Electronic Supplementary Information

Palladium-catalyzed decarboxylative [2 + 3] cyclocarbonylation reactions of [60]fullerene: selective synthesis of [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes

Tong-Xin Liu,^{*a,b} Chuanjie Zhang,^a Pengling Zhang,^a Xin Wang,^a Jinliang Ma,^a and Guisheng Zhang^{*a}

^aCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China. ^bKey Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

E-mail: liutongxin_0912@126.com and zgs@htu.cn

Table of Contents

1. General Information	S3
2. Experimental Procedures	S4-S7
3. DEPT-135 Spectra of Compound 2a	S8
4. 2D-NOESY Spectra of Compounds 5a, 5d, 5i, cis- and trans-7g	S9-S11
5. 1D-NOESY ¹ H NMR of 5a , 5d , 5i , 8a and 9a	S12-S15
6. UV-vis Spectra of Compounds 2 and 5	S16-S30
7. CVs of Selected Compounds 2 and 5	S31-S44
8. Spectral Data for All Compounds	S45-S69
9. ¹ H, ¹³ C and ¹⁹ F NMR Spectra of All Compounds	S70-S161

1. General Information

All reagents were purchased as reagent grade and used without further purification unless otherwise specified. Pd(PPh₃)₄ and Pd(OAc)₂/bis-sulfoxide (White's catalyst) were purchased from Sigma-Aldrich. Chlorobenzene (PhCl) and 1,2-Dichlorobenzene (ODCB) was treated with CaH₂. Substrates 1^1 and 4^2 were prepared by following the literature procedure. ¹H NMR (400 and 600 MHz) and ¹³C NMR (150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. UV-vis Spectra were recorded on Shimadzu UV-1700. CVs were recorded on CHI 660E. FT-IR was registered on Perkin Elmer Spectrum 400F. HRMS measured Bruker Ultraflextreme MALDI-TOF/TOF were on using *E*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix.

References:

(1) B. Yan, L. Zuo, X. Chang, T. Liu, M. Cui, Y. Liu, H. Sun, W. Chen and W. Guo, Kinetically controllable Pd-catalyzed decarboxylation enabled [5+2] and [3+2] cycloaddition toward carbocycles featuring quaternary carbons. *Org. Lett.*, 2021, **23**, 351.

(2) R. Shintani, K. Moriya and T. Hayashi, Guiding the nitrogen nucleophile to the middle: palladium-catalyzed decarboxylative cyclopropanation of 2-alkylidenetrimethylene carbonates ith isocyanates, *Chem. Commun.*, 2011, 47, 3057.

2. Experimental Procedures

General Procedure for the Synthesis of Products 2a-m: A dry 15-mL tube equipped with a magnetic stirrer was charged with C₆₀ (36.0 mg, 0.05 mmol), **1** (0.10 mmol), Pd(PPh₃)₄ (2.9 mg, 0.005 mmol). After dissolving the solids in anhydrous PhCl (6 mL) and DCM (1 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to recover unreacted C₆₀ and give product **2** (for **2b**, **2h**, **2m** and **2m'** with CS₂/DCM as the eluent).

General Procedure for the Synthesis of Products 2m': A dry 15-mL tube equipped with a magnetic stirrer was charged with C₆₀ (36.0 mg, 0.05 mmol), **1m** (0.025 mmol, 10.1 mg), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol). After dissolving the solids in anhydrous PhCl (6 mL) and DCM (1 mL) by sonication, an oil bath at 70 °C for 9 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂/DCM as the eluent to give unreacted C₆₀ (3.9 mg, 11%) and the product **2m'** (7.3 mg, 17%).

General Procedure for the Synthesis of Products 5a-l: A dry 15-mL tube equipped with a magnetic stirrer was charged with C₆₀ (36.0 mg, 0.05 mmol), **4** (0.15 mmol), Pd(OAc)₂/bis-sulfoxide (0.005 mmol; 0.0075 mmol for **4b** and **4k**) and dppbz (0.01 mmol; 0.015 mmol for **4b** and **4k**). After dissolving the solids in anhydrous ODCB (4 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM to give the product **5a–1**.

Large-scale Synthesis of 2g: A dry 250-mL round-bottomed flask equipped with a magnetic stirrer was charged with C₆₀ (720.0 mg, 1.0 mmol), 1g (540.4 mg, 2.0 mmol), Pd(PPh₃)₄ (115.6 mg, 0.1 mmol). After dissolving the solids in anhydrous PhCl (120 mL) and DCM (20 mL) by sonication, the round-bottomed flask was stirred in an oil bath at 50 °C for 11 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to give unreacted C₆₀ (204.3 mg) and the product 2g (520.2 mg, 55%).

Large-scale Synthesis of 5*a*: A dry 250-mL round-bottomed flask equipped with a magnetic stirrer was charged with C_{60} (720.0 mg, 1.0 mmol), 4a (570.6 mg, 3.0 mmol), Pd(OAc)₂/bis-sulfoxide (50.3 mg, 0.1 mmol) and dppbz (89.3 mg, 0.2 mmol). After dissolving the solids in anhydrous ODCB (70 mL) by sonication, the round-bottomed flask was stirred in an oil bath at 110 °C for 20 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to give unreacted C₆₀ (276.5 mg) and the product 5a (424.2 mg, 49%).

Synthetic Application for 7g: A dry 15-mL tube equipped with a magnetic stirrer was charged with 2g (38.4 mg, 0.04 mmol), BH₃·NH₃ (4.9 mg, 0.16 mmol). After dissolving the solids in anhydrous PhCl (6 mL) and EtOH (6 mL) by sonication, the

round-bottomed flask was stirred in an oil bath at 0 °C for 20 min The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂/DCM to give the product **7g** (*cis*-isomer: 10.4 mg, 27%; *trans*-isomer: 25.4 mg, 66%).

Synthetic Application for 8a: A dry 15-mL tube equipped with a magnetic stirrer was charged with **5a** (34.7 mg, 0.04 mmol), BH₃·NH₃ (4.9 mg, 0.16 mmol). After dissolving the solids in anhydrous CB (6 mL) and EtOH (6 mL) by sonication, the round-bottomed flask was stirred in an oil bath at 0 °C for 20 min The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂/DCM to give the quantitative product **8a**.

Synthetic Application for 9a: A dry 15-mL tube equipped with a magnetic stirrer was charged with 5a (35.0 mg, 0.04 mmol), Dess-Martin periodinane (86.8 mg, 0.20 mmol). After dissolving the solids in anhydrous PhCl (6 mL) by sonication, the round-bottomed flask was stirred in an oil bath at 80 °C for 4 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to give unreacted 5a (3.3 mg, 9%), and then the eluent was switched to CS₂/DCM/EA to give the product 9a (30.0 mg, 85%).

Procedures for Electrochemical Characterization Recording: In a dry 15-mL electrolytic cup, 2.0×10^{-3} mmol of product **2** (5), 2 mL of the solution of $(n-Bu)_4$ NClO₄ in ODCB (0.1 M), and 18 µL of the solution of ferrocene in ODCB (0.054 M) was added, respectively. After sonication, three different electrodes S-6

(reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire) were placed in the sample solution, then running electrochemical workstation recorded the cyclic voltammogram (CV) of product **2** (**5**) under an argon atmosphere.

