Supporting information for

Coordination assembly and NIR photothermal conversion of

Cp*Rh-based supramolecular topologies based on distinct conjugated systems

Li-Long Dang $\ddagger^{* a c}$, Ting-Ting Zhang $\ddagger^{\text {ab }}$, Tian Chena ${ }^{\text {a }}$, Ying Zhao ${ }^{\text {a }}$, Chen-Chen Zhao ${ }^{\text {a }}$, Francisco Aznarez ${ }^{\text {c }}$, Kai-XinSun ${ }^{\text {a }}$, Lu-Fang Ma ${ }^{\text {ab }}$a. College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials KeyLaboratory, Luoyang Normal University, Luoyang 471934, P. R. China.b. College of materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China.c. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of MolecularEngineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.*E-mail: danglilong8@163.com
Contents

1. General considerations 2
2. Synthesis of complex $1 \mathrm{a}, 1 \mathrm{~b}, \mathbf{2 , 3 , 4 , 5 , 6 , 7}$ 2
3. NMR spectra 5
4. ESI-MS spectra 29
5. UV-vis spectra 33
6. Near-infrared photothermal conversion research 34
7. X-ray crystallography details 36
8. References 44

1. General considerations

All reagents and solvents were purchased from commercial sources and used as supplied unless otherwise mentioned. The starting materials $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} \quad\left(\mathrm{Cp}^{*}=\eta^{5}\right.$-pentamethylcyclopentadienyl) ${ }^{[1]}$, BiBzIm $\left(\operatorname{BiBzIm}=2,2^{\prime}-\right.$ bisbenzimidazole) $)^{[2]}$ were prepared by literature methods. NMR spectra were recorded on Bruker AVANCE I 400 spectrometers at room temperature and referenced to the residual protonated solvent. Proton chemical shifts are reported relative to the solvent residual peak $\left(\delta \mathrm{H}=3.31\left(\mathrm{CD}_{3} \mathrm{OD}\right), 2.50\right.$ (DMSO-D6), $1.96\left(\mathrm{CD}_{3} \mathrm{CN}\right), 2.75,2.92$ (DMF))). Coupling constants are expressed in Hertz. Elemental analyses were performed on an Elementar Vario EL III analyzer. ESI-MS spectra were recorded on a Micro TOF II mass spectrometer.

2. Synthesis of complexes $1 \mathrm{a}, \mathbf{1 b}, \mathbf{2 , 3 , 4 , 5 , 6 , 7}$

Preparation of complex 1a (Borromean ring)

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 5,8-Dihydroxy-1,4naphthoquinone ($22.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a green solution. $\mathbf{L 1}(25.2 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the solution. The mixture was stirred at room temperature for another 12 h to give a dark green solution. Upon the addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford green block-shaped crystals (1a). 121.63 mg , yield 88.2%. Anal. Calcd for $\mathrm{C}_{264} \mathrm{H}_{264} \mathrm{~N}_{24} \mathrm{O}_{60} \mathrm{~F}_{36} \mathrm{~S}_{12} \mathrm{Rh}_{12}(\mathrm{M}=7036.69)$: C, 45.06; H, 3.80; $\mathrm{N}, 4.8$. Found: C, 45.01; H, 3.70; $\mathrm{N}, 4.60$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=9.36(\mathrm{~d}, 4 \mathrm{H} \mathrm{J}=6.0 \mathrm{~Hz}$, pyridyl-aH), $\delta=7.46$ (d, $4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-bH$), \delta=6.51(\mathrm{~s}, 4 \mathrm{H}$, phenyl- dH of E 4$), \delta=5.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{cH}$ of $-\mathrm{CH}=\mathrm{N}-$ group $), \delta=$ 1.71 (s, 30H, Cp*-H).

Preparation of complex 1b

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{CN}(10$ mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 5, 8-Dihydroxy-1,4naphthoquinone ($22.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a green solution. $\mathbf{L} \mathbf{1}(25.2 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the solution. The mixture was stirred at room temperature for another 12 h to give a dark green solution. Upon the addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford green block-shaped crystals (1b). 122.72 mg , yield 87.2%. Anal. Calcd for $\mathrm{C}_{88} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4}(\mathrm{M}=2345.56)$: C, $45.06 ; \mathrm{H}, 3.78$; $\mathrm{N}, 4.78$. Found: C, 45.02; H, 3.66; $\mathrm{N}, 4.71 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=8.56$ (s, $2 \mathrm{H}, \mathrm{cH}$ of $-\mathrm{CH}=\mathrm{N}$ - group), $\delta=8.46$ (d, 4 H , $\mathrm{J}=5.5 \mathrm{~Hz}$, pyridyl-aH), $\delta=7.80(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}$, pyridyl-bH$), \delta=7.17(\mathrm{~s}, 4 \mathrm{H}$, phenyl-dH of E4), $\delta=1.54(\mathrm{~s}$, $30 \mathrm{H}, \mathrm{Cp} *-\mathrm{H})$.

