Supporting Information for

Modular Approach to Non-aromatic and Aromatic Pyrroles through Goldcatalyzed [3+2] Cycloaddition of 2*H*-Azirines and Ynamides

Nikolay V. Shcherbakov,^a Gleb D. Titov,^a Elena I. Chikunova,^a Ilya P. Filippov,^a Nikolai V. Rostovskii,^a Vadim Yu. Kukushkin,^{a,b} and Alexey Yu. Dubovtsev^{*a}

^aSaint Petersburg State University, Universitetskaya Nab. 7/9 199034 Saint Petersburg, Russian Federation

^bInstitute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation E-mail: <u>a.dubovtsev@spbu.ru</u> (A.Yu.D.)

Table of Contents

1.	General Remarks	2		
2.	Experimental Procedures and Characterization Data	3		
2.1.	Synthesis of Starting 2 <i>H</i> -Azirines 1	3		
2.2.	Synthesis of Starting Ynamides 2 from Bromoethynes	3		
2.3.	Synthesis of Starting Ynamides 2 from 1,1-Dibromo-1-alkenes	5		
2.4.	General Procedure for the Synthesis of 3 <i>H</i> -Pyrroles 3 and 1 <i>H</i> -Pyrrole 5	6		
2.5	Complete Optimization of the Synthesis of 6a	18		
2.6	General Procedure for the Synthesis of 2 <i>H</i> -Pyrroles 6	19		
2.6.	Hydrogenation of 3e	24		
2.7.	Detosylation of 6a	25		
2.8.	Sonogashira Coupling of 3j	26		
3.	References	27		
4. NMR Spectra				
4.1.	NMR Spectra of Starting 2 <i>H</i> -Azirines 1	30		
4.2.	NMR Spectra of Starting Ynamides 2	32		
4.3.	NMR Spectra of 3 <i>H</i> -Pyrroles 3	40		
4.4.	NMR Spectra of 1 <i>H</i> -Pyrrole 5	73		
4.5.	NMR Spectra of 2 <i>H</i> -Pyrroles 6	74		
4.6.	NMR Spectra of Other Products	95		
5.	Solid State Molecular Structures of 3i , 3k and 6ab	98		

1. General Remarks

NMR spectra were recorded at ambient temperature with a Bruker Avance III 400 instrument at 400.13 MHz (¹H NMR) and 100.61 MHz (¹³C NMR) in CDCl₃, CD₂Cl₂ and DMSO-*d*₆. Chemical shifts (δ) are given in ppm relative to resonances of the solvents (¹H: δ = 7.26 for residual CHCl₃ peak, δ = 5.32 for residual CH₂Cl₂ peak, δ = 2.50 for residual DMSO peak; ¹³C: δ = 77.2 for CDCl₃ peak, δ = 54.0 for CD₂Cl₂ peak, δ = 39.5 for DMSO-*d*₆). Mass-spectra were recorded on Bruker MicroTOF (ESI) and Bruker maXis HRMS-ESI-QTOF instruments. Chromatographic separation was carried out on Macherey–Nagel silica gel 60 M (0.04–0.063 mm). Analytical TLC was performed on unmodified Merck ready-to-use plates (TLC silica gel 60 F254); detection was achieved with a UV lamp. Melting points were measured with Stuart smp30 apparatus. Gold complexes (Ph₃PAuNTf₂,¹ IPrAuNTf₂,² PicAuCl₂³), known 2*H*-azirines (**1a**,⁴ **1c**,**h**,⁵ **1d**,⁶ **1f**,**g**,⁷ **4**⁸) and known ynamides (**2a**,**ag**,⁹ **2b**,**e**,**f**,**i**,¹⁰ **2c**,**n**,**v**,¹¹ **2g**,**t**,¹² **2k**,¹³ **2l**,¹⁴ **2m**,¹⁵ **2q**,**r**,¹⁶ **2s**¹⁷, **2u**¹⁸) were prepared by the literature procedures. Starting bromoethynes¹² and 1,1-dibromo-1-alkenes¹⁹ were synthesized according to the published protocols. The solvents were purified using standard techniques and stored over activated 4 Å molecular sieves before use. Other chemicals were purchased from commercial suppliers and were used as received.

2. Experimental Procedures and Characterization Data

2.1. Synthesis of Starting 2*H*-Azirines 1

Azirine **1b** (0.20 g, 20%) was prepared from (3chlorophenyl)(cyclohexyl)methanone (1.0 g, 4.5 mmol) and 1,1dimethylhydrazine according to the literature procedure.⁵ Eluent for

chromatography EtOAc – hexane, 1:10. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (t, *J* = 1.9 Hz, 1H, Ar), 7.72 (dd, *J* = 7.4, 1.6 Hz, 1H, Ar), 7.53 (dt, *J* = 8.1, 1.7 Hz, 1H, Ar), 7.50–7.44 (m, 1H, Ar), 1.96–1.83 (m, 2H, CH), 1.67–1.52 (m, 8H, CH); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 135.3, 132.6, 130.6, 128.9, 128.0, 127.0, 41.4, 35.5, 26.6, 26.1; HRMS (ESI): *m/z* [M + H]⁺ calcd. for C₁₃H₁₅ClN⁺: 220.0888; found 220.0887.

Azirine **1e** (0.78 g, 16%) was prepared from 2-(4-chlorophenyl)-1,2diphenylethan-1-one (4.88 g, 16 mmol) and hydroxylamine hydrochloride according to the literature procedure.²⁰ Eluent for chromatography EtOAc

– hexane, 1:20. Pale yellow solid, mp 78–80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dt, J = 6.8, 1.5 Hz, 2H, Ar), 7.64–7.54 (m, 3H, Ar), 7.33–7.25 (m, 10H, Ar); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 141.2, 140.4, 133.5, 133.1, 129.9, 129.6, 129.6, 128.6, 128.6, 128.3, 127.5, 123.9, 44.3; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₂₀H₁₄ClNNa⁺: 326.0707; found 326.0707.

2.2. Synthesis of Starting Ynamides 2 from Bromoethynes

$$\begin{array}{c} K_{2}CO_{3} \ 2 \ \text{equiv} \\ CuSO_{4} \cdot 5H_{2}O \ 10 \ \text{mol} \ \% \\ R^{4} = Br + HN \begin{pmatrix} R^{5} \\ 1,10 \text{-phenanthroline} \ 20 \ \text{mol} \ \% \\ 1.1 \ \text{equiv} & PG \end{pmatrix} \xrightarrow{R^{5}} R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ \hline R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{4} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{6} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{6} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{6} = N \begin{pmatrix} R^{5} \\ N \\ 2 \end{pmatrix} \xrightarrow{R^{5}} R^{5} \\ R^{6} = N \begin{pmatrix} R^{5} \\ R^{5} \\ R^{5} \\ R^{6} \\ R^{$$

A 50 mL round-bottom flask was charged with amide (1.0 mmol), K_2CO_3 (277 mg, 2.0 mmol, 2.0 equiv), 1,10-phenanthroline monohydrate (39.6 mg, 0.2 mmol, 20 mol %) and CuSO₄·5H₂O (25.0 mg, 0.1 mmol, 10 mol %). The flask was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon. Dry and degassed toluene (10 mL) and bromoethyne (1.1 mmol, 1.1 equiv) were next added and the brown suspension was heated at 80 °C for 24 h with stirring. After completion, all volatile components were removed in vacuo and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford ynamides **2**.

N-Methyl-2-nitro-*N*-(phenylethynyl)benzenesulfonamide (2d): orange solid (260 mg, 82%); mp 82.0–84.0 °C (DCM); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 7.7, 1.5 Hz, 1H, Ar),

7.82–7.70 (m, 3H, Ar), 7.38–7.33 (m, 2H, Ar), 7.32–7.27 (m, 3H, Ar), 3.40 (s, 3H, NMe); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 134.9, 132.1, 131.9, 131.6, 130.2, 128.5, 128.4, 124.5, 122.3, 82.4, 70.4, 39.9; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₁₅H₁₃N₂O₄S⁺: 317.0591; found: 317.0596.

N-Benzyl-N-((2-iodophenyl)ethynyl)-4-methylbenzenesulfonamide(2j): yellowish solid (434 mg, 89%); mp 64.0–66.0 °C (DCM); R_f 0.55

(hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H, Ar), 7.75 (d, J = 7.9 Hz, 2H, Ar), 7.44–7.39 (m, 2H, Ar), 7.35–7.29 (m, 5H, Ar), 7.24–7.19 (m, 2H, Ar), 6.93–6.88 (m, 1H, Ar), 4.67 (s, 2H, NCH₂), 2.43 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 138.5, 134.8, 134.4, 132.0, 129.9, 129.6, 129.0, 128.7, 128.6, 128.4, 127.9, 127.7, 99.6, 86.5, 73.8, 55.9, 21.7; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₂H₁₉INO₂S⁺: 488.0176; found: 488.0184.

N,N'-(Ethane-1,2-diyl)bis(4-methyl-N-

(phenylethynyl)benzenesulfonamide)(2w):brown oil(239Phmg, 42%); $R_f 0.50$ (hexane/EtOAc 2:1)¹H NMR (400 MHz,

CDCl₃) δ 7.84 (d, J = 8.3 Hz, 4H, Ar), 7.36–7.31 (m, 8H, Ar), 7.30–7.25 (m, 6H, Ar), 3.77 (s, 4H, 2NCH₂), 2.42 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 134.3, 131.6, 130.1, 128.4, 128.1, 128.0, 122.7, 81.9, 71.3, 49.8, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₂H₂₉N₂O₄S₂⁺: 569.1564; found: 569.1545.

N-((3-(4-Methoxyphenyl)-4-oxo-4*H*-chromen-7-yl)ethynyl)-*N*,4-

dimethylbenzenesulfonamide (2x): colorless

solid (400 mg, 87%); mp 155.0–156.0 °C (hexane/EtOAc); R_f 0.25 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.46 (s, 1H, Ar), 8.07 (d, *J* = 8.3 Hz, 1H, Ar), 7.89 (d, *J* = 8.3 Hz, 2H, Ar), 7.61 (d, *J* = 1.2 Hz, 1H, Ar), 7.57–7.50 (m, 4H, Ar), 7.41 (dd, *J* = 8.3, 1.4 Hz, 1H, CH), 6.99 (d, *J* = 8.8 Hz, 2H, Ar), 3.78 (s, 3H, OMe), 3.19 (s, 3H, NMe), 2.43 (s, 3H, Me); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.8, 159.2, 155.5, 154.1, 145.6, 132.3, 130.4, 130.1, 127.8, 127.7, 127.3, 126.0, 123.9, 123.8, 122.8, 119.5, 113.7, 88.4, 68.3, 55.2, 39.2, 21.2; HRMS (ESI): *m*/*z* [M + H]⁺ calcd. for C₂₆H₂₂NO₅S⁺: 460.1213; found: 460.1219.

N,4-Dimethyl-N-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-3yl)ethynyl)benzenesulfonamide (2y): colorless solid

(323 mg, 70%); mp 166.0–168.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ

7.83 (d, J = 8.3 Hz, 2H, Ar), 7.36 (d, J = 8.1 Hz, 2H, Ar), 7.21 (d, J = 8.0 Hz, 1H, Ar), 7.13 (d, J = 8.8 Hz, 2H, Ar), 3.13 (s, 3H, NMe), 2.87 (dd, J = 8.8, 4.1 Hz, 2H, CH₂), 2.55–2.37 (m, 5H, CH), 2.34–2.24 (m, 1H, CH), 2.19–1.94 (m, 4H, CH), 1.73–1.34 (m, 7H, CH), 0.91 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 220.7, 144.8, 140.0, 136.7, 133.5, 132.1, 129.9, 128.9, 128.0, 125.4, 120.1, 83.4, 69.1, 50.6, 48.1, 44.6, 39.5, 38.1, 36.0, 31.7, 29.2, 26.5, 25.7, 21.8, 21.7, 14.0; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₈H₃₂NOS⁺: 462.2097; found: 452.2078.