Procedures for UV-vis Spectra Recording: A dry 100-mL volumetric flask was charged with the product **2** (**5**) $(1.4 \times 10^{-3} \sim 1.6 \times 10^{-3} \text{ mmol})$. After dissolving the solid with 100 mL of CHCl₃ by sonication, a small amount of sample solution is added to a cuvette and then placed in the UV-vis spectrophotometer to record the UV-vis spectrum of product **2** (**5**).

3. DEPT-135 Spectra of Compound 2a

4. 2D-NOESY Spectra of Compounds 5a, 5d, 5i, cis- and trans-7g

2D-NOESY Spectra of cis-7g (CDCl3/CS2)

5. 1D-NOESY ¹H NMR of 5a, 5d, 5i, 8a and 9a

1D-NOESY ¹H NMR of **5a** (600 MHz, CDCl₃/CS₂)

6. UV-vis Spectra of Compounds 2 and 5

UV-vis spectrum of compound 2a in CHCl₃

UV-vis spectrum of compound 2b in CHCl₃

UV-vis spectrum of compound 2c in CHCl₃

UV-vis spectrum of compound 2d in CHCl₃

UV-vis spectrum of compound 2e in CHCl₃

UV-vis spectrum of compound 2f in CHCl₃

UV-vis spectrum of compound 2g in CHCl₃

UV-vis spectrum of compound 2h in CHCl₃

UV–vis spectrum of compound 2i in CHCl₃

UV–vis spectrum of compound 2j in CHCl₃

UV-vis spectrum of compound 2k in CHCl₃

UV-vis spectrum of compound 2m in CHCl₃

UV-vis spectrum of compound **2m'** in CHCl₃

UV–vis spectrum of compound 5a in CHCl₃

UV-vis spectrum of compound **5b** in CHCl₃

UV-vis spectrum of compound 5c in CHCl₃

UV-vis spectrum of compound 5d in CHCl₃

UV-vis spectrum of compound 5e in CHCl₃

UV–vis spectrum of compound $\mathbf{5f}$ in CHCl₃

UV–vis spectrum of compound 5g in CHCl₃ S-25

UV-vis spectrum of compound **5h** in CHCl₃

UV-vis spectrum of compound 5i in CHCl₃

UV-vis spectrum of compound 5j in CHCl₃

UV-vis spectrum of compound 5k in CHCl₃

UV–vis spectrum of compound $\mathbf{5l}$ in CHCl₃

UV–vis spectrum of compound cis-7g in CHCl₃

UV–vis spectrum of compound *trans*-7g in $CHCl_3$

UV–vis spectrum of compound $\mathbf{8a}$ in CHCl₃

UV-vis spectrum of compound **9a** in CHCl₃

7. CVs of Selected Compounds 2 and 5

Compound	E_{I}	E_2	Ez	LUMO
2a	-1.145	-1.543	-2.087	-3.655
2b	-1.151	-1.547	-2.093	-3.650
2c	-1.149	-1.555	-2.103	-3.651
2 d	-1.152	-1.574	-2.136	-3.648
2e	-1.132	-1.524	-2.062	-3.668
2f	-1.154	-1.569	-2.121	-3.647
2g	-1.130	-1.518	-2.051	-3.670
2h	-1.134	-1.557	-2.118	-3.666
2i	-1.153	-1.560	-2.112	-3.647
2j	-1.145	-1.535	-2.080	-3.655
2k	-1.141	-1.551	-2.091	-3.660
5a	-1.171	-1.565	-2.110	-3.629
5b	-1.184	-1.593	-2.145	-3.616
5c	-1.180	-1.578	-2.124	-3.620
5d	-1.169	-1.574	-2.120	-3.631
5e	-1.174	-1.583	-2.136	-3.626
5f	-1.173	-1.573	-2.112	-3.627
5g	-1.164	-1.564	-2.107	-3.636
5h	-1.171	-1.583	-2.137	-3.629
5i	-1.159	-1.560	-2.109	-3.641
5j	-1.154	-1.548	-2.078	-3.646
5k	-1.169	-1.567	-2.112	-3.631
51	-1.166	-1.551	-2.090	-3.634
РСВМ	-1.180	-1.581	-2.110	-3.620
C ₆₀	-1.088	-1.490	-1.973	-3.712

Table S1. Half-Wave Reduction Potentials of compounds 2, 5, PCBM and $C_{60}{}^{a}$

^{*a*}Versus ferrocene/ferrocenium; experimental conditions: 1 mM of compounds **2** (**5**) and 0.1 M of $(n-Bu)_4NClO_4$ in anhydrous *o*-dichlorobrnzene; referene electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire; scanning rate: 50 mV s⁻¹.

Cyclic voltammogram of compound **2a** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **2b** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound 2c (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound 2d (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **2e** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **2f** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound 2g (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **2h** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **2i** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **2j** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound 2k (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5a** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5b** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **5c** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5d** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **5e** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5f** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **5g** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5h** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5i** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5j** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **5k** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **5**l (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound **PCBM** (scanning rate: 50 mV s⁻¹)

Cyclic voltammogram of compound C_{60} (scanning rate: 50 mV s⁻¹)

8. Spectral Data for All Compounds

Spectral data of **2a**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2a** (25.5 mg, 58%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) 7.75 (dd, J = 17.4, 10.8 Hz, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.24–7.22 (m, 1H), 5.90 (d, J = 10.2 Hz, 1H), 5.70 (d, J = 17.4 Hz, 1H), 4.91 (d, J = 17.4 Hz, 1H), 4.26 (d, J = 17.4 Hz, 1H); ¹³C {¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.8, 156.6, 155.3, 153.5, 151.9, 147.64, 147.59, 146.41, 146.37, 146.31, 146.29, 146.26, 146.12, 146.07, 146.01, 145.97, 145.7, 145.61, 145.58, 145.5, 145.4, 145.3, 145.2, 144.8, 144.6, 144.5, 144.4, 143.9, 143.2, 142.70, 142.66, 142.5, 142.13, 142.10, 142.0, 141.99, 141.98, 141.82, 141.79, 141.7, 141.5, 141.4, 141.1, 140.5, 140.1, 139.6, 139.2, 139.1, 137.1, 135.6, 134.7, 134.1, 131.0, 128.1, 127.7, 122.0, 76.3, 68.5, 61.5, 49.4; FT-IR v/cm⁻¹ 1744, 1509, 1259, 1092, 1014, 793, 688, 524; UV-vis (CHCl₃) $\lambda_{max}/nm 255, 315, 434, 701;$ MALDI-TOF MS m/z calcd for C₇₁H₁₀O [M]⁻ 878.0737, found 878.0736.

