Consecutive 2-Azidoallylation/Click Cycloaddition of Active Methylene for Synthesis of Functionalized Hepta-1,6-dienes with Bis-1,2,3-triazole Scaffold

Zhenhua Liu,^a Huimin Chen,^a Xingxing Gan,^a Lianxiao Wang,^b Ping Lin,^a Jiayi Li,^a Xiuxiu Huang,^a Rongbiao Tian,^a Xuan Liu,^a Wen Gao^{*a} and Bo Tang^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China

^bNo.1 Middle School of Qihe Shandong, Dezhou, 253000,, P. R. China, P. R. China.

E-mail: gaowen@sdnu.edu.cn; tangb@sdnu.edu.cn

Contents

I. General information	.1
II. Synthesis and analytical data of product 3, 4 and 6	.1-47
III. NMR spectra copies	.48-121

I. General information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian 400 MHz and 100 MHz, respectively, and TMS was used as internal standard. Mass spectra were recorded on Bruker AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. Synthesis and analytical data of product 3, 4 and 6

Genernal procedure: Under argon atmosphere, alkyne 1 (0.55 mmol, 2.2 eq.), 2-((2-azidoallyl)oxy)-1,3,5-tribromobenzene (VA) (0.55 mmol, 2.2 eq.), methylene compound 2 (0.25 mmol), triethylamine (Et₃N) (1.0 mmol, 4.0 eq.), CuI (0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (0.01 mmol, 0.04 eq.) were added in an oven-dried 10 mL Schlenk tube with 1 mL DMSO. The reaction mixture was then stirred for 2 h when TLC conformed that substrate 2 had been consumed. The reaction was cooled to room temperature and taken up by dichloromethane (3×15 mL). The combined organic layer was washed with brine (3×40 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (petroleum ether/ethyl acetate) and the target product was afforded.

(3a) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (210.9 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 2H), 7.88–7.81 (m, 4H), 7.47–7.39 (m, 4H), 7.40–7.31 (m, 2H), 5.61 (d, *J* = 2.2 Hz, 2H), 5.34 (d, *J* = 2.1 Hz, 2H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 14.9 Hz, 2H), 3.48 (d, *J* = 14.9 Hz, 2H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.3, 137.7, 129.8, 128.9, 128.6, 125.9, 118.0, 116.6, 110.0, 63.8, 48.9, 39.1, 13.7; HRMS (ESI) m/z calculated for C₂₇H₂₅N₂O₂Na [M+Na]⁺: 502.1968, found: 502.1976.

(3b) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-methoxyphenylacetylene (64.7 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (474.85 mg,

88%); ¹**H NMR** (400 MHz, CDCl₃) δ 8.41–8.30 (m, 2H), 8.29 (s, 2H), 7.40–7.29 (m, 2H), 7.11–7.03 (m, 2H), 6.99 (d, J = 8.3 Hz, 2H), 5.63 (d, J = 2.1 Hz, 2H), 5.33 (d, J = 2.0 Hz, 2H), 3.96 (s, 6H), 3.95–3.88 (m, 2H), 3.71 (d, J = 14.9 Hz, 2H), 3.49 (d, J = 14.9 Hz, 2H), 1.14 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃), δ 166.6, 155.8, 143.7, 137.7, 129.3, 127.9, 121.1, 121.0, 118.7, 116.8, 110.8, 109.5, 63.7, 55.5, 49.0, 39.1, 13.6; **HRMS** (ESI) m/z calculated for C₂₉H₂₉N₇O₄Na [M+Na]⁺: 562.2179, found: 562.2149.

(3c) 0.25 mmol scale: Prepared following the general procedure showed above using 2-fluorophenylacetylene (60.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (226.83 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.34–8.26 (m, 2H), 8.19 (d, *J* = 3.4 Hz, 2H), 7.37–7.29 (m, 2H), 7.28–7.21 (m, 2H), 7.19–7.08 (m, 2H), 5.65 (d, *J* = 2.3 Hz, 2H), 5.37 (d, *J* = 2.2 Hz, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 3.70 (d, *J* = 14.9 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 160.6 (d, *J* = 249.1Hz), 141.7, 137.6, 129.8 (d, *J* = 8.6 Hz), 128.0 (d, *J* = 3.4 Hz), 124.7 (d, *J* = 3.4 Hz), 121.0 (d, *J* = 13.2 Hz), 118.0 (d, *J* = 13.2 Hz), 116.5, 115.9 (d, *J* = 21.3 Hz), 110.2, 63.7, 48.7, 39.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.12; HRMS (ESI) m/z calculated for C₂₇H₂₃F₂N₇O₂Na [M+Na]⁺: 538.1779, found: 538.1787.

