Electronic Supplementary Information

Palladium-catalyzed decarboxylative [2 + 3] cyclocarbonylation reactions of [60]fullerene: selective synthesis of [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes

Tong-Xin Liu,* ${ }^{\text {a,b }}$ Chuanjie Zhang, ${ }^{\text {a }}$ Pengling Zhang, ${ }^{\text {a }}$ Xin Wang, ${ }^{a}$ Jinliang Ma, ${ }^{\text {a }}$ and Guisheng Zhang*a
${ }^{a}$ Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China. ${ }^{b}$ Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

Table of Contents

1. General Information S3
2. Experimental Procedures S4-S7
3. DEPT-135 Spectra of Compound 2a S8
4. 2D-NOESY Spectra of Compounds 5a, 5d, 5i, cis- and trans-7g S9-S11
5. 1D-NOESY ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}, \mathbf{5 d}, 5 \mathbf{5}, \mathbf{8 a}$ and $\mathbf{9 a}$ S12-S15
6. UV-vis Spectra of Compounds 2 and 5 S16-S30
7. CVs of Selected Compounds 2 and 5 S31-S44
8. Spectral Data for All Compounds S45-S69
9. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of All Compounds S70-S161

1. General Information

All reagents were purchased as reagent grade and used without further purification unless otherwise specified. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Pd}(\mathrm{OAc})_{2} /$ bis-sulfoxide (White's catalyst) were purchased from Sigma-Aldrich. Chlorobenzene (PhCl) and 1,2-Dichlorobenzene (ODCB) was treated with CaH_{2}. Substrates $\mathbf{1}^{1}$ and $\mathbf{4}^{2}$ were prepared by following the literature procedure. ${ }^{1} \mathrm{H}$ NMR (400 and 600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. UV-vis Spectra were recorded on Shimadzu UV-1700. CVs were recorded on CHI 660E. FT-IR was registered on Perkin Elmer Spectrum 400F. HRMS were measured on Bruker Ultraflextreme MALDI-TOF/TOF using E-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix.

References:

(1) B. Yan, L. Zuo, X. Chang, T. Liu, M. Cui, Y. Liu, H. Sun, W. Chen and W. Guo, Kinetically controllable Pd-catalyzed decarboxylation enabled [5+2] and [3+2] cycloaddition toward carbocycles featuring quaternary carbons. Org. Lett., 2021, 23, 351.
(2) R. Shintani, K. Moriya and T. Hayashi, Guiding the nitrogen nucleophile to the middle: palladium-catalyzed decarboxylative cyclopropanation of 2-alkylidenetrimethylene carbonates ith isocyanates, Chem. Commun., 2011, 47, 3057.

2. Experimental Procedures

General Procedure for the Synthesis of Products 2a-m: A dry 15-mL tube equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1}(0.10 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.9 \mathrm{mg}, 0.005 \mathrm{mmol})$. After dissolving the solids in anhydrous $\mathrm{PhCl}(6$ $\mathrm{mL})$ and $\mathrm{DCM}(1 \mathrm{~mL})$ by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to recover unreacted C_{60} and give product $\mathbf{2}$ (for $\mathbf{2 b}, \mathbf{2 h}, \mathbf{2 m}$ and $\mathbf{2 m} \mathbf{m}^{\prime}$ with $\mathrm{CS}_{2} / \mathrm{DCM}$ as the eluent).

General Procedure for the Synthesis of Products 2m': A dry 15-mL tube equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1 m}(0.025 \mathrm{mmol}$, $10.1 \mathrm{mg}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.005 \mathrm{mmol})$. After dissolving the solids in anhydrous $\mathrm{PhCl}(6 \mathrm{~mL})$ and DCM (1 mL) by sonication, an oil bath at $70{ }^{\circ} \mathrm{C}$ for 9 h . The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{DCM}$ as the eluent to give unreacted $\mathrm{C}_{60}(3.9 \mathrm{mg}, 11 \%)$ and the product 2m' ($7.3 \mathrm{mg}, 17 \%$).

General Procedure for the Synthesis of Products 5a-I: A dry 15-mL tube equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol}), 4(0.15 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2} /$ bis-sulfoxide $(0.005 \mathrm{mmol} ; 0.0075 \mathrm{mmol}$ for $\mathbf{4 b}$ and $\mathbf{4 k}$) and dppbz (0.01 $\mathrm{mmol} ; 0.015 \mathrm{mmol}$ for $\mathbf{4 b}$ and $\mathbf{4 k}$). After dissolving the solids in anhydrous ODCB (4 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time. The reaction mixture was filtered through a silica gel
plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}$ to give the product $\mathbf{5 a - l}$.

Large-scale Synthesis of $\mathbf{2 g}$: A dry $250-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(720.0 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{1 g}(540.4 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(115.6 \mathrm{mg}, 0.1 \mathrm{mmol})$. After dissolving the solids in anhydrous $\mathrm{PhCl}(120 \mathrm{~mL})$ and $\mathrm{DCM}(20 \mathrm{~mL})$ by sonication, the round-bottomed flask was stirred in an oil bath at $50{ }^{\circ} \mathrm{C}$ for 11 h . The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to give unreacted $\mathrm{C}_{60}(204.3 \mathrm{mg})$ and the product $\mathbf{2 g}(520.2 \mathrm{mg}, 55 \%)$.

Large-scale Synthesis of 5a: A dry $250-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(720.0 \mathrm{mg}, 1.0 \mathrm{mmol}), 4 \mathrm{a}(570.6 \mathrm{mg}, 3.0$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{bis}-$ sulfoxide $(50.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ and dppbz ($89.3 \mathrm{mg}, 0.2 \mathrm{mmol}$). After dissolving the solids in anhydrous ODCB (70 mL) by sonication, the round-bottomed flask was stirred in an oil bath at $110{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to give unreacted $\mathrm{C}_{60}(276.5 \mathrm{mg})$ and the product 5a (424.2 mg, 49\%).