2.3. Synthesis of Starting Ynamides 2 from 1,1-Dibromo-1-alkenes

A 50 mL round-bottom flask was charged with amide (1.0 mmol), 1,1-dibromo-1-alkene (1.2 mmol, 1.2 equiv.), Cs_2CO_3 (1.30 g, 4.0 mmol, 4.0 equiv), and copper(I) iodide (24 mg, 0.125 mmol, 12.5 mol %). The flask was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon. Dry and degassed DMF (5 mL) and *N*,*N*'- dimethylethylenediamine (22 mg, 0.25 mmol, 25 mol %) were next added and the blue or green suspension was heated at 70 °C for 24 h with stirring. After completion, all volatile components were removed in vacuo and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford ynamides **2**.

N-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-4-methyl-N-

(**phenylethynyl**)**benzenesulfonamide** (**2h**): yellowish solid (377 mg, 90%); mp 84.0–86.0 °C (DCM); R_f 0.45 (hexane/EtOAc 2:1); ¹H **NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 6.8 Hz, 2H, Ar), 7.44–7.38 (m, 2H, Ar), 7.35–7.30 (m, 5H, Ar), 6.74–6.61 (m, 3H, Ar), 5.90

(s, 2H, CH₂), 3.68–3.61 (m, 2H, NCH₂), 2.93 (t, J = 7.3 Hz, 2H, CH₂), 2.45 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 146.5, 144.7, 134.7, 131.5, 131.3, 129.8, 128.4, SI-5 128.0, 127.7, 122.9, 122.0, 109.4, 108.4, 101.0, 82.3, 71.5, 53.1, 34.3, 21.7; **HRMS** (ESI): *m*/*z* [M + H]⁺ calcd. for C24H22NO4S⁺: 420.1265; found: 420.1253.

N-(Benzo[d][1,3]dioxol-5-ylethynyl)-N-benzyl-4-

methylbenzenesulfonamide (20)¹¹: yellowish solid (304 mg, 75%); mp 103.0–105.0 °C (DCM); $R_f 0.45$ (hexane/EtOAc 2:1); ¹H NMR

(400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H, Ar), 7.35–7.28 (m, 7H, Ar), 6.78 (dd, J = 8.1, 1.5 Hz, 1H, Ar), 6.71–6.67 (m, 2H, Ar), 5.93 (s, 2H, CH₂), 4.56 (s, 2H, NCH₂), 2.45 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.4, 144.7, 134.9, 134.7, 129.9, 129.0, 128.7, 128.4, 127.9, 126.3, 116.0, 111.8, 108.5, 101.4, 81.1, 71.3, 55.9, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₃H₂₀NO₄S⁺: 406.1108; found: 406.1119.

N-Benzyl-4-methyl-*N*-(naphthalen-1-ylethynyl)benzenesulfonamide (2p): yellowish solid (210 mg, 51%); mp 93.5–95.5 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 2H, Ar), 7.85 (d, *J* = 8.2 Hz, 1H, Ar), 7.80 (d, *J* = 7.8 Hz, 1H,

Ar), 7.75 (d, J = 8.2 Hz, 1H, Ar), 7.50–7.41 (m, 5H, Ar), 7.39–7.32 (m, 6H, Ar), 4.71 (s, 2H, NCH₂), 2.45 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 134.8, 134.6, 133.2, 133.1, 130.0, 129.4, 129.2, 128.8, 128.6, 128.2, 128.1, 128.0, 126.6, 126.4, 126.3, 125.3, 120.7, 87.3, 70.2, 55.8, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₆H₂₂NO₂S⁺: 412.1366; found: 412.1372.

2.4. General Procedure for the Synthesis of 3*H*-Pyrroles 3 and 1*H*-Pyrrole 5

HAuCl₄ (3.4 mg, 10.0 μ mol, 5 mol %) was added to the solution of 2*H*-azirine (**1** or **4**, 0.24 mmol, 1.2 equiv) and ynamide (**2**, 0.2 mmol) in DCM (0.5 mL). The resulting mixture was stirred at room temperature for 24 h. After completion, all volatile components were removed in vacuum and the residue was purified by silica gel column chromatography eluting with hexane/EtOAc to afford products **3** or **5**.

N-(**3,3-Dimethyl-2,4-diphenyl-3***H*-**pyrrol-5-yl**)-*N*,**4-dimethylbenzenesulfonamide** (**3a**): colorless solid (79.2 mg, 92%); mp 110.0–112.0 °C (DCM); R_f 0.30 (hexane/EtOAc 4:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 6.6, 3.2 Hz, 2H, Ar), 7.79 (d, *J* = 8.3

Hz, 2H, Ar), 7.48–7.33 (m, 8H, Ar), 7.29 (d, J = 8.1 Hz, 2H, Ar), 3.05 (s, 3H, NMe), 2.45 (s, 3H, Me), 1.51 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.6, 145.0, 143.4, 142.1, 136.3, 132.9, 132.7, 130.4, 129.33, 129.30, 128.7, 128.6, 128.5, 128.1, 128.0, 57.7, 37.0, 22.6, 21.7; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₆H₂₇N₂O₂S⁺: 431.1788; found: 431.1777.

N-(3,3-Dimethyl-2,4-diphenyl-3H-pyrrol-5-yl)-N-

methylmethanesulfonamide (3b): colorless solid (69.5 mg, 98%); mp 145.0–146.5 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 6.5, 2.9 Hz, 2H, Ar), 7.50–7.39 (m, 7H,

Ar), 7.38–7.33 (m, 1H, Ar), 3.19 (s, 3H, Me), 3.11 (s, 3H, NMe), 1.52 (s, 6H, 2Me); ¹³C **NMR** (101 MHz, CDCl₃) δ 182.2, 145.2, 140.9, 132.8, 132.4, 130.6, 129.3, 128.7, 128.6, 128.12, 128.07, 57.9, 39.1, 37.5, 22.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₀H₂₃N₂O₂S⁺: 355.1475; found: 355.1479.

N-(**3**,**3**-Dimethyl-2,**4**-diphenyl-3*H*-pyrrol-5-yl)-4-fluoro-*N*methylbenzenesulfonamide (**3c**): colorless solid (66.9 mg, 77%); mp 197.0–199.0 °C (DCM); R_f 0.35 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.89 (m, 4H, Ar), 7.48–7.35 (m, 8H, Ar), 7.19–7.13 (m, 2H, Ar), 3.04 (s, 3H, NMe), 1.52 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.8, 165.3 (d, J_F = 254.0 Hz), 144.8, 142.5, 135.3 (d, J_F = 3.3 Hz), 132.8, 132.5, 131.44 (d, J_F = 9.3 Hz),

130.6, 129.3, 128.8, 128.6, 128.1, 128.0, 115.8 (d, $J_F = 22.5$ Hz), 57.8, 37.1, 22.6; ¹⁹F NMR (376 MHz, CDCl3) δ –105.9; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₄FN₂O₂S⁺: 435.1538; found: 435.1537.

N-(**3**,**3**-Dimethyl-2,**4**-diphenyl-3*H*-pyrrol-5-yl)-*N*-methyl-2nitrobenzenesulfonamide (**3d**): yellowish solid (81.2 mg, 88%); mp 144.0–146.0 °C (DCM); R_f 0.40 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 7.5, 1.7 Hz, 1H, Ar), 7.89 (dd, *J* = 7.7,

1.8 Hz, 2H, Ar), 7.70–7.63 (m, 2H, Ar), 7.62–7.58 (m, 1H, Ar), 7.47–7.30 (m, 8H, Ar), 3.21 (s, 3H, NMe), 1.51 (s, 6H, 2Me); ¹³**C NMR** (101 MHz, CDCl₃) δ 182.0, 148.8, 144.0, 141.8, 133.7, 133.4, 132.8, 132.3, 132.0, 131.4, 130.6, 129.2, 128.7, 128.6, 128.2, 128.1, SI-7

124.0, 58.2, 37.8, 22.5; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₄N₃O₄S⁺: 462.1483; found: 462.1481.

N-Benzyl-*N*-(**3**,**3**-dimethyl-2,**4**-diphenyl-3*H*-pyrrol-5-yl)-**4**methylbenzenesulfonamide (**3**e): colorless solid (99.3 mg, 98%); mp 108.0–110.0 °C (DCM); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 6.6, 3.2 Hz, 2H, Ar), 7.80 (d, *J* = 8.3 Hz,

2H, Ar), 7.48–7.43 (m, 3H, Ar), 7.31 (d, J = 8.1 Hz, 2H, Ar), 7.29–7.20 (m, 4H, Ar), 7.18– 7.13 (m, 2H, Ar), 7.02 (d, J = 7.1 Hz, 2H, Ar), 6.80 (dd, J = 8.1, 1.4 Hz, 2H, Ar), 4.52 (s, 2H, NCH₂), 2.48 (s, 3H, Me), 1.30 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 146.3, 143.5, 141.9, 136.8, 135.6, 133.1, 132.1, 130.3, 129.9, 129.7, 129.4, 128.8, 128.6, 128.2, 128.0, 127.82, 127.81, 127.7, 57.9, 52.7, 22.0, 21.8; HRMS (ESI): m/z [M + H]⁺ calcd. for C₃₂H₃₁N₂O₂S⁺: 507.2101; found: 507.2095.

N-Cyclopropyl-*N*-(**3**,**3**-dimethyl-2,**4**-diphenyl-3*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (**3**f): colorless solid (74.0 mg, 81%); mp 148.0–149.5 °C (DCM); R_f 0.40 (hexane/EtOAc 8:1); ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.93 (m, 2H, Ar), 7.86 (d, *J* = 8.3 Hz, 2H, Ar),

7.47–7.43 (m, 3H, Ar), 7.42–7.40 (m, 4H, Ar), 7.39–7.34 (m, 1H, Ar), 7.30 (d, J = 8.1 Hz, 2H, Ar), 2.60 (tt, J = 6.7, 3.6 Hz, 1H, NCH), 2.46 (s, 3H, Me), 1.51 (s, 6H, 2Me), 0.68–0.55 (m, 4H, 2CH₂); ¹³**C NMR** (101 MHz, CDCl₃) δ 181.4, 144.7, 143.5, 143.1, 136.7, 133.1, 132.7, 130.3, 129.6, 129.2, 129.1, 128.6, 128.3, 128.1, 127.9, 57.7, 30.9, 22.5, 21.8, 7.6; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₈H₂₉N₂O₂S⁺: 457.1945; found: 457.1932.

N-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-*N*-(3,3-dimethyl-2,4-diphenyl-3*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (3g): reddish oil (102.3 mg, 89%); R_f 0.60 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 6.6, 3.0 Hz, 2H,

Ar), 7.79 (d, J = 8.2 Hz, 2H, Ar), 7.50 (d, J = 7.0 Hz, 2H, Ar), 7.46–7.34 (m, 6H, Ar), 7.26 (d, J = 8.0 Hz, 2H, Ar), 3.59–3.54 (m, 2H, CH₂), 3.52–3.46 (m, 2H, CH₂), 2.44 (s, 3H, Me), 1.51 (s, 6H, 2Me), 0.79 (s, 9H, 3Me), –0.06 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.5, 144.2, 143.4, 143.2, 137.0, 132.9, 132.7, 130.4, 129.6, 129.3, 128.7, 128.7, 128.4, 128.1, 128.0, 61.2, 58.0, 50.9, 26.0, 22.6, 21.7, 18.4, –5.2; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₃H₄₃N₂O₃SSi⁺: 575.2759; found: 575.2741.

