Electricity-Driven Redox-Neutral C(sp³)-H Amidation with

N-alkoxyamide as Amidating Reagent

Fengyi Li, Yating Liang, Xuan Zhan, Sheng Zhang,* and Man-Bo Li*

Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China.

Email: shengzhang@ahu.edu.cn; mbli@ahu.edu.cn;

Supporting Information

Table of Contents

Part I Experimental Section	S2
1. General information	S2
2. Optimization of reaction conditions	S2-S3
3. General procedure for the electrochemical amidation	S4-S5
4. Procedure for gram scale reaction and the reaction using solar cell	S5-S6
5. Control experiments	S6-S10
6. Cyclic voltammetric experiments	S11-S13
7. Experimental data for products	S14-S25
8. References	S26
NMR spectra	S27-S62

1. General Information

¹H NMR and ¹³C NMR were recorded on a Bruker 400 MHz spectrometer (¹H NMR: 400MHz, ¹³C NMR: 100MHz). The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. ¹H NMR spectra were referenced to the solvent residual peak (TMS, δ 0 ppm) and ¹³C{1H} NMR spectra were referenced to the solvent residual peak (CDCl₃, δ 77.0 ppm, DMSO-d₆, δ 39.5 ppm). High Resolution mass spectra were obtained using ThermoFisher LTQ Orbitrap XL mass spectrometer. All solvents were purified and dried according to the standard procedures unless otherwise noted. Commercially substrates were purchased and used directly. *N*-alkoxyamides^{1,2}, xanthanes³, 9*H*-thioxanthene⁴ and 5*H*-dibenzo[*a*,*d*][7]annulene⁵ were prepared according to the literature procedures.

2. Optimization of reaction conditions

Table S1. Optimization of redox-neutral C(sp³)-H amidation ^a

	O N H H +	2a	Undivided cell 15 mA, 3h, r.t	
Entry	Electrolyte	Flectrodes	Solvent 3aa	4aa Vield of 3aa/4aa (%) ^b
LIILIY	Liectionyte	Liecti dues	Solvent	neiu of Saa/4aa (76)
1	ⁿ Bu ₄ NClO ₄	Pt(+)-C(-)	MeCN	81/9
2	ⁿ Bu ₄ NClO ₄	Pt(+)-C(-)	MeCN/DCM(1/2)	48/11
3	ⁿ Bu ₄ NClO ₄	Pt(+)-C(-)	MeCN/MeOH(1/2)	18/23
4	ⁿ Bu ₄ NClO ₄	Pt(+)-C(-)	MeCN/THF(1/2)	91/trace
5	ⁿ Bu ₄ NBF ₄	Pt(+)-C(-)	MeCN/THF(1/2)	54/23
6	ⁿ Bu₄NOAc	Pt(+)-C(-)	MeCN/THF(1/2)	trace/trace
7	ⁿ Bu₄NBr	Pt(+)-C(-)	MeCN/THF(1/2)	trace/47
8	ⁿ Bu ₄ NClO ₄	C(+)-C(-)	MeCN/THF(1/2)	63/18
9	ⁿ Bu ₄ NClO ₄	Pt(+)-Pb(-)	MeCN/THF(1/2)	99/trace
10	ⁿ Bu ₄ NClO ₄	Pt(+)-Ni(-)	MeCN/THF(1/2)	83/11

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.75 mmol), electrolyte (1 mmol), solvent (9 mL), graphite rod electrode (0.6*10 cm), metal plate electrode (1.5*1.5 cm), 15 mA, 3h (3.7 F/mol), room temperature. ^{*b*} Isolated yield of **3aa** and the yield of **4aa**.

In an undivided cell, various solvents were first screened (entries 1-4, Table S1). It was found that mixed solvent of acetonitrile and tetrahydrofuran (1/2, v/v) could exclusively afford the desired product **3aa** with the best yield (entry 4). In sharp contrast, protic solvent MeOH led to mixed products **3aa** and **4aa** in diminished yields (entry 3), owning to undesired cathodic hydrogen evolution. Varying ⁿBu₄NClO₄ to other electrolytes failed to give better results (entries 5-7). Specifically, ⁿBu₄NBr could only afford dehydrogenative aminated product **4aa** (entry 7). Investigation on the electrodes (entries 8-10) showed that platinum anode and lead cathode are the most efficient one to afford the desired product **3aa** with nearly quantitative yield (99%, entry 9).

Table S2. Optimization of electrochemical oxidative C(sp³)-H amidation ^a

	° V		ed cell	
	H_2 + H_			
Entry	Electrodes	Solvent	Electrolyte	Yield (%) ^b
1	Pt(+)-C(-)	MeCN	ⁿ Bu ₄ NClO ₄	64
2	Pt(+)-C(-)	MeCN/MeOH (8/1)	ⁿ Bu ₄ NClO ₄	34
3	Pt(+)-C(-)	MeCN/DCM(1/2)	ⁿ Bu ₄ NClO ₄	70
4	Pt(+)-C(-)	MeCN/THF(1/2)	ⁿ Bu ₄ NClO ₄	68
5	Pt(+)-C(-)	MeCN/DCM(1/2)	ⁿ Bu ₄ NBF ₄	67
6	Pt(+)-C(-)	MeCN/ DCM (1/2)	ⁿ Bu ₄ NOAc	61
7	Pt(+)-C(-)	MeCN/ DCM (1/2)	ⁿ Bu₄NBr	trace
8	C(+)-C(-)	MeCN/DCM(1/2)	ⁿ Bu ₄ NClO ₄	61
9	C(+)-Pt(-)	MeCN/DCM(1/2)	ⁿ Bu ₄ NClO ₄	59
10	Ni(+)-C(-)	MeCN/DCM(1/2)	ⁿ Bu ₄ NClO ₄	68

^{*a*} Reaction conditions: **0a** (0.5 mmol), **2a** (0.75 mmol), electrolyte (1 mmol), solvent (9 mL), graphite rod electrode (0.6*10 cm), metal plate electrode (1.5*1.5 cm), 15 mA, 3h (3.7 F/mol), room temperature. ^{*b*} Isolated yield of **3aa**.