Preparation of complex 2

$\mathrm{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(37.2 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered to give a yellow solution.
$\mathbf{L} \mathbf{1}(25.2 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the filtrate. The mixture was stirred at room temperature for another 12 h to give a dark yellow solution. Upon the addition of diethyl ether, a red solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford red block-shaped crystals (2). 116.13 mg , yield 86.2%. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4} \mathrm{Cl}_{4}(\mathrm{M}=2111.10)$: C, 38.69; H, 3.82; N, 5.31 . Found: C, 38.60; H, 3.80; N, 5.30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=8.67$ (s, 2 H ,
cH of $-\mathrm{CH}=\mathrm{N}$ - group $), \delta=8.49(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-aH$), \delta=7.74(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-bH$), \delta=1.61$ (s, 30H, Cp*-H).

Preparation of complex 3

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(9$ mL) and DMF (1 mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}(17.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a yellow solution. $\mathbf{L 1}(25.2 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the filtrate. The mixture was stirred at room temperature for another 12 h to give a yellow solution. Upon the addition of diethyl ether, a yellow solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH}$ /diethyl ether mixture to afford yellow block-shaped crystals (3). 118.63 mg , yield 87.3%. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4}(\mathrm{M}=2149.36)$: C, 40.23; H, 3.94; N, 5.21. Found: C, 40.21; H, 3.90; N, 5.19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}): \delta=8.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{cH}$ of $-\mathrm{CH}=\mathrm{N}$ - group $), \delta=8.22(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl -aH$), \delta=7.83(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 4 H , pyridyl-bH), $\delta=1.62\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{H}\right)$.

Preparation of complex 4

$\mathrm{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(9$ $\mathrm{mL})$ and DMSO $(1 \mathrm{~mL})$ at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 2,5-Dihydroxy-1,4-benzoquinone ($16.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a pale yellow solution. $\mathbf{L} \mathbf{1}(25.2 \mathrm{mg}, 0.12$ mmol) was added to the filtrate. The mixture was stirred at room temperature for another 12 h to give a dark yellow solution. Upon the addition of diethyl ether, a dark yellow solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford yellow block-shaped crystals (4). 114.63 mg , yield 85.20%. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4}(\mathrm{M}=2245.44)$: C, 42.79; H, 3.78; $\mathrm{N}, 4.99$. Found: C, 42.71; H, 3.70; N, 4.90. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=8.62$ (s, 2H, cH of $-\mathrm{CH}=\mathrm{N}$ - group $), \delta=8.47(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl -aH$), \delta=7.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl -bH$), \delta=5.69$ (s, 2 H , phenyl-dH of E3), $\delta=1.68$ (s, $30 \mathrm{H}, \mathrm{Cp} *-\mathrm{H}$).

Preparation of complex 5 ([2]catenane)

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(9$ $\mathrm{mL})$ and DMSO $(1 \mathrm{~mL})$ at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 5,8-Dihydroxy-1,4-naphthoquinone ($22.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a green solution. $\mathbf{L} 2(26.9 \mathrm{mg}, 0.12 \mathrm{mmol})$ was then added. The mixture was stirred at room temperature for another 12 h to give a dark green solution. Upon the addition of diethyl ether, a dark green solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford green block-shaped crystals (5). 120.56 mg , yield 87.80%. Anal. Calcd for $\mathrm{C}_{176} \mathrm{H}_{168} \mathrm{~N}_{16} \mathrm{O}_{44} \mathrm{~F}_{24} \mathrm{~S}_{8} \mathrm{Rh}_{8}(\mathrm{M}=4747.06)$: C, 44.53; H, 3.57; $\mathrm{N}, 4.72$. Found: C, 45.01; H, 3.70; $\mathrm{N}, 4.60$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=8.69(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-aH), $\delta=8.13$ (d, $\mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl -bH), $\delta=7.24(\mathrm{~s}, 4 \mathrm{H}$, phenyl -cH of E 4$), \delta=1.62(\mathrm{~s}, 30, \mathrm{Cp} *-\mathrm{H})$.