N-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-N-(3,3-dimethyl-2,4-diphenyl-3*H*-pyrrol-5-yl)-4-

methylbenzenesulfonamide (3h): colorless solid (101.6 mg, 90%); mp 109.5–111.5 °C (DCM); R_f 0.30 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 6.6, 3.0 Hz,

2H, Ar), 7.78 (d, J = 8.2 Hz, 2H, Ar), 7.49–7.36 (m, 8H, Ar), 7.26 (d, J = 8.1 Hz, 2H, Ar), 6.62 (d, J = 7.8 Hz, 1H, Ar), 6.49–6.44 (m, 2H, Ar), 5.86 (s, 2H, CH₂), 3.58–3.52 (m, 2H, NCH₂), 2.63–2.57 (m, 2H, CH₂), 2.44 (s, 3H, Me), 1.53 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 147.6, 146.2, 144.5, 143.4, 142.8, 136.9, 133.0, 132.6, 132.3, 130.4, 129.6, 129.3, 128.72, 128.67, 128.4, 128.1, 128.0, 121.8, 109.4, 108.3, 100.9, 58.0, 50.5, 34.6, 22.6, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₄H₃₃N₂O₄S⁺: 565.2156; found: 565.2159.

N-(3,3-Dimethyl-2,4-diphenyl-3H-pyrrol-5-yl)-N-

phenylmethanesulfonamide (**3i**): colorless solid (75.0 mg, 90%); mp 176.0–178.0 °C (MeCN); R_f 0.65 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.09 (m, 2H, Ar), 7.52–7.47 (m, 3H, Ar), 7.35–

7.30 (m, 5H, Ar), 7.28–7.20 (m, 5H, Ar), 3.33 (s, 3H, Me), 1.49 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.9, 145.0, 142.9, 141.1, 132.9, 132.0, 130.7, 129.4, 129.2, 128.8, 128.4, 128.2, 128.0, 127.5, 127.4, 57.7, 39.7, 22.3; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₅N₂O₂S⁺: 417.1632; found: 417.1626.

N-Benzyl-*N*-(4-(2-iodophenyl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (3j): colorless oil (115.0 mg, 91%); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 6.6, 3.1 Hz, 2H, Ar), 7.92 (d, J = 8.0 Hz, 1H, Ar), 7.71 (d, J = 8.2 Hz, 2H, Ar), 7.50–7.44 (m, 3H, Ar), 7.35–7.30 (m, 1H, Ar), 7.21 (d, J

= 8.1 Hz, 2H, Ar), 7.17–7.03 (m, 6H, Ar), 6.96 (dd, J = 7.7, 1.5 Hz, 1H, Ar), 4.80 (d, J = 15.5 Hz, 1H, NCH), 4.61 (d, J = 15.5 Hz, 1H, NCH), 2.33 (s, 3H, Me), 1.53 (s, 3H, Me), 1.37 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.6, 144.4, 143.3, 141.8, 139.6, 137.6, 137.4, 136.7, 133.2, 132.5, 130.5, 129.5, 129.2, 128.9, 128.7 (×2), 128.2 (×2), 127.5, 127.4, 101.4, 59.8, 53.1, 24.0, 22.9, 21.7; HRMS (ESI): m/z [M + H]⁺ calcd. for C₃₂H₃₀IN₂O₂S⁺: 633.1068; found: 633.1067.

N-(4-([1,1'-Biphenyl]-2-yl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-*N*-benzyl-4-methylbenzenesulfonamide (3k): colorless solid (101.4 mg, 87%); mp 189.5–191.5 °C (MeCN); R_f 0.45 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 2H, Ar), 7.81 (dd, *J* = 7.3, 2.0 Hz, 2H, Ar), 7.46–7.36 (m, 5H, Ar), 7.35–7.32 (m, 2H, Ar), Ar),

7.30–7.22 (m, 3H, Ar), 7.19–7.11 (m, 6H, Ar), 7.09–7.05 (m, 2H, Ar), 6.83 (d, J = 7.7 Hz, 1H, Ar), 4.83 (d, J = 16.1 Hz, 1H, NCH), 4.72 (d, J = 16.1 Hz, 1H, NCH), 2.45 (s, 3H, Me), 1.12 (s, 3H, Me), 0.56 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 145.2, 143.4, 142.7, 142.3, 141.3, 137.6, 136.7, 133.3, 132.7, 130.8, 130.7, 130.2, 129.8, 129.2, 129.1, 128.53, 128.52, 128.4, 128.3, 128.10, 128.07, 127.5, 127.01, 126.95, 59.9, 53.3, 24.8, 21.8, 21.2; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₈H₃₅N₂O₂S⁺: 583.2414; found: 583.2409.

N-Benzyl-*N*-(4-(2-cyanophenyl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (3l): yellowish solid (96.8 mg, 91%); mp 141.0–143.0 °C (DCM); R_f 0.30 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.77 (m, 4H, Ar), 7.66–7.63 (m, 1H, Ar), 7.48–7.39 (m, 5H, Ar), 7.31–7.25 (m, 3H, Ar), 7.24–7.19 (m, 2H,

Ar), 7.16 (d, J = 7.2 Hz, 2H, Ar), 6.45–6.42 (m, 1H, Ar), 4.83 (s, 2H, NCH₂), 2.46 (s, 3H, Me), 1.37 (s, 6H, 2Me); ¹³**C** NMR (101 MHz, CDCl₃) δ 182.9, 144.8, 143.6, 142.0, 136.6, 136.2, 136.1, 133.1, 133.0, 132.1, 131.9, 130.7, 129.7, 129.5, 128.7, 128.6, 128.39, 128.36, 128.1, 127.9, 119.0, 115.3, 60.3, 53.0, 22.6, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₃H₃₀N₃O₂S⁺: 532.2054; found: 532.2049.

N-Benzyl-*N*-(3,3-dimethyl-4-(4-nitrophenyl)-2-phenyl-3*H*pyrrol-5-yl)-4-methylbenzenesulfonamide (3m): yellowsih solid (108.1 mg, 98%); mp 196.0–198.0 °C (DCM); R_f 0.60 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.8 Hz, 2H, Ar), 7.92–7.87 (m, 2H, Ar), 7.80 (d, *J* = 8.2 Hz, 2H, Ar),

7.51–7.44 (m, 3H, Ar), 7.34 (d, J = 8.1 Hz, 2H, Ar), 7.30–7.24 (m, 1H, Ar), 7.22–7.16 (m, 2H, Ar), 7.08 (d, J = 7.2 Hz, 2H, Ar), 6.94 (d, J = 8.8 Hz, 2H, Ar), 4.55 (s, 2H, NCH₂), 2.49 (s, 3H, Me), 1.34 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 147.3, 144.2, 143.9, 143.2, 139.4, 136.4, 135.4, 132.5, 130.9, 130.5, 130.1, 129.6, 128.8, 128.7, 128.4, 128.2, 128.1, 123.0, 58.3, 52.7, 22.2, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₂H₃₀N₃O₄S⁺: 552.1952; found: 552.1962.

N-(4-(4-Acetylphenyl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-*N*-benzyl-4-methylbenzenesulfonamide (3n): colorless solid (98.8 mg, 90%); mp 161.5–163.5 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 7.5, 2.0 Hz, 2H, Ar), 7.84–7.79 (m, 4H, Ar), 7.49–7.43(m, 3H, Ar), 7.32 (d, *J* = 8.1 Hz,

2H, Ar), 7.26–7.22 (m, 1H, Ar), 7.19–7.14 (m, 2H, Ar), 7.05 (d, J = 7.2 Hz, 2H, Ar), 6.91 (d, J = 8.3 Hz, 2H, Ar), 4.54 (s, 2H, NCH₂), 2.62 (s, 3H, Me), 2.48 (s, 3H, Me), 1.31 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 181.8, 145.2, 143.7, 142.6, 137.5, 136.6, 136.2, 135.4, 132.8, 130.6, 130.0, 129.8, 129.5, 128.72, 128.71, 128.3, 128.0 (×2), 127.8, 58.1, 52.7, 26.8, 22.1, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₄H₃₃N₂O₃S⁺: 549.2207; found: 549.2206.

N-(4-(Benzo[*d*][1,3]dioxol-5-yl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-*N*-benzyl-4-methylbenzenesulfonamide (3o): colorless solid (107.9 mg, 98%); mp 118.0–120.0 °C (DCM); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.86 (m, 2H, Ar), 7.82 (d, *J* = 8.1 Hz, 2H, Ar), 7.46–7.43 (m, 3H, Ar), 7.32 (d, *J* = 8.2 Hz, 2H, Ar), 7.25–7.14 (m, 3H, Ar), 7.06 (d, *J* = 7.3 Hz, 2H, Ar), 6.69 (d, *J* = 8.0

Hz, 1H, Ar), 6.28 (d, J = 8.0 Hz, 1H, Ar), 6.20 (s, 1H, Ar), 5.96 (s, 2H, CH₂), 4.53 (s, 2H, NCH₂), 2.48 (s, 3H, Me), 1.27 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 147.2, 147.1, 146.1, 143.5, 142.0, 136.9, 135.7, 133.1, 130.3, 130.0, 129.4, 128.8, 128.7, 128.2, 128.0, 127.9, 125.6, 123.5, 110.2, 107.9, 101.1, 57.8, 52.7, 22.1, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₃H₃₁N₂O₄S⁺: 551.2000; found: 551.1998.

N-Benzyl-*N*-(3,3-dimethyl-4-(naphthalen-1-yl)-2-phenyl-3*H*pyrrol-5-yl)-4-methylbenzenesulfonamide (3p): colorless solid (74.6 mg, 67%); mp 89.0–91.0 °C (DCM); R_f 0.70 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 6.6, 3.0 Hz, 2H, Ar), 7.83 (d, *J* = 8.3 Hz, 2H, Ar), 7.74 (d, *J* = 8.2 Hz, 2H, Ar), 7.51–7.47

(m, 3H, Ar), 7.44–7.33 (m, 3H, Ar), 7.25–7.17 (m, 4H, Ar), 7.13–7.07 (m, 2H, Ar), 6.95 (d, J = 7.4 Hz, 2H, Ar), 6.72 (d, J = 7.0 Hz, 1H, Ar), 4.56–4.47 (m, 2H, NCH₂), 2.44 (s, 3H, Me), 1.36 (s, 3H, Me), 1.27 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.0, 144.2, 143.4, 142.1, 137.1, 136.0, 133.6, 133.3, 133.0, 130.4, 129.7, 129.5, 129.3, 128.8, 128.74, 128.70, 128.33, 128.29, 128.1, 127.9, 127.7, 127.1, 125.9, 125.7, 124.9, 59.6, 52.8, 23.2, 22.4, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₆H₃₃N₂O₂S⁺: 557.2258; found: 557.2259.

N-Benzyl-*N*-(3,3-dimethyl-2-phenyl-4-(1-tosyl-1*H*-indol-3-yl)-3*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (3q): colorless solid (137.2 mg, 98%); mp 191.5–193.0 °C (DCM); R_f 0.35 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.90 (m, 3H, Ar), 7.82 (d, *J* = 8.3 Hz, 2H, Ar), 7.77 (d, *J* = 8.2 Hz, 2H, Ar),

7.49–7.43 (m, 3H, Ar), 7.31–7.27 (m, 4H, Ar), 7.25–7.20 (m, 2H, Ar), 7.13–7.08 (m, 1H, Ar), 7.01–6.96 (m, 1H, Ar), 6.94–6.89 (m, 2H, Ar), 6.83 (d, J = 7.5 Hz, 2H, Ar), 6.72 (d, J = 7.9 Hz, 1H, Ar), 4.49 (s, 2H, NCH₂), 2.46 (s, 3H, Me), 2.34 (s, 3H, Me), 1.31 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.5, 145.0, 144.8, 143.6, 137.5, 136.8, 135.6, 135.3, 134.8, 133.1, 131.2, 130.6, 130.1, 129.4, 129.3, 128.7, 128.6, 128.2, 128.1, 127.9, 127.1, 126.8, 124.5, 123.5, 121.7, 113.8, 113.4, 58.5, 52.5, 22.5, 21.79, 21.77; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₄₁H₃₈N₃O₄S₂⁺: 700.2299; found: 700.2289.