We also investigated electrochemical oxidative $C(sp^3)$ -H amidation using benzamide as amidating reagent (Table S2). First, various solvent was screened (entries 1-4), and it showed that mixed solvent of acetonitrile and dichloromethane gave the desired product **3aa** with the best yield (70%, entry 3). Second, replacing ⁿBu₄NClO₄ with other electrolytes failed to give better results (entries 5-7). Finally, various electrodes were studied. Changing platinum anode or graphite cathode led to decreased yields (entries 8-10).

3. General procedure for the electrochemical amidation

Figure S1 Electrolysis setup (graphite rod: diameter 0.6 cm, length 10 cm; lead plate: 1.5 cm (width) *1.5 cm (immersion depth); platinum plate: 1.5 cm *1.5 cm)

Condition I (3aa as example)

An undivided cell was equipped with a magnet stirrer, platinum plate ($1.5 \times 1.5 \text{ cm}^2$), lead plate ($1.5 \times 1.5 \text{ cm}$), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate *N*-(benzyloxy)benzamide **1a** (114 mg, 0.5 mmol), 9*H*-xanthene **2a** (137 mg, 0.75 mmol) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 20/1-10/1) on silica gel to afford the desired product **3aa** (149 g) in 99 % yield.

An undivided cell was equipped with a magnet stirrer, platinum plate ($1.5 \times 1.5 \text{ cm}^2$), graphite rod ($0.6 \times 10 \text{ cm}$), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate benzamide **0a** (61 mg, 0.5 mmol), 9*H*-xanthene **2a** (137 mg, 0.75 mmol) and ^{*n*}Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/DCM (3/6 mL). The resulting

mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 20/1-10/1) on silica gel to afford the desired product **3aa** (211 g) in 70 % yield.

4. Procedure for gram scale reaction and the reaction using solar cell

Figure S2 Gram electrolysis device (platinum mesh: length 5.0 cm, width 2.0 cm, immersion depth 2.0 cm; Lead sheet: length 10.0 cm, width 1.5 cm, immersion depth 4.0 cm)

An undivided cell was equipped with a magnet stirrer, platinum mesh (2.0 *2.0 cm²), lead plate (1.5*4.0 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S2). The substrate *N*-(benzyloxy)benzamide **1a** (1.14 g, 5 mmol), 9*H*-xanthene **2a** (1.37 g, 7.5 mmol) and "Bu₄NClO₄ (1.71 g, 5 mmol) were added to the solvent MeCN/THF (15/30 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (56 mA) at room temperature for 8 hours (the initial voltage is 10 V). The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 20/1-10/1) on silica gel to afford the desired product **3aa** (1.37 g) in 91 % yield.

Using solar cell as electricity supply

Figure S3 Electrolysis setup with solar cell (135 mm*165mm) as electricity supply (10:00-12:00 am, May 16th, 2022 at Hefei, China)

An undivided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S3). The substrate *N*-(benzyloxy)benzamide **1a** (114 mg, 0.5 mmol), 9*H*-xanthene **2a** (137 mg, 0.75 mmol) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze using a solar cell as electricity supply under sunlight for 2 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/EA= 20/1-10/1) on silica gel to afford the desired product **3aa** (149 g) in 99 % yield.

5. Control experiments

Reaction progress monitoring

To better understand the reaction intermediate, we performed the reaction under the standard conditions with 0.5 h, 1h, 1.5h, 2h, and 2.5h. Corresponding products **3aa** and **4aa** were isolated and the yields are listed below.

Time(h)	0	0.5	1	1.5	2	2.5	3
3 aa (%)	0	0	19	39	57	68	99
4aa (%)	0	26	31	34	46	14	0

Figure S4. Reaction progress monitoring (smoothed curve)

Reaction of 4aa under standard conditions

3aa, 91% yield

An undivided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate N-(benzyloxy)benzamide 4aa (204 mg, 0.5 mmol) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 20/1-10/1) on silica gel to afford the desired product **3aa** (137 g) in 99 % yield.