(3d) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-chlorophenylacetylene (68.3 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (244.05 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 2H), 8.26–8.20 (m, 2H), 7.47–7.42 (m, 2H), 7.40–7.36 (m, 2H), 7.32–7.26 (m, 2H), 5.66 (d, *J* = 2.3 Hz, 2H), 5.38 (d, *J* = 2.2 Hz, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 3.71 (d, *J* = 14.9 Hz, 2H), 3.51 (d, *J* = 14.9 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.5, 137.6, 131.4, 130.3, 129.9, 129.4, 128.5, 127.2, 121.5, 116.6, 110.4, 63.8, 48.8, 39.2, 13.7; HRMS (ESI) m/z calculated for C₂₇H₂₃Cl₂N₇O₂Na [M+Na]⁺: 570.1188, found: 570.1149.

(3e) 0.25 mmol scale: Prepared following the genernal procedure showed above using 3-ethynyltoluene (63.4 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (220.81 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 2H), 7.69 (s, 2H), 7.62 (d, *J* = 7.7 Hz,

2H), 7.31 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 7.6 Hz, 2H), 5.60 (d, J = 2.2 Hz, 2H), 5.32 (d, J = 1.9 Hz, 2H), 3.95 (q, J = 7.2 Hz, 2H), 3.67 (d, J = 14.9 Hz, 2H), 3.47 (d, J = 14.9 Hz, 2H), 2.39 (s, 6H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.3, 138.6, 137.7, 129.7, 129.4, 128.8, 126.6, 123.0, 118.0, 116.6, 110.0, 63.8, 48.9, 39.0, 21.4, 13.7; **HRMS** (ESI) m/z calculated for C₂₉H₂₉N₇O₂Na [M+Na]⁺: 530.2281, found: 530.2251.

(3f) 0.25 mmol scale: Prepared following the genernal procedure showed above using 3-fluorophenylacetylene (60.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (213.95 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 2H), 7.65–7.52 (m, 4H), 7.42–7.35 (m, 2H), 7.07–7.01 (m, 2H), 5.62 (d, *J* = 2.3 Hz, 2H), 5.35 (d, *J* = 2.2 Hz, 2H), 3.99 (q, *J* = 7.2 Hz, 2H), 3.67 (d, *J* = 14.8 Hz, 2H), 3.49 (d, *J* = 14.9 Hz, 2H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 164.4 (d, *J* = 245.4 Hz), 147.1 (d, *J* = 2.9 Hz), 137.6, 132.0 (d, *J* = 8.5 Hz), 130.6 (d, *J* = 8.5 Hz), 121.5 (*J* = 2.9 Hz), 118.5, 116.4, 115.5 (d, *J* = 22.0 Hz), 113.0 (d, *J* = 22.0 Hz), 110.4, 63.8, 48.8, 39.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.38; HRMS (ESI) m/z calculated for C₂₇H₂₃F₂N₇O₂Na [M+Na]⁺: 538.1779, found: 538.1771.

(3g) 0.25 mmol scale: Prepared following the genernal procedure showed above using 3-chlorophenylacetylene (68.3 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (233.08 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 2H), 7.85 (s, 2H), 7.77–7.70 (m, 2H), 7.41–7.30 (m, 4H), 5.62 (d, *J* = 2.3 Hz, 2H), 5.36 (d, *J* = 2.0 Hz, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.67 (d, *J* = 14.8 Hz, 2H), 3.49 (d, *J* = 14.8 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.0, 137.6, 134.9, 131.6, 130.2, 128.6, 126.0, 124.0, 118.4, 116.4, 110.4, 63.8, 48.8, 39.0, 13.8; HRMS (ESI) m/z calculated for C₂₇H₂₃Cl₂N₇O₂Na [M+Na]⁺: 570.1188, found: 570.1149.

(3h) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethynylanisole (64.8 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (215.83 mg,

80%); ¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.80–7.73 (m, 4H), 6.98–6.93 (m, 4H), 5.59 (d, J = 2.2 Hz, 2H), 5.32 (d, J = 2.1 Hz, 2H), 3.97 (q, J = 7.2 Hz, 2H), 3.84 (s, 6H), 3.67 (d, J = 14.9 Hz, 2H), 3.47 (d, J = 14.9 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) 166.7, 159.9, 148.1, 137.7, 127.3, 122.5, 117.1, 116.6, 114.3, 109.7, 63.7, 55.4, 48.9, 39.0, 13.7; **HRMS** (ESI) m/z calculated for C₂₉H₂₉N₇O₄Na [M+Na]⁺: 526.2179, found: 526.2170.