Synthetic Application for $7 \boldsymbol{g}$: A dry $15-\mathrm{mL}$ tube equipped with a magnetic stirrer was charged with $2 \mathrm{~g}(38.4 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(4.9 \mathrm{mg}, 0.16 \mathrm{mmol})$. After dissolving the solids in anhydrous $\mathrm{PhCl}(6 \mathrm{~mL})$ and $\mathrm{EtOH}(6 \mathrm{~mL})$ by sonication, the
round-bottomed flask was stirred in an oil bath at $0{ }^{\circ} \mathrm{C}$ for 20 min The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{DCM}$ to give the product $7 \mathbf{g}$ (cis-isomer: $10.4 \mathrm{mg}, 27 \%$; transisomer: $25.4 \mathrm{mg}, 66 \%)$.

Synthetic Application for 8a: A dry $15-\mathrm{mL}$ tube equipped with a magnetic stirrer was charged with $5 \mathbf{5 a}(34.7 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(4.9 \mathrm{mg}, 0.16 \mathrm{mmol})$. After dissolving the solids in anhydrous $\mathrm{CB}(6 \mathrm{~mL})$ and $\mathrm{EtOH}(6 \mathrm{~mL})$ by sonication, the round-bottomed flask was stirred in an oil bath at $0{ }^{\circ} \mathrm{C}$ for 20 min The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{DCM}$ to give the quantitative product $\mathbf{8 a}$.

Synthetic Application for 9a: A dry $15-\mathrm{mL}$ tube equipped with a magnetic stirrer was charged with 5 a ($35.0 \mathrm{mg}, 0.04 \mathrm{mmol}$), Dess-Martin periodinane $(86.8 \mathrm{mg}, 0.20$ mmol). After dissolving the solids in anhydrous $\mathrm{PhCl}(6 \mathrm{~mL})$ by sonication, the round-bottomed flask was stirred in an oil bath at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to give unreacted $\mathbf{5 a}(3.3 \mathrm{mg}, 9 \%)$, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM} / \mathrm{EA}$ to give the product $9 \mathrm{a}(30.0 \mathrm{mg}, 85 \%$).

Procedures for Electrochemical Characterization Recording: In a dry $15-\mathrm{mL}$ electrolytic cup, $2.0 \times 10^{-3} \mathrm{mmol}$ of product 2 (5), 2 mL of the solution of $(n-\mathrm{Bu})_{4} \mathrm{NClO}_{4}$ in $\operatorname{ODCB}(0.1 \mathrm{M})$, and $18 \mu \mathrm{~L}$ of the solution of ferrocene in ODCB (0.054 M) was added, respectively. After sonication, three different electrodes
(reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire) were placed in the sample solution, then running electrochemical workstation recorded the cyclic voltammogram (CV) of product 2 (5) under an argon atmosphere.

Procedures for UV-vis Spectra Recording: A dry $100-\mathrm{mL}$ volumetric flask was charged with the product $2(5)\left(1.4 \times 10^{-3} \sim 1.6 \times 10^{-3} \mathrm{mmol}\right)$. After dissolving the solid with 100 mL of CHCl_{3} by sonication, a small amount of sample solution is added to a cuvette and then placed in the UV-vis spectrophotometer to record the UV-vis spectrum of product 2 (5).

3. DEPT-135 Spectra of Compound 2a

4. 2D-NOESY Spectra of Compounds 5a, 5d, 5i, cis- and trans-7g

5. 1D-NOESY ${ }^{1} \mathrm{H}$ NMR of 5a, 5d, 5i, 8a and 9a

1D-NOESY ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$

6. UV-vis Spectra of Compounds 2 and 5

UV-vis spectrum of compound 2a in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 b}$ in CHCl_{3}

UV-vis spectrum of compound 2c in CHCl_{3}

UV-vis spectrum of compound 2d in CHCl_{3}

UV -vis spectrum of compound 2e in CHCl_{3}

UV-vis spectrum of compound $2 \mathbf{f}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 g}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 h}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 i}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 j}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 k}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{2 m}$ in CHCl_{3}

$\mathrm{UV}-$ vis spectrum of compound 2 m ' in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 a}$ in CHCl_{3}
S-22

UV-vis spectrum of compound $\mathbf{5 b}$ in CHCl_{3}

UV -vis spectrum of compound 5 c in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 d}$ in CHCl_{3}

UV -vis spectrum of compound $\mathbf{5 e}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 f}$ in CHCl_{3}

UV-vis spectrum of compound 5 g in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 h}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 i}$ in CHCl_{3}

UV-vis spectrum of compound $\mathbf{5 j}$ in CHCl_{3}

UV-vis spectrum of compound $5 \mathbf{k}$ in CHCl_{3}

UV-vis spectrum of compound 51 in CHCl_{3}

UV-vis spectrum of compound cis- $7 \mathbf{g}$ in CHCl_{3}

UV-vis spectrum of compound trans- 7 g in CHCl_{3}

UV-vis spectrum of compound 8a in CHCl_{3}

UV-vis spectrum of compound $9 \mathbf{a}$ in CHCl_{3}

7. CVs of Selected Compounds 2 and 5

Table S1. Half-Wave Reduction Potentials of compounds 2, 5, PCBM and $\mathrm{C}_{60}{ }^{a}$

Compound	E_{I}	E_{2}	E_{3}	LUMO
$\mathbf{2 a}$	-1.145	-1.543	-2.087	-3.655
$\mathbf{2 b}$	-1.151	-1.547	-2.093	-3.650
$\mathbf{2 c}$	-1.149	-1.555	-2.103	-3.651
$\mathbf{2 d}$	-1.152	-1.574	-2.136	-3.648
$\mathbf{2 e}$	-1.132	-1.524	-2.062	-3.668
$\mathbf{2 f}$	-1.154	-1.569	-2.121	-3.647
$\mathbf{2 g}$	-1.130	-1.518	-2.051	-3.670
$\mathbf{2 h}$	-1.134	-1.557	-2.118	-3.666
$\mathbf{2 i}$	-1.153	-1.560	-2.112	-3.647
$\mathbf{2 j}$	-1.145	-1.535	-2.080	-3.655
$\mathbf{2 k}$	-1.141	-1.551	-2.091	-3.660
$\mathbf{5 a}$	-1.171	-1.565	-2.110	-3.629
$\mathbf{5 b}$	-1.184	-1.593	-2.145	-3.616
$\mathbf{5 c}$	-1.180	-1.578	-2.124	-3.620
$\mathbf{5 d}$	-1.169	-1.574	-2.120	-3.631
$\mathbf{5 e}$	-1.174	-1.583	-2.136	-3.626
$\mathbf{5 f}$	-1.173	-1.573	-2.112	-3.627
$\mathbf{5 g}$	-1.164	-1.564	-2.107	-3.636
$\mathbf{5 h}$	-1.171	-1.583	-2.137	-3.629
$\mathbf{5 i}$	-1.159	-1.560	-2.109	-3.641
$\mathbf{5 j}$	-1.154	-1.548	-2.078	-3.646
$\mathbf{5 k}$	-1.169	-1.567	-2.112	-3.631
$\mathbf{5 \mathbf { l }}$	-1.166	-1.551	-2.090	-3.634
$\mathbf{P C B M}$	-1.180	-1.581	-2.110	-3.620
$\mathbf{C} \mathbf{6 0}$	-1.088	-1.490	-1.973	-3.712