Preparation of complex 6

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 2,5-Dihydroxy-1,4benzoquinone ($16.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a brown solution. $\mathbf{L} 2(26.9 \mathrm{mg}, 0.12 \mathrm{mmol})$ was then added. The mixture was stirred at room temperature for another 12 h to give a dark brown solution. Upon the
addition of diethyl ether, a dark brown solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford brown block-shaped crystals (6). 120.56 mg , yield 87.80%. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{22} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4}(\mathrm{M}=2273.41)$: C, 42.27; H, 3.55; N, 4.93. Found: C, 42.21; H, 3.52; $\mathrm{N}, 4.90 .^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}\right): \delta=8.61(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-aH), $\delta=8.21(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 4 H, pyridyl -bH$), \delta=5.70(\mathrm{~s}, 2 \mathrm{H}$, phenyl-cH of E3), $\delta=1.69(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp} *-\mathrm{H})$.

Preparation of complex 7

$\operatorname{AgOTf}(123.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(74.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{OH}(10$ mL) at room temperature. The mixture was stirred in the dark for 24 h and then filtered. 6,11-Dihydroxy-5,12naphthacenedione ($34.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{NaOH}(9.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to the filtrate. The mixed solution was stirred at room temperature for 12 h to give a blue-black solution. $\mathbf{L 2}$ ($26.9 \mathrm{mg}, 0.12 \mathrm{mmol}$) was then added. The mixture was stirred at room temperature for another 12 h to give a blue-black solution. Upon the addition of diethyl ether, a blue-black solid was precipitated and collected. The product was recrystallized from a $\mathrm{CH}_{3} \mathrm{OH} /$ diethyl ether mixture to afford blue-black block-shaped crystals (7). 120.23 mg , yield 87.42%. Anal. Calcd for $\mathrm{C}_{104} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{22} \mathrm{~F}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{4}(\mathrm{M}=2573.77)$: C, 48.53; H, 3.60; N, 4.35. Found: C, 48.28; H, 3.54; N, 4.30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm, with respect to $\mathrm{Cp} * \mathrm{Rh}$): $\delta=8.77(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}$, pyridyl-aH), $\delta=8.77-$ $8.76(\mathrm{~d}, 4 \mathrm{H}$, phenyl-cH of E5), $\delta=8.00(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-bH$), \delta=7.97-7.95(\mathrm{~m}, 4 \mathrm{H}$, phenyl-dH of E5), $\delta=1.73\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{H}\right)$.

3. NMR Spectra

Figure S1. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for Borromean ring 1a $(16.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S2. The full ${ }^{1} H$ NMR spectra showing the interconversion from the mixture of Borromean ring 1a and tetranuclear macrocycle $\mathbf{1 b}$ to complex $\mathbf{1 b}$ upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{DMF}-\mathrm{d}_{7}[18.0 \mathrm{mM}\right.$, with respect to Cp*Rh], 500 MHz).

Figure S3. The ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm) for Borromean ring $1 \mathbf{1 a}(16.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S4. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for Borromean ring $\mathbf{1 a}\left(2.57 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)(16.0$ mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S5. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for Borromean ring 1a, showing high concentration stability of Borromean ring 1a in a methanol solution. $(2.5-18.5 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{1 a}+\mathbf{1 b}(16.0 \mathrm{mM}$, Blue triangle for $\mathbf{1 a}$, Red circle for $\mathbf{1 b})$.

Figure S7. ${ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{1 a}+\mathbf{1 b}(16.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$. This DOSY spectra showed that Borromean ring 1a and metallarectangle 1b existed at the same time in a mediumconcentration solution Diffusion coefficient for $\mathbf{1 a}: 5.37 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and $\mathbf{1 b}: 3.90 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.

Figure S8. The ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, ppm) for metallarectangle $\mathbf{1 b}(1.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S9. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for metallarectangle $\mathbf{1 b}(1.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S10. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{2}(8.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S11. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $2(8.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S12. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}$) for metallarectangle $2\left(\mathrm{D}=3.53 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ (10.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S13. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for tetranuclear complex 2, showing high concentration stability of $\mathbf{2}$ in a methanol solution. $(1.5-13.5 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S14. The full ${ }^{1} \mathrm{H}$ NMR spectra showing no interconversion between tetranuclear complex 2 and other complex upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}[15.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S15. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{3}(18.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S16. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{3}(18.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S17. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{3}\left(\mathrm{D}=3.45 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ (18.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S18. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for tetranuclear complex 3, showing high concentration stability of $\mathbf{3}$ in a methanol solution. $(2.0-18.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S19. The full ${ }^{1} \mathrm{H}$ NMR spectra showing no interconversion between tetranuclear complex 3 and other complex upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}[25.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S20. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{4}(10.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S21. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{4}(10.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S22. The ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $4\left(\mathrm{D}=3.32 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ (10.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S23. The full ${ }^{1} \mathrm{H}$ NMR spectra showing no interconversion between tetranuclear complex 4 and other complex upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CD}_{3} \mathrm{CN}[10.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S24. The ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm) for [2]catenane $\mathbf{5}(10.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S25. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for [2]catenane $\mathbf{5}(10.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S26. The ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ DOSY NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm) for [2]catenane $5\left(\mathrm{D}=3.22 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)(10.0$ mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S27. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for [2] catenane 5, showing high concentration stability of [2] catenane 5 in a methanol solution. (2.5-14.5 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S28. The full ${ }^{1} \mathrm{H}$ NMR spectra showing no interconversion between [2] catenane $\mathbf{5}$ and other complex upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}[15.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S29. The full ${ }^{1} \mathrm{H}$ NMR spectra showing no interconversion between [2] catenane $\mathbf{5}$ and other complex upon changing solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CD}_{3} \mathrm{CN}[20.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S30. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for [2]catenane $\mathbf{5}$ under the condition of solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}=6: 7[15.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}\right)$.