Spectral data of 2b: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 5:1) to give **2b** (18.4 mg, 40%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.72 (dd, J = 17.4, 10.2 Hz, 1H), 7.58 (d, J = 6.6, 1.8 Hz, 2H), 6.84 (d, J = 7.2, 1.8 Hz, 2H), 5.87 (d, J = 10.8 Hz, 1H), 5.68 (d, J =17.4 Hz, 1H), 4.89 (d, J = 17.4 Hz, 1H), 4.25 (d, J = 17.4 Hz, 1H), 3.76 (s, 3H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 208.4, 158.6, 156.7, 155.1, 153.6, 152.0, 147.6, 147.5, 146.31, 146.28, 146.22, 146.20, 146.18, 146.02, 145.98, 145.9, 145.6, 145.58, 145.57, 145.5, 145.32, 145.28, 145.22, 145.18, 145.1, 144.7, 144.5, 144.40, 144.36, 143.8, 143.1, 142.6, 142.58, 142.56, 142.4, 142.04, 142.02, 141.92, 141.89, 141.7, 141.69, 141.66, 141.4, 141.3, 141.1, 140.4, 140.0, 139.8, 139.6, 139.1, 137.0, 135.5, 134.5, 134.1, 132.1, 131.0, 121.8, 113.4, 76.5, 68.1, 61.3, 55.0, 49.3; FT-IR v/cm⁻¹ 1736, 1508, 1247, 1179, 1005, 791, 523; UV-vis (CHCl₃) λ_{max} /nm 257, 315, 435, 702; MALDI-TOF MS m/z calcd for C₇₂H₁₂O₂ [M]⁻ 908.0843, found 908.0840.

Spectral data of **2c**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2c** (25.5 mg, 57%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.77 (dd, *J* = 17.4, 10.2 Hz, 1H), 7.68 (dd, *J* = 9.0, 5.4 Hz, 2H), 7.03 (t, *J* = 9.0 Hz, 2H), 5.92 (d, *J* = 10.2 Hz,

1H), 5.69 (d, J = 17.4 Hz, 1H), 4.91 (d, J = 17.4 Hz, 1H), 4.26 (d, J = 17.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.0, 161.7 ($J_{C-F} = 248.0$ Hz), 156.3, 154.9, 153.0, 151.5, 147.52, 147.46, 146.3, 146.23, 146.2, 146.16, 146.15, 146.0, 145.9, 145.8, 145.7, 145.6, 145.5, 145.4, 145.33, 145.25, 145.22, 145.20, 145.15, 144.6, 144.4, 144.34, 144.28, 143.6, 143.1, 142.58, 142.57, 142.5, 142.4, 142.0, 141.9, 141.88, 141.86, 141.8, 141.7, 141.6, 141.32, 141.28, 141.0, 140.4, 140.1, 139.6, 139.5, 139.1, 137.1, 135.4, 134.8, 134.6, 133.9, 132.7, 132.6, 122.2, 115.0, 114.8, 76.0, 67.7, 61.2, 49.1; ¹⁹F NMR (377 MHz, CDCl₃/CS₂) δ : -112.4; FT-IR v/cm⁻¹ 1742, 1506, 1221, 1163, 979, 932, 801, 764, 524; UV-vis (CHCl₃) $\lambda_{max}/nm 258, 315, 434, 700;$ MALDI-TOF MS m/z calcd for C₇₁H₉OF [M]⁻ 896.0643, found 896.0641.

Spectral data of **2d**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2d** (22.7 mg, 49%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.75 (dd, *J* = 17.2, 10.4 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H), 5.91 (d, *J* = 10.4 Hz, 1H), 5.68 (d, *J* = 17.2 Hz, 1H), 4.90 (d, *J* = 17.6 Hz, 1H), 4.25 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.4, 156.2, 154.8, 152.8, 151.4, 147.5, 147.4, 146.24, 146.20, 146.17, 146.1, 146.0, 145.9, 145.7, 145.6, 145.5, 145.44, 145.39, 145.3, 145.23, 145.20, 145.16, 145.1, 114.6, 144.4, 144.3, 144.2, 143.6, 143.1, 142.54, 142.53, 142.5, 142.4, 141.94, 141.9, 141.84, 141.81, 141.78, 141.63, 141.61, 141.26, 141.25, 140.9, 140.4, 140.0, 139.5, 139.3, 139.1, 137.5, 137.1, 135.3, 134.6, 133.8, 132.2, 128.1, 122.3, 75.9, 67.8, 61.3, 49.1; FT-IR v/cm⁻¹ 1745, 1489, 1400, 1186, 1092, 1014, 989, 935, 796, 525; UV-vis (CHCl₃) λ_{max} /nm 259, 316, 434, 700; MALDI-TOF MS m/z calcd for C₇₁H₉OCl [M]⁻ 912.0347, found 912.0342.

Spectral data of **2e**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2e** (26.0 mg, 54%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.76 (dd, *J* = 17.2, 10.8 Hz, 1H), 7.58 (d, *J* = 9.0 Hz, 2H), 7.48 (d, *J* = 9.0 Hz, 2H), 5.92 (d, *J* = 10.8 Hz, 1H), 5.68 (d, *J* = 17.4 Hz, 1H), 4.91 (d, *J* = 17.4 Hz, 1H), 4.26 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 208.0, 156.4, 155.0, 153.0, 151.5, 147.7, 147.6, 146.41, 146.37, 146.34, 146.31, 146.13, 146.11, 145.9, 145.7, 145.64, 145.60, 145.56, 145.5, 145.4, 145.38, 145.37, 145.33, 145.28, 145.25, 144.8, 144.6, 144.5, 144.4, 143.8, 143.2, 142.71, 142.69, 142.67, 142.5, 140.11, 139.7, 139.4, 139.3, 138.2, 137.2, 135.5, 134.8, 133.9, 132.7, 131.2, 122.5, 122.2, 76.0, 68.0, 61.5, 49.3; FT-IR v/cm⁻¹ 1745, 1485, 1185, 1009, 936, 795, 525;

UV-vis (CHCl₃) λ_{max}/nm 256, 318, 434, 699; MALDI-TOF MS m/z calcd for C₇₁H₉OBr [M]⁻ 955.9842, found 957.9825.

Spectral data of **2f**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2f** (23.7 mg, 49%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.82–7.75 (m, 3H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.95 (d, *J* = 10.4 Hz, 1H), 5.72 (d, *J* = 17.2 Hz, 1H), 4.95 (d, *J* = 17.6 Hz, 1H), 4.29 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.8, 156.3, 154.9, 152.9, 151.4, 148.4, 147.7, 147.6, 146.39, 146.36, 146.32, 146.29, 146.12, 146.09, 145.9, 145.64, 145.57, 145.54, 145.46, 145.37, 145.35, 145.34, 145.26, 145.2, 144.7, 144.54, 144.47, 144.4, 143.8, 143.2, 142.7, 142.68, 142.66, 142.5, 142.09, 142.08, 142.04, 142.00, 141.97, 141.9, 141.79, 141.76, 141.4, 141.1, 140.5, 140.2, 139.7, 139.4, 139.1, 137.7, 137.3, 135.5, 134.8, 133.9, 132.5, 122.6, 120.24 (*J*_{C-F} = 256.2 Hz), 120.21, 76.0, 67.9, 61.5, 49.3; ¹⁹F NMR (565 MHz, CDCl₃/CS₂) δ : -57.5; FT-IR v/cm⁻¹ 1744, 1506, 1248, 1207, 1156, 935, 796, 524; UV-vis (CHCl₃) λ_{max} /nm 257, 316, 434, 701; MALDI-TOF MS m/z calcd for C₇₂H₉O₂F₃ [M]⁻ 962.0560, found 962.0569.

