
31.34;

HRMS (ESI, *m*/*z*) calcd. for C₂₂H₁₇NO₂Na⁺ [M+Na]⁺: 350.1157, found: 350.1151.

A dried 25 mL Schlenk tube was charged with α , β -unsaturated *N*-acylpyrazole **1r** (45.3 mg, 0.20 mmol), sulfoxonium ylide **2a** (47.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 50°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 4:1) to afford chiral product **3ra** as white solid (58.0 mg, yield: 84%), mp 103–104 °C.

Enantiomeric excess was determined by HPLC analysis, ee = 97%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 6.441 min, t_r(major) = 7.280 min;

 $[\alpha]_{D}^{25} = +48.4^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 2947, 1687, 1664, 1572, 1483, 1403, 1336, 1290, 1203, 1028 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (d, J = 7.1 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.30 – 7.24 (m, 1H), 5.91 (s, 1H), 3.90 (dd, J = 9.6, 6.3 Hz, 1H), 3.56 (t, J = 6.3 Hz, 1H), 3.37 (dd, J = 9.6, 6.4 Hz, 1H), 2.46 (s, 3H), 2.19 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): $\delta = 194.22$, 168.41, 152.21, 144.19, 138.17, 137.04, 133.13, 128.68, 128.49, 128.46, 127.11, 126.79, 111.09, 37.02, 32.86, 30.63, 14.35, 13.79;

HRMS (ESI, m/z) calculated for C₂₂H₂₁N₂O₂⁺ [M+H]⁺: 345.1603, found: 345.1602.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2b** (50.4 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ab** as white solid (66.8 mg, yield: 97%), mp 137–138 °C.

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column ID, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =70:30, flow rate: 1.0 mL/min, 30 °C, t_r(minor) =

 $25.149 \text{ min, } t_r(\text{major}) = 28.060 \text{ min;}$

 $[\alpha]_D^{25} = -141.7^\circ (c = 0.1, \text{CHCl}_3);$

IR (KBr) v_{max} : 2992, 1929, 1817, 1774, 1679, 1660, 1605, 1573, 1504, 1461, 1402, 1349, 1323, 1309, 1276, 1228, 1211, 1176, 1157 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 7.94 - 7.88$ (m, 2H), 7.36 - 7.29 (m, 4H), 7.27 - 7.29

7.22 (m, 1H), 7.21 – 7.13 (m, 3H), 7.00 (s, 1H), 4.12 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.91 (s,

3H), 3.55 (t, *J* = 6.2 Hz, 1H), 3.35 (dd, *J* = 9.5, 6.6 Hz, 1H), 2.36 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.57, 185.92, 144.00, 143.28, 138.54, 134.54, 129.22, 128.94, 128.69, 128.66, 127.00, 126.97, 126.70, 38.72, 36.17, 36.15, 30.61, 21.69;

HRMS (ESI, *m*/*z*) calcd. for C₂₂H₂₀N₂O₂Na⁺ [M+Na]⁺: 367.1423, found: 367.1417.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2c** (54.3 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to

room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ac** as colorless oil (66.1 mg, yield: 92%).

Enantiomeric excess was determined by HPLC analysis, ee > 99%, Chiralpak column OD-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 17.359 min, t_r(major) = 18.314 min;

 $[\alpha]_{D}^{25} = -83.1^{\circ} (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 2923, 1677, 1654, 1598, 1510, 1462, 1431, 1400, 1343, 1313, 1281, 1261, 1227, 1162 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.02 - 7.96$ (m, 2H), 7.35 - 7.27 (m, 4H), 7.23 (ddd, J = 8.5, 5.4, 2.1 Hz, 1H), 7.13 (d, J = 1.0 Hz, 1H), 6.98 (d, J = 0.9 Hz, 1H), 6.87 - 6.82 (m, 2H), 4.08 (dd, J = 9.6, 6.0 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.55 (t, J = 6.3 Hz, 1H), 3.30 (dd, J = 9.6, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 192.27, 186.09, 163.49, 143.51, 138.63, 130.77, 130.10, 129.27, 128.63, 127.01, 126.93, 126.64, 113.63, 55.42, 38.50, 36.07, 35.91, 30.41;

HRMS (ESI, *m/z*) calcd. for C₂₂H₂₀N₂O₂Na⁺ [M+Na]⁺: 383.1372, found: 383.1366.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2d** (51.4 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ad** as colorless oil (67.9 mg, yield: 97%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column OD-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH =85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 9.872 min, t_r(major) = 11.403 min;

 $[\alpha]_{D}^{25} = +45.5^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 2921, 1683, 1647, 1589, 1504, 1458, 1430, 1401, 1350, 1323, 1278,