N-Benzyl-*N*-(4',4'-dimethyl-5'-phenyl-1-tosyl-1*H*,4'*H*-[3,3'bipyrrol]-2'-yl)-4-methylbenzenesulfonamide (3r): brown solid (113.1 mg, 87%); mp 92.0–94.0 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.76 (m, 6H, Ar), 7.44– 7.39 (m, 3H, Ar), 7.36–7.30 (m, 4H, Ar), 7.28–7.25(m, 1H, Ar),

7.08–6.99 (m, 4H, Ar), 6.98–6.92 (m, 2H, Ar), 6.69 (dd, J = 3.2, 1.5 Hz, 1H, Ar), 4.54 (s, 2H, NCH₂), 2.48 (s, 3H, Me), 2.42 (s, 3H, Me), 1.31 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 145.2, 143.7, 141.1, 139.7, 136.3, 136.2, 135.0, 132.7, 130.2 (×2), 129.8, 129.4, 128.9, 128.7, 128.0, 127.8, 127.8, 127.1, 120.7, 119.4, 118.9, 114.2, 56.7, 53.2, 23.3, 21.82, 21.80; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₇H₃₆N₃O₄S₂⁺: 650.2142; found: 650.2121.

(*E*)-*N*-Benzyl-*N*-(3,3-dimethyl-2-phenyl-4-styryl-3*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (3s): yellow solid (78.8 mg, 74%); mp 131.5–133.5 °C (DCM); R_f 0.65 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.81 (m, 4H, Ar), 7.45–7.39 (m, 5H, Ar), 7.39– 7.21 (m, 7H, Ar), 7.20–7.11 (m, 3H, Ar), 6.89 (d, *J* = 16.9 Hz, 1H,

CH), 6.70 (d, J = 17.0 Hz, 1H, CH), 4.72 (s, 2H, NCH₂), 2.45 (s, 3H, Me), 1.44 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.6, 144.0, 143.9, 143.7, 137.9, 136.5, 135.8, 132.7, 130.3, 129.7, 129.54, 129.49, 128.7, 128.6, 128.5, 128.2, 127.91, 127.89, 127.8, 126.8, 119.2, 55.4, 53.2, 23.8, 21.7; HRMS (ESI): m/z [M + H]⁺ calcd. for C₃₄H₃₃N₂O₂S⁺: 533.2258; found: 533.2268.

N-Benzyl-*N*-(4-hexyl-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (3t): colorless oil (59.7 mg, 58%); R_f 0.50 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 4H, Ar), 7.42–7.37 (m, 3H, Ar), 7.30 (d, *J* = 8.1 Hz, 2H, Ar), 7.27–7.23 (m, 2H, Ar), 7.21–7.19 (m, 3H, Ar), 4.60 (s, 2H, NCH₂).

2.46 (s, 3H, Me), 2.11–2.05 (m, 2H, CH₂), 1.29–1.24 (m, 2H, CH₂), 1.23 (s, 6H, 2Me), 1.19–1.13 (m, 4H, 2CH₂), 1.10–1.03 (m, 2H, CH₂), 0.89 (t, J = 7.2 Hz, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 148.3, 143.4, 141.0, 136.7, 136.1, 133.4, 130.1, 129.8, 129.4, 128.6, 128.5, 128.2, 127.9, 127.6, 57.1, 52.7, 31.8, 30.4, 27.9, 24.6, 22.8, 22.1, 21.7, 14.3; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₂H₃₉N₂O₂S⁺: 515.2727; found: 515.2716.

N,N'-(1,4-Phenylenebis(3,3-dimethyl-2-phenyl-3*H*pyrrole-4,5-diyl))bis(*N*-benzyl-4-

methylbenzenesulfonamide) (**3v**): yellowish solid (172.1 mg, 92%); mp 213.5–215.0 °C (DCM); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.95–

7.90 (m, 8H, Ar), 7.49–7.44 (m, 6H, Ar), 7.37 (d, J = 8.1 Hz, 4H, Ar), 7.28–7.18 (m, 6H, Ar), 7.04 (d, J = 6.7 Hz, 4H, Ar), 6.85 (s, 4H, Ar), 4.54 (s, 4H, 2NCH₂), 2.51 (s, 6H, 2Me), 1.36 (s, 12H, 4Me); ¹³**C** NMR (101 MHz, CDCl₃) δ 181.2, 146.0, 143.5, 142.1, 136.8, 135.3, 133.1, 131.3, 130.3, 129.8, 129.4, 129.0, 128.8, 128.6, 128.4, 128.02, 127.99, 57.9, 53.0, 22.3, 21.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₅₈H₅₅N₄O₄S₂⁺: 935.3660; found: 935.3653.

N,N'-(Ethane-1,2-diyl)bis(*N*-(3,3-dimethyl-2,4diphenyl-3*H*-pyrrol-5-yl)-4-

methylbenzenesulfonamide) (**3w**): gray solid (147.8 mg, 86%); mp 210.5–212.5 °C (DCM); R_f 0.55 (hexane/EtOAc

2:1); ¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.84 (dd, J = 8.1, 1.4 Hz, 4H, Ar), 7.61 (d, J = 8.2 Hz, 4H, Ar), 7.48–7.35 (m, 12H, Ar), 7.30–7.26 (m, 4H, Ar), 7.22 (d, J = 8.0 Hz, 4H, Ar), 3.34 (s, 4H, 2NCH₂), 2.42 (s, 3H, 2Me), 1.39 (s, 12H, 4Me); ¹³C **NMR** (101 MHz, CD₂Cl₂) δ 182.1, 145.3, 144.3, 143.2, 136.9, 133.2, 132.8, 130.9, 129.9, 129.8, 129.0, 128.9, 128.8, 128.5, 128.4, 58.4, 47.6, 22.6, 21.9; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₅₂H₅₁N₄O₄S₂⁺: 859.3347; found: 859.3323.

N-(4-(3-(4-Methoxyphenyl)-4-oxo-4*H*-chromen-7-yl)-3,3-dimethyl-2-phenyl-3*H*-pyrrol-5-yl)-*N*,4dimethylbenzenesulfonamide (3x): yellow oil (117.3 mg, 95%); R_f 0.30 (DCM/MeOH 100:3); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.3 Hz, 1H, Ar), 8.02 (s, 1H, Ar), 7.94– 7.87 (m, 2H, Ar), 7.76 (d, *J* = 8.2 Hz, 2H, Ar), 7.67 (d, *J* = 1.3 Hz, 1H, Ar), 7.57–7.52 (m, 3H, Ar), 7.49–7.43 (m, 3H,

Ar), 7.29 (d, J = 8.1 Hz, 2H, Ar), 7.00 (d, J = 8.7 Hz, 2H, Ar), 3.86 (s, 3H, OMe), 3.13 (s, 3H, NMe), 2.44 (s, 3H, Me), 1.59 (s, 6H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.8, 176.3, 159.8, 156.3, 152.7, 146.2, 143.7, 140.0, 138.6, 135.7, 132.4, 130.8, 130.3, 129.4, 128.8, 128.6, 128.2, 126.5, 126.0, 125.3, 124.3, 123.8, 118.5, 114.2, 58.0, 55.5, 36.9, 22.9, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₆H₃₃N₂O₅S⁺: 605.2105; found: 605.2103.

N-(3,3-Dimethyl-4-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-

cyclopenta[*a*]**phenanthren-3-yl**)-**2-phenyl-3***H***-pyrrol-5-yl**)-*N*,**4-dimethylbenzenesulfonamide** (**3y**): yellow oil (116.5 mg, 96%); R_f 0.40 (hexane/EtOAc 2:1); ¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 6.6, 3.2 Hz, 2H, Ar), 7.81 (d, J = 8.2 Hz, 2H, Ar), 7.47–7.38 (m, 3H, Ar), 7.34–7.23 (m, 4H, Ar), 7.20 (s, 1H, Ar), 3.04 (s, 3H, NMe), 2.96 (dd, J = 8.7, 3.9 Hz, 2H, CH₂), 2.57–2.29

(m, 6H, CH), 2.25–1.96 (m, 4H, CH), 1.74–1.43 (m, 12H, CH), 0.96 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 220.9, 181.4, 144.5, 143.3, 142.3, 139.5, 136.4, 136.2, 132.8, 130.3, 129.9, 129.6, 129.2, 128.7, 128.6, 128.0, 126.5, 125.3, 57.6, 50.7, 48.1, 44.6, 38.2, 37.0, 36.0, 31.8, 29.6, 26.7, 25.7, 22.68, 22.66, 21.7, 14.0; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₈H₄₃N₂O₃S⁺: 607.2989; found: 607.2976.

N-(1-(3-Chlorophenyl)-4-phenyl-2-azaspiro[4.5]deca-1,3-dien-3-yl)-*N*-methylmethanesulfonamide (3z): colorless solid (83.2 mg, 97%); mp 151.0–153.0 °C (DCM); R_f 0.25 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.98 (m, 1H, Ar), 7.84 (d, J = 7.4 Hz, 1H, Ar), 7.45–7.30 (m, 7H, Ar), 3.05 (s, 3H, Me), 3.03

(s, 3H, NMe), 2.25–2.15 (m, 2H, CH₂), 1.85–1.77 (m, 2H, CH₂), 1.61–1.51 (m, 3H, CH₂), 1.44–1.25 (m, 3H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 181.2, 146.0, 145.4, 135.0, 134.9, 134.7, 130.1, 130.0, 129.8, 128.6, 128.3, 128.0, 126.5, 62.1, 38.8, 37.5, 30.5, 25.0, 22.1; HRMS (ESI): *m*/*z* [M + H]⁺ calcd. for C₂₃H₂₆ClN₂O₂S⁺: 429.1399; found: 429.1385.

N-(2-(4-Methoxyphenyl)-3-methyl-3,4-diphenyl-3*H*pyrrol-5-yl)-*N*-methylmethanesulfonamide (3aa): yellow solid (71.4 mg, 80%); mp 88.0–90.0 °C (DCM); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d,

J = 9.0 Hz, 2H, Ar), 7.37–7.27 (m, 3H, Ar), 7.24–7.17 (m, 5H, Ar), 7.14–7.09 (m, 2H, Ar), 6.79 (d, J = 9.0 Hz, 2H, Ar), 3.78 (s, 3H, OMe), 3.31 (s, 3H, Me), 3.21 (s, 3H, NMe), 1.71 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.9, 161.6, 146.2, 140.5, 137.9, 131.7, 130.0, 129.5, 128.4, 128.4, 128.0, 127.7, 126.4, 124.9, 114.0, 64.2, 55.4, 39.3, 37.4, 20.6; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₆H₂₇N₂O₃S⁺: 447.1737; found: 447.1755.

N,4-Dimethyl-*N*-(2-methyl-3,3,4-triphenyl-3*H*-pyrrol-5yl)benzenesulfonamide (3ab): in accordance with GP1 except that the reaction mixture was stirred at 40 °C for 72 h; brown solid (64.0 mg, 65%); mp 280.0–281.0 °C (dec., DCM); R_f 0.30 (hexane/EtOAc 2:1);

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H, Ar), 7.33–7.27 (m, 10H, Ar), 7.25–7.20 (m, 4H, Ar), 7.15–7.12 (m, 3H, Ar), 3.12 (s, 3H, NMe), 2.40 (s, 3H, Me), 2.05 (s, 3H, Me); ¹³**C NMR** (101 MHz, CDCl₃) δ 185.4, 146.3, 143.6, 140.7, 137.3, 135.9, 132.1, 129.5, 129.04, 128.96, 128.7, 128.5, 128.0, 127.8, 127.7, 77.0, 36.3, 21.7, 17.1; **HRMS** (ESI): *m/z* [M + H]⁺ calcd. for C₃₁H₂₉N₂O₂S⁺: 493.1945; found: 493.1930.