Spectral data of 2g: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C_{60} and **2g** (23.7 mg, 50%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.85 (d, J = 7.6 Hz, 2H), 7.81 (dd, J = 17.2, 10.4 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 5.96 (d, J = 10.4 Hz, 1H), 5.68 (d, J = 17.2 Hz, 1H), 4.94 (d, J = 17.6 Hz, 1H), 4.29 (d, J = 17.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.6, 156.2, 154.9, 152.6, 151.2, 147.7, 147.6, 146.40, 146.36, 146.34, 146.31, 146.13, 146.11, 145.8, 145.7, 145.6, 145.54, 145.49, 145.4, 145.37, 145.35, 145.29, 145.26, 145.1, 144.8, 144.54, 144.48, 144.3, 143.7, 143.24, 143.22, 143.17, 142.72, 142.69, 142.68, 142.5, 142.10, 142.07, 142.04, 142.01, 141.96, 141.9, 141.8, 141.78, 141.75, 141.41, 141.38, 141.0, 140.5, 140.2, 139.7, 139.3, 139.2, 137.3, 135.5, 134.9, 133.9, 131.5, 129.7 (J_{C-F} = 32.6 Hz), 124.91, 124.89, 123.8 (J_{C-F} = 270.8 Hz), 122.8, 75.8, 68.1, 61.6, 49.3; ¹⁹F NMR (565 MHz, CDCl₃/CS₂) δ: -62.3; FT-IR v/cm⁻¹ 1745, 1512, 1323, 1162, 1118, 1069, 812, 525; UV-vis (CHCl₃) λ_{max}/nm 256, 316, 434, 699; MALDI-TOF MS m/z calcd for C₇₂H₉OF₃ [M]⁻ 946.0611, found 962.0617.

Spectral data of **2h**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 4:1) to give **2h** (23.5 mg, 52%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.80 (dd, *J* = 17.4,

10.8 Hz 1H), 7.66 (d, J = 8.4 Hz, 2H), 5.97 (d, J = 10.8 Hz, 1H), 5.68 (d, J = 17.4 Hz, 1H), 4.94 (d, J = 17.4 Hz, 1H), 4.29 (d, J = 17.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 206.7, 155.9, 154.6, 152.1, 150.8, 147.6, 147.5, 146.33, 146.28, 146.25, 146.1, 146.0, 145.7, 145.6, 145.44, 145.43, 145.36, 145.34, 145.31, 145.30, 145.27, 145.23, 145.21, 144.8, 144.7, 144.43, 144.40, 144.3, 144.2, 143.6, 143.2, 142.7, 142.65, 142.62, 142.5, 142.03, 141.98, 141.94, 141.93, 141.9, 141.8, 141.74, 141.68, 141.66, 141.4, 141.3, 140.9, 140.5, 140.2, 139.7, 139.1, 138.9, 137.3, 135.3, 134.9, 133.7, 131.7, 131.6, 123.0, 118.0, 111.7, 75.5, 67.9, 61.4, 49.2; FT-IR v/cm⁻¹ 1742, 1501, 1261, 1093, 1004, 935, 806, 524; UV-vis (CHCl₃) λ_{max}/nm 256, 316, 433, 605, 699; MALDI-TOF MS m/z calcd for C₇₂H₉ON [M]⁻ 903.0690, found 903.0684.

Spectral data of **2i**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and **2i** (28.5 mg, 58%); amorphous brown solid; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.78 (dd, *J* = 17.4, 10.8 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.52 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.27 (t, *J* = 7.8 Hz, 1H), 5.92 (d, *J* = 10.8 Hz, 1H), 5.72 (d, *J* = 17.4 Hz, 1H), 4.92 (d, *J* = 17.4 Hz, 1H), 4.28 (d, *J* = 17.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 208.1, 156.5, 155.1, 153.3, 151.8, 147.53, 147.48, 146.29, 146.26, 146.19, 146.17, 146.1, 145.99,

145.96, 145.8, 145.54, 145.51, 145.49, 145.3, 145.20, 145.15, 145.13, 144.6, 144.5, 144.4, 144.3, 143.8, 143.11, 143.09, 142.6, 142.5, 142.4, 141.99, 141.97, 141.90, 141.87, 141.7, 141.67, 141.66, 141.4, 141.3, 141.0, 140.4, 140.1, 140.03, 140.02, 139.6, 139.5, 139.1, 138.1, 137.0, 135.5, 134.7, 134.0, 131.3, 128.7, 127.4, 126.9, 126.6, 122.0, 76.3, 68.2, 61.4, 49.3; FT-IR v/cm⁻¹ 1742, 1484, 1181, 1142, 934, 901, 812, 759, 724, 693, 524; UV-vis (CHCl₃) λ_{max}/nm 259, 315, 435, 701; MALDI-TOF MS m/z calcd for C₇₇H₁₄O [M]⁻ 954.1050, found 954.1048.

Spectral data of 2j: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give unreacted C₆₀ and 2j (26.4 mg, 57%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.21 (s, 1H), 7.89–7.75 (m, 5H), 7.46–7.42 (m, 2H), 5.96 (d, J = 10.4 Hz, 1H), 5.73 (d, J = 17.2 Hz, 1H), 4.98 (d, J = 17.6 Hz, 1H), 4.35 (d, J = 17.6 Hz, 1H); ¹³C {¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 208.4, 156.5, 155.3, 153.3, 152.0, 147.61, 147.56, 146.37, 146.35, 146.27, 146.25, 146.2, 146.1, 146.03, 145.97, 145.9, 145.64, 145.61, 145.6, 145.5, 145.4, 145.34, 145.31, 145.26, 145.2, 144.7, 144.6, 144.5, 144.3, 143.9, 143.20, 143.16, 142.7, 142.63, 142.60, 142.5, 142.1, 142.04, 141.99, 141.95, 141.8, 141.7, 141.4, 141.3, 141.1, 140.5, 140.1, 139.7, 139.6, 139.1, 137.1, 136.6, 135.5, 134.8, 134.1, 132.7, 132.3, 130.5, 128.6, 128.4, 127.6, 127.5, 126.6, 126.1, 122.2, 76.4, 68.6, 61.6, 49.5; FT-IR v/cm⁻¹ 1742, 1501, 1143, 933, 798, 735, 525; UV-vis (CHCl₃) λ_{max} /nm 254, 315, 434, 702; MALDI-TOF MS m/z calcd for C₇₅H₁₂O [M]⁻ 928.0894, found 928.0895.