${ }^{a}$ Versus ferrocene/ferrocenium; experimental conditions: 1 mM of compounds 2 (5) and 0.1 M of $\left(n-\mathrm{Bu}_{4} \mathrm{NClO}_{4}\right.$ in anhydrous o-dichlorobrnzene; referene electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire; scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$.

Cyclic voltammogram of compound 2a (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 b}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 2c (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 2d (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 e}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $2 \mathbf{2 f}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 g}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 h}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 i}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 j}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{2 k}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 a}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 b}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 5c (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 5d (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 e}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 f}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 g}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 h}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 i}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{5 j}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $5 \mathbf{k}$ (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 51 (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound PCBM (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound \mathbf{C}_{60} (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

8. Spectral Data for All Compounds

Spectral data of 2a: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 a}$ ($25.5 \mathrm{mg}, 58 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $7.75(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 207.8,156.6,155.3,153.5,151.9,147.64,147.59,146.41,146.37,146.31,146.29$, 146.26, 146.12, 146.07, 146.01, 145.97, 145.7, 145.61, 145.58, 145.5, 145.4, 145.3, $145.2,144.8,144.6,144.5,144.4,143.9,143.2,142.70,142.66,142.5,142.13,142.10$, $142.0,141.99,141.98,141.82,141.79,141.7,141.5,141.4,141.1,140.5,140.1,139.6$, $139.2,139.1,137.1,135.6,134.7,134.1,131.0,128.1,127.7,122.0,76.3,68.5,61.5$, 49.4; FT-IR $\mathrm{v}^{2} \mathrm{~cm}^{-1} 1744,1509,1259,1092,1014,793,688,524$; UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } / \mathrm{nm} 255,315,434,701$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{-}$878.0737, found 878.0736.

Spectral data of $\mathbf{2 b}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=5: 1)$ to give $\mathbf{2 b}(18.4 \mathrm{mg}, 40 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.72(\mathrm{dd}, J=17.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\text { acac })_{3}$ as relaxation reagent) δ 208.4, 158.6, 156.7, 155.1, 153.6, 152.0, 147.6, 147.5, 146.31, 146.28, 146.22, 146.20, $146.18,146.02,145.98,145.9,145.6,145.58,145.57,145.5,145.32,145.28,145.22$, $145.18,145.1,144.7,144.5,144.40,144.36,143.8,143.1,142.6,142.58,142.56$, $142.4,142.04,142.02,141.92,141.89,141.7,141.69,141.66,141.4,141.3,141.1$, $140.4,140.0,139.8,139.6,139.1,137.0,135.5,134.5,134.1,132.1,131.0,121.8$, $113.4,76.5,68.1,61.3,55.0,49.3$; FT-IR $v / \mathrm{cm}^{-1} 1736,1508,1247,1179,1005,791$, 523; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 257,315,435,702 ;$ MALDI-TOF MS m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{-} 908.0843$, found 908.0840.

Spectral data of 2c: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $2 \mathrm{c}(25.5 \mathrm{mg}, 57 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.77(\mathrm{dd}, J=17.4,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.69(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 207.0, $161.7\left(J_{C-F}=248.0 \mathrm{~Hz}\right), 156.3,154.9,153.0,151.5,147.52,147.46,146.3,146.23$, $146.2,146.16,146.15,146.0,145.9,145.8,145.7,145.6,145.5,145.4,145.33,145.25$, $145.22,145.20,145.15,144.6,144.4,144.34,144.28,143.6,143.1,142.58,142.57$, $142.5,142.4,142.0,141.9,141.88,141.86,141.8,141.7,141.6,141.32,141.28,141.0$, $140.4,140.1,139.6,139.5,139.1,137.1,135.4,134.8,134.6,133.9,132.7,132.6$, 122.2, 115.0, 114.8, 76.0, 67.7, 61.2, 49.1; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:-112.4$; FT-IR $v / \mathrm{cm}^{-1} 1742,1506,1221,1163,979,932,801,764,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\text {max }} / \mathrm{nm} 258,315,434,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{9} \mathrm{OF}[\mathrm{M}]^{-}$896.0643, found 896.0641.

Spectral data of 2d: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 d}$ ($22.7 \mathrm{mg}, 49 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.75(\mathrm{dd}, J=17.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 207.4, 156.2, $154.8,152.8,151.4,147.5,147.4,146.24,146.20,146.17,146.1,146.0,145.9,145.7$, $145.6,145.5,145.44,145.39,145.3,145.23,145.20,145.16,145.1,114.6,144.4$,
$144.3,144.2,143.6,143.1,142.54,142.53,142.5,142.4,141.94,141.9,141.84$, $141.81,141.78,141.63,141.61,141.26,141.25,140.9,140.4,140.0,139.5,139.3$, $139.1,137.5,137.1,135.3,134.6,133.8,132.2,128.1,122.3,75.9,67.8,61.3,49.1 ;$ FT-IR $\mathrm{v} / \mathrm{cm}^{-1} 1745,1489,1400,1186,1092,1014,989,935,796,525 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 259,316,434,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{9} \mathrm{OCl}[\mathrm{M}]^{-}$ 912.0347, found 912.0342.