1224, 1154 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.08 - 8.01$ (m, 2H), 7.36 – 7.23 (m, 5H), 7.15 (d, *J* = 0.9 Hz, 1H), 7.09 – 7.02 (m, 2H), 7.00 (s, 1H), 4.13 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.89 (s, 3H), 3.56 (t, *J* = 6.3 Hz, 1H), 3.28 (dd, *J* = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 192.40$, 185.88, 165.75 (d, *J* = 254.7 Hz, 1C), 143.44, 138.33, 133.49 (d, *J* = 3.0 Hz, 1C), 131.14 (d, *J* = 9.4 Hz, 2C), 129.46, 128.72, 127.19, 127.10, 126.68, 115.64 (d, *J* = 21.9 Hz, 2C), 38.33, 36.10 (overlap, 2C), 30.55;

¹⁹F NMR (376 MHz, CDCl₃) δ = -105.00;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₇FN₂O₂Na⁺ [M+Na]⁺: 371.1172, found: 371.1166.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2e** (55.5 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ae** as white solid (64.2 mg, yield: 88%), mp 119–120 °C.

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column IA, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 75:25, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 14.628 min, t_r(major) = 17.342 min; $[\alpha]_D^{25} = +31.9^\circ$ (c = 0.1, CHCl₃); IR (KBr) ν_{max} : 3061, 1673, 1659, 1587, 1570, 1502, 1432, 1408, 1337, 1323, 1303, 1281, 1217, 1171, 1156, 1087 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99 - 7.94$ (m, 2H), 7.39 - 7.23 (m, 7H), 7.15 (s, 1H), 7.01 (s, 1H), 4.14 (dd, J = 9.6, 6.0 Hz, 1H), 3.89 (d, J = 2.6 Hz, 3H), 3.56 (t, J =6.3 Hz, 1H), 3.27 (dd, J = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 192.83$, 185.80, 143.39, 139.57, 138.25, 135.38, 129.90, 129.49, 128.85, 128.73, 127.22, 127.13, 126.69, 38.26, 36.19, 36.11, 30.59; HRMS (ESI, m/z) calcd. for C₂₁H₁₇ClN₂O₂Na⁺ [M+Na]⁺: 387.0877, found: 387.0871.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2f** (55.5 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3af** as colorless oil (54.1 mg, yield: 74%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IC, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 80:20, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 15.279 min, t_r(major) = 19.811 min; $[\alpha]_D^{25} = +57.4^\circ$ (c = 0.1, CHCl₃); IR (KBr) v_{max} : 3132, 3111, 3070, 1684, 1652, 1586, 1502, 1462, 1434, 1400, 1331, 1294, 1273, 1223, 1183, 1157, 1123, 1089, 1074 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ = 7.60 – 7.55 (m, 1H), 7.38 – 7.21 (m, 8H), 7.14 (s, 1H), 7.03 (s, 1H), 4.03 – 3.93 (m, 4H), 3.57 (t, *J* = 6.5 Hz, 1H), 3.35 (dd, *J* = 9.5, 6.3 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 196.76, 185.49, 143.44, 138.79, 138.26, 132.01, 131.67, 130.50, 130.19, 129.41, 128.65, 127.08, 127.06, 126.77, 126.65, 40.82, 38.33, 36.15, 32.31;

HRMS (ESI, *m*/*z*) calcd. for C₂₁H₁₇ClN₂O₂Na⁺ [M+Na]⁺: 387.0877, found: 387.0871.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2g** (66.0 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ag** as colorless oil (74.7 mg, yield: 91%).

Enantiomeric excess was determined by HPLC analysis, ee > 99%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 10.740 min, t_r(major) = 13.112 min;

 $[\alpha]_{D}^{25} = +59.9^{\circ} (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 3426, 3055, 1684, 1657, 1603, 1584, 1508, 1502, 1459, 1432, 1403, 1337, 1323, 1308, 1276, 1218, 1171, 1157, 1085, 1069, 1048, 1011 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 7.92 - 7.85$ (m, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.37 - 7.23 (m, 5H), 7.16 (s, 1H), 7.01 (s, 1H), 4.14 (dd, J = 9.6, 6.1 Hz, 1H), 3.90 (s, 3H), 3.56 (t, J = 6.3 Hz, 1H), 3.27 (dd, J = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.16$, 185.87, 143.44, 138.32, 135.86, 131.96, 130.12, 129.57, 128.84, 128.47, 127.33, 127.24, 126.79, 38.38, 36.33, 36.26, 30.72; HRMS (ESI, m/z) calcd. for C₂₁H₁₇BrN₂O₂Na⁺ [M+Na]⁺: 431.0371, found: 431.0364.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2h** (63.4 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ah** as colorless oil (58.3 mg, yield: 73%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column OD-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 9.261 min, t_r(major) = 12.469 min;