Spectral data of 2k: the mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to give unreacted C_{60} and **2k** (26.8 mg, 55%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.60–7.55 (m, 4H), 7.29 (d, J = 16.4 Hz, 1H), 7.08 (dd, J = 17.2, 10.4 Hz, 1H), 7.04 (d, J = 16.0 Hz, 1H), 5.83(d, J = 10.4 Hz, 1H), 5.74 (d, J = 17.6 Hz, 1H), 4.61 (d, J = 17.2 Hz, 1H), 4.47 (d, J = 17.2 Hz, 1H)17.2 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) & 208.5, 155.5, 155.3, 152.21, 152.20, 147.72, 147.65, 146.40, 146.38, 146.31, 148.28, 145.9, 145.68, 145.66, 145.54, 145.51, 145.47, 145.46, 145.43, 145.40, 145.1, 144.74, 144.68, 144.64, 144.58, 144.5, 143.29, 143.27, 142.74, 142.68, 142.2, 142.11, 142.09, 141.9, 141.8, 141.7, 141.5, 141.4, 140.4, 139.83, 139.81, 139.7, 137.6, 136.3, 135.9, 135.0, 134.6, 134.0, 131.1, 130.2 (J_{CF} = 31.7 Hz), 126.9, 125.73, 125.71, 123.9 (J_{C-F} = 270.4 Hz), 121.0, 74.6, 65.2, 62.1, 48.8; ¹⁹F NMR (565 MHz) CDCl₃/CS₂) δ: -62.3; FT-IR v/cm⁻¹ 1745, 1509, 1410, 1319, 1160, 1119, 1065, 524; UV-vis (CHCl₃) λ_{max}/nm 256, 315, 434, 700; MALDI-TOF MS m/z calcd for C₇₄H₁₁OF₃ [M]⁻ 972.0767, found 972.0751.

S-53

Spectral data of 2m: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 2:1) to give **2m** (16.4 mg, 30%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.79 (dd, J = 17.2, 10.4 Hz, 1H), 7.78 (d, J = 17.2, 10.4 Hz, 10.4 = 8.4 Hz, 2H), 7.59 (t, J = 8.4 Hz, 4H), 7.48 (d, J = 8.4 Hz, 2H), 6.18 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.94 (d, J = 10.8 Hz, 1H), 5.73 (d, J = 17.2 Hz, 1H), 5.54 (d, J = 3.6 Hz, 1H), 5.50 (d, J = 3.2 Hz, 1H), 5.06 (d, J = 3.6 Hz, 1H), 4.94 (d, J = 17.6 Hz, 1H), 4.39 (d, J = 3.6 Hz, 1H), 4.29 (d, J = 18.0 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 207.1, 155.4, 154.0, 153.3, 152.2, 150.7, 149.3, 146.53, 146.46, 145.3, 145.24, 145.17, 145.15, 144.99, 144.95, 144.8, 144.7, 144.53, 144.49 144.46, 144.4, 144.32, 144.26, 144.24, 144.22, 144.20, 144.14, 144.1, 143.6, 143.4, 143.37, 143.2, 142.7, 142.11, 142.09, 141.6, 141.5, 141.4, 141.0, 140.94, 140.88, 140.8, 140.67, 140.66, 140.6, 140.33, 140.32, 140.27, 140.0, 139.4, 139.0, 138.6, 138.5, 138.0, 137.84, 137.77, 136.1, 134.8, 134.4, 134.0, 133.7, 132.9, 130.5, 126.3, 125.7, 125.6, 121.1, 117.4, 89.2, 87.7, 76.2, 75.2, 67.2, 60.4, 48.3; FT-IR v/cm⁻¹ 1821, 1742, 1677, 1496, 1399, 1260, 1094, 1014, 802, 524; UV-vis (CHCl₃) λ_{max}/nm 256, 314, 434, 700; MALDI-TOF MS m/z calcd for C₈₃H₁₈O₄ [M]⁻ 1078.1211, found 1078.1206.

Spectral data of **2m'**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 4:1) to give **2m'** (7.8 mg, 17%); amorphous brown solid; ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 7.73 (dd, *J* = 17.2 Hz, 10.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 4H), 7.55 (d, *J* = 8.4 Hz, 4H), 5.87 (d, *J* = 10.8 Hz, 2H), 5.62 (d, *J* = 17.2 Hz, 2H), 4.94 (dd, *J* = 17.6, 1.6 Hz, 2H), 4.25 (d, *J* = 17.6 Hz, 2H); the ¹³C NMR spectrum of **2m'** could not be obtained because of poor solubility of the product; FT-IR v/cm⁻¹ 1742, 1497, 1424, 1144, 1024, 1003, 797, 764, 668, 525; UV-vis (CHCl₃) λ_{max} /nm 258, 315, 435, 702; MALDI-TOF MS m/z calcd for C₁₄₂H₁₈O₂ [M]⁻ 1755.1346, found 1755.1324.

Spectral data of **5a**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5a** (19.2 mg, 44%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.12 (d, *J* = 2.8 Hz, 1H), 7.64 (d, *J* = 7.6

Hz, 2H) , 7.38 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 5.14 (d, J = 12.8 Hz, 1H), 4.78–4.70 (m, 1H), 4.02–3.92 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.9, 156.0, 155.6, 154.6, 152.4, 147.2, 146.2, 146.17, 146.15, 146.12, 146.02, 145.97, 145.9, 145.8, 145.7, 145.6, 145.4, 145.32, 145.3, 145.24, 145.21, 145.1, 145.0, 144.6, 144.5, 144.29, 144.28, 143.0, 142.9, 142.6, 142.52, 142.49, 142.4, 142.3, 142.1, 142.04, 142.98, 141.92, 141.85, 141.8, 141.6, 141.53, 141.49, 140.2, 140.1, 139.6, 139.4, 135.9, 135.6, 135.34, 135.26, 135.2, 129.3, 128.9, 128.3, 75.2, 68.9, 62.3, 53.2, 43.7; FT-IR v/cm⁻¹ 3307, 2973, 2879, 1718, 1426, 1379, 1087, 1046, 880, 524; UV-vis (CHCl₃) λ_{max}/nm 256, 310, 431, 700; MALDI-TOF MS m/z calcd for C₇₀H₁₀O [M]⁻ 866.0737, found 866.0716.

Spectral data of **5b**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5b** (13.2 mg, 30%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.10 (d, *J* = 2.8 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 2H) , 7.18 (d, *J* = 8.0 Hz, 2H), 5.10 (d, *J* = 12.8 Hz, 1H), 4.75–4.66 (m, 1H), 4.01–3.90 (m, 2H), 2.33 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 200.2, 156.2, 155.8, 154.8, 152.7, 147.3, 146.3, 146.28, 146.25, 146.19, 146.18, 146.1, 146.04, 146.01, 145.97, 145.8, 145.7, 145.42, 145.41, 145.35, 145.31, 145.28, 145.2, 145.1, 144.7, 144.5, 144.38, 144.35, 143.1, 143.0, 142.7, 142.59, 142.55, 142.5, 142.3, 142.2, 142.1, 142.0, 141.9, 141.8, 141.7, 141.63, 141.59, 140.3, 140.2, 139.7, 139.5, 138.0, 136.0, 135.4, 135.3, 132.6, 129.7, 129.3, 75.4, 69.0, 62.1, 53.4, 43.7, 21.3; FT-IR v/cm⁻¹ 3308, 2972, 2874, 1720, 1509, 1087, 1045, 879, 527; UV-vis (CHCl₃) λ_{max} /nm 258, 314, 431, 700; MALDI-TOF MS m/z calcd for C₇₁H₁₂O [M]⁻ 880.0894, found 880.0872.