(3i) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethoxyphenylacetylene (73.8 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (249.60 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.80–7.70 (m, 4H), 7.01–6.84 (m, 4H), 5.59 (d, *J* = 2.2 Hz, 2H), 5.31 (d, *J* = 2.1 Hz, 2H), 4.06 (q, *J* = 7.0 Hz, 4H), 3.96 (q, *J* = 7.1 Hz, 2H), 3.66 (d, *J* = 14.9 Hz, 2H), 3.47 (d, *J* = 14.9 Hz, 2H), 1.43 (t, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 159.3, 148.2, 137.7, 127.2, 122.3, 117.0, 116.6, 114.8, 109.7, 63.7, 63.5, 48.9, 39.0, 14.8, 13.7; HRMS (ESI) m/z calculated for C₃₁H₃₃N₇O₄Na [M+Na]⁺: 590.2492, found: 590.2510.

(3j) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethynyltoluene (63.4 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (223.33 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.73 (d, *J* = 8.1 Hz, 4H), 7.24 (d, *J* = 8.0 Hz, 4H), 5.60 (d, *J* = 2.2 Hz, 2H), 5.33 (d, *J* = 2.1 Hz, 2H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 14.9 Hz, 2H), 3.47 (d, *J* = 14.9 Hz, 2H), 2.38 (s, 6H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.3, 138.5, 137.7, 129.6, 127.0, 125.8, 117.5, 116.6, 109.8, 63.8, 48.9, 39.0, 21.3, 13.7; HRMS (ESI) m/z calculated for C₂₉H₂₉N₇O₂Na [M+Na]⁺: 530.2281, found: 530.2280.

(3k) 0.25 mmol scale: Prepared following the general procedure showed above using 4-ethynyltoluene (63.4 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg,

0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (222.30 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.81–7.70 (m, 4H), 7.26 (d, *J* = 8.3 Hz, 4H), 5.60 (d, *J* = 2.2 Hz, 2H), 5.33 (d, *J* = 2.1 Hz, 2H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 14.9 Hz, 2H), 3.47 (d, *J* = 14.9 Hz, 2H), 2.68 (q, *J* = 7.6 Hz, 4H), 1.26 (t, *J* = 7.6 Hz, 6H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.3, 144.9, 137.7, 128.4, 127.3, 125.9, 117.6, 116.6, 109.8, 63.8, 48.9, 39.0, 28.7, 15.5, 13.7; HRMS (ESI) m/z calculated for C₃₁H₃₃N₇O₂Na [M+Na]⁺: 558.2594, found: 558.2592.

(31) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-eth-1-ynyl-4-propylbenzene (79.2 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (247.86 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.77–7.73 (m, 4H), 7.25-7.21 (m, 4H), 5.59 (d, J = 2.2 Hz, 2H), 5.32 (s, 2H), 3.95 (q, J = 7.2 Hz, 2H), 3.65 (s, 2H), 3.46 (d, J = 14.9 Hz, 2H), 2.65–2.56 (m, 4H), 1.71–1.60 (m, 4H), 1.15 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.3, 143.3, 137.7, 129.0, 127.3, 125.8, 117.6, 116.6, 109.8, 63.7, 48.9, 39.0, 37.8, 24.5, 13.8, 13.7; HRMS (ESI) m/z calculated for C₃₃H₃₇N₇O₂Na [M+Na]⁺: 586.2907, found: 586.2910.

(3m) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-tert-butylphenylacetylene (90.2 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (239.67 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.80–7.75 (m, 4H), 7.49–7.43 (m, 4H), 5.61 (d, *J* = 2.2 Hz, 2H), 5.33 (d, *J* = 2.1 Hz, 2H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 14.9 Hz, 2H), 3.47 (d, *J* = 14.9 Hz, 2H), 1.34 (s, 18H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 151.8, 148.3, 137.7, 127.0, 125.8, 125.7, 117.6, 116.6, 109.8, 63.7, 48.9, 39.0, 34.7, 31.3, 13.7; HRMS (ESI) m/z calculated for C₃₅H₄₁N₇O₂Na [M+Na]⁺: 614.3220, found: 614.3297.