 $[\alpha]_{D}^{25} = +66.0^{\circ} (c = 0.1, CHCl_3);$

IR (KBr) v_{max} : 3105, 2914, 1687, 1663, 1601, 1589, 1508, 1456, 1472, 1394, 1362, 1324, 1297, 1282, 1253, 1230, 1183 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.38 – 7.24 (m, 5H), 7.16 (d, J = 0.9 Hz, 1H), 7.02 (s, 1H), 4.18 (dd, J = 9.6, 6.1 Hz, 1H), 3.90 (s, 3H), 3.58 (t, J = 6.3 Hz, 1H), 3.30 (dd, J = 9.6, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.29$, 185.69, 143.32, 139.73, 138.05, 134.31 (q, J = 32.5 Hz, 1C), 129.58, 128.79, 128.77, 127.32, 127.22, 126.70, 125.61 (q, J = 3.8

Hz, 2C), 123.59 (q, *J* = 272.6 Hz, 1C), 38.25, 36.39, 36.10, 30.78;

¹⁹F NMR (376 MHz, CDCl₃) δ = -63.09;

HRMS (ESI, *m*/*z*) calcd. for C₂₂H₁₇F₃N₂O₂Na⁺ [M+Na]⁺: 421.1140, found: 421.1136.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2i** (63.4 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (3.4 mg, 2.0 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ai** as colorless oil (50.6 mg, yield: 79%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(major) = 12.820 min, t_r(minor) = 17.134 min;

 $[\alpha]_D^{25} = +101.9^\circ (c = 0.1, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 3421, 3113, 1668, 1605, 1564, 1510, 1464, 1438, 1401, 1286, 1255, 1224, 1159 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ = 7.56 (d, *J* = 1.4 Hz, 1H), 7.36 – 7.20 (m, 7H), 7.01 (s, 1H), 6.49 (dt, *J* = 3.2, 1.4 Hz, 1H), 3.98 – 3.93 (m, 4H), 3.56 (t, *J* = 6.4 Hz, 1H), 3.33 (dd, *J* = 9.5, 6.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 185.63, 182.86, 152.82, 146.66, 143.47, 138.41, 129.34, 128.67, 127.06, 127.01, 126.70, 117.79, 112.27, 37.28, 36.31, 36.15, 30.64; HRMS (ESI, *m/z*) calcd. for C₁₉H₁₆N₂O₃Na⁺ [M+Na]⁺: 343.1059, found: 343.1053.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2j** (48.5 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3aj** as pale yellow oil (63.8 mg, yield: 95%).

Enantiomeric excess was determined by HPLC analysis, ee = 97%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 80:20, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 9.161 min, t_r(major) = 10.208 min;

 $[\alpha]_{D}^{25} = +57.9^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) *v*_{max}: 3448, 2923, 1668, 1640, 1518, 1461, 1435, 1412, 1404, 1364, 1355, 1283, 1242, 1224, 1157 cm⁻¹

¹H NMR (400 MHz, CDCl₃): $\delta = 7.80$ (d, J = 2.7 Hz, 1H), 7.59 (d, J = 5.0 Hz, 1H), 7.36 – 7.22 (m, 5H), 7.15 (s, 1H), 7.08 – 7.04 (m, 1H), 7.02 (s, 1H), 4.05 (dd, J = 9.5, 6.2 Hz, 1H), 3.94 (s, 3H), 3.56 (t, J = 6.3 Hz, 1H), 3.33 (dd, J = 9.5, 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 186.65$, 185.60, 144.15, 143.29, 138.28, 133.80, 132.63, 129.03, 128.69, 128.10, 127.08, 127.01, 126.67, 38.69, 36.15, 35.96, 30.80; HRMS (ESI, *m/z*) calcd. for C₁₉H₁₆N₂O₂SNa⁺ [M+Na]⁺: 359.0830, found: 359.0826.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfoxonium ylide **2k** (59.1 mg, 0.24 mmol) and chiral catalyst **A-Rh3** (0.83 mg, 0.5 mol %). The tube was purged with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30°C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 5:1 to 2:1) to afford chiral product **3ak** as pale yellow oil (72.2 mg, yield: 95%).

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IA, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 75:25, flow rate: 1.0 mL/min, 30 °C, t_r(major) =

14.021 min, $t_r(minor) = 19.940 min;$

 $[\alpha]_D^{25} = +143.6^\circ (c = 0.2, \text{CHCl}_3);$

IR (KBr) v_{max} : 3140, 3055, 3020, 1685, 1665, 1647, 1627, 1599, 1576, 1510, 1464, 1428, 1402, 1354, 1322, 1303, 1280, 1251, 1219, 1191, 1155, 1123 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.60$ (s, 1H), 8.06 (dd, J = 8.6, 1.8 Hz, 1H), 7.92 – 7.87 (m, 1H), 7.83 (dd, J = 8.5, 2.0 Hz, 2H), 7.54 (dddd, J = 23.8, 8.1, 6.9, 1.3 Hz, 2H), 7.36 (d, J = 4.3 Hz, 4H), 7.31 – 7.23 (m, 1H), 7.15 (d, J = 0.9 Hz, 1H), 6.95 (s, 1H), 4.23 (dd, J = 9.7, 6.1 Hz, 1H), 3.84 (s, 3H), 3.65 (t, J = 6.3 Hz, 1H), 3.48 (dd, J = 9.7, 6.6 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 193.81, 185.94, 143.50, 138.57, 135.61, 134.39, 132.44, 130.49, 129.67, 129.42, 128.73, 128.51, 128.38, 127.75, 127.19, 127.06, 126.77, 126.71, 124.13, 38.65, 36.31, 36.06, 30.50;

HRMS (ESI, *m*/*z*) calcd. for C₂₅H₂₀N₂O₂Na⁺ [M+Na]⁺: 403.1423, found: 403.1417.