Reaction in divided cell

Figure S5 Divided cell setup (lead plate: 1.5 cm (width) *1.5 cm (immersion depth); platinum plate: 1.5 cm *1.5 cm)

An divided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S5). The substrate *N*-(benzyloxy)benzamide **1a** (114 mg, 0.5 mmol), 9*H*-xanthene **2a** (137 mg, 0.75 mmol) and $^{n}Bu_{4}NClO_{4}$ (342 mg, 2 mmol) were added to the solvent MeCN/THF (6/12 mL). The resulting mixture was divided equally between two chambers and was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. Only trace of **4aa** was detected in the anodic chamber

A divided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S5). The substrate *N*-(benzyloxy)benzamide **4aa** (204 mg, 0.5 mmol) and $^{n}Bu_{4}NClO_{4}$ (342 mg, 2 mmol) were added to the solvent MeCN/THF (6/12 mL). The resulting mixture was divided equally between two chambers and was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. Then the solvent in cathodic chamber was removed with a rotary evaporator. The residue was purified by column chromatography ((PE/ EA= 20/1-10/1) on silica gel to afford product **3aa** (68 mg) in 90 % yield.

Radical suppression experiment

1a + 2a
$$\xrightarrow{\text{standard conditions}}{\text{radical scavengers (rs,1.5 equiv.)}}$$
 3aa
rs: 1,1-diphenylethylene 99%
PhO₂S $\xrightarrow{\downarrow}$ 0 95%
PhO₂S $\xrightarrow{\downarrow}$ 15%

15%

An undivided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate N-(benzyloxy)benzamide 1a (114 mg, 0.5 mmol), 9H-xanthene 2a (137 mg, 0.75 mmol) radical scavengers (1.5 equiv.) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/EA= 20/1-10/1) on silica gel to afford the desired product 3aa.

As shown above, 1.5 equivalents of 1,1-diphenylethylenen and methyl 2-((phenylsulfonyl)methyl)acrylate marginally affected the reaction performance, indicating an ionic pathway. Nevertheless, reactive scavenger (1-cyclopropylvinyl)benzene led to diminished yield (15%). This result suggests a radical intermediate may be involved in the reaction. Given these results, aromatic cation arising from the anodic oxidation of 9H-xanthene are proposed to be the major intermediate, while radical species is a transient intermediate and can be further oxidized to aromatic cation.

KIE study

An undivided cell was equipped with a magnet stirrer, platinum plate (1.5 *1.5 cm²), lead plate (1.5*1.5 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate N-(benzyloxy) benzamide 1a (114 mg, 0.5 mmol), 9H-xanthene 2a-d₂ (70 mg, 0.325 mmol), 2a (69 mg, 0.325 mmol) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 1 hours. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/EA= 20/1-10/1) on silica gel to afford the desired product **3aa** and **3aa-d1** and the ratio of product was determined by ¹H NMR.

Figure S6. Reaction mixture of 3aa and 3aa-d1

An undivided cell was equipped with a magnet stirrer, platinum plate ($1.5 \times 1.5 \text{ cm}^2$), graphite rod ($0.6 \times 10 \text{ cm}$), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). The substrate 9*H*-xanthene **2a** (136.5 mg, 0.75 mmol) and "Bu₄NClO₄ (342 mg, 1 mmol) were added to the solvent MeCN/THF (3/6 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA,) at room temperature for 30 minutes. The colorless reaction mixture changed to yellow. Then the substrate *N*-(benzyloxy)benzamide **1a** (113.5 mg, 0.5 mmol) was added to the reaction mixture. The resulting mixture was allowed to stir at room temperature overnight and the resulting mixture turned to cyan. The combined organic phase was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 20/1-10/1) on silica gel to afford the desired product **4aa** (41.7 mg, 20% yield) .

6. Cyclic voltammetric experiments

Figure S7. Cyclic voltammograms of substrates in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV·s⁻¹ scan rate.

As shown in the Fig. S7, substrate **2a** is more susceptible to oxidation when compared with **1a**, with anodic peaks at 1.38V and 1.91V respectively. By contrast, the anodic peak of primary amide **0a** is 2.18 V, which further verifies the inert reactivity of **0a**.

Figure S8. Cyclic voltammograms of substrates in 0.1 M ^{*n*}Bu₄ClO₄ (EtOAc), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes

at a 100 mV·s⁻¹ scan rate: a. 9H-xanthene. b. N-(benzyloxy)benzamide. c. 4aa.

The cathodic behavior of substrates **1a**, **2a** and intermediate **4aa** was also explored (Fig. S8). The intermediate **4aa** was found to be the cathodic active species in the reaction with a peak at -2.66 V, which is less negative than that of **1a** (-3.11V) and **2a** (-3.20V)

Figure S9. Cyclic voltammograms of substrates in 0.1 M n Bu₄ClO₄ (EtOAc), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV·s⁻¹ scan rate.

Reduction potential of various *N*-benzyloxy amides were investigated. It showed that electrondeficient substrate is more reducible than the electron-rich one. Reducible *N*-benzyloxy amides might lead to direct cathodic N-O cleavage rather than sequential oxidative C-H amidation and N-O cleavage.

Figure S10. Cyclic voltammograms of substrates in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV·s⁻¹ scan rate.

We also studied oxidation potential of 9*H*-xanthanes. Substitution of 9*H*-xanthanes slightly affected their oxidation potential, and all of the oxidation peaks are around 1.2-1.4 V, which are all lower than that of *N*-benzyloxy amide. These results could serve as explanation of the uniform yields arising from variation of 9*H*-xanthanes.