N-(3-(4-Chlorophenyl)-2,3,4-triphenyl-3H-pyrrol-5-yl)-Nmethylmethanesulfonamide (3ac): in accordance with GP1 except that the reaction mixture in DCE with the added 4Å molecular sieves was stirred at 60 °C for 48 h; yellow solid (81.9

mg, 80%); mp 72.0–73.0 °C (DCM); R_f 0.25 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.3 Hz, 2H, Ar), 7.32 (t, J = 7.4 Hz, 1H, Ar), 7.27–7.12 (m, 14H, Ar), 7.00 (d, J = 6.7 Hz, 2H, Ar), 3.23 (s, 3H, Me), 3.19 (s, 3H, NMe); ¹³C NMR (101 MHz, CDCl₃) δ 182.1, 146.8, 142.1, 135.9, 134.9, 133.7, 132.2, 131.5, 130.9, 130.4, 129.4, 129.1, 129.03, 129.00, 128.8, 128.4, 128.3, 128.2, 128.0, 75.2, 39.2, 37.2; HRMS (ESI): m/z [M + H]⁺ calcd. for C₃₀H₂₆ClN₂O₂S⁺: 513.1399; found: 513.1396.

Methyl 5-((*N*,4-dimethylphenyl)sulfonamido)-2,3,4-triphenyl-3*H*-pyrrole-3-carboxylate (3ad): yellow solid (98.7 mg, 92%); mp 73.0–74.5 °C (DCM); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 2H, Ar), 7.69 (d, J = 7.3 Hz, 2H,

Ar), 7.47 (d, J = 6.8 Hz, 2H, Ar), 7.38–7.27 (m, 8H, Ar), 7.25–7.19 (m, 5H, Ar), 3.66 (s, 3H, OMe), 3.14 (s, 3H, NMe), 2.47 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, SI-15

169.2, 148.9, 143.8, 137.9, 135.9, 134.0, 131.6, 131.0, 130.7, 129.4, 129.0, 128.9, 128.7, 128.53, 128.48, 128.40, 128.37, 128.1, 127.9, 74.5, 53.2, 36.8, 21.8; **HRMS** (ESI): *m*/*z* [M + H]⁺ calcd. for C₃₂H₂₉N₂O₄S⁺: 537.1843; found537.1853.

Methyl 5-((*N*,4-dimethylphenyl)sulfonamido)-3-methyl-2,4diphenyl-3*H*-pyrrole-3-carboxylate (3ae): yellowish solid (85.4 mg, 90%); mp 146.5–148.0 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H, Ar), 7.79 (d,

 $J = 6.5 \text{ Hz}, 2\text{H}, \text{Ar}), 7.61 \text{ (d, } J = 7.4 \text{ Hz}, 2\text{H}, \text{Ar}), 7.48-7.39 \text{ (m, 5H, Ar}), 7.36-7.30 \text{ (m, 3H, Ar}), 3.67 \text{ (s, 3H, OMe)}, 3.12 \text{ (s, 3H, NMe)}, 2.46 \text{ (s, 3H, Me)}, 1.67 \text{ (s, 3H, Me)}; {}^{13}\text{C}$ **NMR** (101 MHz, CDCl₃) δ 175.3, 171.9, 148.1, 143.7, 135.8, 135.6, 131.8, 131.1, 131.0, 129.3, 129.0, 128.9, 128.9, 128.4, 127.9, 127.5, 65.4, 53.4, 36.7, 21.7, 20.1; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₇H₂₇N₂O₄S ⁺: 475.1687; found: 475.1687.

N-Methyl-*N*-(3-methyl-2,4-diphenyl-3-(pyrrolidine-1-carbonyl)-3*H*-pyrrol-5-yl)methanesulfonamide (3af): yellowish solid (61.3 mg, 70%); mp 170.0–172.0 °C (DCM); R_f 0.25 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.5 Hz, 2H, Ar), 7.79 (d, *J* = 7.4 Hz, 2H, Ar), 7.50–7.37 (m, 5H, Ar), 7.31 (t, *J* = 7.4 Hz,

1H, Ar), 3.48 (t, J = 6.6 Hz, 2H, CH₂), 3.28 (s, 3H, Me), 3.24 (s, 3H, NMe), 3.14–3.04 (m, 1H, CH₂), 2.78–2.67 (m, 1H, CH₂), 1.72 (s, 3H, Me), 1.69–1.58 (m, 4H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 167.1, 146.7, 135.4, 131.6, 131.5, 130.6, 129.2, 129.2, 128.7, 127.7, 127.5, 67.1, 48.1, 43.6, 38.9, 36.9, 26.3, 25.5, 23.6; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₄H₂₈N₃O₃S ⁺: 438.1846; found: 438.1865.

N-Allyl-*N*-(3,3-dimethyl-2,4-diphenyl-3*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (3ag): was prepared in PhCl at 60 °C for 3 h as a yellow oil (89.4 mg, 98%); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 6.6, 3.1 Hz, 2H, Ar),

7.81 (d, J = 8.2 Hz, 2H, Ar), 7.47–7.34 (m, 8H, Ar), 7.29 (d, J = 8.1 Hz, 2H, Ar), 5.67– 5.55 (m, 1H, CH), 5.04–4.96 (m, 2H, 2CH), 3.99 (d, J = 6.7 Hz, 2H, NCH₂), 2.45 (s, 3H, Me), 1.48 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 145.0, 143.4, 142.5, 137.0, 133.0, 132.9, 132.5, 130.4, 129.7, 129.3, 128.8, 128.6, 128.3, 128.1, 128.0, 119.0, 57.9, 52.0, 22.5, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₈H₂₉N₂O₂S⁺: 457.1945; found: 457.1948.

N,4-Dimethyl-N-(4-methyl-3,5-diphenyl-1*H*-pyrrol-2-

yl)benzenesulfonamide (5): colorless solid (80.0 mg, 96%); mp 156.0– 158.0 °C (DCM); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H, NH), 7.56 (d, J = 8.2 Hz, 2H, Ar), 7.50–7.40 (m,

4H, Ar), 7.31–7.24 (m, 3H, Ar), 7.19–7.15 (m, 1H, Ar), 7.14–7.08 (m, 2H, Ar), 6.63 (d, J = 6.9 Hz, 2H, Ar), 3.01 (s, 3H, NMe), 2.46 (s, 3H, Me), 2.06 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 135.0, 134.4, 133.1, 129.9, 129.8, 128.9, 128.0, 127.8, 126.8, 126.6, 126.5, 126.3, 124.6, 121.2, 114.7, 38.8, 21.8, 11.3; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₅N₂O₂S⁺: 417.1632; found: 417.1644.

2.5 Complete Optimization of the Synthesis of 6a

	Me Me Ph N 3a	Ph Me N Ts	Additive PhCI M Temperature Time F	Me Ph e N N Ph N Ts 6a	e
Entry ^a	Additive	mol %	Temperature, °C	Time, min	Yield, ^b %
1	MsOH	5	60	100	traces
2	TfOH	20	60	100	traces
3	BF3·Et2O	100	100	10	86
4	$BF_3 \cdot Et_2O$	50	100	60	48
5	$BF_3 \cdot Et_2O$	20	100	60	16
6	$BF_3 \cdot Et_2O$	10	100	60	5
7	MsOH	100	100	60	80

^{*a*}All reactions were carried out on a 0.1 mmol scale (0.2 *M*); ^{*b*}Estimated by ¹H NMR spectroscopy using durene as an internal standard after the work-up with aqueous solution of NaHCO₃ and the subsequent extraction.

2.6 General Procedure for the Synthesis of 2H-Pyrroles 6

BF₃·Et₂O (14.2 mg, 0.1 mmol, 1 equiv) was added to the solution of 3*H*-pyrrole (**3**, 0.1 mmol) in PhCl (0.5 mL). The resulting mixture was heated (100 °C) with stirring in an oil bath for 10-60 min (the TLC control). After cooling to room temperature, the reaction mixture was quenched with saturated aqueous solution of NaHCO₃ (5 ml), and the mixture was extracted with DCM (3×5 mL). The combined organic extracts were dried over anhydrous Na₂SO₄. After filtration, the solvent was removed in vacuum and the residue was purified by silica gel column chromatography, eluting with hexane/EtOAc to afford 2*H*-pyrroles **6**.

N-(2,3-Dimethyl-2,4-diphenyl-2*H*-pyrrol-5-yl)-*N*,4dimethylbenzenesulfonamide (6a): off-white solid (37.0 mg, 86%); mp 114.5–116.0 °C (DCM); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H, Ar), 7.47–7.39 (m, 4H,

Ar), 7.38–7.30 (m, 3H, Ar), 7.28–7.23 (m, 3H, Ar), 7.19 (d, J = 8.0 Hz, 2H, Ar), 2.96 (s, 3H, Me), 2.37 (s, 3H, Me), 1.86 (s, 3H, Me), 1.71 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 166.4, 143.9, 139.0, 134.5, 133.2, 133.1, 129.4, 129.2, 128.9, 128.7, 128.5, 127.6, 127.4, 125.9, 79.9, 36.4, 21.7, 21.5, 12.5.; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₆H₂₇N₂O₂S⁺: 431.1788; found: 431.1795.

N-(2,3-Dimethyl-2,4-diphenyl-2H-pyrrol-5-yl)-Nmethylmethanesulfonamide (6b): colorless oil (29.4 mg, 83%); R_f

0.35 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.45–7.38 (m, 4H, Ar), 7.37–7.31 (m, 3H, Ar), 7.30–7.24 (m, 3H, Ar), 3.25 (s, 3H,

Me), 2.91 (s, 3H, NMe), 1.82 (s, 3H, Me), 1.75 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 166.1, 139.0, 132.4, 131.6, 129.0, 128.82, 128.78, 128.0, 127.5, 125.9, 80.2, 39.5, 36.0, 21.6, 12.3; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₀H₂₃N₂O₂S⁺: 355.1475; found: 355.1486.

N-Benzyl-*N*-(2,3-dimethyl-2,4-diphenyl-2*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (6e): yellowish oil (42.5 mg, 84%); R_f 0.65 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.3 Hz, 2H, Ar), 7.45–7.34 (m, 3H, Ar), 7.28–7.11 (m, 12H, Ar), 6.99 (dd, J = 6.4, 2.9 Hz, 2H, Ar), 4.54 (s, 2H, CH₂), 2.39 (s, 3H, Me), 1.69 (s, 3H, Me), 1.62 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 165.6, 144.0, 135.6, 135.4, 134.9, 133.0, 129.9, 129.6 (×2), 128.73, 128.65, 128.4, 128.3, 128.0, 127.6, 127.5, 126.1, 80.1, 53.0, 21.7, 21.0, 12.4 (one peack is merged with others); **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₂H₃₁N₂O₂S⁺: 507.2101; found: 507.2091.

N-Cyclopropyl-*N*-(2,3-dimethyl-2,4-diphenyl-2*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (6f): yellowish oil (23.7 mg, 52%); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H, Ar), 7.46–7.40 (m, 2H, Ar), 7.38–7.31 (m, 5H, Ar), 7.31–

7.26 (m, 3H, Ar), 7.21 (d, J = 8.1 Hz, 2H, Ar), 2.58 (br. s, 1H, NCH), 2.38 (s, 3H, Me), 1.83 (s, 3H, Me), 1.77 (s, 3H, Me), 0.75–0.57 (m, 4H, 2CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 166.9, 144.1, 138.9, 135.7, 134.0, 132.9, 129.5, 129.4, 128.9, 128.8, 128.5, 127.7, 127.6, 126.0, 80.0, 30.6, 21.7, 21.6, 12.4, 7.6; HRMS (ESI): m/z [M + H]⁺ calcd. for C₂₈H₂₉N₂O₂S⁺: 457.1945; found: 457.1950.