(3n) 0.25 mmol scale: Prepared following the general procedure showed above using 4-ethynyl-1,1'-biphenyl (89.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol,

2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:3) as yellow oily liquid (262.17 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 2H), 7.93 (d, *J* = 8.3 Hz, 4H), 7.67 (d, *J* = 8.3 Hz, 4H), 7.65–7.58 (m, 4H), 7.45 (t, *J* = 7.5 Hz, 4H), 7.36 (t, *J* = 7.3 Hz, 2H), 5.64 (d, *J* = 2.2 Hz, 2H), 5.37 (d, *J* = 2.1 Hz, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.71 (d, *J* = 14.9 Hz, 2H), 3.51 (d, *J* = 14.9 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 148.0, 141.4, 140.5, 137.7, 128.9, 128.8, 127.6, 127.6, 127.0, 126.3, 117.9, 116.6, 110.0, 63.8, 48.9, 39.0, 13.8; HRMS (ESI) m/z calculated for C₃₉H₃₃N₇O₂Na [M+Na]⁺: 654.2594, found: 654.2556.

(30) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-fluorophenylacetylene (57.3 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (219.09 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.87–7.71 (m, 4H), 7.12 (t, *J* = 8.7 Hz, 4H), 5.61 (d, *J* = 2.2 Hz, 2H), 5.34 (d, *J* = 2.0 Hz, 2H), 4.00 (q, *J* = 7.2 Hz, 2H), 3.67 (d, *J* = 14.9 Hz, 2H), 3.49 (d, *J* = 14.8 Hz, 2H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 164.2 (d, *J* = 248.0 Hz), 147.5, 137.7, 127.7 (d, *J* = 8.3 Hz), 126.0 (d, *J* = 3.3 Hz), 117.8, 116.5, 116.1 (d, *J* = 21.8 Hz), 110.1, 63.8, 48.8,

(3p) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-chlorophenylacetylene (68,3 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (238.00 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 2H), 7.81–7.75 (m, 4H), 7.43–7.36 (m, 4H), 5.61 (d, *J* = 2.3 Hz, 2H), 5.35 (d, *J* = 2.2 Hz, 2H), 3.99 (q, *J* = 7.2 Hz, 2H), 3.66 (d, *J* = 14.8 Hz, 2H), 3.49 (d, *J* = 14.9 Hz, 2H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.2, 137.6, 134.4, 129.1, 128.3, 127.2, 118.1, 116.4, 110.2, 63.8, 48.8, 39.0, 13.8; HRMS (ESI) m/z calculated for C₂₇H₂₃Cl₂N₇O₂Na [M+Na]⁺: 570.1188, found: 570.1149.

(3q) 0.25 mmol scale: Prepared following the general procedure showed above using 4-bromophenylacetylene (63.5 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N)

(139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (263.66 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 2H), 7.75–7.70 (m, 4H), 7.59–7.53 (m, 4H), 5.61 (d, *J* = 2.2 Hz, 2H), 5.36 (d, *J* = 2.8 Hz, 2H), 4.00 (q, *J* = 6.2 Hz, 2H), 3.69 (d, *J* = 12.9 Hz, 2H), 3.48 (d, *J* = 14.8 Hz, 2H), 1.18 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.3, 137.6 132.1, 128.8, 127.4, 122.6, 118.1, 116.4, 110.3, 63.8, 48.8, 39.0, 13.8; HRMS (ESI) m/z calculated for C₂₇H₂₃Br₂N₇O₂Na [M+Na]⁺: 660.0157, found: 660.0208.

(3r) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-cyanophenylacetylene (63.5 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (227.71 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.99–7.89 (m, 4H), 7.80–7.65 (m, 4H), 5.65 (d, *J* = 2.3 Hz, 2H), 5.40 (d, *J* = 2.3 Hz, 2H), 4.03 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 14.8 Hz, 2H), 3.52 (d, *J* = 14.8 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.4, 137.6, 134.1, 132.8, 126.3, 119.2, 118.6, 112.1, 110.9, 63.9, 53.5, 48.7, 39.0, 13.8; HRMS (ESI) m/z calculated for C₂₉H₂₃N₉O₂Na [M+Na]⁺: 552.1872, found: 552.1873.

(3s) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethynyl-benzoic acid methyl ester (80.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:3) as yellow oily liquid (259.09 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 2H), 8.12–8.06 (m, 4H), 7.96–7.89 (m, 4H), 5.64 (d, *J* = 2.3 Hz, 2H), 5.37 (d, *J* = 2.2 Hz, 2H), 4.01 (q, *J* = 7.2 Hz, 2H), 3.94 (s, 6H), 3.68 (d, *J* = 14.9 Hz, 2H), 3.51 (d, *J* = 14.9 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.6, 147.2, 137.6, 134.1, 130.3, 130.0, 125.7, 118.9, 116.4, 110.5, 63.9, 52.2, 48.8, 39.0, 13.8; HRMS (ESI) m/z calculated for C₃₁H₂₉N₇O₆Na [M+Na]⁺: 618.2077, found: 618.2092.