7. Experimental data for products

N-(9*H*-Xanthen-9-yl)benzamide (**3aa**): 149 mg, 99% yield (**condition I**); 105 mg, 70% yield (**condition II**); 1.37 g, 91% yield (gram scale); white solid, mp 227-228 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.13 (m, 4H), 6.78 (d, *J* = 12.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.5, 151.1, 134.0, 131.8, 129.7, 129.4, 128.6, 127.0, 123.7, 121.0, 116.7, 44.3. These data are in accordance with the literature. ⁶

4-Methyl-*N*-(9*H*-xanthen-9-yl)benzamide (**3ab**): 156 mg, 99% yield (**condition I**); 79 mg, 50% yield (**condition II**); white solid, mp 216-219 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.36 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.15 (m,4H), 6.55 (d, *J* = 8.0 Hz, 1H), 2.34 (s,3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.7, 150.6, 141.3, 131.1, 129.0, 128.9, 128.8, 127.5, 123.4, 121.8, 116.1, 43.0, 20.9. These data are in accordance with the literature.⁷

4-Ethyl-*N*-(9*H*-xanthen-9-yl)benzamide (**3ac**): 163 mg, 99% yield; white solid, mp 238-240 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 9.38 (d, *J* = 4.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 4.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 4.0 Hz, 2H), 7.14 (t, *J* = 4.0 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 1H), 2.64 (q, 2H), 1.18 (t, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ: 165.7, 150.6, 147.6, 131.4, 129.0, 128.9, 127.6, 123.4, 121.8, 116.1, 43.0, 28.0, 15.4; HRMS (ESI): cacld. for C₂₂H₁₉NO₂ [M+Na]⁺: 352.1308, found 352.1317.

4-(*tert*-Butyl)-*N*-(9*H*-xanthen-9-yl)benzamide (**3ad**): 175 mg, 98% yield; white solid, mp 217-219 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 9.39 (s, 1H), 7.87 (s, 2H), 7.38 (m, 6H) , 7.15 (s, 4H), 6.55 (s, 1H), 1.28 (s, 9H); ¹³C NMR (100 MHz, DMSO-d₆) δ: 165.7, 154.3, 150.6, 131.1, 128.9, 127.4, 125.0, 123.4, 121.9, 116.1, 42.9, 34.6, 30.9; HRMS (ESI): cacld. for C₂₄H₂₃NO₂ [M+Na]⁺: 380.1621, found 380.1628.

N-(9*H*-Xanthen-9-yl)-[1,1'-biphenyl]-4-carboxamide (**3ae**): 149 mg, 79% yield; white solid, mp 284-285 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.51 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 3H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.16 (m, 4H), 6.58 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.5, 150.6, 143.0, 139.1, 132.7, 129.0, 128.9, 128.2, 128.1, 126.9, 126.5, 123.5, 121.8, 116.1, 43.1; HRMS (ESI): cacld. for C₂₆H₁₉NO₂ [M+Na]⁺: 400.1308, found 400.1323.

4-Methoxy-*N*-(9*H*-xanthen-9-yl)benzamide (**3af**): 128 mg, 77% yield; white solid, mp 243-244 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.29 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.15 (m, 4H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.3, 161.8, 150.6, 129.4, 129.0, 128.9, 126.0, 123.4, 122.0, 116.1, 113.5, 55.3, 42.9; HRMS (ESI): cacld. for C₂₁H₁₇NO₃ [M+Na]⁺: 354.1101, found 354.1109.

4-Phenoxy-*N*-(9*H*-xanthen-9-yl)benzamide (**3ag**): 133 mg, 68% yield; white solid, mp 222-224 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 9.41 (d, *J* = 12.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.42 (m, 4H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.18 (m, 5H), 7.05 (m, 4H), 6.55 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ: 165.0, 159.6, 155.6, 150.6, 130.2, 129.7, 129.0, 128.9, 128.5, 124.2, 123.4, 121.8, 119.4, 117.4, 116.1, 43.0; HRMS (ESI): cacld. for C₂₆H₁₉FNO₃ [M+Na]⁺: 416.1257, found 416.1243.

4-Fluoro-*N*-(9*H*-xanthen-9-yl)benzamide (**3a**h): 158 mg, 99% yield (**condition I**); 97 mg, 61% yield (**condition II**); white solid, mp 230-231 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.47 (d, *J* = 8.0 Hz, 1H), 8.00 (t, *J* = 4.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.32 (m, 4H), 7.16(m, 4H), 6.55 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.7, 164.0 (d, *J*_{*F*-*C*} = 247.0 Hz), 150.6, 130.3 (d, *J*_{*F*-*C*} = 3.0 Hz), 130.2 (d, *J*_{*F*-*C*} = 9.0 Hz), 129.0 (d, *J*_{*F*-*C*} = 5.0 Hz), 123.5, 121.7, 116.1, 115.3, 115.1, 43.1; HRMS (ESI): cacld. for C₂₀H₁₄FNO₂ [M+Na]⁺: 342.0901, found 342.0901.

4-Chloro-*N*-(9*H*-xanthen-9-yl)benzamide (**3ai**): 129 mg, 77% yield; white solid, mp 224-225 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.14 (q, 4H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.8, 150.6, 136.3, 132.6, 129.4, 129.03, 128.99, 128.4, 123.5, 121.6, 116.1, 43.2; HRMS (ESI): cacld. for C₂₀H₁₄NO₂Cl [M+Na]⁺: 358.0605, found 358.0610.