N-(2,3-Dimethyl-2,4-diphenyl-2H-pyrrol-5-yl)-N-

phenylmethanesulfonamide (6i): yellow oil (32.1 mg, 77%); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.36 (m, 4H, Ar), 7.32–7.28 (m, 1H, Ar), 7.18–7.13 (m, 3H, Ar), 7.13–7.05 (m, 5H,

Ar), 6.99–6.96 (m, 2H, Ar), 3.40 (s, 3H, Me), 1.84 (s, 3H, Me), 1.72 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 165.1, 139.4, 137.3, 132.5, 131.8, 129.2, 128.9, 128.8, 128.7, 128.2, 128.1, 127.6, 127.5, 126.0, 80.7, 40.0, 21.8, 12.1; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₅N₂O₂S⁺: 417.1632; found: 417.1615.

N-(4-(Benzo[*d*][1,3]dioxol-5-yl)-2,3-dimethyl-2-phenyl-2*H*-pyrrol-5-yl)-*N*-benzyl-4-methylbenzenesulfonamide (60): colorless oil (42.4 mg, 77%); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H, Ar), 7.28–7.18 (m, 10H, Ar), 6.98 (dd, *J* = 6.4, 2.9 Hz, 2H, Ar), 6.84 (d, *J* = 8.5 Hz, 1H, Ar), 6.64–6.61 (m, 2H, Ar), 6.00 (s, 2H, CH₂), 4.56 (s, 2H, NCH₂), 2.39 (s, 3H, Me),

1.68 (s, 3H, Me), 1.61 (s, 3H, Me).; ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 165.8, 147.6, 147.1, 144.1, 135.5, 135.4, 134.6, 129.9, 129.6, 128.69, 128.65, 128.4, 128.1, 128.0, 127.5, 127.4, 126.0, 123.2, 110.1, 108.3, 101.2, 79.9, 53.2, 21.7, 21.0, 12.5; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₃H₃₁N₂O₄S⁺: 551.2000; found: 551.1998.

N-Benzyl-*N*-(2,3-dimethyl-4-(naphthalen-1-yl)-2-phenyl-2*H*pyrrol-5-yl)-4-methylbenzenesulfonamide (6p): mixture of two rotamers; colorless oil (42.9 mg, 77%); R_f 0.65 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.8 Hz, 4H, Ar), 7.65 (d, *J* = 8.3 Hz, 2H, Ar), 7.61 (d, *J* = 8.3 Hz, 2H, Ar), 7.53–7.44 (m, 5H, Ar),

7.41–7.25 (m, 11H, Ar), 7.23–7.08 (m, 14H, Ar), 7.03 (d, J = 7.2 Hz, 4H, Ar), 4.59–4.43 (m, 4H, 2NCH₂), 2.38 (s, 6H, 2Me), 1.81 (s, 3H, Me), 1.70 (s, 3H, Me), 1.53 (s, 3H, Me), 1.51 (s, 3H, Me); ¹³**C** NMR (101 MHz, CDCl₃) δ 170.7, 170.3, 165.70, 165.67, 143.84, 143.80, 138.8, 138.7, 136.4, 136.2, 135.68, 135.65, 135.61, 133.82, 133.77, 132.8, 132.7, 132.1, 130.43, 130.36, 130.0, 129.9, 129.65, 129.61, 129.42, 129.38, 128.8, 128.75, 128.73, 128.68, 128.5 (×2), 128.32, 128.27(×2), 127.95, 127.86, 127.84, 127.5 (×2), 126.31, 126.27, 126.2, 126.08, 126.07, 125.91 (×2), 125.87, 125.33, 125.29, 80.4, 80.3, 52.6, 52.5, 21.71, 21.68 (×2), 12.8, 12.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₆H₃₃N₂O₂S⁺: 557.2258; found: 557.2244.

N-Benzyl-*N*-(2,3-dimethyl-2-phenyl-4-(1-tosyl-1*H*-indol-3-yl)-2*H*-pyrrol-5-yl)-4-methylbenzenesulfonamide (6q): beige solid (57.4 mg, 82%); mp 195.0–197.0 °C (*i*-PrOH); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 1H, Ar), 7.96 (d, *J* = 8.4 Hz, 2H, Ar), 7.82 (s, 1H, Ar), 7.70 (d, *J* = 8.4 Hz, 2H, Ar), 7.31–7.21 (m, 6H, Ar), 7.22 (d, *J* = 8.0 Hz, 2H,

Ar), 7.11 (t, J = 7.3 Hz, 2H, Ar), 7.01–6.97 (m, 2H, Ar), 6.95–6.87 (m, 4H, Ar), 6.81 (d, J = 7.9 Hz, 1H, Ar), 4.54–4.45 (m, 2H, CH₂), 2.40 (s, 3H, Me), 2.30 (s, 3H, Me), 1.68 (s, 3H, Me), 1.63 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 166.3, 145.0, 144.2, 137.7, 135.3, 135.0, 134.9, 134.8, 130.6, 130.1, 129.6, 129.3, 128.7, 128.6, 128.3, 127.9, 127.6, 127.3, 127.2, 126.8, 125.9, 124.6, 123.3, 120.6, 114.0, 113.7, 80.6, 53.5, 21.7, 21.7, 21.0, 13.1; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₄₁H₃₈N₃O₄S₂⁺: 700.2298; found: 700.2317.

N-Benzyl-*N*-(4-hexyl-2,3-dimethyl-2-phenyl-2*H*-pyrrol-5-yl)-4methylbenzenesulfonamide (6t): colorless solid (37.6 mg, 73%); mp 94.5–96.5 °C (DCM); R_f 0.70 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H, Ar), 7.32–7.28 (m, 2H, Ar), 7.25–7.23 (m, 3H, Ar), 7.22–7.18 (m, 5H, Ar), 6.86 (dd, *J* = 6.2, 2.7

Hz, 2H, Ar), 4.59 (d, J = 12.9 Hz, 1H, NCH), 4.51 (d, J = 12.9 Hz, 1H, NCH), 2.46 (br. s, 2H,CH₂), 2.38 (s, 3H, Me), 1.65 (s, 3H, Me), 1.49 (s, 3H, Me), 1.29–1.22 (m, 3H, CH₂), 1.19–1.10 (m, 5H, CH₂), 0.88 (t, J = 7.1 Hz, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ

168.0, 165.9, 144.3, 138.4, 135.7, 135.5, 134.4, 130.0, 129.7, 128.7, 128.5, 128.4, 128.0, 127.3, 126.1, 79.8, 53.7, 31.8, 29.6, 28.7, 24.8, 22.8, 21.7, 20.8, 14.3, 12.1; **HRMS** (ESI): *m*/*z* [M + H]⁺ calcd. for C₃₂H₃₉N₂O₂S⁺: 515.2727; found: 515.2723.

N,*N*'-(1,4-Phenylenebis(2,3-dimethyl-2-phenyl-2*H*pyrrole-4,5-diyl))bis(*N*-benzyl-4-

methylbenzenesulfonamide) (6v): colorless viscous oil (72.9 mg, 78%); R_f 0.40 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.1 Hz, 4H, Ar), 7.30–

7.16 (m, 24H, Ar), 7.04–7.01 (m, 4H, Ar), 4.57 (s, 4H, 2CH₂), 2.39 (s, 6H, 2Me), 1.77 (s, 6H, 2Me), 1.64 (s, 6H, 2Me); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 165.6, 144.0, 138.4, 135.7, 135.3, 134.6, 132.1, 129.9, 129.6, 129.3, 128.8, 128.7, 128.5, 128.0, 127.5, 126.1, 80.2, 53.1, 21.7, 21.0, 12.6; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₅₈H₅₅N₄O₄S₂⁺: 935.3659; found: 935.3659.

N-(4-(3-(4-Methoxyphenyl)-4-oxo-4*H*-chromen-7-yl)-2,3-dimethyl-2-phenyl-2*H*-pyrrol-5-yl)-*N*,4-

dimethylbenzenesulfonamide (6x): yellowish oil (50.8 mg, 84%); R_f 0.15 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.2 Hz, 1H, Ar), 8.01 (s, 1H, Ar), 7.63 (d, J = 8.2 Hz, 2H, Ar), 7.57–7.51 (m, 3H, Ar), 7.46 (dd, J = 8.2, 1.2 Hz, 1H, Ar), 7.38–7.28 (m, 3H, Ar),

7.25–7.17 (m, 4H, Ar), 6.99 (d, J = 8.7 Hz, 2H, Ar), 3.85 (s, 3H, OMe), 3.08 (s, 3H, NMe), 2.37 (s, 3H, Me), 1.93 (s, 3H, Me), 1.75 (s, 3H, Me); ¹³**C** NMR (101 MHz, CDCl₃) δ 176.3, 169.9, 166.0, 159.8, 156.3, 152.7, 144.4, 139.1, 138.1, 133.6, 132.4, 130.3, 129.6, 128.9, 128.6, 127.8, 126.5, 126.3, 125.9, 125.4, 124.3, 123.6, 118.4, 114.2, 80.3, 55.5, 37.0, 21.7, 21.5, 12.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₆H₃₃N₂O₅S⁺: 605.2105; found: 605.2100.

N-(8a-(3-Chlorophenyl)-3-phenyl-4,5,6,7,8,8ahexahydrocyclohepta[*b*]pyrrol-2-yl)-*N*-

methylmethanesulfonamide (6z): yellowish solid (30.0 mg, 70%); mp 95.5–97.0 °C (DCM); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.42 (m, 4H, Ar), 7.40–7.35 (m, 2H, Ar),

7.29–7.26 (m, 3H, Ar), 3.17 (s, 3H, Me), 2.89–2.82 (m, 1H, CH₂), 2.81 (s, 3H, NMe), 2.58 (ddd, J = 14.3, 7.8, 1.8 Hz, 1H, , CH₂), 2.50 (ddd, J = 15.6, 8.5, 3.6 Hz, 1H, CH₂), 2.11–2.02 (m, 1H, CH₂), 1.68–1.47 (m, 4H, CH₂), 1.44–1.36 (m, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 164.8, 142.2, 135.3, 134.6, 132.5, 130.1, 128.95, 128.94, 128.2, 127.8, SI-22

127.3, 125.2, 84.2, 39.7, 36.1, 35.9, 29.6, 28.4, 26.9, 24.5; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₃H₂₆ClN₂O₂S⁺: 429.1399; found: 429.1415.

N-(2-(4-Methoxyphenyl)-2-methyl-3,4-diphenyl-2*H*-pyrrol-5-yl)-*N*-methylmethanesulfonamide (6aa): off-white solid (28.1 mg, 63%); mp 185.5–187.5 °C (DCM); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.42 (m, 4H, Ar), 7.40–7.34 (m, 1H, Ar), 7.34–7.28 (m, 5H, Ar), 7.22

(d, J = 9.0 Hz, 2H, Ar), 6.87 (d, J = 8.9 Hz, 2H, Ar), 3.81 (s, 3H, OMe), 3.28 (s, 3H, Me), 2.81 (s, 3H, NMe), 1.99 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 165.2, 159.1, 141.1, 133.7, 132.8, 132.4, 129.5, 129.1, 128.9, 128.5, 128.31, 128.27, 127.6, 113.9, 87.5, 55.4, 40.0, 35.9, 14.3; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₆H₂₇N₂O₃S⁺: 447.1737; found: 447.1736.