Figure S31. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for [2]catenane 5 under the condition of solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}=6: 7\left[\mathrm{D}=2.88 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, 15.0 \mathrm{mM}\right.\right.$, with respect to $\left.\left.\mathrm{Cp} * \mathrm{Rh}\right], 500 \mathrm{MHz}\right)$.

Figure S32. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{6}(9.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S33. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{6}(9.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S34. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $\mathbf{6}\left(\mathrm{D}=3.13 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right.$, 9.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S35. The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle 6, showing high concentration stability of metallarectangle 6. (4.0-15.0 mM, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S36. The full ${ }^{1} \mathrm{H}$ NMR spectra for metallarectangle 6, showing high DMF solvent stability of metallarectangle 6 accompanied by the change of solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}\right)$ from 5:0 to 1:1 [10.0 mM, with respect to $\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}$).

Figure S37. The ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}$) for metallarectangle $\mathbf{6}$ in a mixture solution of $\mathrm{CD}_{3} \mathrm{OD}$ and DMF- d_{7} in a ratio of $1: 1(20.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S38. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}$) for metallarectangle $\mathbf{6}$ in a mixture solution of $\mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{DMF}-\mathrm{d}_{7}$ in a ratio of $1: 1\left(\mathrm{D}=2.95 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, 20.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}\right)$.

Figure S39. The full ${ }^{1} \mathrm{H}$ NMR spectra for metallarectangle 6, showing high conjugated molecule stability of metallarectangle 6 accompanied by the increase of pyrene molecules from 0 to three equivalent [10.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}$).

Figure S40. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) in a mixture of metallarectangle $\mathbf{6}$ and three equivalent pyrene molecules (10.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S41. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) in a mixture of metallarectangle 6 and three equivalent pyrene molecules $\left(\mathrm{D}=3.47 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, 10.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}\right)$.

Figure S42. The ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm$)$ for metallarectangle $7(13.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh})$.

Figure S43. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, ppm) for metallarectangle $7(13.0 \mathrm{mM}$, with respect to Cp*Rh).

Figure S44. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle $7\left(\mathrm{D}=3.26 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right.$, 13.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S45. The full ${ }^{1} \mathrm{H}$ NMR spectra for metallarectangle 7, showing high concentration stability of metallarectangle 7 ($2.0-18.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh}$).

Figure S46. The full ${ }^{1} \mathrm{H}$ NMR spectra for metallarectangle 7, showing high DMF solvent stability of metallarectangle 7 accompanied by the change of solvent ratio $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMF}-\mathrm{d}_{7}\right)$ from 5:0 to $1: 1[13.0 \mathrm{mM}$, with respect to $\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}$).

Figure S47. The full ${ }^{1} \mathrm{H}$ NMR spectra for metallarectangle 7, showing high conjugated molecule stability of metallarectangle 7 accompanied by the increase of pyrene molecules from 0 to three equivalents [13.0 mM , with respect to $\mathrm{Cp} * \mathrm{Rh}], 500 \mathrm{MHz}$).

Figure S48. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for metallarectangle 7 after being added in three equivalents pyrene molecules $\left(\mathrm{D}=3.19 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, 13.0 \mathrm{mM}\right.$, with respect to $\left.\mathrm{Cp} * \mathrm{Rh}\right)$.

4. ESI-MS spectra

Figure S49. Full ESI-MS spectra (a) of Borromean ring 1a, experimental ESI-MS spectra of [1a-3OTf $]^{-]^{3+}}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent.

Figure S50. Full ESI-MS spectra (top) of complex 1a, experimental ESI-MS spectra of [1a-5OTf ${ }^{\mathbf{5}}{ }^{\mathbf{5 +}}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent.

Figure S51. Full ESI-MS spectra (a) of complex 2, experimental ESI-MS spectra of [2-3OTf${ }^{\mathbf{-}}{ }^{\mathbf{3 +}}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent.