Spectral data of **5c**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 4:1) to give **5c** (6.9 mg, 15%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.10 (d, *J* = 2.8 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H) , 6.89 (d, *J* = 8.8 Hz, 2H), 5.10 (d, *J* = 12.8 Hz, 1H), 4.72–4.63 (m, 1H), 4.01–3.90 (m, 2H), 3.77 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 200.1, 159.3, 156.2, 155.7, 154.8, 152.7, 147.24, 147.22, 146.23, 146.22, 146.21, 146.15, 146.13, 146.06, 146.0, 145.93, 145.92, 145.7, 145.6, 145.38, 145.36, 145.3, 145.28, 145.27, 145.25, 145.13, 145.07, 144.6, 144.5, 144.4, 144.3, 143.1, 142.98, 142.96, 142.63, 142.56, 142.51, 142.46, 142.3, 142.1, 142.02, 141.96, 141.9, 141.8, 141.7, 141.58, 141.55, 140.2, 140.1, 139.7, 139.5, 135.9, 135.4, 135.24, 135.23, 130.4, 127.5, 114.3, 75.5, 68.9, 61.7, 55.0, 53.5, 43.6; FT-IR v/cm⁻¹

1724, 1512, 1427, 1249, 1178, 1032, 828, 668, 526; UV-vis (CHCl₃) λ_{max} /nm 258, 319, 431, 699; MALDI-TOF MS m/z calcd for C₇₁H₁₂O₂ [M]⁻ 896.0843, found 896.0821.

Spectral data of 5d: the mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give 5d (14.9 mg, 33%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.13 (d, J = 3.2 Hz, 1H), 7.64 (d, J = 8.4, 5.2 Hz, 1H), 7.08 (t, J = 8.4 Hz, 2H), 5.15 (d, J = 12.8 Hz, 1H), 4.73–4.65 (m, 1H), 4.02–3.95 (m, 2H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.8, 162.4 (J_{C-F} = 247.0 Hz), 155.9, 155.5, 154.4, 152.1, 147.3, 146.23, 146.15, 146.1, 146.0, 145.97, 145.95, 145.9, 145.6, 145.5, 145.39, 145.35, 145.31, 145.3, 145.28, 145.25, 145.13, 145.1, 144.6, 144.5, 144.3, 143.1, 143.0, 142.7, 142.6, 142.53, 142.47, 142.3, 142.1, 142.04, 142.0, 141.95, 141.88, 141.86, 141.8, 141.7, 141.6, 141.5, 140.3, 140.2, 139.7, 139.5, 136.0, 135.4, 135.3, 135.2, 131.5, 130.9, 116.0, 115.8, 75.1, 68.9, 61.4, 53.5, 43.7; ¹⁹F NMR (377 MHz, CDCl₃/CS₂) δ: -111.1; FT-IR v/cm⁻¹ 1718, 1508, 1425, 1230, 1095, 840, 525; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 312, 431, 697; MALDI-TOF MS m/z calcd for C₇₀H₉FO [M]⁻ 884.0643, found 884.0621.

Spectral data of **5e**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5e** (23.6 mg, 52%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.12 (d, *J* = 2.8 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 5.13 (d, *J* = 12.4 Hz, 1H), 4.74–4.65 (m, 1H), 3.97 (d, *J* = 8.8 Hz, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.5, 155.8, 155.4, 154.2, 151.9, 147.3, 146.25, 146.24, 146.16, 146.1, 146.0, 145.96, 145.94, 145.92, 145.60, 145.58, 145.5, 145.4, 145.38, 145.32, 145.29, 145.25, 145.14, 145.11, 144.6, 144.5, 144.3, 143.1, 143.0, 142.7, 142.59, 142.55, 142.5, 142.3, 142.1, 142.03, 142.00, 141.96, 141.89, 141.86, 141.8, 141.7, 141.6, 141.5, 140.3, 140.2, 139.7, 139.6, 136.1, 135.4, 135.3, 135.2, 134.4, 134.3, 130.6, 129.1, 75.0, 68.9, 61.5, 53.3, 43.7; FT-IR v/cm⁻¹ 1721, 1508, 1091, 1013, 827, 668, 524; UV-vis (CHCl₃) λ_{max} /nm 256, 318, 431, 697; MALDI-TOF MS m/z calcd for C₇₀H₂ClO [M] 900.0347, found 900.0326.

Spectral data of **5f**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5f** (26.1 mg, 58%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.14 (s, 1H), 7.63 (s, 1H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 5.11 (d, *J* = 12.4 Hz, 1H), 4.74–4.67 (m, 1H), 3.98–3.92 (m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.3, 155.7, 155.3, 154.1, 151.7, 147.2, 146.20, 146.18, 146.11, 146.03, 145.98, 145.91, 145.90, 145.8, 145.53, 145.50, 145.42, 145.38, 145.35, 145.27, 145.24, 145.14, 145.09, 145.06, 144.5, 144.46, 144.3, 143.0, 142.9, 142.6, 142.53, 142.49, 142.4, 142.2, 142.1, 142.0, 141.91, 141.84, 141.82, 141.75, 141.7, 141.6, 141.5, 140.3, 140.1, 139.7, 139.5, 137.9, 136.0, 135.4, 135.3, 135.1, 134.9, 130.1, 128.5, 74.8, 68.9, 61.5, 53.2, 43.7; FT-IR v/cm⁻¹ 2963, 1722, 1507, 1428, 1259, 1082, 1015, 791, 524; UV-vis (CHCl₃) λ_{max}/nm 256, 312, 431, 697; MALDI-TOF MS m/z calcd for C₇₀H₉ClO [M] 900.0347, found 900.0339.

Spectral data of **5g**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5g** (14.4 mg, 32%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.03 (d, *J* = 3.2 Hz, 1H), 7.79 (d, *J* = 7.6

Hz, 1H) , 7.42 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 5.87 (d, J = 12.8 Hz, 1H), 4.69–4.61 (m, 1H), 4.06–3.93 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 198.8, 156.1, 155.0, 154.9, 152.1, 147.12, 146.07, 146.04, 145.97, 145.90, 145.87, 145.8, 145.6, 145.51, 145.46, 145.4, 145.3, 145.24, 145.18, 145.14, 145.09, 145.0, 144.9, 144.5, 144.3, 144.1, 142.9, 142.5, 142.4, 142.3, 142.2, 142.1, 141.9, 141.81, 141.77, 141.7, 141.6, 141.5, 141.2, 140.2, 140.0, 139.6, 139.4, 135.8, 135.6, 135.5, 135.1, 134.5, 133.7, 130.3, 130.1, 129.2, 127.2, 74.5, 69.0, 56.6, 53.9, 43.3; FT-IR v/cm⁻¹ 2929, 1718, 1513, 1428, 1262, 1035, 802, 747, 526; UV-vis (CHCl₃) λ_{max}/nm 256, 311, 431, 698; MALDI-TOF MS m/z calcd for C₇₀H₉ClO [M]⁻ 900.0347, found 900.0354.