Spectral data of $\mathbf{2 e}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 e}$ ($26.0 \mathrm{mg}, 54 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 7.76(\mathrm{dd}, J=17.2,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 208.0, 156.4, $155.0,153.0,151.5,147.7,147.6,146.41,146.37,146.34,146.31,146.13,146.11$, 145.9, 145.7, 145.64, 145.60, 145.56, 145.5, 145.4, 145.38, 145.37, 145.33, 145.28, $145.25,144.8,144.6,144.5,144.4,143.8,143.2,142.71,142.69,142.67,142.5$, 142.11, 142.07, 142.01, 141.97, 141.9, 141.8, 141.76, 141.43, 141.41, 141.1, 140.5, $140.11,139.7,139.4,139.3,138.2,137.2,135.5,134.8,133.9,132.7,131.2,122.5$, 122.2, 76.0, 68.0, 61.5, 49.3; FT-IR $v / \mathrm{cm}^{-1} 1745,1485,1185,1009,936,795,525$;

UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,318,434,699$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{9} \mathrm{OBr}[\mathrm{M}]^{-} 955.9842$, found 957.9825 .

Spectral data of $\mathbf{2 f}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 f}$ ($23.7 \mathrm{mg}, 49 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 7.82-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.22$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 207.8,156.3,154.9,152.9,151.4,148.4,147.7$, $147.6,146.39,146.36,146.32,146.29,146.12,146.09,145.9,145.64,145.57,145.54$, 145.46, 145.37, 145.35, 145.34, 145.26, 145.2, 144.7, 144.54, 144.47, 144.4, 143.8, 143.2, 142.7, 142.68, 142.66, 142.5, 142.09, 142.08, 142.04, 142.00, 141.97, 141.9, $141.79,141.76,141.4,141.1,140.5,140.2,139.7,139.4,139.1,137.7,137.3,135.5$, $134.8,133.9,132.5,122.6,120.24\left(J_{C-F}=256.2 \mathrm{~Hz}\right), 120.21,76.0,67.9,61.5,49.3 ;$ ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:-57.5$; FT-IR $v / \mathrm{cm}^{-1} 1744,1506,1248,1207$, $1156,935,796,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / n m 257,316,434,701 ;$ MALDI-TOF MS m / z calcd for $\mathrm{C}_{72} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}_{3}\left[\mathrm{M}^{-} 962.0560\right.$, found 962.0569 .

Spectral data of $\mathbf{2 g}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 g}(23.7 \mathrm{mg}, 50 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.81 (dd, $J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 207.6, 156.2, $154.9,152.6,151.2,147.7,147.6,146.40,146.36,146.34,146.31,146.13,146.11$, 145.8, 145.7, 145.6, 145.54, 145.49, 145.4, 145.37, 145.35, 145.29, 145.26, 145.1, 144.8, 144.54, 144.48, 144.3, 143.7, 143.24, 143.22, 143.17, 142.72, 142.69, 142.68, $142.5,142.10,142.07,142.04,142.01,141.96,141.9,141.8,141.78,141.75,141.41$, $141.38,141.0,140.5,140.2,139.7,139.3,139.2,137.3,135.5,134.9,133.9,131.5$, $129.7\left(J_{C-F}=32.6 \mathrm{~Hz}\right), 124.91,124.89,123.8\left(J_{C-F}=270.8 \mathrm{~Hz}\right), 122.8,75.8,68.1$, 61.6, 49.3; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:-62.3$; FT-IR $v / \mathrm{cm}^{-1} 1745,1512,1323$, 1162, 1118, 1069, 812, 525; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,316,434,699$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{9} \mathrm{OF}_{3}[\mathrm{M}]^{-} 946.0611$, found 962.0617.

Spectral data of $\mathbf{2 h}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=4: 1)$ to give $\mathbf{2 h}(23.5 \mathrm{mg}, 52 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=17.4$,
$10.8 \mathrm{~Hz} 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150 \mathrm{MHz}$, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 206.7, 155.9, 154.6, 152.1, 150.8, $147.6,147.5,146.33,146.28,146.25,146.1,146.0,145.7,145.6,145.44,145.43$, 145.36, 145.34, 145.31, 145.30, 145.27, 145.23, 145.21, 144.8, 144.7, 144.43, 144.40, $144.3,144.2,143.6,143.2,142.7,142.65,142.62,142.5,142.03,141.98,141.94$, $141.93,141.9,141.8,141.74,141.68,141.66,141.4,141.3,140.9,140.5,140.2,139.7$, 139.1, 138.9, 137.3, 135.3, 134.9, 133.7, 131.7, 131.6, 123.0, 118.0, 111.7, 75.5, 67.9, 61.4, 49.2; FT-IR $\mathrm{v} / \mathrm{cm}^{-1} 1742,1501,1261,1093,1004,935,806,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,316,433,605,699$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{9} \mathrm{ON}$ [M] ${ }^{-} 903.0690$, found 903.0684.

Spectral data of $\mathbf{2 i}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 i}(28.5 \mathrm{mg}, 58 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 7.78(\mathrm{dd}, J=17.4,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 208.1, 156.5, $155.1,153.3,151.8,147.53,147.48,146.29,146.26,146.19,146.17,146.1,145.99$,
145.96, 145.8, 145.54, 145.51, 145.49, 145.3, 145.20, 145.15, 145.13, 144.6, 144.5, 144.4, 144.3, 143.8, 143.11, 143.09, 142.6, 142.5, 142.4, 141.99, 141.97, 141.90, 141.87, 141.7, 141.67, 141.66, 141.4, 141.3, 141.0, 140.4, 140.1, 140.03, 140.02, $139.6,139.5,139.1,138.1,137.0,135.5,134.7,134.0,131.3,128.7,127.4,126.9$, 126.6, 122.0, 76.3, 68.2, 61.4, 49.3; FT-IR $v / \mathrm{cm}^{-1} 1742,1484,1181,1142,934,901$, 812, 759, 724, 693, 524; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 259,315,435,701$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{77} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{-} 954.1050$, found 954.1048.

Spectral data of $\mathbf{2 j}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 j}$ ($26.4 \mathrm{mg}, 57 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.75$ (m, 5H), 7.46-7.42 (m, 2H), $5.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ $(\mathrm{d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\operatorname{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 208.4, 156.5, 155.3, 153.3, 152.0, 147.61, $147.56,146.37,146.35,146.27,146.25,146.2,146.1,146.03,145.97,145.9,145.64$, $145.61,145.6,145.5,145.4,145.34,145.31,145.26,145.2,144.7,144.6,144.5,144.3$ 143.9, 143.20, 143.16, 142.7, 142.63, 142.60, 142.5, 142.1, 142.04, 141.99, 141.95, $141.8,141.7,141.4,141.3,141.1,140.5,140.1,139.7,139.6,139.1,137.1,136.6$, $135.5,134.8,134.1,132.7,132.3,130.5,128.6,128.4,127.6,127.5,126.6,126.1$,
122.2, 76.4, 68.6, 61.6, 49.5; FT-IR $v / \mathrm{cm}^{-1} 1742,1501,1143,933,798,735,525$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 254,315,434,702$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{75} \mathrm{H}_{12} \mathrm{O}$ [M] ${ }^{-}$928.0894, found 928.0895.