Figure S52. Full ESI-MS spectra (a) of complex 4, experimental ESI-MS spectra of [4-3OTf $]^{-3+}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent.

Figure S53. Full ESI-MS spectra (Top) of complex 6, experimental ESI-MS spectra of [6-3OTf ${ }^{-}{ }^{\mathbf{3 +}}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent.

5. The UV-vis spectra

Figure S54. The full UV/vis spectra of Borromean ring 1a accompanied by the dilution process from 3.5 mM to 0.2 mM in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S55. The full UV/vis spectra of [2]catenane 5 accompanied by the dilution process from 5.0 mM to 0.25 mM in $\mathrm{CH}_{3} \mathrm{CN}$.

6. Near-infrared photothermal conversion research

1. Experimental details.

(a) Details in solution.

To guarantee same amount of conjugated - π area, the applied molar ratio of the four topologies $\mathbf{1 a} / \mathbf{2} / \mathbf{3} / \mathbf{4} / \mathbf{5} / \mathbf{6} / \mathbf{7}$ was 2:6:6:6:3:6:6. Complex $\mathbf{1 a}(1.40 \mathrm{mg}, 0.0002 \mathrm{mmol})$ was added into a solvent of $\mathrm{CH}_{3} \mathrm{OH}(5.0 \mathrm{ml})$. After the solid dissolved absolutely, 3.0 ml of this solution was taken into quartz spectrophotometer cell $(1 \times 1 \times 5 \mathrm{~cm})$ and put into the bright spot of a laser with 660 nm wavelength at different current intensities. Temperature variation of the solution was detected by an infrared camera. Complex $2(1.10 \mathrm{mg}, 0.0005 \mathrm{mmol})$, Complex $\mathbf{3}(1.10 \mathrm{mg}, 0.0005 \mathrm{mmol})$ and Complex 4 $(1.15 \mathrm{mg}, 0.0005 \mathrm{mmol})$, Complex $5(1.21 \mathrm{mg}, 0.0003 \mathrm{mmol})$, Complex 6 ($1.20 \mathrm{mg}, 0.0005 \mathrm{mmol}$) and Complex $7(1.30 \mathrm{mg}, 0.0005 \mathrm{mmol})$, were detected with the same procedure as complex 1a.
(b) Details in the liquid state.

The methanol solution in (a) each contained complex 1a, complex 2, complex 3, complex 4, complex 5 , complex 6 , and complex 7 were put a 0.7 ml sample vessel. And then, they were put under a laser and temperature variation were detected by a same infrared camera. Equations used to calculate near-infrared photothermal conversion efficiency were exhibited as follows:
$\boldsymbol{\eta}=\mathbf{h S}\left(\Delta \mathrm{T}_{\text {sample }}-\Delta \mathrm{T}_{\text {solvent }}\right) / \boldsymbol{I}\left(\mathbf{1 - 1 0} \mathbf{0}^{-\mathbf{A}}\right) \mathbf{(1)}$
$\mathbf{h S}=\sum \mathrm{mC}_{\mathrm{p}} / \boldsymbol{\tau}_{\mathrm{s}}(\mathbf{2})$
$\tau_{\mathrm{s}}=-\mathrm{t} / \ln \theta(3)$
$\theta=\left(\mathbf{T}_{\mathrm{amb}}-\mathbf{T}\right) /\left(\mathbf{T}_{\mathrm{amb}}-\mathbf{T}_{\mathrm{max}}\right)(4)$

Thereinto, $\mathbf{C}_{\mathbf{p}}=2.51 \mathrm{KJ} /(\mathrm{Kg} \cdot \mathrm{K}), \Delta \mathrm{T}_{\text {solvent }}=2.2^{\circ} \mathrm{C} . \mathbf{I}=0.6 \mathrm{~W} / \mathrm{cm}^{2}, \mathbf{h}$ is the heat transfer coefficient and \mathbf{S} is the surface area of the container. $\boldsymbol{\tau}_{\mathbf{s}}$ is the sample system time constant, m is the mass of the products, Thus, $\sum \mathrm{mC}_{\mathrm{p}}=\mathrm{m}_{\text {(methanol) }} \mathrm{C}_{\mathrm{p}(\text { methanol })}=\rho_{\text {(methanol) }} \mathrm{V}_{\text {(methanol) }} \mathrm{C}_{\mathrm{p}(\text { methanol })}=0.791 \times 0.7 \times 2.51$ $=1.3898 \mathrm{~J} \cdot \mathrm{~K}^{-1}$.
Here, the volume deviation of the mixed solvent is ignored.