(3t) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-ethynyl naphthalene (76.10 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (243.46 mg,

84%); ¹**H** NMR (400 MHz, CDCl₃) δ 8.37 (s, 2H), 8.14 (s, 2H), 7.96–7.80 (m, 8H), 7.54–7.46 (m, 4H), 5.65 (d, J = 2.2 Hz, 2H), 5.38 (d, J = 2.1 Hz, 2H), 4.00 (q, J = 7.2 Hz, 2H), 3.72 (d, J = 14.9 Hz, 2H), 3.52 (d, J = 14.9 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 148.4, 137.7, 133.5, 133.3, 128.7, 128.3, 127.8, 127.1, 126.6, 126.4, 124.9, 123.8, 118.2, 116.6, 110.1, 63.8, 48.9, 39.1, 13.8; **HRMS** (ESI) m/z calculated for C₃₅H₂₉N₇O₂Na [M+Na]⁺: 602.2281, found: 602.2300.

(3u) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-ethynylthiophene (50.1 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (194.18 mg, 79%); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 2H), 7.75–7.70 (m, 2H), 7.48–7.43 (m, 2H), 7.41–7.36 (m, 2H), 5.59 (d, *J* = 2.2 Hz, 2H), 5.33 (d, *J* = 2.2 Hz, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 3.66 (d, *J* = 14.8 Hz, 2H), 3.48 (d, *J* = 14.9 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.4, 137.6, 131.0, 126.6, 125.8, 121.9, 117.7, 116.5, 109.9, 63.8, 48.9, 39.0, 13.7; HRMS (ESI) m/z calculated for C₂₃H₂₁N₇O₂S₂Na [M+Na]⁺: 514.1096, found: 514.1088.

(3v) 0.25 mmol scale: Prepared following the general procedure showed above using 1-ethynylcyclohex-1-ene (58.8 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (216.99 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 2H), 6.62–6.57 (m, 2H), 5.51 (d, *J* = 2.1 Hz, 2H), 5.25 (d, *J* = 2.0 Hz, 2H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.59 (d, *J* = 14.8 Hz, 2H), 3.42 (d, *J* = 14.8 Hz, 2H), 2.48–2.18 (m, 8H), 1.81–1.63 (m, 8H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 149.9, 137.7, 126.6, 126.3, 116.6, 116.5, 109.1, 63.7, 48.9, 38.9, 26.3, 25.3, 22.4, 22.1, 13.7; HRMS (ESI) m/z calculated for C₂₇H₃₃N₇O₂Na [M+Na]⁺: 510.2594, found: 510.2590.

(3w) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethynyltoluene (63.4 μ L, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (187.21 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 2H), 5.79 (s, 2H), 5.54 (d, *J* = 2.2 Hz,

2H), 5.29 (d, J = 2.1 Hz, 2H), 5.23–5.08 (m, 2H), 3.97 (q, J = 7.2 Hz, 2H), 3.62 (d, J = 14.8 Hz, 2H), 3.44 (d, J = 14.8 Hz, 2H), 2.13 (s, 6H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 166.6, 149.2, 137.7, 132.8, 117.9, 116.5, 113.7, 109.6, 63.7, 48.8, 39.0, 20.6, 13.7; **HRMS** (ESI) m/z calculated for C₂₁H₂₅N₇O₂Na [M+Na]⁺: 430.1968, found: 430.1992.

(3x) 0.25 mmol scale: Prepared following the genernal procedure showed above using N-(prop-2-yn-1-yl)aniline (65.6 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (228.50 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 2H), 7.22–7.12 (m, 4H), 6.77–6.71 (m, 2H), 6.70–6.62 (m, 4H), 5.48 (d, *J* = 2.2 Hz, 2H), 5.24 (d, *J* = 2.1 Hz, 2H), 4.47 (s, 4H), 3.94 (q, *J* = 7.1 Hz, 2H), 3.55 (d, *J* = 14.8 Hz, 2H), 3.39 (d, *J* = 14.8 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.4, 147.1, 137.6, 129.3, 120.2, 118.2, 116.3, 113.2, 110.0, 63.6, 48.6, 39.8, 39.0, 13.8; HRMS (ESI) m/z calculated for C₂₉H₃₁N₉O₂Na [M+Na]⁺: 560.2499, found: 560.2548.