Spectral data of $\mathbf{2 k}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give unreacted C_{60} and $\mathbf{2 k}(26.8 \mathrm{mg}, 55 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.29$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ 17.2 Hz, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 208.5,155.5,155.3,152.21,152.20,147.72,147.65,146.40,146.38$, 146.31, 148.28, 145.9, 145.68, 145.66, 145.54, 145.51, 145.47, 145.46, 145.43, 145.40, 145.1, 144.74, 144.68, 144.64, 144.58, 144.5, 143.29, 143.27, 142.74, 142.68, $142.2,142.11,142.09,141.9,141.8,141.7,141.5,141.4,140.4,139.83,139.81,139.7$, $137.6,136.3,135.9,135.0,134.6,134.0,131.1,130.2\left(J_{C-F}=31.7 \mathrm{~Hz}\right), 126.9,125.73$, 125.71, $123.9\left(J_{C-F}=270.4 \mathrm{~Hz}\right), 121.0,74.6,65.2,62.1,48.8 ;{ }^{19} \mathrm{~F}$ NMR $(565 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta:-62.3 ;$ FT-IR $v / \mathrm{cm}^{-1} 1745,1509,1410,1319,1160,1119,1065,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,315,434,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{74} \mathrm{H}_{11} \mathrm{OF}_{3}[\mathrm{M}]^{-} 972.0767$, found 972.0751 .

Spectral data of $\mathbf{2 m}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=2: 1)$ to give $\mathbf{2 m}(16.4 \mathrm{mg}, 30 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.79(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, ~, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=17.2 \mathrm{~Hz}$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz , $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 207.1, 155.4, 154.0, 153.3, 152.2, 150.7, 149.3, 146.53, 146.46, 145.3, 145.24, 145.17, 145.15, 144.99, 144.95, 144.8, 144.7, 144.53, 144.49 144.46, 144.4, 144.32, 144.26, 144.24, 144.22, 144.20, 144.14, 144.1, 143.6, 143.4, 143.37, 143.2, 142.7, 142.11, 142.09, 141.6, 141.5, 141.4, 141.0, 140.94, 140.88, 140.8, 140.67, 140.66, 140.6, 140.33, 140.32, 140.27, 140.0, 139.4, $139.0,138.6,138.5,138.0,137.84,137.77,136.1,134.8,134.4,134.0,133.7,132.9$, $130.5,126.3,125.7,125.6,121.1,117.4,89.2,87.7,76.2,75.2,67.2,60.4,48.3 ;$ FT-IR $v / \mathrm{cm}^{-1} 1821,1742,1677,1496,1399,1260,1094,1014,802,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,314,434,700 ;$ MALDI-TOF MS m/z calcd for $\mathrm{C}_{83} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]$ 1078.1211, found 1078.1206.

Spectral data of 2m': the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=4: 1)$ to give $\mathbf{2 m}$ ' $(7.8 \mathrm{mg}, 17 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6} / \mathrm{CS}_{2}$) $\delta 7.73(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.87(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{dd}, J=17.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H})$; the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 m}$ ' could not be obtained because of poor solubility of the product; FT-IR $v / \mathrm{cm}^{-1} 1742,1497,1424,1144,1024,1003,797,764,668,525 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 258,315,435,702$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{142} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{-}$ 1755.1346, found 1755.1324 .

trans-isomer
5a
Spectral data of 5a: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{5 a}(19.2 \mathrm{mg}, 44 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.78-4.70(m, 1H), 4.02-3.92(m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\operatorname{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.9,156.0,155.6,154.6,152.4,147.2,146.2$, $146.17,146.15,146.12,146.02,145.97,145.9,145.8,145.7,145.6,145.4,145.32$, $145.3,145.24,145.21,145.1,145.0,144.6,144.5,144.29,144.28,143.0,142.9,142.6$, $142.52,142.49,142.4,142.3,142.1,142.04,142.98,141.92,141.85,141.8,141.6$, 141.53, 141.49, 140.2, 140.1, 139.6, 139.4, 135.9, 135.6, 135.34, 135.26, 135.2, 129.3, 128.9, 128.3, 75.2, 68.9, 62.3, 53.2, 43.7; FT-IR $v / \mathrm{cm}^{-1} 3307,2973,2879,1718,1426$, 1379, 1087, 1046, 880, 524; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,310,431,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{-}$866.0737, found 866.0716.

5b
Spectral data of $\mathbf{5 b}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{5 b}(13.2 \mathrm{mg}, 30 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.10(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 1 \mathrm{H})$, 4.01-3.90(m, 2H), $2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 200.2,156.2,155.8,154.8,152.7,147.3,146.3,146.28$, $146.25,146.19,146.18,146.1,146.04,146.01,145.97,145.8,145.7,145.42,145.41$,
$145.35,145.31,145.28,145.2,145.1,144.7,144.5,144.38,144.35,143.1,143.0$, 142.7, 142.59, 142.55, 142.5, 142.3, 142.2, 142.1, 142.0, 141.9, 141.8, 141.7, 141.63, $141.59,140.3,140.2,139.7,139.5,138.0,136.0,135.4,135.3,132.6,129.7,129.3$, 75.4, 69.0, 62.1, 53.4, 43.7, 21.3; FT-IR $v / \mathrm{cm}^{-1} 3308,2972,2874,1720,1509,1087$, 1045, 879,527 ; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 258,314,431,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{-} 880.0894$, found 880.0872 .