A dried 25 mL Schlenk tube was charged with **1a** (42.6 mg, 0.20 mmol), sulfur ylide **2m** (0.24 mmol) and chiral catalyst **Λ-Rh3** (1.6 mg, 1.0 mol %). The tube was purged

with argon, then DCE (0.6 mL) was added. The reaction mixture was stirred at 30° C for indicated time (monitored by TLC) under argon. After cooling to room temperature, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc = 10:1 to 5:1) to afford **3am** as pale yellow oil (32.6 mg, yield: 72%). Dr = 7:1 was determined by crude ¹H NMR analysis.

Enantiomeric excess was determined by HPLC analysis, ee = 0% (for the major diastereoisomer), Chiralpak column OJH, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 80:20, flow rate: 1.0 mL/min, 30 °C, t_r = 9.798 min and 12.221 min;

¹H NMR (400 MHz, CDCl₃): $\delta = 7.33 - 7.23$ (m, 2H), 7.21 - 7.11 (m, 4H), 7.04 (s,

1H), 4.01 (s, 3H), 3.65 – 3.54 (m, 1H), 2.69 (ddd, J=9.2, 6.6, 4.0, 1H), 1.80 (ddd,

J=9.2, 5.3, 4.0, 1H), 1.52 (ddd, *J*=8.4, 6.6, 4.0, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 190.48, 140.55, 129.50, 128.54, 127.12, 126.54, 126.38, 126.27, 36.28, 29.78, 29.35, 20.27;

HRMS (ESI, *m*/*z*) calcd. for C₁₄H₁₄N₂ONa⁺ [M+Na]⁺: 249.1004, found: 249.0998.

5. Synthetic Transformations

Step 1:

4 Å MS (500 mg, 100 mg/0.1 mmol of **3aa**) was added to a solution of **3aa** (165.2 mg, 0.5 mmol) in dry CH₃CN (5 mL) under argon atmosphere. The suspension was stirred vigorously under a positive pressure of argon for 2 hours at 25°C. Then methyl trifluoromethansulfonate (226.4 uL, 2.0 mmol, 4.0 eq.) was added. After being stirred at 25°C for 12 hours, MeOH (2.7 mL) and DBU (113 uL, 0.75 mmol, 1.5 eq.) were subsequently added. After being stirred at 25 °C for 30 min, the reaction mixture was concentrated and the residue was subjected to a silica gel flash chromatography (petroleum ether/ EtOAc = 10:1 to 4:1) to afford product **4** as colorless oil (113.4 mg, yield: 81%).

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column AS-H, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 85:15, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 8.721 min, t_r(major) = 10.920 min;

 $[\alpha]_{D}^{25} = -71.4^{\circ} (c = 0.1, \text{CHCl}_3);$

IR (KBr) v_{max} : 3424, 3051, 3006, 2957, 1975, 1955, 1916, 1892, 1816, 1719, 1673, 1605, 1595, 1579, 1504, 1462, 1449, 1438, 1364, 1341, 1330, 1317, 1313, 1284, 1227, 1205, 1180, 1175, 1156 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (dd, J = 8.1, 1.6 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.30 – 7.19 (m, 3H), 3.65 (s, 3H), 3.36 (t, J = 6.2 Hz, 1H), 3.12 (dd, J = 9.4, 6.4 Hz, 1H), 2.66 (dd, J = 9.4, 6.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 193.94, 169.73, 137.96, 136.86, 133.42, 128.81, 128.71, 128.42, 127.27, 126.58, 52.29, 35.04, 31.56, 30.11;

HRMS (ESI, *m*/*z*) calculated for C₁₈H₁₆O₃Na⁺ [M+Na]⁺: 303.0997, found: 303.0994.

Step 2:

According to a reported procedure ^[12], under argon atmosphere, potassium *tert*-butoxide (31 mg, 0.28 mmol) powder was added to a solution of methyltriphenylphosphonium bromide (107 mg, 0.3 mmol) in 2 mL THF in ice bath. The reaction mixture was stirred for 30 min. a solution of **4** (54.0 mg, 0.2 mmol) in 1 mL THF was added by syringe. The resulting solution was stirred at 50 °C and monitored by TLC analysis. After 5 h, the reaction was cooled to room temperature and quenched with 5 mL saturated aqueous NH₄Cl in ice bath. The resulting solution was extracted with ethyl acetate (3×5 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether = 1:15) to afford the desired product **5** as colorless oil (52 mg, 94% yield). The racemic reaction was carried out in the same condition.