N,4-Dimethyl-*N*-(2-methyl-2,3,4-triphenyl-2*H*-pyrrol-5yl)benzenesulfonamide (6ab): yellowish solid (36.9 mg, 75%); mp 151.0–153.0 °C (MeCN); R_f 0.55 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H, Ar), 7.37–7.28 (m, 10H, Ar),

7.20–7.15 (m, 3H, Ar), 7.12–7.07 (m, 2H, Ar), 6.71 (d, J = 7.2 Hz, 2H, Ar), 3.01 (s, 3H, NMe), 2.37 (s, 3H, Me), 1.76 (s, 3H, Me); ¹³**C** NMR (101 MHz, CDCl₃) δ 168.5, 166.4, 144.1, 137.8, 134.9, 134.4, 133.8, 132.9, 129.6, 129.5, 128.9, 128.82, 128.77, 128.5, 128.2, 128.2, 127.9, 127.8, 126.4, 80.6, 36.7, 21.7, 21.6; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₁H₂₉N₂O₂S⁺: 493.1945; found: 493.1941.

N-(3-(4-Chlorophenyl)-2,2,4-triphenyl-2*H*-pyrrol-5-yl)-*N*methylmethanesulfonamide (6ac): colorless oil (30.8 mg, 60%); $R_f 0.65$ (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.33– 7.29 (m, 15H, Ar), 7.02 (d, *J* = 8.6 Hz, 2H, Ar), 6.70 (d, *J* = 8.6 Hz, 2H, Ar), 3.22 (s, 3H, Me), 2.92 (s, 3H, NMe).; ¹³C NMR (101 MHz,

CDCl₃) δ 166.1, 165.4, 138.8, 135.4, 134.4, 132.7, 131.8, 130.8, 129.5, 129.0, 128.6, 128.5 (×2), 128.4, 128.0, 88.3, 39.6, 36.1; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₀H₂₆ClN₂O₂S⁺: 513.1399; found: 513.1396.

N-(2-(4-Chlorophenyl)-2,3,4-triphenyl-2*H*-pyrrol-5-yl)-*N*methylmethanesulfonamide (6ac'): colorless oil (15.9 mg, 31%); R_f 0.70 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.28 (m, 11H, Ar), 7.25–7.21 (m, 3H, Ar), 7.15 (t, *J* = 7.4 Hz, 1H, Ar), 7.07–7.02 (m, 2H, Ar), 6.75 (d, J = 7.5 Hz, 2H, Ar), 3.23 (s, 3H, Me), 2.91 (s, 3H, NMe); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 165.6, 138.8, 137.7, 135.0, 134.0, 133.7, 131.9, 130.0, 129.5 (×2), 128.9, 128.6, 128.52, 128.50, 128.47, 128.4, 128.2, 128.1, 87.7, 39.6, 36.0; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₀H₂₆ClN₂O₂S⁺: 513.1399; found: 513.1388.

Methyl 5-((*N*,4-dimethylphenyl)sulfonamido)-2,3,4-triphenyl-2*H*-pyrrole-2-carboxylate (6ad): colorless oil (38.1 mg, 71%); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H, Ar), 7.33–7.24 (m, 10H, Ar), 7.22–7.17 (m, 3H, Ar),

7.16–7.10 (m, 2H, Ar), 6.90 (d, J = 7.3 Hz, 2H, Ar), 3.74 (s, 3H, OMe), 2.97 (s, 3H, NMe), 2.39 (s, 3H, Me); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.5, 169.4, 163.0, 144.1, 137.5, 135.5, 134.1, 133.3, 132.3, 129.54, 129.51, 129.4, 129.3, 128.6, 128.4, 128.3, 128.2, 128.2, 128.0, 127.8, 88.8, 53.2, 36.6, 21.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₃₂H₂₉N₂O₄S⁺: 537.1843; found: 537.1854.

Methyl 5-((*N*,4-dimethylphenyl)sulfonamido)-2-methyl-2,4diphenyl-2*H*-pyrrole-3-carboxylate (6ae): yellowish oil (35.1 mg, 74%); R_f 0.40 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 2H, Ar), 7.48–7.28 (m, 10H, Ar), 7.19 (d, *J* = 8.1

Hz, 2H, Ar), 3.80 (s, 3H, OMe), 2.96 (s, 3H, NMe), 2.38 (s, 3H, Me), 2.07 (s, 3H, Me); ¹³C **NMR** (101 MHz, CDCl₃) δ 169.6, 169.3, 161.9, 144.1, 136.3, 135.9, 134.1, 132.6, 129.3, 129.19, 129.15, 128.9, 128.6, 128.3, 128.0, 126.7, 88.0, 53.1, 36.5, 21.7, 13.7; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₇H₂₇N₂O₄S ⁺: 475.1687; found: 475.1693.

2.6. Hydrogenation of 3e

A 25 mL round-bottom flask containing **3e** (70.1 mg, 0.1 mmol) and 10% palladium on carbon (10.6 mg, 0.01 mmol, 10 mol %) was fitted with a rubber septum, evacuated under high vacuum and backfilled with hydrogen. Degassed MeOH (7 mL) was next added. The flask was equipped with a hydrogen balloon and the black suspension was heated at 50 °C for 24 h with stirring. After completion, the suspension was cooled to rt, all volatile components were removed in vacuum

and the residue was purified by silica gel column chromatography eluting with hexane/EtOAc to afford product 7.

(E)-N-(4,4-Dimethyl-3,5-diphenylpyrrolidin-2-ylidene)-4-

methylbenzenesulfonamide (7): colorless solid (19.3 mg, 46%); mp 191.0–193.0 °C (DCM); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H, NH), 7.85 (d, J = 8.2 Hz, 2H, Ar), 7.43–7.35 (m, 3H, Ar), 7.32–7.24 (m, 7H, Ar), 7.12–7.07 (m, 2H, Ar), 4.72 (s, 1H, NCH), 3.93 (s, 1H, CH), 2.43 (s, 3H, Me), 1.18 (s, 3H, Me), 0.21 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 143.0, 139.6, 135.4, 133.3, 130.6, 129.5, 128.8, 128.7, 128.1, 127.6, 127.0, 126.6, 70.6, 62.9, 46.1, 24.4, 21.7, 18.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₂₅H₂₇N₂O₂S⁺: 419.1788; found: 419.1781.

2.7. **Detosylation of 6a**

Sodium (2.8 mg, 0.12 mmol, 1.2 equiv) was added to the solution of naphthalene (25.6 mg, 0.20 mmol, 2.0 equiv) in dry THF (3.0 mL). The mixture was heated at 60 °C and stirred until deep green color was appeared. Then 2*H*-pyrrole **6a** (43.1 mg, 0.1 mmol) was added and the reaction mixture was stirred for 10 minutes (the TLC control). After cooling to room temperature, the reaction mixture was carefully quenched with water (5 ml) and the resulting emulsion was extracted with DCM (3×5 mL). The combined organic extracts were dried over anhydrous Na₂SO₄. After filtration, the solvent was removed in vacuum and the residue was purified by alumina column chromatography, eluting first with hexane/EtOAc (4/1) and then with MeOH to afford product 8.

N,2,3-Trimethyl-2,4-diphenyl-2H-pyrrol-5-amine (8): brown oil (26.0 mg, 94%); R_f 1.0 (MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.37 (m, 4H, Ar), 7.35–7.30 (m, 2H, Ar), 7.29–7.26 (m, 3H, Ar), 7.25–7.21

(m, 3H, Ar), 3.06 (br. s, 3H, NMe), 1.89 (s, 3H, Me), 1.74 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 164.2, 138.2, 129.5 (×2), 129.4, 129.3, 129.0, 128.3, 127.9, 125.8, 74.0, 31.2, 22.4, 11.8; **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₁₉H₂₁N₂⁺: 277.1700; found: 277.1702.

2.8.Sonogashira Coupling of 3j

A 25 mL round-bottom flask was charged with the solution of 3H-pyrrole **3j** (63.2 mg, 0.1 mmol) in triethylamine (3 ml). The flask was flushed with argon and then Pd(PPh₃)₂Cl₂ (3.5 mg, 0.005 mmol, 5 mol %), CuI (1.9 mg, 0.01 mmol, 10 mol %) were added to the solution. The flask was fitted with a rubber septum and ethynyltrimethylsilane (29.5 mg, 0.3 mmol, 3 equiv) was added using a syringe. The resulting black mixture was stirred at 80 °C for 20 h. After completion, all volatile components were removed in vacuo and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford product **9**, which was obtained as a mixture with the starting pyrrole **3j** (53% of **9** according to ¹H NMR assay; both have the same R_f's).

N-Benzyl-N-(3,3-dimethyl-2-phenyl-4-(2-

((trimethylsilyl)ethynyl)phenyl)-3H-pyrrol-5-yl)-4-

methylbenzenesulfonamide (9): brown oil (41.0 mg, 53%-mixture with **3j**, 36%); R_f 0.40 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.89 (m, 2H, Ar), 7.65 (d, *J* = 8.2 Hz, 2H, Ar), 7.54 (dd,

J = 7.4, 1.4 Hz, 1H, Ar), 7.50–7.44 (m, 3H, Ar), 7.35–7.28 (m, 2H, Ar), 7.18–7.02 (m, 7H, Ar), 6.86–6.82 (m, 1H, Ar), 4.67 (s, 2H, NCH₂), 2.41 (s, 3H, Me), 1.43 (s, 6H, 2Me), –0.02 (s, 9H, 3Me); ¹³C NMR (101 MHz, CDCl₃) δ 182.1, 144.8, 143.1, 142.5, 137.47, 136.6, 135.0, 133.3 (×2), 131.5, 130.4, 129.1, 128.8, 128.70 (×2), 128.25, 128.22, 128.0, 127.9, 127.2, 124.6, 105.3, 97.3, 60.0, 53.8, 22.8, 21.69, –0.2; HRMS (ESI): m/z [M + H]⁺ calcd. for C₃₇H₃₉N₂O₂SSi⁺: 603.2497; found: 603.2511.

3. References

- Rassadin, V. A.; Boyarskiy, V. P.; Kukushkin, V. Y. Facile Gold-Catalyzed Heterocyclization of Terminal Alkynes and Cyanamides Leading to Substituted 2-Amino-1,3-Oxazoles. *Org. Lett.* 2015, *17* (14), 3502–3505. https://doi.org/10.1021/acs.orglett.5b01592.
- Ricard, L.; Gagosz, F. Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(Trifluoromethanesulfonyl)Imidate Complexes. *Organometallics* 2007, 26 (19), 4704–4707. https://doi.org/10.1021/om7006002.
- (3) Shapiro, N. D.; Toste, F. D. Synthesis of Azepines by a Gold-Catalyzed Intermolecular [4 + 3]-Annulation. *J. Am. Chem. Soc.* 2008, *130* (29), 9244–9245. https://doi.org/10.1021/ja803890t.
- J. Leonard, N.; Zwanenburg, B. Small Charged Rings. IX. Expansion of the Azirine Ring. J. Am. Chem. Soc. 2002, 89 (17), 4456–4465. https://doi.org/10.1021/ja00993a038.
- (5) Filippov, I. P.; Novikov, M. S.; Khlebnikov, A. F.; Rostovskii, N. V. One-Pot Synthesis of Multifunctionalized 1-Pyrrolines from 2-Alkyl-2H-azirines and Diazocarbonyl Compounds. J. Org. Chem. 2022. https://doi.org/10.1021/acs.joc.2c00977.
- (6) F. Taber, D.; Tian, W. The Neber Route to Substituted Indoles. J. Am. Chem. Soc. 2006, 128 (4), 1058–1059. https://doi.org/10.1021/ja058026j.
- Rostovskii, N. V; Agafonova, A. V; Smetanin, I. A.; Novikov, M. S.; Khlebnikov, A. F.; Ruvinskaya, J. O.; Starova, G. L. Metal-Catalyzed Isomerization of 5-Heteroatom-Substituted Isoxazoles- as a New Route to 2-Halo-2H-Azirines. *Synthesis* 2017, 49 (19), 4478–4488.
- (8) Sakharov, P. A.; Koronatov, A. N.; Khlebnikov, A. F.; Novikov, M. S.; Glukharev, A. G.; Rogacheva, E. V; Kraeva, L. A.; Sharoyko, V. V; Tennikova, T. B.; Rostovskii, N. V. Non-Natural 2H-Azirine-2-Carboxylic Acids: An Expedient Synthesis and Antimicrobial Activity. *RSC Adv.* 2019, *9* (65), 37901–37905. https://doi.org/10.1039/C9RA09345A.
- (9) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Gold-Catalyzed Intermolecular Nitrene Transfer from 2H-Azirines to Ynamides: A Direct Approach to Polysubstituted Pyrroles. *Org. Lett.* 2014, *17* (1), 30–33. https://doi.org/10.1021/ol503172h.
- (10) Dubovtsev, A. Y.; Zvereva, V. V.; Shcherbakov, N. V.; Dar'In, D. V.; Novikov, A. S.;
 Kukushkin, V. Y. Acid-Catalyzed [2 + 2 + 2] Cycloaddition of Two Cyanamides and One
 Ynamide: Highly Regioselective Synthesis of 2,4,6-Triaminopyrimidines. *Org. Biomol. Chem.* 2021, *19* (20), 4577–4584. https://doi.org/10.1039/d1ob00513h.
- (11) Mallick, R. K.; Prabagar, B.; Sahoo, A. K. Regioselective Synthesis of 2,4,5-