Spectral data of **5h**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5h** (22.5 mg, 47%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.11 (d, *J* = 2.8 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 9.2 Hz, 2H), 5.10 (d, *J* = 12.4 Hz, 1H), 4.72–4.63 (m, 1H), 3.969 (d, *J* = 8.8 Hz, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.4, 155.8, 155.4, 154.2, 151.9, 147.2, 146.24, 146.22, 146.14, 146.10, 146.02, 145.95, 145.93, 145.90, 145.58, 145.56, 145.5, 145.39, 145.37, 145.33, 145.31, 145.29, 145.28, 145.2, 145.13, 145.10, 144.53, 144.49, 144.3, 143.1, 143.0, 142.7, 142.6, 142.54, 142.47, 142.3, 142.1, 142.02, 141.99, 141.95, 141.88, 141.85, 141.8, 141.7, 141.6, 141.5, 140.3, 140.2, 139.7, 139.6, 136.1, 135.4, 135.3, 135.2, 134.8, 132.1, 130.9, 122.7, 74.9, 68.9, 61.5, 53.3, 43.7; FT-IR v/cm⁻¹ 1722, 1508, 1010, 668, 524; UV-vis (CHCl₃) λ_{max} /nm 256, 313, 431, 697; MALDI-TOF MS m/z calcd for C₇₀H₉BrO [M]⁻ 943.9842, found 943.9821.

Spectral data of **5i**: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5i** (19.4 mg, 41%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.13 (d, *J* = 2.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.17 (d, *J* = 12.4 Hz, 1H), 4.75–4.67 (m, 1H), 3.98 (d, *J* = 8.4 Hz, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.5, 155.8, 155.4, 154.1, 151.8, 149.0, 147.3, 146.24, 146.17, 146.1, 146.04, 145.97, 145.95, 145.9, 145.6, 145.52, 145.48, 145.40, 145.39, 145.35, 145.33, 145.31, 145.3, 145.26, 145.14, 145.12, 144.54, 144.51, 144.32, 144.31, 144.29, 143.1, 143.0, 142.7, 142.59, 142.55, 142.5, 142.3, 142.11, 142.03, 142.00, 141.96, 141.87, 141.85, 141.8, 141.7, 141.6, 141.5, 140.3, 140.2, 139.7, 139.5, 136.1, 135.4, 135.3, 135.2, 134.4, 130.7, 121.0, 120.7 (*J*_{C-F} = 257.2 Hz), 74.9, 68.9, 61.3,

53.4, 43.7; ¹⁹F NMR (565 MHz, CDCl₃/CS₂) δ : -57.5; FT-IR v/cm⁻¹ 1719, 1508, 1248, 1205, 1160, 524; UV-vis (CHCl₃) λ_{max} /nm 255, 318, 431, 697; MALDI-TOF MS m/z calcd for C₇₁H₉F₃O₂ [M]⁻ 950.0560, found 950.0539.

Spectral data of 5*j*: the mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give 5j (30.3 mg, 64%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.14 (d, J = 2.8 Hz, 1H), 7.80 (d, J = 8.0Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 5.22 (d, J = 12.8 Hz, 1H), 4.81–4.73 (m, 1H), 4.05–3.95 (m, 2H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) § 199.2, 155.6, 155.2, 153.9, 151.5, 147.2, 146.21, 146.20, 146.13, 146.05, 146.0, 145.93, 145.91, 145.7, 145.48, 145.46, 145.37, 145.36, 145.32, 145.29, 145.26, 145.2, 145.1, 144.5, 144.28, 144.25, 144.2, 143.03, 142.95, 142.63, 142.55, 142.5, 142.4, 142.2, 142.1, 142.0, 141.94, 141.91, 141.82, 141.79, 141.76, 141.7, 141.5, 141.4, 140.3, 140.2, 139.9, 139.7, 139.5, 136.1, 135.4, 135.2, 135.1, 130.4 (*J*_{C-F} = 32.4 Hz), 129.7, 125.7, 123.6 (J_{C-F} = 247.0 Hz), 74.7, 68.9, 61.5, 53.3, 43.7; ¹⁹F NMR (377 MHz, CDCl₃/CS₂) δ: -62.4; FT-IR v/cm⁻¹ 1724, 1512, 1422, 1323, 1164, 1120, 1068, 1017, 841, 527; UV-vis (CHCl₃) λ_{max}/nm 258, 313, 431, 697; MALDI-TOF MS m/z calcd for $C_{71}H_9F_3O$ [M]⁻ 934.0611, found 934.0619.

Spectral data of 5k: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give 5k (12.3 mg, 26%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.16 (d, *J* = 3.2 Hz, 1H),7.73 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 5.20 (d, J = 12.8 Hz, 1H), 4.82-4.74 (m, 1H), 4.05-3.95 (m, 2H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 200.0, 156.1, 155.7, 154.7, 152.5, 147.3, 146.31, 146.27, 146.24, 146.22, 146.21, 146.14, 146.08, 146.00, 145.99, 145.9, 145.8, 145.7, 145.5, 145.43, 145.36, 145.3, 145.2, 145.1, 144.7, 144.6, 144.41, 144.39, 144.38, 143.1, 143.0, 142.7, 142.62, 142.59, 142.5, 142.4, 142.18, 142.15, 142.1, 142.02, 141.96, 141.9, 141.8, 141.6, 141.0, 140.3, 140.2, 140.1, 139.8, 139.6, 136.1, 135.5, 135.4, 135.3, 134.7, 129.9, 128.8, 127.5, 127.0, 75.4, 69.1, 62.1, 53.5, 43.8; FT-IR v/cm⁻¹ 3310, 2973, 2880, 1725, 1510, 1087, 1046, 880, 525; UV-vis (CHCl₃) λ_{max}/nm 256, 313, 431, 700; MALDI-TOF MS m/z calcd for C₇₆H₁₄O [M]⁻ 942.1050, found 942.1029.

Spectral data of **5**I: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **5**I (10.2 mg, 21%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.15 (d, *J* = 2.8 Hz, 1H), 8.08 (s, 1H), 7.87–7.77 (m, 4H), 7.48–7.43 (m, 2H), 5.31 (d, *J* = 12.4 Hz, 1H), 4.91–4.83 (m, 1H), 4.08–3.97 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 199.9, 156.1, 155.8, 154.7, 152.4, 147.3, 146.3, 146.24, 146.22, 146.20, 146.11, 146.06, 146.0, 145.8, 145.6, 145.5, 145.43, 145.35, 145.31, 145.28, 145.2, 145.1, 144.7, 144.6, 144.39, 144.36, 143.1, 143.0, 142.7, 142.6, 142.5, 142.4, 142.2, 142.1, 142.04, 142.02, 141.96, 141.92, 141.86, 141.7, 141.61, 141.59, 140.3, 140.2, 139.7, 139.6, 136.1, 135.5, 135.4, 135.3, 133.2, 133.0, 128.8, 128.1, 127.8, 126.6, 126.5, 75.4, 69.1, 62.6, 53.5, 43.8; FT-IR v/cm⁻¹ 1723, 1510, 746, 574, 526; UV-vis (CHCl₃) λ_{max} /nm 257, 313, 431, 698; MALDI-TOF MS m/z calcd for C₇₄H₁₂O [M]⁻ 916.0894, found 916.0878.

Spectral data of $6a^3$: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.63 (d, J = 7.6 Hz, 2H),

7.34 (t, *J* = 7.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 5.80 (s, 1H), 5.75 (d, *J* = 15.6 Hz, 1H), 5.54–5.49 (m, 2H), 5.36 (s, 1H).