5c
Spectral data of 5c: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=4: 1)$ to give $5 \mathrm{c}(6.9 \mathrm{mg}, 15 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.10(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.63(\mathrm{~m}, 1 \mathrm{H})$, 4.01-3.90(m, 2H), $3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 200.1,159.3,156.2,155.7,154.8,152.7,147.24,147.22$, $146.23,146.22,146.21,146.15,146.13,146.06,146.0,145.93,145.92,145.7,145.6$, $145.38,145.36,145.3,145.28,145.27,145.25,145.13,145.07,144.6,144.5,144.4$, $144.3,143.1,142.98,142.96,142.63,142.56,142.51,142.46,142.3,142.1,142.02$, 141.96, 141.9, 141.8, 141.7, 141.58, 141.55, 140.2, 140.1, 139.7, 139.5, 135.9, 135.4, $135.24,135.23,130.4,127.5,114.3,75.5,68.9,61.7,55.0,53.5,43.6$; FT-IR v / cm^{-1}

1724, 1512, 1427, 1249, 1178, 1032, 828, 668, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 258$, 319, 431, 699; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{12} \mathrm{O}_{2}$ [M] 896.0843, found 896.0821.

5d
Spectral data of $5 \mathbf{d}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{d}(14.9 \mathrm{mg}, 33 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 10.13(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1 \mathrm{H})$, 4.02-3.95 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.8,162.4\left(J_{C-F}=247.0 \mathrm{~Hz}\right), 155.9,155.5,154.4,152.1,147.3$, $146.23,146.15,146.1,146.0,145.97,145.95,145.9,145.6,145.5,145.39,145.35$, $145.31,145.3,145.28,145.25,145.13,145.1,144.6,144.5,144.3,143.1,143.0,142.7$, 142.6, 142.53, 142.47, 142.3, 142.1, 142.04, 142.0, 141.95, 141.88, 141.86, 141.8, $141.7,141.6,141.5,140.3,140.2,139.7,139.5,136.0,135.4,135.3,135.2,131.5$, $130.9,116.0,115.8,75.1,68.9,61.4,53.5,43.7 ;{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:$ -111.1; FT-IR $v / \mathrm{cm}^{-1} 1718,1508,1425,1230,1095,840,525 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } / \mathrm{nm} 256,312,431,697$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{FO}[\mathrm{M}]^{-} 884.0643$, found 884.0621.

5e
Spectral data of $5 \mathbf{e}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{e}(23.6 \mathrm{mg}, 52 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.97$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.5,155.8,155.4,154.2,151.9,147.3,146.25,146.24,146.16$, 146.1, 146.0, 145.96, 145.94, 145.92, 145.60, 145.58, 145.5, 145.4, 145.38, 145.32, $145.29,145.25,145.14,145.11,144.6,144.5,144.3,143.1,143.0,142.7,142.59$, $142.55,142.5,142.3,142.1,142.03,142.00,141.96,141.89,141.86,141.8,141.7$, $141.6,141.5,140.3,140.2,139.7,139.6,136.1,135.4,135.3,135.2,134.4,134.3$, 130.6, 129.1, 75.0, 68.9, 61.5, 53.3, 43.7; FT-IR $v / \mathrm{cm}^{-1} 1721,1508,1091,1013,827$, 668, 524 ; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,318,431,697$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{ClO}[\mathrm{M}]^{-} 900.0347$, found 900.0326 .

Spectral data of $5 \mathbf{f}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathrm{f}(26.1 \mathrm{mg}, 58 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.74-4.67 (m, 1H), 3.98-3.92(m, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.3,155.7,155.3,154.1,151.7,147.2,146.20$, $146.18,146.11,146.03,145.98,145.91,145.90,145.8,145.53,145.50,145.42$, $145.38,145.35,145.27,145.24,145.14,145.09,145.06,144.5,144.46,144.3,143.0$, $142.9,142.6,142.53,142.49,142.4,142.2,142.1,142.0,141.91,141.84,141.82$, $141.75,141.7,141.6,141.5,140.3,140.1,139.7,139.5,137.9,136.0,135.4,135.3$, $135.1,134.9,130.1,128.5,74.8,68.9,61.5,53.2,43.7$; FT-IR $v / \mathrm{cm}^{-1} 2963,1722$, $1507,1428,1259,1082,1015,791,524 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,312,431,697$;

MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{ClO}[\mathrm{M}]^{-} 900.0347$, found 900.0339 .

5 g
Spectral data of 5 g : the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathrm{~g}(14.4 \mathrm{mg}, 32 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6$
$\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.87(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 198.8, 156.1, 155.0, 154.9, 152.1, 147.12, 146.07, 146.04, 145.97, 145.90, 145.87, 145.8, 145.6, 145.51, 145.46, $145.4,145.3,145.24,145.18,145.14,145.09,145.0,144.9,144.5,144.3,144.1,142.9$, $142.5,142.4,142.3,142.2,142.1,141.9,141.81,141.77,141.7,141.6,141.5,141.2$, $140.2,140.0,139.6,139.4,135.8,135.6,135.5,135.1,134.5,133.7,130.3,130.1$, 129.2, 127.2, 74.5, 69.0, 56.6, 53.9, 43.3; FT-IR $v / \mathrm{cm}^{-1} 2929,1718,1513,1428,1262$, $1035,802,747,526 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,311,431,698 ;$ MALDI-TOF MS m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{ClO}[\mathrm{M}]^{-} 900.0347$, found 900.0354 .

5h
Spectral data of $\mathbf{5 h}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathrm{~h}(22.5 \mathrm{mg}, 47 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.11(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.969$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.4,155.8,155.4,154.2,151.9,147.2,146.24,146.22,146.14$, $146.10,146.02,145.95,145.93,145.90,145.58,145.56,145.5,145.39,145.37$,
$145.33,145.31,145.29,145.28,145.2,145.13,145.10,144.53,144.49,144.3,143.1$, 143.0, 142.7, 142.6, 142.54, 142.47, 142.3, 142.1, 142.02, 141.99, 141.95, 141.88, $141.85,141.8,141.7,141.6,141.5,140.3,140.2,139.7,139.6,136.1,135.4,135.3$, $135.2,134.8,132.1,130.9,122.7,74.9,68.9,61.5,53.3,43.7$; FT-IR $v / \mathrm{cm}^{-1} 1722$, $1508,1010,668,524$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,313,431,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{BrO}[\mathrm{M}]^{-} 943.9842$, found 943.9821 .