Trisubstituted Oxazoles and Ketene Aminals via Hydroamidation and Iodo-Imidation of Ynamides. *J. Org. Chem.* **2017**, 82 (19), 10583–10594. https://doi.org/10.1021/acs.joc.7b02124.

- (12) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Copper Sulfate-Pentahydrate-1,10-Phenanthroline Catalyzed Amidations of Alkynyl Bromides. Synthesis of Heteroaromatic Amine Substituted Ynamides. *Org. Lett.* 2004, *6* (7), 1151–1154. https://doi.org/10.1021/ol049827e.
- (13) Zhang, J.; Li, S.; Qiao, Y.; Peng, C.; Wang, X. N.; Chang, J. Metal-Free Cycloisomerizations of: O -Alkynylbiaryls. *Chem. Commun.* 2018, *54* (88), 12455–12458. https://doi.org/10.1039/c8cc05484c.
- Jouvin, K.; Coste, A.; Bayle, A.; Legrand, F.; Karthikeyan, G.; Tadiparthi, K.; Evano, G.
 Copper-Mediated Selective Cross-Coupling of 1,1-Dibromo-1-Alkenes and
 Heteronucleophiles: Development of General Routes to Heterosubstituted Alkynes and
 Alkenes. *Organometallics* 2012, *31* (22), 7933–7947. https://doi.org/10.1021/om3005614.
- Witulski, B.; Schweikert, T.; Schollmeyer, D.; Nemkovich, N. A. Synthesis and Molecular Properties of Donor–π-Spacer–Acceptor Ynamides with up to Four Conjugated Alkyne Units. *Chem. Commun.* 2010, 46 (17), 2953–2955. https://doi.org/10.1039/B919275A.
- (16) V. Shcherbakov, N.; I. Chikunova, E.; Dar'in, D.; Yu. Kukushkin, V.; Yu. Dubovtsev, A. Redox-Neutral and Atom-Economic Route to β-Carbolines via Gold-Catalyzed [4 + 2] Cycloaddition of Indolylynamides and Cyanamides. *J. Org. Chem.* 2021, 86 (24), 17804–17815. https://doi.org/10.1021/acs.joc.1c02119.
- (17) Shcherbakov, N. V.; Dar'In, D. V.; Kukushkin, V. Y.; Dubovtsev, A. Y. Hetero-Tetradehydro-Diels-Alder Cycloaddition of Enynamides and Cyanamides: Gold-Catalyzed Generation of Diversely Substituted 2,6-Diaminopyridines. *J. Org. Chem.* 2021, 86 (10), 7218–7228. https://doi.org/10.1021/acs.joc.1c00558.
- Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. A Robust and Modular Synthesis of Ynamides. *Chem. Commun.* 2015, *51* (16), 3316–3319. https://doi.org/10.1039/c4cc07876d.
- (19) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Copper-Mediated Coupling of 1,1-Dibromo-1-Alkenes with Nitrogen Nucleophiles: A General Method for the Synthesis of Ynamides. *Angew. Chem. Int. Ed.* 2009, *121* (24), 4381–4385. https://doi.org/10.1002/ange.200901099.
- (20) R. Khaidarov, A.; V. Rostovskii, N.; A. Zolotarev, A.; F. Khlebnikov, A.; S. Novikov, M. Synthesis of 1-(2-Aminovinyl)Indoles and 1,3'-Biindoles by Reaction of 2,2-Diaryl-

Substituted 2H-Azirines with α-Imino Rh(II) Carbenoids. J. Org. Chem. **2019**, 84 (7), 3743–3753. https://doi.org/10.1021/acs.joc.8b03205.

4. NMR Spectra

4.1. NMR Spectra of Starting 2H-Azirines 1

¹H NMR (400 MHz, CDCl₃) of $\mathbf{1b}$

¹H NMR (400 MHz, CDCl₃) of 1e

SI-31

4.2.NMR Spectra of Starting Ynamides 2

SI-33

SI-35

¹H NMR (400 MHz, CDCl₃) of **2p**

¹H NMR (400 MHz, CDCl₃) of 2w

4.3.NMR Spectra of 3*H*-Pyrroles 3

¹H NMR (400 MHz, CDCl₃) of **3a**

¹H NMR (400 MHz, CDCl₃) of $\mathbf{3b}$

 $Me \qquad Ph \qquad Me \qquad Ph \qquad Me \qquad Ph \qquad S=0 \qquad S=0 \qquad F$

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

. 200 . 110 , 70 . 40 . 20

¹H NMR (400 MHz, CDCl₃) of **3e**

¹H NMR (400 MHz, CDCl₃) of **3f**

¹H NMR (400 MHz, CDCl₃) of **3k**

SI-52

SI-55

¹H NMR (400 MHz, CDCl₃) of 3r

¹H NMR (400 MHz, CDCl₃) of 3v

¹H NMR (400 MHz, CDCl₃) of 3w

¹H NMR (400 MHz, CDCl₃) of 3z

¹H NMR (400 MHz, CDCl₃) of 3aa

SI-67

¹H NMR (400 MHz, CDCl₃) of **3ac**

4.4.NMR Spectra of 1*H*-Pyrrole 5

4.5. NMR Spectra of 2*H*-Pyrroles 6

¹H NMR (400 MHz, CDCl₃) of 6a

SI-80

¹H NMR (400 MHz, CDCl₃) of 6v

¹H NMR (400 MHz, CDCl₃) of 6x

 1 H NMR (400 MHz, CDCl₃) of **6z**

¹H NMR (400 MHz, CDCl₃) of 6aa

The cross peak between $C^{6}H_{3}$ and C^{5} (2.01, 87.47) corresponds to the proposed structure resulting from the [1,5]-shift of the methyl group to C^{5} .

¹H NMR (400 MHz, CDCl₃) of 6ac

The weak cross peak between C^7H_3 and C^5 (3.76, 88.78) corresponds to the proposed structure resulting from the [1,5]-shift of the methoxycarbonyl group to C^5 .

The cross peak between $C^{6}H_{3}$ and C^{5} (2.09, 87.81) corresponds to the proposed structure resulting from the [1,5]-shift of the methyl group to C^{5} .

4.6.NMR Spectra of Other Products

¹H NMR (400 MHz, CDCl₃) of **7**

¹H NMR (400 MHz, CDCl₃) of **9**

5. Solid State Molecular Structures of 3i, 3k and 6ab

For single crystal X-ray diffraction experiments the single crystals of **3i**, **3k** and **6ab** were grown by slow evaporation of acetonitrile solution. Suitable crystals were fixed on a micro mount and placed on a **XtaLAB Synergy, Single source at home/near, HyPix** diffractometer (for **3i**) or **SuperNova, Single source at offset/far, HyPix3000** diffractometer (for **3k** and **6ab**) using CuKα monochromated radiation. All of crystals were measured at a temperature of 100(1) K. Using Olex2 [O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, **2009**, *42*, 339-341], the structures were solved with the SHELXT [G. M. Sheldrick, *Acta Crystallogr. Sect. A* 2015, *71*, 3-8] structure solution program using Intrinsic Phasing and refined with the SHELXL [G. M. Sheldrick, *Acta Crystallogr. Sect. C* 2015, *71*, 3-8] refinement package using Least Squares minimisation.

Crystal data	3i	3k	6ab
Identification code	PhMs	PhPh	2Н
CCDC Code	2175839	2175843	2175759
Empirical formula	$C_{25}H_{24}N_2O_2S$	$C_{38}H_{34}N_2O_2S$	$C_{31}H_{28}N_2O_2S$
Formula weight	416.52	582.73	492.61
Temperature/K	100(1)	100(1)	100(1)
Crystal system	monoclinic	triclinic	monoclinic
Space group	$P2_1/n$	P-1	P21/c
a, Å	22.1190(2)	11.9683(2)	9.41500(10)
b, Å	9.22190(10)	12.3878(2)	29.9165(4)
c, Å	22.2350(2)	12.7373(2)	9.16980(10)
α, °	90	64.494(2)	90
β, °	109.0630(10)	64.434(2)	91.0470(10)
γ, °	90	70.9590(10)	90
Volume, Å ³	4286.75(8)	1514.48(5)	2582.37(5)
Z	8	2	4
$\rho_{calc}, g/cm^3$	1.291	1.278	1.267
μ , mm ⁻¹	1.528	1.236	1.352
F(000)	1760.0	616.0	1040.0
Crystal size, mm ³	$0.03 \times 0.02 \times 0.02$	$0.12 \times 0.1 \times 0.06$	0.1 imes 0.04 imes 0.02
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka (λ = 1.54184)	Cu Ka (λ = 1.54184)
2Θ range for data collection, °	4.892 to 160.136	8.028 to 138.352	5.908 to 134.986
Index ranges	$-28 \leq h \leq 28,$	$-14 \le h \le 14,$	$-11 \le h \le 11,$
	$-11 \le k \le 11,$	$-15 \le k \le 14,$	$-25 \le k \le 35,$
	$-22 \le l \le 28$	$-15 \le l \le 15$	$-10 \le l \le 10$
Reflections collected	34149	19956	12987
Independent reflections	9056 [$R_{int} = 0.0381$,	5597 [$R_{int} = 0.0322$,	4597 [$R_{int} = 0.0273$,
	$R_{sigma} = 0.0362$]	$R_{sigma} = 0.0271$]	$R_{sigma} = 0.0288]$
Data/restraints/parameters	9056/0/547	5597/0/391	4597/0/328
Goodness-of-fit on F ²	1.039	1.069	1.049
Final R indexes [I≥2σ (I)]	$R_1 = 0.0356,$	$R_1 = 0.0356,$	$R_1 = 0.0361,$
	$wR_2 = 0.0891$	$wR_2 = 0.0935$	$wR_2 = 0.0913$
Final R indexes [all data]	$R_1 = 0.0408,$	$R_1 = 0.0394,$	$R_1 = 0.0401,$
	$wR_2 = 0.0921$	$wR_2 = 0.0966$	$wR_2 = 0.0936$
Largest diff. peak/hole / e·Å ⁻³	0.23/-0.40	0.22/-0.43	0.22/-0.39