(3y) 0.25 mmol scale: Prepared following the genernal procedure showed above using N-methyl-N-(prop-2-yn-1-yl)aniline (72.5 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (226.27 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.26–7.20 (m, 4H), 6.79 (d, *J* = 8.6 Hz, 4H), 6.74 (t, *J* = 7.3 Hz, 2H), 5.42 (d, *J* = 2.2 Hz, 2H), 5.21 (d, *J* = 2.1 Hz, 2H), 4.64 (s, 4H), 3.87 (q, *J* = 7.2 Hz, 2H), 3.54 (d, *J* = 14.8 Hz, 2H), 3.36 (d, *J* = 14.9 Hz, 2H), 3.01 (s, 6H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 149.0, 146.2, 137.6, 129.3, 120.0, 117.4, 116.4, 113.0, 109.8, 63.6, 48.6, 39.0, 38.6, 13.8; HRMS (ESI) m/z calculated for C₃₁H₃₅N₉O₂Na [M+Na]⁺: 588.2812, found: 588.2860.

(3z) 0.5 mmol scale: Prepared following the genernal procedure showed above using 2-(prop-2-yn-1-yl)isoindoline-1,3-dione (92.6 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and

Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (255.03 mg, 79%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 2H), 7.86–7.82(m, 4H), 7.75–7.70 (m, 4H), 5.53 (d, *J* = 2.3 Hz, 2H), 5.27 (d, *J* = 2.1 Hz, 2H), 5.00 (s, 4H), 3.91 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 2H), 3.36 (d, *J* = 15.0 Hz, 2H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 166.4, 143.3, 137.4, 134.2, 132.0, 123.5, 121.4, 116.5, 110.2, 63.7, 48.5, 38.9, 32.9, 13.7; HRMS (ESI) m/z calculated for C₃₃H₂₇N₉O₆Na [M+Na]⁺: 668.1982, found: 668.2075.

(3za) 0.25 mmol scale: Prepared following the genernal procedure showed above using (prop-2-yn-1-yloxy)benzene (66.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (221.23 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 2H), 7.24–7.18 (m, 4H), 6.94–6.88 (m, 6H), 5.49 (d, *J* = 2.3 Hz, 2H), 5.24 (d, *J* = 2.2 Hz, 2H), 5.15 (s, 4H), 3.86 (q, *J* = 7.2 Hz, 2H), 3.55 (d, *J* = 14.9 Hz, 2H), 3.35 (d, *J* = 14.9 Hz, 2H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 157.0, 144.0, 136.6, 128.6, 120.4, 120.2, 115.4, 113.7, 109.3, 62.7, 60.7, 47.6, 38.1, 12.7; HRMS (ESI) m/z calculated for C₂₉H₂₉NrO₄Na [M+Na]⁺: 562.2179, found: 562.2180.

(3zb) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-methoxy-4-(prop-2-yn-1-yloxy)benzene (81.2 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (257.85 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 6.95–6.89 (m, 4H), 6.87–6.80 (m, 4H), 5.55 (d, *J* = 2.3 Hz, 2H), 5.31 (d, *J* = 2.2 Hz, 2H), 5.17 (s, 4H), 3.94 (t, *J* = 7.2 Hz, 2H), 3.76 (s, 6H), 3.62 (d, *J* = 14.9 Hz, 2H), 3.42 (d, *J* = 14.9 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 154.3, 152.2, 145.2, 137.6, 121.2, 116.4, 115.8, 114.7, 110.3, 63.7, 62.5, 55.7, 48.7, 39.1, 13.8; HRMS (ESI) m/z calculated for C₃₁H₃₃N₇O₆Na [M+Na]⁺: 622.2390, found: 622.2351.

(3zc) 0.25 mmol scale: Prepared following the general procedure showed above

using 1-fluoro-4-(prop-2-yn-1-yloxy)benzene (75.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (233.11 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 2H), 7.01–6.88 (m, 8H), 5.56 (d, J = 2.3 Hz, 2H), 5.32 (d, J = 2.2 Hz, 2H), 5.18 (s, 4H), 3.94 (q, J = 7.2 Hz, 2H), 3.62 (d, J = 14.9 Hz, 2H), 3.43 (d, J = 14.9 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 158.8 (d, J = 239.0 Hz), 154.2 (d, J = 2.1 Hz), 144.8, 137.6, 121.3, 116.3, 116.1 (d, J = 12.6 Hz), 115.9 (d, J = 2.1 Hz), 110.4, 63.7, 62.4, 48.7, 39.1, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.05; HRMS (ESI) m/z calculated for C₂₉H₂₇F₂N₇O₄Na [M+Na]⁺: 598.1991, found: 598.1960.