4-lodo-*N*-(9*H*-xanthen-9-yl)benzamide (**3aj**): 70 mg, 33% yield; white solid, mp 268-269 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.77 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 12.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.14 (q, 4H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.1, 150.6, 137.2, 133.3, 129.5, 129.02, 128.98, 123.5, 121.6, 116.1, 99.1, 43.2; HRMS (ESI): cacld. for C₂₀H₁₄INO₂ [M+Na]⁺: 449.9961, found 449.9960.

4-Cyano-*N*-(9*H*-xanthen-9-yl)benzamide (**3ak**): 119 mg, 73% yield (**condition I**); 70 mg, 43% yield (**condition II**); white solid, mp 216-220 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.70 (d, *J* = 8.0 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 4.0 Hz, 2H), 7.16 (m, 4H), 6.56 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.4, 150.6, 137.9, 132.4, 129.08, 129.05, 128.3, 123.5, 121.3, 118.3, 116.2, 113.8, 43.4; HRMS (ESI): cacld. for C₂₁H₁₄N₂O₂ [M+Na]⁺: 349.0948, found 349.0953.

Methyl 4-((9*H*-xanthen-9-yl)carbamoyl)benzoate (**3al**): 178 mg, 99% yield; white solid, mp 249-251 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.65 (d, *J* = 12.0 Hz, 1H), 8.03 (s, 4H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.16 (m, 4H), 6.57 (d, *J* = 8.0 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.7, 165.0, 150.6, 138.0, 131.9, 129.1, 129.0, 127.9, 123.5, 121.5, 116.2, 52.3, 43.3; HRMS (ESI): cacld. for C₂₂H₁₇NO₄ [M+Na]⁺: 382.1050, found 382.1056.

2-Methyl-*N*-(9*H*-xanthen-9-yl)benzamide (**3am**): 139 mg, 88% yield (**condition I**); 85 mg, 54% yield (**condition II**); white solid, mp 204-205 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.29 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.34 (m, 4H), 7.21 (m, 6H), 6.51 (d, *J* = 8.0 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 150.8, 134.4, 133.2, 131.8, 131.7, 131.6, 129.7, 128.6, 128.5, 128.3, 123.6, 123.2, 115.9, 45.1; HRMS (ESI): cacld. for C₂₁H₁₇NO₂ [M+Na]⁺: 338.1151, found 338.1154.

3-Methyl-*N*-(9*H*-xanthen-9-yl)benzamide (**3an**): 156 mg, 99% yield(**condition I**); 103 mg, 65% yield (**condition II**); white solid, mp 204-205 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.39 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 12.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.35 (m, 4H), 7.16 (m, 4H), 6.56 (d, *J* = 8.0 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.8, 150.6, 137.5, 133.8, 132.0, 129.0, 128.9, 128.2, 128.0, 124.7, 123.4, 121.8, 116.1, 43.0, 20.9; HRMS (ESI): cacld. for C₂₁H₁₇NO₂ [M+Na]⁺: 338.1152, found 338.1148.

2-Chloro-*N*-(9*H*-xanthen-9-yl)benzamide (**3ao**): 62 mg, 37% yield; white solid, mp 223-224 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.47 (d, *J* = 12.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.48 (m, 2H), 7.40 (m, 4H), 7.20 (m, 4H), 6.51 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 166.1, 150.4, 136.5, 130.8, 129.8, 129.5, 129.0, 128.7, 127.1, 123.5, 121.2, 116.2, 42.8; HRMS (ESI): cacld. for C₂₀H₁₄CINO₂ [M+Na]⁺: 358.0605, found 358.0609.

3-Chloro-*N*-(9*H*-xanthen-9-yl)benzamide (**3ap**): 142 mg, 85% yield; white solid, mp 231-232 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.56 (d, *J* = 8.0 Hz, 1H), 7.90 (m, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.16 (m, 4H), 6.55 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.3, 150.6, 135.8, 133.2, 131.3, 130.3, 129.1, 129.0, 127.2, 126.3, 123.5, 121.5, 116.2, 43.3; HRMS (ESI): cacld. for C₂₀H₁₄NO₂Cl [M+Na]⁺: 358.0605, found 358.0610.

2-Fluoro-*N*-(9*H*-xanthen-9-yl)benzamide **(3aq)**: 139 mg, 87% yield; 1.20 g, 75% yield (gram scale); white solid, mp 192-193 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.38 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.51 (m, 3H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 8.0 Hz, 4H), 6.50 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 163.8 (d, *J*_{*F*-*C*} = 10.0 Hz), 159.1 (d, *J*_{*F*-*C*} = 248 Hz), 150.6, 132.4 (d, *J*_{*F*-*C*} = 8.0 Hz), 129.9 (d, *J*_{*F*-*C*} = 2.0 Hz), 129.0, 128.9, 124.4 (d, *J*_{*F*-*C*} = 3.0 Hz), 123.5, 121.4 (d, *J*_{*F*-*C*} = 3.0 Hz), 116.2, 116.0, 43.20 (d, *J*_{*F*-*C*} = 8.0 Hz); HRMS (ESI): cacld. for C₂₀H₁₄FNO₂ [M+Na]⁺: 342.0901, found 342.0888.

3,5-Dimethyl-*N*-(9*H*-xanthen-9-yl)benzamide (**3ar**): 163 mg, 99% yield; white solid, mp 243-247 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.32 (d, *J* = 8.0 Hz, 1H), 7.53 (s, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* =8.0 Hz, 2H), 7.16 (m, 5H), 6.55 (d, *J* = 8.0 Hz, 1H), 2.29 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.9, 150.6, 137.4, 133.8, 132.6, 129.0, 128.9, 125.2, 123.4, 121.8, 116.1, 42.9, 20.8; HRMS (ESI): cacld. for C₂₂H₁₉NO₂ [M+Na]⁺: 352.1308, found 352.1314.