Enantiomeric excess was determined by HPLC analysis, ee = 98%, Chiralpak column ID, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 90:10, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 5.400 min, t_r(major) = 6.329 min;

 $[\alpha]_{D}^{25} = -39^{\circ} (c = 0.1, CHCl_3);$

IR (KBr) *v*_{max}: 3382, 3036, 1704, 1697, 1638, 1599, 1568, 1422, 1403, 1367, 1310, 1295, 1205, 1134 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ = 7.52 (s, 2H), 7.36 – 7.30 (m, 4H), 7.30 – 7.20 (m, 4H), 5.69 (s, 1H), 5.37 (s, 1H), 3.49 (s, 3H), 3.06 (dd, *J* = 6.7, 5.5 Hz, 1H), 2.68 (t, *J* = 6.4 Hz, 1H), 2.44 (dd, *J* = 9.6, 5.1 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 170.43, 141.78, 140.14, 139.38, 128.64, 128.29, 127.67, 126.75, 126.64, 125.87, 115.38, 51.71, 34.36, 30.67, 29.65;
HRMS (ESI, *m*/*z*) calculated for C₁₉H₁₈O₂Na⁺ [M+Na]⁺: 301.1204, found: 301.1202.

Step 3:

According to a reported procedure ^[13], a solution of **3ra** (68 mg, 0.2 mmol, recrystallized) benzylamine (42 μ L, 0.4 mmol) and DBU (30 uL, 0.2 mmol) in toluene (2 mL) was heated to reflux for overnight. After being cooled to room temperature, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether = 1:5 to 1:3) to afford compound **6** (64 mg, 91%) as a white solid, mp 130–131 °C. The racemic reaction was carried out in the same condition.

Enantiomeric excess was determined by HPLC analysis, ee = 99%, Chiralpak column IC, $\lambda = 254$ nm, *n*-hexane/*i*-PrOH = 75:25, flow rate: 1.0 mL/min, 30 °C, t_r(minor) = 6.144 min, t_r(major) = 6.926 min;

 $[\alpha]_{D}^{25} = -31.7^{\circ} (c = 0.1, CHCl_3);$

IR (KBr) *v*_{max}: 3241, 3017, 2950, 1714, 1680, 1649, 1631, 1593, 1542, 1484, 1460,

1400, 1369, 1315, 1281, 1297, 1185, 1062 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ = 7.94 – 7.86 (m, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.31 – 7.21 (m, 5H), 7.16 (d, *J* = 4.6 Hz, 5H), 6.67 (t, *J* = 5.6 Hz, 1H), 4.47 (qd, *J* = 14.7, 5.7 Hz, 2H), 3.66 (dd, *J* = 10.1, 4.8 Hz, 1H), 3.45 (dd, *J* = 10.1, 6.1 Hz, 1H), 3.13 (dd, *J* = 6.2, 4.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃): δ = 194.68, 170.32, 137.85, 137.49, 134.34, 133.25, 128.85, 128.76, 128.63, 128.35, 128.15, 127.91, 127.62, 127.12, 44.11, 35.41, 34.56, 27.84;

HRMS (ESI, *m/z*) calculated for C₂₄H₂₂NO₂⁺ [M+H]⁺: 356.1651, found: 356.1648.

6. ¹H NMR and ¹³C NMR Spectra

Figure S1. ¹H and ¹³C NMR spectrum of 3aa.

Figure S2. ¹H and ¹³C NMR spectrum of **3ba**.

00.00

Figure S3. ¹H and ¹³C NMR spectrum of 3ca.

Figure S4. ¹H, ¹³C and ¹⁹F NMR spectrum of 3da.

00.00 ----

Figure S5. ¹H, ¹³C and ¹⁹F NMR spectrum of **3ea**.

----0.00

Figure S6. ¹H and ¹³C NMR spectrum of 3fa.

0.00

Figure S7. ¹H and ¹³C NMR spectrum of 3ga.

Figure S8. ¹H and ¹³C NMR spectrum of **3ha**.

Figure S9. ¹H and ¹³C NMR spectrum of 3ia.

Figure S10. ¹H and ¹³C NMR spectrum of 3ja.

----0.00

Figure S11. ¹H and ¹³C NMR spectrum of **3ka**.

Figure S12. ¹H and ¹³C NMR spectrum of 3la.

00.00

Figure S13. ¹H and ¹³C NMR spectrum of **3ma**.

Figure S14. ¹H and ¹³C NMR spectrum of **3na**.

00.0

Figure S15. ¹H and ¹³C NMR spectrum of **30a**.

Figure S16. ¹H and ¹³C NMR spectrum of **3pa**.