Spectral data of $5 \mathbf{i}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{i}(19.4 \mathrm{mg}, 41 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 10.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.17$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.98$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.5,155.8,155.4,154.1,151.8,149.0,147.3,146.24,146.17$, 146.1, 146.04, 145.97, 145.95, 145.9, 145.6, 145.52, 145.48, 145.40, 145.39, 145.35, $145.33,145.31,145.3,145.26,145.14,145.12,144.54,144.51,144.32,144.31$, $144.29,143.1,143.0,142.7,142.59,142.55,142.5,142.3,142.11,142.03,142.00$, $141.96,141.87,141.85,141.8,141.7,141.6,141.5,140.3,140.2,139.7,139.5,136.1$, $135.4,135.3,135.2,134.4,130.7,121.0,120.7\left(J_{C-F}=257.2 \mathrm{~Hz}\right), 74.9,68.9,61.3$,
53.4, 43.7; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:-57.5$; FT-IR $v / \mathrm{cm}^{-1} 1719,1508,1248$, $1205,1160,524$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 255,318,431,697$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}]^{-} 950.0560$, found 950.0539 .

5j

Spectral data of $\mathbf{5 j}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{j}$ ($30.3 \mathrm{mg}, 64 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 10.14(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.73(\mathrm{~m}, 1 \mathrm{H})$, 4.05-3.95 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.2,155.6,155.2,153.9,151.5,147.2,146.21,146.20,146.13$, $146.05,146.0,145.93,145.91,145.7,145.48,145.46,145.37,145.36,145.32,145.29$, 145.26, 145.2, 145.1, 144.5, 144.28, 144.25, 144.2, 143.03, 142.95, 142.63, 142.55, $142.5,142.4,142.2,142.1,142.0,141.94,141.91,141.82,141.79,141.76,141.7$, $141.5,141.4,140.3,140.2,139.9,139.7,139.5,136.1,135.4,135.2,135.1,130.4\left(J_{C-F}\right.$ $=32.4 \mathrm{~Hz}), 129.7,125.7,123.6\left(J_{C-F}=247.0 \mathrm{~Hz}\right), 74.7,68.9,61.5,53.3,43.7 ;{ }^{19} \mathrm{~F}$ NMR (377 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta:-62.4$; FT-IR $v / \mathrm{cm}^{-1} 1724,1512,1422,1323,1164$, 1120, 1068, 1017, 841, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 258,313,431,697 ;$ MALDI-TOF MS m/z calcd for $\mathrm{C}_{71} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{-} 934.0611$, found 934.0619.

5k
Spectral data of $\mathbf{5 k}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{k}(12.3 \mathrm{mg}, 26 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 10.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 200.0$, 156.1, 155.7, 154.7, 152.5, 147.3, 146.31, 146.27, 146.24, 146.22, 146.21, 146.14, $146.08,146.00,145.99,145.9,145.8,145.7,145.5,145.43,145.36,145.3,145.2$, 145.1, 144.7, 144.6, 144.41, 144.39, 144.38, 143.1, 143.0, 142.7, 142.62, 142.59, $142.5,142.4,142.18,142.15,142.1,142.02,141.96,141.9,141.8,141.6,141.0,140.3$, $140.2,140.1,139.8,139.6,136.1,135.5,135.4,135.3,134.7,129.9,128.8,127.5$, 127.0, 75.4, 69.1, 62.1, 53.5, 43.8; FT-IR v/cm ${ }^{-1} 3310,2973,2880,1725,1510,1087$, 1046, 880, 525 ; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,313,431,700$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{76} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{-} 942.1050$, found 942.1029 .

5I
Spectral data of 5l: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $5 \mathbf{l}(10.2 \mathrm{mg}, 21 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 10.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$, $7.87-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.83(\mathrm{~m}, 1 \mathrm{H})$, 4.08-3.97 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) $\delta 199.9,156.1,155.8,154.7,152.4,147.3,146.3,146.24,146.22$, $146.20,146.11,146.06,146.0,145.8,145.6,145.5,145.43,145.35,145.31,145.28$, 145.2, 145.1, 144.7, 144.6, 144.39, 144.36, 143.1, 143.0, 142.7, 142.6, 142.5, 142.4, $142.2,142.1,142.04,142.02,141.96,141.92,141.86,141.7,141.61,141.59,140.3$, $140.2,139.7,139.6,136.1,135.5,135.4,135.3,133.2,133.0,128.8,128.1,127.8$, 126.6, 126.5, 75.4, 69.1, 62.6, 53.5, 43.8; FT-IR $v / \mathrm{cm}^{-1} 1723,1510,746,574,526$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 257,313,431,698$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{74} \mathrm{H}_{12} \mathrm{O}$ [M] 916.0894, found 916.0878.

Spectral data of 6a ${ }^{3}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, S-65
$7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, 1H), $5.54-5.49(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H})$.

6m
Spectral data of $\mathbf{6 m}{ }^{\mathbf{3}}$: the mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to give C_{60} and $\mathbf{6 m}(12.7 \mathrm{mg}, 32 \%)$; amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, 4.24 ($\mathrm{s}, 2 \mathrm{H}$).

Spectral data of cis-7g: the mixture was separated and purified by silica gel column chromatography with $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=10: 1)$ as the eluent to give cis-7g (10.2 mg, 27%); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J$ $=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=14.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (br, 1H); the ${ }^{13} \mathrm{C}$ NMR spectrum of cis- 7 g could not be obtained because of poor solubility of the product; FT-IR $\mathrm{v} / \mathrm{cm}^{-1} 3284,2923,1571,1456,1324,1164,1120$, 1072, 1016, 927, 835, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,312,431,701$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{-} 948.0767$, found 948.0746 .

trans-7g
Spectral data of trans-7g: the mixture was separated and purified by silica gel column chromatography with $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=4: 1)$ as the eluent to give trans-7g (25.1 mg, 66\%); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 8.00$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{td}, J$ $=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J$ $=12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 157.7, 156.0, $152.8,152.5,147.6,147.5,146.8,146.49,146.45,146.4,146.3,146.2,146.17,145.8$, $145.7,145.61,145.55,145.52,145.50,145.48,145.42,145.41,145.2,144.9,144.6$, $144.4,144.3,143.9,143.33,143.28,142.90,142.86,142.8,142.7,142.34,142.27$, $142.23,142.20,142.16,142.0,141.97,141.89,141.62,141.57,141.5,140.7,140.5$, $139.7,139.5,139.1,137.6,135.9,135.7,134.5,130.7,129.9\left(J_{C-F}=32.4 \mathrm{~Hz}\right), 125.33$, $125.31,124.0\left(J_{C-F}=271.0 \mathrm{~Hz}\right), 123.3,76.4,71.2,65.1,64.9,46.4 ;$ FT-IR $v / \mathrm{cm}^{-1} 3373$, 2854, 1616, 1413, 1321, 1164, 1112, 1068, 1016, 936, 808, 524; UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } / \mathrm{nm} 257,313,433$, 699; MALDI-TOF MS m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{-}$ 948.0767, found 948.0746.