(3zd) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-(prop-2-yn-1-yloxy)-4-(trifluoromethyl)benzene (100.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as yellow oily liquid (280.37 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 2H), 7.55 (d, *J* = 8.7 Hz, 4H), 7.06 (d, *J* = 8.6 Hz, 4H), 5.57 (d, *J* = 2.3 Hz, 2H), 5.33 (d, *J* = 2.2 Hz, 2H), 5.27 (s, 4H), 3.94 (q, *J* = 7.2 Hz, 2H), 3.62 (d, *J* = 14.8 Hz, 2H), 3.44

(d, J = 14.8 Hz, 2H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 160.4, 144.2, 137.6, 127.0 (q, J = 3.6 Hz), 125.6, 123.7, 123.4, 123.0, 121.5, 116.3, 114.8, 110.6, 63.7, 61.9, 48.6, 39.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.57; HRMS (ESI) m/z calculated for C₃₁H₂₇F₆N₇O₄Na [M+Na]⁺: 698.1927, found: 698.1937.

(3ze) 0.25 mmol scale: Prepared following the genernal procedure showed above using prop-2-yn-1-yl 4-cyanobenzoate (92.6 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (277.63 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 8.18–8.10 (m, 4H), 7.97 (s, 2H), 7.78–7.69 (m, 4H), 5.58 (d, *J* = 2.3 Hz, 2H), 5.55–5.48 (m, 4H), 5.33 (d, *J* = 2.2 Hz, 2H), 4.00 (q, *J* = 7.2 Hz, 2H), 3.60 (d, *J* = 14.9 Hz, 2H), 3.44 (d, *J* = 14.9 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 164.8, 142.9, 137.5, 133.4, 132.3, 130.3, 122.7, 117.8, 116.7, 116.2, 110.7, 63.7, 58.4, 48.5, 39.1, 13.8; HRMS (ESI) m/z calculated for C₃₃H₂₇N₉O₆Na [M+Na]⁺: 668.1982, found: 668.1983.

(3zf) 0.5 mmol scale: Prepared following the genernal procedure showed above using (but-3-yn-1-yloxy)benzene (73.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (227.06 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 2H), 7.31–7.25 (m, 4H), 7.03–6.86 (m, 6H), 5.50 (d, *J* = 2.2 Hz, 2H), 5.26 (d, *J* = 2.0 Hz, 2H), 4.25 (t, *J* = 6.3 Hz, 4H), 3.92 (q, *J* = 7.2 Hz, 2H), 3.60 (d, *J* = 14.9 Hz, 2H), 3.40 (d, *J* = 14.9 Hz, 2H), 3.23 (t, *J* = 6.3 Hz, 4H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 158.5, 145.4, 137.7, 129.5, 121.0, 120.5, 116.5, 114.6, 109.6, 66.4, 63.6, 48.8, 39.0, 26.1, 13.7; HRMS (ESI) m/z calculated for C₃₁H₃₃N₇O₄Na [M+Na]⁺: 590.2492, found: 590.2576.

(3zg) 0.25 mmol scale: Prepared following the general procedure showed above

using (pent-4-yn-1-yloxy)benzene (80.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μL , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (259.13 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 2H), 7.29–7.23 (m, 4H), 6.95–6.86 (m, 6H), 5.45 (d, J = 2.1 Hz, 2H), 5.22 (d, J = 2.0 Hz, 2H), 4.03–3.93 (m, 6H), 3.57 (d, J = 14.8 Hz, 2H), 3.40 (d, J = 14.8 Hz, 2H), 2.93 (t, J = 7.5 Hz, 4H), 2.96–2.13 (m, 4H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 158.9, 147.9, 137.7, 129.5, 120.7, 119.7, 116.4, 114.5, 109.4, 66.5, 63.5, 48.7, 39.0, 28.8, 22.1, 13.8; HRMS (ESI) m/z calculated for C₃₃H₃₇N₇O₄Na [M+Na]⁺: 618.2805, found: 618.2800.