2. Complex 1a (Borromean ring).

Figure S56. The complex 1a in methanol under laser irradiation of different current intensities was ploted it as the Fitting linear of $\ln \theta-\mathrm{t}$.
Near-infrared photothermal conversion efficiency η of $\mathbf{1 a}$ was calculated by equations above. A fitting linear of $\ln \theta-t$ was obtained by Eqs (3) and (4), by which η was calculated as 11.8%, 19.72 $\%, 23.58 \%, 18.54 \%, 19.76 \%$ and 17.81% at different laser power densities of $0.5,0.7,0.9,1.1$, 1.3 , and $1.5 \mathrm{~W} / \mathrm{cm}^{-2}$.

3. Complex 5 ([2]catenane)

Figure S57. The complex 5 ([2]catenane) in methanol under laser irradiation of different current intensities was ploted it as the Fitting linear of $\ln \theta-\mathrm{t}$.
Near-infrared photothermal conversion efficiency η of $\mathbf{5}$ was calculated by equations above. A fitting linear of $\ln \theta$-t was obtained by Eqs (3) and (4), by which η was calculated as $18.82 \%, 14.84$ $\%, 19.86 \%, 22.03 \%, 14.31 \%$ and 13.98% at different laser power densities of $0.5,0.7,0.9,1.1$, 1.3 , and $1.5 \mathrm{~W} / \mathrm{cm}^{-2}$.

7. X-ray crystallography details

Single crystals of $\mathbf{1 a}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}$ and 7, suitable for X-ray diffraction study were obtained at room temperature. X-ray intensity data of them were collected at $250,173,150,173,150,173 \mathrm{~K}$ and 193K on a CCD-Bruker SMART APEX system. In these data, the disordered solvent molecules which could not be restrained properly were removed using the PLATON Squeeze routine.

In asymmetric unit of 1a, a solvent mask was calculated and 3068 electrons were found in a volume of $9729 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 5 voids per unit cell. This is consistent with the presence of $0.9[\mathrm{CH} 3 \mathrm{OH}]$, $10[\mathrm{CF} 3 \mathrm{SO} 3], 0.7[\mathrm{CH} 3 \mathrm{OH}], 0.9[\mathrm{CH} 3 \mathrm{OH}]$ per Asymmetric Unit which account for 3100 electrons per unit cell.
In asymmetric unit of 2, A solvent mask was calculated and 402 electrons were found in a volume of $2750 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 1 void per unit cell. This is consistent with the presence of $0.088[\mathrm{C} 6 \mathrm{H} 14 \mathrm{O}]$ per Asymmetric Unit which account for 464 electrons per unit cell.
In asymmetric unit of $\mathbf{3}$, a solvent mask was calculated and 138 electrons were found in a volume of $540 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 1 void per unit cell. This is consistent with the presence of $8[\mathrm{CH} 3 \mathrm{OH}]$ per Asymmetric Unit which account for 144 electrons per unit cell.
In asymmetric unit of 4, a solvent mask was calculated and 86 electrons were found in a volume of $572 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 2 voids per unit cell. This is consistent with the presence of $1.3[\mathrm{CH} 3 \mathrm{OH}]$ per Asymmetric Unit which account for 94 electrons per unit cell.
In asymmetric unit of $\mathbf{5}$, a solvent mask was calculated and 1758 electrons were found in a volume of $6008 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 3 voids per unit cell. This is consistent with the presence of $0.5[\mathrm{CH} 3 \mathrm{OH}]$, $6[\mathrm{CF} 3 \mathrm{SO} 3], 0.9[\mathrm{CH} 3 \mathrm{OH}]$ per Asymmetric Unit which account for 1853 electrons per unit cell.
In asymmetric unit of $\mathbf{6}$, a solvent mask was calculated and 426 electrons were found in a volume of 1196$)^{\%} \mathrm{~A}^{\wedge} 3^{\wedge}$ in 1 void per unit cell. This is consistent with the presence of 1.5 [CF3SO3] per Asymmetric Unit which account for 438 electrons per unit cell.
In asymmetric unit of 7, a solvent mask was calculated and 772 electrons were found in a volume of $4744 \backslash \% \mathrm{~A}^{\wedge} 3^{\wedge}$ in 2 voids per unit cell. This is consistent with the presence of $0.3[\mathrm{CH} 3 \mathrm{OH}]$, $3.4[\mathrm{C} 6 \mathrm{H} 14 \mathrm{O}]$ per Asymmetric Unit which account for 810 electrons per unit cell.

Table 1 Crystal data and structure refinement for 1 a .