2,6-Difluoro-*N*-(9*H*-xanthen-9-yl)benzamide (**3as**): 85 mg, 50% yield; white solid, mp 213-215 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.73 (d, *J* = 8.0 Hz, 1H), 7.50 (m, 3H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.19 (m, 6H), 6.53 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 159.5, 153.7 (dd, *J*_{*F*-*C*} = 8.0 Hz, *J*_{*F*-*C*} = 247.0 Hz), 150.4, 131.7 (t, *J*_{*F*-*C*} = 9.5 Hz), 129.2, 128.7, 123.6, 121.0, 116.3, 115.1 (t, *J*_{*F*-*C*} = 23.0 Hz), 111.9 (dd, *J*_{*F*-*C*} = 5.0 Hz, *J*_{*F*-*C*} = 19.0 Hz), 43.1. HRMS (ESI): cacld. for C₂₀H₁₃F₂NO₂ [M+Na]⁺: 360.0807, found 360.0809.

N-(9*H*-Xanthen-9-yl)-1-naphthamide (**3at**): 174 mg, 99% yield (**condition I**); 107 mg, 61% yield (**condition II**); white solid, mp 243-245 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 9.57 (d, *J* = 8.0 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 8.00 (t, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 5H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.21 (m, 4H), 6.64 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ: 168.1, 150.6, 134.0, 133.1, 130.0, 129.8, 129.0, 128.2, 126.8, 126.2, 125.3, 125.2, 124.9, 123.6, 121.6, 116.2, 40.1; HRMS (ESI): cacld. for C₂₄H₁₇NO₂ [M+Na]⁺: 374.1151, found 374.1154.

N-(9*H*-Xanthen-9-yl)-2-naphthamide (**3au**): 174 mg, 99% yield (**condition I**); 109 mg, 62% yield (**condition II**); white solid, mp 249-250 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.28 (s, 1H), 7.87 (t, *J* = 8.0 Hz, 4H), 7.57 (d, *J* = 4.0 Hz, 2H), 7.52 (m, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.16 (m, 4H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.79 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.8, 150.7, 134.2, 132.1, 131.2, 129.1, 129.0, 128.8, 127.83, 127.78, 127.7, 127.6, 126.7, 124.4, 123.5, 121.8, 116.2, 43.2; HRMS (ESI): cacld. for C₂₄H₁₇NO₂ [M+Na]⁺: 374.1152, found 374.1159.

N-(9*H*-Xanthen-9-yl)thiophene-2-carboxamide (**3av**): 152 mg, 99% yield; yellow solid, mp 217-220 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.45 (d, *J* = 12.0 Hz, 1H), 7.80 (s, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.15 (m, 5H), 6.50 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 160.7, 150.6, 139.5, 131.3, 129.1, 129.0, 128.5, 128.0, 123.5, 121.5, 116.2, 43.0; HRMS (ESI): cacld. for C₁₈H₁₃NO₂S [M+Na]⁺: 330.0559, found 330.0562.

N-(9*H*-Xanthen-9-yl)acrylamide (**3aw**): 104 mg, 83% yield (**condition I**); 62 mg, 49% yield (**condition II**); white solid, mp 249-250 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.12 (q, 4H), 6.62 (d, *J* = 12.0 Hz, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 6.05 (m, 2H), 5.73 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.0, 150.6, 131.3, 129.2, 129.1, 126.3, 123.6, 121.6, 116.2, 42.6. These data are in accordance with the literature. ⁸

N-(9*H*-Xanthen-9-yl)acetamide (**3ax**): 51 mg, 43% yield; white solid, mp 227-232 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.48 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.11 (m, 4H), 6.50 (d, *J* = 8.0 Hz, 1H), 6.03 (d, *J* = 8.0 Hz, 1H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 169.0, 151.1, 129.7, 129.3, 123.6, 121.1, 116.6, 43.9, 23.4. These data are in accordance with the literature.⁶

1,1-Dimethyl-3-(9*H*-xanthen-9-yl)urea (**3ay**): 44 mg, 33% yield; white solid, mp 226-228 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.56 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 4H), 6.40 (d, *J* = 8.0 Hz, 1H), 4.92 (d, *J* = 8.0 Hz, 1H), 2.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.7, 151.0, 129.7, 128.9, 123.4, 122.4, 116.4, 44.9, 36.2; HRMS (ESI): cacld. for C₁₆H₁₆N₂O₂ [M+Na]⁺: 291.1104, found 291.1100.

6-(3-(Adamantan-1-yl)-4-methoxyphenyl)-*N*-(9*H*-xanthen-9-yl)-2-naphthamide (**3az**): 186 mg, 63% yield (**condition I**); trace (**condition II**); white solid, mp 241-242 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.59 (d, *J* = 8.0 Hz, 1H), 8.52 (s, 1H), 8.19 (s, 1H), 8.04 (m, 3H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.57 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 12.0 Hz, 1H), 3.86 (s, 3H), 2.13 (s, 6H), 2.06 (s, 3H), 1.75 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.8, 158.5, 150.7, 139.5, 138.0, 134.8, 131.5, 130.84, 130.78, 129.4, 129.1, 129.0, 128.0, 127.5, 125.8, 125.6, 125.0, 124.7, 124.0, 123.5, 121.8, 116.2, 112.7, 55.3, 43.2, 40.1, 36.6, 36.5, 28.4; HRMS (ESI): cacld. for C₂₇H₂₃NO₃ [M+Na]⁺: 614.2666, found 614.2661.