Spectral data of $6m^3$: the mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to give C₆₀ and **6m** (12.7 mg, 32%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 5.50 (s, 2H), 5.45 (s, 2H), 4.24 (s, 2H).

Spectral data of *cis*-**7g**: the mixture was separated and purified by silica gel column chromatography with CS₂/DCM (v/v = 10:1) as the eluent to give *cis*-**7g** (10.2 mg, 27%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.38 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.50-7.43 (m, 1H), 5.62 (d, *J* = 10.8 Hz, 2H), 5.11 (d, *J* = 17.6 Hz, 1H), 4.20 (dd, *J* = 14.0, 3.2 Hz, 1H), 3.85 (dd, *J* = 14.0, 2.4 Hz, 1H), 2.71 (br, 1H); the ¹³C NMR spectrum of *cis*-**7g** could not be obtained because of poor solubility of the product; FT-IR v/cm⁻¹ 3284, 2923, 1571, 1456, 1324, 1164, 1120, 1072, 1016, 927, 835, 526; UV-vis (CHCl₃) λ_{max} /nm 256, 312, 431, 701; MALDI-TOF MS m/z calcd for C₇₂H₁₁F₃O [M]⁻ 948.0767, found 948.0746.

Spectral data of *trans*-7g: the mixture was separated and purified by silica gel column chromatography with CS_2/DCM (v/v = 4:1) as the eluent to give *trans*-7g (25.1 mg, 66%); amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.00 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.62 (dd, J = 17.6, 10.8 Hz, 1 H), 6.24 (td, J= 12.0, 6.4 Hz, 1 H), 5.99 (d, J = 11.2 Hz, 1H), 5.25 (d, J = 17.2 Hz, 1H), 3.96 (dd, J= 12.4, 6.4 Hz, 1 H), 3.73 (t, J = 12.4 Hz, 1H), 2.39 (d, J = 11.6 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 157.7, 156.0, 152.8, 152.5, 147.6, 147.5, 146.8, 146.49, 146.45, 146.4, 146.3, 146.2, 146.17, 145.8, 145.7, 145.61, 145.55, 145.52, 145.50, 145.48, 145.42, 145.41, 145.2, 144.9, 144.6, 144.4, 144.3, 143.9, 143.33, 143.28, 142.90, 142.86, 142.8, 142.7, 142.34, 142.27, 142.23, 142.20, 142.16, 142.0, 141.97, 141.89, 141.62, 141.57, 141.5, 140.7, 140.5, 139.7, 139.5, 139.1, 137.6, 135.9, 135.7, 134.5, 130.7, 129.9 (*J*_{C-F} = 32.4 Hz), 125.33, 125.31, 124.0 (J_{C-F} = 271.0 Hz), 123.3, 76.4, 71.2, 65.1, 64.9, 46.4; FT-IR v/cm⁻¹ 3373, 2854, 1616, 1413, 1321, 1164, 1112, 1068, 1016, 936, 808, 524; UV-vis (CHCl₃) λ_{max}/nm 257, 313, 433, 699; MALDI-TOF MS m/z calcd for C₇₂H₁₁F₃O [M]⁻ 948.0767, found 948.0746.

Spectral data of **8a**: the mixture was separated and purified by silica gel column chromatography with CS₂/DCM (v/v = 4:1) to give the quantitative product **8a**; amorphous brown solid; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.61 (s, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 4.27 (d, *J* = 10.0 Hz, 1H), 4.09 (d, *J* = 9.6 Hz, 1H), 4.03–3.92 (m, 2H), 3.78 (t, *J* = 12.0 Hz, 1H), 1.58 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 157.4, 156.9, 155.8, 153.7, 147.2, 146.4, 146.2, 146.18, 146.15, 146.1, 146.04, 146.00, 145.93, 145.91, 145.7, 145.5, 145.29, 145.27, 145.24, 145.17, 145.11, 145.05, 144.6, 144.4, 143.1, 143.0, 142.6, 142.51, 142.48, 142.42, 142.39, 142.2 142.1, 142.02, 142.00, 141.95, 141.93, 141.89, 141.8, 141.7, 141.6, 141.5, 140.2, 140.1, 139.6, 139.3, 137.2, 136.1, 135.4, 135.1, 135.0, 128.8, 127.8, 76.0, 69.2, 62.9, 62.4, 46.0, 43.7; FT-IR v/cm⁻¹ 1704, 1428, 1357, 1218, 1185, 1085, 1041, 698, 526; UV-vis (CHCl₃) $\lambda_{max}/nm 256, 326, 432, 702;$ MALDI-TOF MS m/z calcd for C₇₀H₁₂O [M]⁻ 868.0894, found 868.0872.

Spectral data of **9a**: the mixture was separated and purified by silica gel column chromatography with CS₂/DCM/EA (v/v/v = 4:1:1) to give **9a** (30.0 mg, 85%); amorphous brown solid; ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 12.9 (br, 1 H), 7.63 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 4.65–4.57 (m, 1H), 4.07–4.03 (m, 1 H), 3.95 (t, J = 12.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent) δ 172.6, 156.3, 156, 155.1, 146.8, 146.1, 145.81, 145.76, 145.75, 145.72, 145.63, 145.59, 145.5, 145.4, 145.08, 145.97, 144.89, 144.85, 144.81, 144.76, 144.71, 144.65, 144.58, 144.17, 144.0, 143.96, 142.65, 142.59, 142.2, 142.14, 142.09, 142.03, 141.8, 141.7, 141.65, 141.6, 141.58, 141.53, 141.4, 141.27, 141.25, 141.1, 139.8, 139.7, 139.2, 139.0, 136.42, 135.7, 135.2, 135.0, 134.97, 128.3, 127.5, 74.8, 69.1, 63.5, 46.5, 46.1; FT-IR v/cm⁻¹ 3456, 1711, 1427, 1262, 1183, 1022, 697, 527; UV-vis (CHCl₃) λ_{max} /nm 256, 309, 430, 697; MALDI-TOF MS m/z calcd for C₇₀H₁₀O₂ [M]⁻ 882.0686, found 882.0672.

References:

(3) Liu, Q.; Liu, T.-X.; Ru, Y.; Zhu, X.; Zhang, G. Palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene: preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines. *Chem. Commun.* **2019**, *55*, 14498.

9. ¹H, ¹³C and ¹⁹F NMR Spectra of All Compounds

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2a

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2b

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2b

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2c

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2d

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2e

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2f

¹³C NMIR (150 MHz, CDCl₃/CS₂) of compound 2h

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2i

¹³C NMIR (150 MHz, CDCl₃/CS₂) of compound 2k

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2m

۱

S-119

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 5e

$^{13}\mathrm{C}$ NMR (150 MHz, CDCl₃/CS₂) of compound 5f

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 5g

50 Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound

¹³C NMIR (150 MHz, CDCl₃/CS₂) of compound 5h

5h Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 5i

¹³C NMIR (150 MHz, CDCl₃/CS₂) of compound 5j

5 ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound

S-153

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 8a

S-157

Expanded ¹³C NMR (150 MHz, CDCl₃/CS₂) of compound

S-158

Expanded ¹³C NMR (150 MHz, DMSO-d₆/CS₂) of compound 9a