Empirical formula	$\mathrm{C}_{543} \mathrm{~F}_{96} \mathrm{H}_{546} \mathrm{~N}_{48} \mathrm{O}_{149} \mathrm{Rh}_{24} \mathrm{~S}_{32}$
Formula weight	15448.00
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a / \AA	39.606(3)
b/Å	22.0684(15)
c/Å	40.033(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	112.497(3)
$\gamma /{ }^{\circ}$	90
Volume/Å3	32328(4)
Z	2
¢calcg/cm3	1.587
μ / mm - 1	4.505
$F(000)$	15576.0
Crystal size/mm3	$0.2 \times 0.17 \times 0.15$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	3.874 to 108.336
Index ranges	$-47 \leq \mathrm{h} \leq 46,-26 \leq \mathrm{k} \leq 26,-47 \leq 1 \leq 48$
Reflections collected	250412
Independent reflections	59375 [Rint $=0.1082$, Rsigma $=0.0877]$
Data/restraints/parameters	59375/5731/3243
Goodness-of-fit on F2	1.019
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R} 1=0.0957, \mathrm{wR} 2=0.2804$
Final R indexes [all data]	$\mathrm{R} 1=0.1659, \mathrm{wR} 2=0.3364$
Largest diff. peak/hole / e \AA-3	1.88/-1.49

Table 2 Crystal data and structure refinement for 2.

Empirical formula	$\mathrm{C}_{80} \mathrm{C}_{14} \mathrm{~F}_{12} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
Formula weight	2234.78
Temperature/K	193.00
Crystal system	tetragonal
Space group	$P 42 / \mathrm{n}$
a / \AA A	28.6327(10)
b/ \AA	28.6327(10)
c/Å	12.2481(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/Å3	10041.4(9)
Z	4
ρ calcg/cm3	1.478
$\mu / \mathrm{mm}-1$	5.163
$F(000)$	4384.0
Crystal size/mm3	$0.24 \times 0.22 \times 0.2$
Radiation	$\operatorname{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	5.37 to 107.828
Index ranges	$-34 \leq \mathrm{h} \leq 34,-34 \leq \mathrm{k} \leq 30,-14 \leq 1 \leq 14$
Reflections collected	74353
Independent reflections	9152 [Rint $=0.0445$, Rsigma $=0.0260]$
Data/restraints/parameters	9152/487/515
Goodness-of-fit on F2	1.061
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R} 1=0.0428, \mathrm{wR} 2=0.1315$
Final R indexes [all data]	$\mathrm{R} 1=0.0517, \mathrm{wR} 2=0.1377$
Largest diff. peak/hole / e \AA - 3	0.57/-1.13

Table 3 Crystal data and structure refinement for 3.

Empirical formula	$\mathrm{C}_{80} \mathrm{~F}_{12} \mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
Formula weight	2401.65
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a / \AA	12.2741(4)
b/Å	14.5553(6)
c/ \AA	15.9583(6)
$\alpha /{ }^{\circ}$	114.615(4)
$\beta /{ }^{\circ}$	97.597(3)
$\gamma /{ }^{\circ}$	101.737(3)
Volume/Å3	2461.21(18)
Z	1
pcalcg/cm3	1.620
μ / mm - 1	0.844
$F(000)$	1224.0
Crystal size/mm3	$0.24 \times 0.22 \times 0.2$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.572 to 50
Index ranges	$-13 \leq \mathrm{h} \leq 14,-16 \leq \mathrm{k} \leq 17,-18 \leq 1 \leq 18$
Reflections collected	16583
Independent reflections	8668 [Rint $=0.0293$, Rsigma $=0.0533$]
Data/restraints/parameters	8668/560/551
Goodness-of-fit on F2	1.030
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0818, \mathrm{wR} 2=0.2237$
Final R indexes [all data]	$\mathrm{R} 1=0.0964, \mathrm{wR} 2=0.2397$
Largest diff. peak/hole / e \AA-3	4.26/-2.56

Table 4 Crystal data and structure refinement for 4.

Empirical formula	$\mathrm{C}_{80} \mathrm{H}_{84} \mathrm{~F}_{12} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
Formula weight	2245.43
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a/Å	14.2991(8)
b / \AA ¢	9.2719(5)
c / \AA A	36.5863(17)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.401(3)
$\gamma{ }^{\circ}$	90
Volume/Å3	4798.6(4)
Z	2
¢calcg/cm3	1.554
$\mu / \mathrm{mm}-1$	4.758
F(000)	2264.0
Crystal size/mm3	$0.2 \times 0.18 \times 0.16$
Radiation	$\operatorname{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection $/{ }^{\circ}$	4.248 to 107.922
Index ranges	$-17 \leq \mathrm{h} \leq 17,-11 \leq \mathrm{k} \leq 6,-44 \leq 1 \leq 23$
Reflections collected	32754
Independent reflections	8748 [Rint $=0.0743$, Rsigma $=0.0661$]
Data/restraints/parameters	8748/575/587
Goodness-of-fit on F2	1.022
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0735, \mathrm{wR} 2=0.2054$
Final R indexes [all data]	$\mathrm{R} 1=0.1101, \mathrm{wR} 2=0.2338$
Largest diff. peak/hole / e Å-3	2.24/-1.16