(*S*)-2-(6-Methoxynaphthalen-2-yl)-*N*-(9*H*-xanthen-9-yl)propanamide (**3ba**): 55 mg, 27% yield; white solid, mp 211-215 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.01 (d, *J* = 8.0 Hz, 1H), 7.76 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 2H), 7.26 (m, 2H), 7.11 (m, 4H), 7.04 (d, *J* = 4.0 Hz, 1H), 6.91 (t, *J* = 8.0 Hz, 1H), 6.28 (d, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 3.78 (d, *J* = 4.0 Hz, 1H), 1.49 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 173.1, 157.0, 150.4, 137.2, 133.1, 129.0, 128.7, 128.4, 126.6, 126.4, 125.3, 123.5, 123.2, 121.78, 121.71, 118.6, 116.1, 55.1, 44.9, 42.3, 18.5; HRMS (ESI): cacld. for C₂₇H₂₃NO₃ [M+Na]⁺: 432.1570, found 432.1576.

4-(*N*,*N*-Dipropylsulfamoyl)-*N*-(9*H*-xanthen-9-yl)benzamide (**3bb**): 100 mg, 49% yield; white solid, mp 183-184 °C; ¹H NMR (400 MHz, DMSO-d₆) δ: 9.68 (d, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 4.0 Hz, 2H), 7.36 (t, *J* = 4.0 Hz, 2H), 7.16 (m, 4H), 6.56 (d, *J* = 8.0 Hz, 1H), 3.03 (t, *J* = 4.0 Hz, 4H), 1.46 (m, 4H), 0.80 (t, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ: 164.6, 150.6, 141.9, 137.4, 129.09, 129.06, 128.5, 126.8, 123.5, 121.4, 116.2, 49.6, 43.3 21.6, 10.9; HRMS (ESI): cacld. for $C_{26}H_{28}N_2O_4S$ [M+Na]⁺: 487.1662, found 487.1645.

N-(2-Methoxy-9*H*-xanthen-9-yl)benzamide (**3bc**): 137 mg, 83% yield; white solid, mp 256-257 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.43 (d, *J* = 12.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 4.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.12 (m, 3H), 6.94 (m, 2H), 6.53 (d, *J* = 8.0 Hz, 1H), 3.71 (s, 3H); ¹³C (100 MHz, DMSO-d₆) δ : 165.9, 155.1, 150.8, 144.7, 133.9, 131.4, 129.0, 128.9, 128.3, 127.5, 123.2, 122.4, 121.2, 117.1, 116.1, 115.1, 112.7, 55.4, 43.5; HRMS (ESI): cacld. For C₂₁H₁₇NO₃ [M+Na]⁺: 354.1101, found 354.1094.

N-(2-Chloro-9*H*-xanthen-9-yl)benzamide **(3bd)**: 140 mg, 84% yield; white solid, mp 217-218 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.50 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 4.0 Hz, 2H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 8.0 Hz, 3H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.17 (q, *J* = 8.0 Hz, 2H), 6.51 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 165.9, 150.4, 149.5, 133.7, 131.6, 129.1, 129.0, 128.9, 128.3, 128.2, 127.5, 126.8, 123.9, 123.8, 121.1, 118.2, 116.2, 43.1; HRMS (ESI): cacld. for C₂₀H₁₄CINO₂ [M+Na]⁺: 358.0605, found 358.0597.

N-(12*H*-Benzo[a]xanthen-12-yl)benzamide **(3be)**: 172 mg, 98% yield; white solid, mp 242-244 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.37 (d, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.97 (t, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.47 (m, 3H), 7.38 (t, *J* = 8.0 Hz, 3H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.19 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 164.9, 150.2, 149.5, 133.7, 131.6, 131.4, 130.1, 130.0, 129.4, 129.0, 128.6, 128.2, 127.4, 127.3, 124.5, 124.0, 122.5, 122.3, 117.7, 116.1, 112.4, 40.9; HRMS (ESI): cacld. for C₂₄H₁₇NO₂ [M+Na]⁺: 374.1151, found 374.1143.

N-(9*H*-Thioxanthen-9-yl)benzamide (**3bf**): 68 mg, 43% yield (**condition I**); trace (**condition II**); yellow solid, mp 176-178 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.59 (d, *J* = 8.0 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 6H), 7.34 (m, 4H), 6.03 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 166.7, 136.0, 133.9, 131.7, 131.7, 128.4, 127.7, 127.3, 126.7, 125.7, 51.8; HRMS (ESI): cacld. for C₂₀H₁₅NOS [M+Na]⁺: 340.0767, found 340.0772.

N-(5*H*-Dibenzo[a,d][7]annulen-5-yl)benzamide (**3bg**): 62 mg, 40% yield (**condition I**); trace (**condition II**); white solid, mp 232-233 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 9.47 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 4H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.24 (s, 2H), 5.95 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 166.2, 138.6, 134.4, 133.5, 131.4, 131.3, 128.3, 128.2, 128.1, 127.7, 126.5, 124.4, 53.3; HRMS (ESI): cacld. for C₂₂H₁₇NO [M+Na]⁺: 334.1202, found 334.1210.