Figure S17. ¹H and ¹³C NMR spectrum of 3qa.

Figure S18. ¹H and ¹³C NMR spectrum of **3ra**.

Figure S19. ¹H and ¹³C NMR spectrum of **3ab**.

Figure S20. ¹H and ¹³C NMR spectrum of 3ac.

Figure S21. ¹H and ¹³C NMR spectrum of 3ad.

Figure S22. ¹H and ¹³C NMR spectrum of 3ae.

0.00 —

Figure S23. ¹H and ¹³C NMR spectrum of 3af.

Figure S24. ¹H and ¹³C NMR spectrum of **3ag**.

Figure S25. ¹H, ¹³C and ¹⁹F NMR spectrum of 3ah.

Figure S26. ¹H and ¹³C NMR spectrum of 3ai.

 150 140 130 120 110 100 90 80 70 60 50 40 30 (ppm)

Figure S28. ¹H and ¹³C NMR spectrum of **3ak**.

Figure S29. ¹H and ¹³C NMR spectrum of 3am.

Figure S30. ¹H and ¹³C NMR spectrum of 4.

Figure S31. ¹H and ¹³C NMR spectrum of 5.

Figure S32. ¹H and ¹³C NMR spectrum of 6.

7. HPLC Traces on Chiral Stationary Phase

Chromatogram mV 12.972 16.089 300 200-100-0-13 15 17 18 14 16 19 20 12 min

<Peak Table> Detector A 254nm

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	12.972	13950907	369009	49.378
2	16.089	14302356	242882	50.622
Total		28253263	611890	100.000

Figure S33. HPLC traces of racemic **3aa** (reference) and chiral **3aa**. Area integration = 0.5: 99.5 (99% ee).

<Peak Table> Detector A 254nm

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	12.383	3497530	88685	49.269
2	15.932	3601323	55963	50.731
Total		7098853	144648	100.000

Figure S34. HPLC traces of racemic **3ba** (reference) and chiral **3ba**. Area integration = 1.0:99.0 (98% ee).

<Peak Table> Detector A 254nm

Dettector ALD				
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	24.193	14028512	322458	49.834
2	34.419	14121931	223963	50.166
Total		28150443	546422	100.000

Figure S35. HPLC traces of racemic 3ca (reference) and chiral 3ca. Area integration = 1.2:98.8 (98% ee).

Figure S36. HPLC traces of racemic 3da (reference) and chiral 3da. Area integration

= 0.7:99.3 (99% ee).

Delector A 25	4 nm			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	18.562	26341894	887944	49.976
2	22.320	26366850	730871	50.024
Total		52708745	1618815	100.000
		· · · · · · · · · · · · · · · · · · ·		

Figure S37. HPLC traces of racemic **3ea** (reference) and chiral **3ea**. Area integration = 0.9:99.1 (98% ee).

Figure S38. HPLC traces of racemic **3fa** (reference) and chiral **3fa**. Area integration = 0.1:99.9 (99.8% ee).

16

Area (mAU*min)

26981

32420551

32447532

17

Height (mAU)

549

477530

478079

18

20

min

19

Area Ratio (%)

0.083

99.917

100.000

14.443

14

Retention Time (min)

14.443

16.722

15

0

13

<Peak Table> Detector A 254nm

Peak# 1

2

Total

Figure S39. HPLC traces of racemic **3ga** (reference) and chiral **3ga**. Area integration = 0.7:99.3 (99% ee).

Figure S40. HPLC traces of racemic **3ha** (reference) and chiral **3ha**. Area integration = 0.1:99.9 (99.8% ee).

Figure S41. HPLC traces of racemic **3ia** (reference) and chiral **3ia**. Area integration = 98.6:1.4 (97% ee).

Figure S42. HPLC traces of racemic **3ja** (reference) and chiral **3ja**. Area integration = 0.9:99.1 (98% ee).

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	13.554	10424418	306489	49.155
2	16.885	10782735	222532	50.845
Total		21207153	529020	100.000

Figure S43. HPLC traces of racemic **3ka** (reference) and chiral **3ka**. Area integration = 0.5:99.5 (99% ee).

Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
25.407	1923401	38922	50.659
28.771	1873345	31264	49.341
	3796747	70186	100.000
	Retention Time (min) 25.407 28.771	Retention Time (min) Area (mAU*min) 25.407 1923401 28.771 1873345 3796747	Retention Time (min) Area (mAU*min) Height (mAU) 25.407 1923401 38922 28.771 1873345 31264 3796747 70186 3796747

Figure S44. HPLC traces of racemic **3la** (reference) and chiral **3la**. Area integration = 0.4:99.6 (99% ee).

<Peak Table> Detect<u>or A 254nm</u>

Delector A 25	911111			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	11.186	13276812	645231	49.943
2	15.544	13307201	484274	50.057
Total		26584012	1129505	100.000

Figure S45. HPLC traces of racemic **3ma** (reference) and chiral **3ma**. Area integration = 0.8:99.2 (98% ee).