trans-isomer 8a

Spectral data of 8a: the mixture was separated and purified by silica gel column chromatography with $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=4: 1)$ to give the quantitative product $\mathbf{8 a}$; amorphous brown solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right) \delta 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$ with $\mathrm{Cr}(\text { acac })_{3}$ as relaxation reagent) δ $157.4,156.9,155.8,153.7,147.2,146.4,146.2,146.18,146.15,146.1,146.04,146.00$, $145.93,145.91,145.7,145.5,145.29,145.27,145.24,145.17,145.11,145.05,144.6$, $144.4,143.1,143.0,142.6,142.51,142.48,142.42,142.39,142.2$ 142.1, 142.02, $142.00,141.95,141.93,141.89,141.8,141.7,141.6,141.5,140.2,140.1,139.6,139.3$, $137.2,136.1,135.4,135.1,135.0,128.8,127.8,76.0,69.2,62.9,62.4,46.0,43.7 ;$ FT-IR $v / \mathrm{cm}^{-1} 1704,1428,1357,1218,1185,1085,1041,698,526 ; \mathrm{UV}$-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } / \mathrm{nm} 256,326,432,702$; MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{-} 868.0894$, found 868.0872.

Spectral data of 9a: the mixture was separated and purified by silica gel column chromatography with $\mathrm{CS}_{2} / \mathrm{DCM} / \mathrm{EA}(\mathrm{v} / \mathrm{v} / \mathrm{v}=4: 1: 1)$ to give 9a ($30.0 \mathrm{mg}, 85 \%$); amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6} / \mathrm{CS}_{2}$) $\delta 12.9(\mathrm{br}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, DMSO- d_{6} / CS_{2} with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ 172.6, 156.3, 156, $155.1,146.8,146.1,145.81,145.76,145.75,145.72,145.63,145.59,145.5,145.4$, $145.08,145.97,144.89,144.85,144.81,144.76,144.71,144.65,144.58,144.17$, $144.0,143.96,142.65,142.59,142.2,142.14,142.09,142.03,141.8,141.7,141.65$, 141.6, 141.58, 141.53, 141.4, 141.27, 141.25, 141.1, 139.8, 139.7, 139.2, 139.0, 136.42, 135.7, 135.2, 135.0, 134.97, 128.3, 127.5, 74.8, 69.1, 63.5, 46.5, 46.1; FT-IR $\mathrm{v} / \mathrm{cm}^{-1} 3456,1711,1427,1262,1183,1022,697,527 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256$, 309, 430, 697; MALDI-TOF MS m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{10} \mathrm{O}_{2}$ [M] 882.0686, found 882.0672

References:

(3) Liu, Q.; Liu, T.-X.; Ru, Y.; Zhu, X.; Zhang, G. Palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene: preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines. Chem. Соттип. 2019, 55, 14498.
9. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of All Compounds

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 2a

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2a

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 2b

Expanded ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3} / \mathrm{CS}_{2}$) of compound 2b
(

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 2 c

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 c

$\begin{array}{llllllllllllllllllllllll}162 & 161 & 160 & 159 & 158 & 157 & 156 & 155 & 154 & 153 & 152 & 151 & 150 & 149 & 148 & 147 & 146 & 145 & 144 & 143 & \mathrm{ppm}\end{array}$
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 2c

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 2d
 200
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 2 d

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 e

Expanded ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 e
मu")

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } / \mathrm { CS } _ { 2 } \text {) of compound } 2 \mathrm { f } , ~ (1)}$

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
Expanded ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3} / \mathrm{CS}_{2}$) of compound 2f

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 2f
$0 ヵ \mathrm{~S} \cdot \mathrm{LS}-$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0 ~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{2 g}$

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{\mathbf{2}}$) of compound $\mathbf{2 g}$
(a)

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 g

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 h

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{2 h}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound $\mathbf{2 i}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{2 j}$

S-101
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{2 j}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 2 k

S-104
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{2 k}$

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 2 k

S-110

${ }^{1} \mathrm{H}^{2}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO/CS $\mathbf{2}_{2}$) of compound 5 a

S-112
Expanded ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3} / \mathrm{CS}_{2}$) of compound 5a
Man

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{5 b}$

S-115
Expanded ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3} / \mathbf{C S}_{2}$) of compound $\mathbf{5 b}$
FR":

位

S-118
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 5 c
H2

${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{5 d}$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5d

Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{5 d}$

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 5 d

TS F $^{\circ}$ L—

S-125
Expanded ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5 e

Furnund 200

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 5 g

S-131

Faman

S-133

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound $\mathbf{5 h}$

S-134
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{5 h}$

$\begin{array}{llllllllllllllll}157 & 156 & 155 & 154 & 153 & 152 & 151 & 150 & 149 & 148 & 147 & 146 & 145 & 144 & 143 & \mathrm{ppm}\end{array}$

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$) of compound 5 i

Expanded ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5 i
\mid Man Mivili

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5 j

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5 j

${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{5 j}$

S-145

Expanded ${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound $\mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 51

Expanded ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 5I
Mm

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound $\mathbf{6 a}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound trans-7g

S-154
Expanded ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound trans－ 7 g
Hamy
thithlathounaltanth

］ $\begin{aligned} & 9 Z \tau \cdot \varepsilon 乙 \tau \\ & \angle \varepsilon \varepsilon \cdot \varepsilon 乙 \tau\end{aligned}$

$$
=
$$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right)$ of compound 8a

Expanded ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 8a

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, DMSO- d_{6} / CS_{2}) of compound 9a

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{6} / \mathrm{CS}_{2}$) of compound 9a

099*てLT—