4-Methyl-*N*-(9*H*-xanthen-9-yl)benzenesulfonamide **(3bh)**: 109 mg, 62% yield (**condition I**); trace (**condition II**); 1.27 g, 72% yield (gram scale); white solid, mp 232-233 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 7.41 (t, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 4.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.15 (t, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.06 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 152.2, 144.8, 132.3, 131.4, 130.6, 129.2, 129.0, 123.2, 116.1, 113.9, 65.1, 21.1. These data are in accordance with the literature.⁷

P,P-Diphenyl-*N*-(9*H*-xanthen-9-yl)phosphinic amide (**3bi**): 60 mg, 30% yield; white solid, mp 256-258 °C; ¹H NMR (400 MHz,CDCl₃) δ : 7.91 (q, 4H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.46 (m, 4H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 8.0 Hz, 4H), 5.59 (t, *J* = 12.0 Hz, 1H), 3.41 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 151.5, 133.2, 132.3, 132.2, 132.02, 131.99, 131.9, 130.2, 128.9, 128.6, 128.5, 123.5, 123.0, 122.9, 116.5, 46.6; HRMS (ESI): cacld. for C₂₅H₂₀NO₂P [M+Na]⁺: 420.1124, found 420.1132.

N-(Benzyloxy)-*N*-(9*H*-xanthen-9-yl)benzamide (**4aa**): 53 mg, 26% yield (**condition I**, reaction time 0.5 h); white solid, mp 136-140 °C; ¹H NMR (400 MHz, DMSO-d₆) δ : 7.57 (m, 5H), 7.46 (m, 4H), 7.26 (t, *J* = 8.0 Hz, 4H), 7.18 (m, 3H), 6.94 (s, 1H), 6.55 (d, *J* = 8.0 Hz, 2H), 4.00 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 169.9, 152.2, 134.4, 133.5, 130.6, 129.9, 129.4, 128.9, 128.6, 128.3, 128.2, 127.5, 123.8, 118.6, 116.4, 78.0, 52.9; HRMS (ESI): cacld. for C₂₇H₂₁NO₃ [M+Na]⁺: 430.1414, found 430.1420.

8. References

1. D. Shimbo, T. Maruyama, N. Tada and A. Itoh, *N*-Alkenylation of hydroxamic acid derivatives with ethynyl benziodoxolone to synthesize cisenamides through vinyl benziodoxolones, *Org. Biomol. Chem.*, 2021, **19**, 2442-2447.

 Z. Zhang, Y. Yu and L. S. Liebeskind, *N*-Amidation by Copper-Mediated Cross-Coupling of Organostannanes or Boronic Acids with O-Acetyl Hydroxamic Acids, *Org. Lett.*, 2008, **10**, 3005-3008.
E. Böβ, T. Hillringhaus, J. Nitsch and M. Klussmann, Lewis acid-catalysed one pot synthesis of substituted xanthenes, *Org. Biomol. Chem.*, 2011, **9**, 1744-1748.

4.M. Bhanuchandra, H. Yorimitsu and A. Osuka, Synthesis of Spirocyclic Diarylfluorenes by One-Pot Twofold SNAr Reactions of Diaryl Sulfones with Diarylmethanes, *Org. Lett.*, 2016, **18**, 384-387.

5. C. Schmuck and W. Wienand, The First Efficient Synthesis and Optical Resolution of Monosubstituted Cyclotribenzylenes, *Synthesis*, 2002, **5**, 655-663.

6. Y. Li, Y. Li, Y. Li, C. Chen, F. Ying, Y. Dong and D. Liang, Metal-free cross-dehydrogenative C-N coupling of azoles with xanthenes and related activated arylmethylenes, *Syn. Commun.*, 2019, **49**, 2053-2065.

K. R. Watterson, S. V. F. Hansen, B. D. Hudson, E. Alvarez-Curto, S. Z. Raihan, C. M. G. Azevedo, G. Martin, J. Dunlop, S. J. Yarwood, T. Ulven and G. Milligan, Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4, *Mol. Pharmacol.*, 2017, **91**, 630–641.
L. Luo, B.-Z. Jia, X.-Q. Wei, Z.-L. Xiao, H. Wang, Y.-M. Sun, Y.-D. Shen, H.-T. Lei and Z.-L. Xu, Development of an inner filter effect-based fluorescence immunoassay for the detection of acrylamide using 9-xanthydrol derivatization, *Sensor Actuat. B-Chem.*, 2021, **332**, 129561.

NMR spectra 3aa ¹H NMR

3ab ¹H NMR

S28

3ac ¹H NMR

S29

3ad ¹³C NMR

3ae ¹H NMR

S32

3ag ¹H NMR

3ah ¹H NMR

S34

3aj ¹H NMR

3al ¹H NMR

3ap ¹H NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3ar ¹H NMR

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

3au ¹H NMR

3av ¹H NMR

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

S49

S50

3az ¹H NMR

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3bb ¹H NMR

3bc ¹H NMR

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

3bd ¹H NMR

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

3be ¹H NMR

S57

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3bf ¹H NMR

S58

S60

3bi ¹H NMR

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

S62