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	14.573	12747782	633383	49.977
2	17.159	12759561	507479	50.023
Total		25507343	1140862	100.000

Figure S46. HPLC traces of racemic **3na** (reference) and chiral **3na**. Area integration = 99.6:0.4 (99% ee).

750-

500-

Detector ALS	10.000			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	10.856	32605399	836893	50.495
2	15.592	31965899	379886	49.505
Total		64571297	1216780	100.000

Figure S47. HPLC traces of racemic 30a (reference) and chiral 30a. Area integration =0.4: 99.6 (99% ee).

Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
15.753	17181530	568130	50.598
24.695	16775653	351570	49.402
	33957183	919700	100.000
	Retention Time (min) 15.753 24.695	Retention Time (min) Area (mAU*min) 15.753 17181530 24.695 16775653 33957183	Retention Time (min) Area (mAU*min) Height (mAU) 15.753 17181530 568130 24.695 16775653 351570 33957183 919700

Figure S48. HPLC traces of racemic 3pa (reference) and chiral 3pa. Area integration = 99.9:0.1 (99.8% ee).

Detector A 25	4nm			
Peak No.	Retention Time (min)	Area (mAU*s)	Height (mAU)	Area Ratio (%)
1	15.949	10896402	194258	51.743
2	20.220	10162401	139665	48.257
总计		21058804	333923	100.000

Integration Ta Detector A 25	ble 4nm			
Peak No.	Retention Time (min)	Area (mAU*s)	Height (mAU)	Area Ratio (%)
1	15.938	185047	1827	0.829
2	20.009	22127687	181308	99.171
总计		22312735	183134	100.000

Figure S49. HPLC traces of racemic 3qa (reference) and chiral 3qa. Area integration = 0.8:99.2 (98% ee).

<peak< th=""><th>lapi</th><th>e></th><th></th></peak<>	lapi	e>	
Detect	or A	254n	m

Total

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	6.401	23675969	1134136	49.869
2	7.295	23800576	1249766	50.131
Total		47476545	2383902	100.000

Figure S50. HPLC traces of racemic **3ra** (reference) and chiral **3ra**. Area integration = 1.7:98.3 (97% ee).

2442636

100.000

50298886

Chromatogram mV

<u>Detector A 25</u>	4nm			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	24.133	26150534	604431	49.990
2	27.823	26160727	526800	50.010
Total		52311261	1131231	100.000

Figure S51. HPLC traces of racemic **3ab** (reference) and chiral **3ab**. Area integration = 0.5: 99.5 (99% ee).

Figure S52. HPLC traces of racemic **3ac** (reference) and chiral **3ac**. Area integration = 0.3:99.7 (99.4% ee).

Delector A 25	40m			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	9.801	16171629	712174	49.998
2	11.531	16172640	599272	50.002
Total		32344269	1311446	100.000

Figure S53. HPLC traces of racemic **3ad** (reference) and chiral **3ad**. Area integration = 0.4:99.6 (99% ee).

<peak i<="" th=""><th>abi</th><th>e></th><th></th></peak>	abi	e>	
Detecto	hr Δ	254nm	

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	14.973	49079628	1762206	49.638
2	17.673	49795111	1502281	50.362
Total		98874738	3264488	100.000

Figure S54. HPLC traces of racemic **3ae** (reference) and chiral **3ae**. Area integration = 1.0:99.0 (98% ee).

Detector A 25	4nm			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	15.183	11294842	477507	50.002
2	19.863	11293967	352552	49.998
Total		22588809	830059	100.000

Figure S55. HPLC traces of racemic **3af** (reference) and chiral **3af**. Area integration = 0.7:99.3 (99% ee).

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	10.687	5929295	215889	49.647
2	13.501	6013570	184538	50.353
Total		11942865	400427	100.000

Figure S56. HPLC traces of racemic 3ag (reference) and chiral 3ag. Area integration

= 0.2:99.8 (99.6% ee).

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	9.172	22316921	1122577	50.440
2	12.372	21927784	758169	49.560
Total		44244705	1880746	100.000

Figure S57. HPLC traces of racemic 3ah (reference) and chiral 3ah. Area integration
= 1.0:99.0 (98% ee).

3853603

3894463

105113

106752

98.951

100.000

12.469

2

Total

Detector A 25	4nm			
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	12.800	19902695	626269	49.359
2	16.934	20419976	513884	50.641
Total		40322671	1140153	100.000

Figure S58. HPLC traces of racemic **3ai** (reference) and chiral **3ai**. Area integration = 99.5:0.5 (99% ee).

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	9.258	17763317	758348	49.969
2	10.498	17785114	706668	50.031
Total		35548431	1465015	100.000

Figure S59. HPLC traces of racemic **3aj** (reference) and chiral **3aj**. Area integration = 1.7:98.3 (97% ee).