Table 5 Crystal data and structure refinement for 5

Empirical formula	$\mathrm{C}_{180.4} \mathrm{~F}_{33} \mathrm{H}_{173.6} \mathrm{~N}_{16} \mathrm{O}_{54.4} \mathrm{Rh}_{8} \mathrm{~S}_{11}$
Formula weight	5239.08
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a / \AA A	35.8023(15)
b/ \AA	16.7153(8)
c/Å	36.5538(17)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.060(2)
$\gamma /{ }^{\circ}$	90
Volume/Å3	21659.4(17)
Z	4
ρ calcg/cm3	1.607
$\mu / \mathrm{mm}-1$	4.525
$F(000)$	10545.0
Crystal size/mm3	$0.25 \times 0.22 \times 0.2$
Radiation	$\operatorname{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	2.814 to 120.838
Index ranges	$-45 \leq \mathrm{h} \leq 40,-18 \leq \mathrm{k} \leq 21,-46 \leq 1 \leq 36$
Reflections collected	164579
Independent reflections	47800 [Rint $=0.0689$, Rsigma $=0.0711]$
Data/restraints/parameters	47800/2405/2308
Goodness-of-fit on F2	1.071
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R} 1=0.0774, \mathrm{wR} 2=0.2194$
Final R indexes [all data]	$\mathrm{R} 1=0.1155, \mathrm{wR} 2=0.2466$
Largest diff. peak/hole / e \AA - 3	1.47/-0.73

Table 6 Crystal data and structure refinement for 6

Empirical formula	$\mathrm{C}_{81} \mathrm{~F}_{15} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{25} \mathrm{Rh}_{4} \mathrm{~S}_{5}$
Formula weight	2422.47
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a / \AA ¢	14.3226(9)
b/Å	9.2264(5)
c/Å	36.521(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.038(3)
$\gamma /{ }^{\circ}$	90
Volume/Å3	4823.0(5)
Z	2
pcalcg/cm3	1.668
μ / mm - 1	4.952
F(000)	2434.0
Crystal size/mm3	$0.21 \times 0.2 \times 0.16$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	5.372 to 108.07
Index ranges	$-15 \leq \mathrm{h} \leq 17,-8 \leq \mathrm{k} \leq 11,-44 \leq 1 \leq 44$
Reflections collected	30284
Independent reflections	8783 [Rint $=0.0472$, Rsigma $=0.0476$]
Data/restraints/parameters	8783/11/543
Goodness-of-fit on F2	1.074
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R} 1=0.0441, \mathrm{wR} 2=0.1142$
Final R indexes [all data]	$\mathrm{R} 1=0.0592, \mathrm{wR} 2=0.1226$
Largest diff. peak/hole / e \AA-3	0.68/-1.08

Table 7 Crystal data and structure refinement for 7

Empirical formula	$\mathrm{C}_{124.7} \mathrm{~F}_{12} \mathrm{H}_{140.8} \mathrm{~N}_{8} \mathrm{O}_{25.7} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
Formula weight	2930.72
Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pnma
a/Å	38.9323(13)
b/A	29.3060(10)
c / \AA	12.4311(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/Å3	14183.3(8)
Z	4
¢calcg/cm3	1.372
$\mu / \mathrm{mm}-1$	3.324
F(000)	6010.0
Crystal size/mm3	$0.17 \times 0.16 \times 0.14$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	3.948 to 107.96
Index ranges	$-46 \leq \mathrm{h} \leq 46,-26 \leq \mathrm{k} \leq 35,-12 \leq 1 \leq 14$
Reflections collected	89968
Independent reflections	13228 [Rint $=0.0501$, Rsigma $=0.0320$]
Data/restraints/parameters	13228/682/700
Goodness-of-fit on F2	1.059
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0923, \mathrm{wR} 2=0.2263$
Final R indexes [all data]	$\mathrm{R} 1=0.1003, \mathrm{wR} 2=0.2305$
Largest diff. peak/hole / e \AA-3	2.44/-0.82

8. References

1. C. White, A. Yates and P. M. Maitlis, $\eta 5$-Pentamethylcyclopentadienyl) rhodium and -iridium
compounds. Inorg. Synth., 1992, 29, 228-234.
2. T. Wu, L. H. Weng and G. X. Jin, Sunlight induced cycloaddition and host-guest property of selfassembled organometallic macrocycles based on a versatile building block. Chem. Comm., 2012, 48, 4435-4437.