Chromatogram mV

<Peak Table>

Detector A 254nm				
Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	14.046	71037947	2536275	49.210
2	19.823	73317933	1825214	50.790
Total		144355879	4361488	100.000

Figure S60. HPLC traces of racemic **3ak** (reference) and chiral **3ak**. Area integration = 99.5:0.5 (99% ee).

Integration Ta	ble				
Detector A 254nm					
Peak No.	Retention Time (min)	Area (mAU*s)	Height (mAU)	Area Ratio (%)	
1	9.798	30534359	1609038	50.323	
2	12.221	30141947	1107236	49.677	
总计		60676306	2716274	100.000	

Figure S61. HPLC traces of racemic **3am** (reference) and chiral **3am**. Area integration = 50:50 (0% ee).

<Peak Table>

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	8.561	16035823	698368	49.917
2	10.818	16088996	594306	50.083
Total		32124819	1292674	100.000

Chromatogram mV

Figure S62. HPLC traces of racemic **4** (reference) and chiral **4**. Area integration = 1.0:99.0 (98% ee).

<Peak Table>

Peak#	Retention Time (min)	Area (mAU*min)	Height (mAU)	Area Ratio (%)
1	5.385	4554210	572966	49.388
2	6.278	4666992	626075	50.612
Total		9221203	1199041	100.000

Figure S63. HPLC traces of racemic **5** (reference) and chiral **5**. Area integration = 0.9:99.1 (98% ee).

Figure S64. HPLC traces of racemic **6** (reference) and chiral **6**. Area integration = 0.7:99.3 (99% ee).

8. Single Crystal X-Ray Diffraction Study

The single crystal for compound **3fa** was prepared from a mixture solvent of ethyl acetate and acetonitrile (v/v = 1:2). The data were collected on a Bruker APEX-II CCD equipped with molybdenum micro-focus X-ray sources ($\lambda = 0.71073$ Å) at 150 K. The crystal structures were resolved by direct methods and all calculations were performed on the SHELXL-97 program package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added in the riding model and refined with isotropic thermal parameters. The data has been deposited at Cambridge Crystallographic Data Centre under **CCDC Deposition Number** 2131834. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S65. Crystal structure of 3fa to verify absolute configuration.

Bond precision	C-C = 0.0052 Å		Z	2
Wavelength	0.71073 Å		μ (mm ⁻¹)	0.228
	a = 5.7040(5) b = 17.4146(15) c = 9.2460(8)	F000	380.0	
		F000'	380.44	
Cell	$\alpha = 90$ $\beta = 99.371(3)$ $\gamma = 90$		h, k, l _{max}	7, 22, 12
Temperature	150 K		Nref	4155
Volume	906.17(14)		T _{min} , T _{max}	0.518, 0.746
Crystal system	monoclinic		Data completeness	0.99
Space group	P21		θ (max)	27.508
Hall group	P 2yb		R (reflections)	0.0518(3396)
Moiety formula	$C_{21}H_{17}ClN_2O_2$		wR2(reflections)	0.1202(4155)
Sum formula	$C_{21}H_{17}ClN_2O_2$		S	1.032
Mr	364.82		Npar	236
Density (g/cm ³)	1.337			

Table S1. Crystal data and structure refinement for 3fa.

9. References

- [1] Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. *Chem. Sci.* **2015**, *6*, 1094-1100.
- [2] Gong, J.; Li, S.-W.; Saira, Q.; Kang, Q. Eur. J. Org. Chem. 2017, 25, 3584-3593.
- [3] Lin, S.-X.; Sun, G.-J.; Kang, Q. Chem. Commun. 2017, 53, 7665-7668.
- [4] Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990-2993.
- [5] Mukherjee, S.; Mondal, S.; Patra, A.; Gonnade, R. G.; Biju, A. T. *Chem. Commun.***2015**, *51*, 9559-9562.
- [6] Sibi, M.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 8064-8065.
- [7] Nakamura, T.; Oshida, M.; Nomura, T.; Nakazaki, A.; Kobayashi, S. Org. Lett.2007, 9, 5533-5536.
- [8] Singh, P. K.; Singh, V. K. Org. Lett. 2008, 10, 4121-4124.
- [9] Dias, R. M. P.; Burtoloso, A. C. B. Org. Lett. 2016, 18, 3034-3037.
- [10] Yuan, Z.; Fang, X.; Li, X.; Wu, J.; Yao, H.; Lin, A. J. Org. Chem. 2015, 80, 11123-11130.
- [11] Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 13410-13411.
- [12] Fenster, E.; Fehl, C.; Aube, J. Org. Lett. 2011, 13, 2614-2617.
- [13] Ye, C.-X.; Chen, S.; Han, F.; Xie, X.; Ivlev, S.; Houk, K. N.; Meggers, E. Angew.*Chem. Int. Ed.* 2020, *59*, 13552-13556.