(3zh) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-heptyne (65.6 µL, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (191.72 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 2H), 5.49 (d, *J* = 2.1 Hz, 2H), 5.25 (d, *J* = 1.9 Hz, 2H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.61 (d, *J* = 14.8 Hz, 2H), 3.41 (d, *J* = 14.8 Hz, 2H), 2.78– 2.66 (m, 4H), 1.76–1.59 (m, 4H), 1.35 (t, *J* = 5.4 Hz, 8H), 1.20 (t, *J* = 7.2 Hz, 3H), 0.93–0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 149.1, 137.8,

(3zi) 0.25 mmol scale: Prepared following the genernal procedure showed above using 6-chlorohex-1-yne (58.1 mg, 0.5 mmol, 2.0 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl cyanoacetate (26.6 μ L , 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (205.51 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 2H), 5.49 (d, *J* = 2.1 Hz, 2H), 5.25 (d, *J* = 2.0 Hz, 2H), 4.01 (q, *J* = 7.2 Hz, 2H), 3.62–3.54 (m, 6H), 3.42 (d, *J* = 14.8 Hz, 2H), 2.77 (t, *J* = 6.9 Hz, 4H), 1.86 (d, *J* = 6.7 Hz, 8H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.2, 137.8, 119.4, 109.3, 63.6, 53.4, 48.7, 44.7, 39.0, 31.8, 26.5, 24.8, 13.8; HRMS (ESI) m/z calculated for C₂₃H₃₁Cl₂N₇O₂Na [M+Na]⁺: 530.1814, found: 530.1868.

(4a) 0.25 mmol scale: Prepared following the general procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2

eq.), 3-Oxobutanenitrile (21.3 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (144.12 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 2H), 7.94–7.79 (m, 4H), 7.43 (t, *J* = 7.4 Hz, 4H), 7.39–7.31 (m, 2H), 5.60 (d, *J* = 2.2 Hz, 2H), 5.26 (d, *J* = 2.1 Hz, 2H), 3.55 (d, *J* = 14.8 Hz, 2H), 3.45 (d, *J* = 14.9 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 148.3, 137.4, 129.9, 128.9, 128.6, 126.0, 117.8, 110.7, 106.8, 52.2, 40.3, 29.3; HRMS (ESI) m/z calculated for C₂₆H₂₃N₇ONa [M+Na]⁺: 472.1862, found: 472.1929.

(4b) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), acetylacetone (25.7 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (198.28 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.83–7.78 (m, 4H), 7.41 (t, *J* = 7.4 Hz, 4H), 7.37–7.29 (m, 2H), 5.47 (d, *J* = 2.1 Hz, 2H), 5.07 (d, *J* = 1.8 Hz, 2H), 3.60 (s, 4H), 2.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 148.1, 139.3, 129.8, 128.9, 128.6, 125.9, 118.1, 109.4, 68.5, 33.7, 27.2; HRMS (ESI) m/z calculated for C₂₇H₂₆N₆O₂Na [M+Na]⁺: 489.2015, found: 489.2067.

(4c) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 3-methoxypropanoate (33.7 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (198.63 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 2H), 7.87–7.75 (m, 4H), 7.50–7.39 (m, 4H), 7.38–7.30 (m, 2H), 5.50 (d, *J* = 1.8 Hz, 2H), 5.16 (d, *J* = 1.4 Hz, 2H), 3.99 (q, *J* = 7.2 Hz, 2H), 3.60 (d, *J* = 15.8 Hz, 2H), 3.47 (d, *J* = 15.8 Hz, 2H), 2.11 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 170.4, 148.0, 139.2, 129.9, 128.9, 128.5, 125.9, 118.2, 110.1, 62.4, 61.7, 34.5, 27.0, 13.8; HRMS (ESI) m/z calculated for C₂₈H₂₈N₆O₃Na [M+Na]⁺: 519.2121, found: 519.2120.

(4d) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), pentyl 3-oxobutanoate (44.8 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (223.55 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 2H), 7.86–7.77 (m, 4H), 7.42 (t, *J* = 7.4

Hz, 4H), 7.37–7.30 (m, 2H), 5.50 (d, J = 1.7 Hz, 2H), 5.19–5.10 (m, 2H), 3.91 (t, J = 6.9 Hz, 2H), 3.61 (d, J = 15.8 Hz, 2H), 3.47 (d, J = 15.8 Hz, 2H), 2.12 (s, 3H), 1.59–1.51 (m, 2H), 1.37–1.12 (m, 6H), 0.85 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 170.4, 147.9, 139.2, 129.9, 128.9, 128.5, 125.8, 118.2, 110.0, 66.6, 61.7, 34.4, 27.9, 27.8, 26.9, 22.2, 13.9; HRMS (ESI) m/z calculated for C₃₁H₃₄N₆O₃Na [M+Na]⁺: 561.2590, found: 561.2600.

(4e) 0.25 mmol scale: Prepared following the genernal procedure showed abov e using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 m mol, 2.2 eq.), 2-methoxyethyl acetoacetate (61.2 µL, 0.25 mmol, 1.0 eq.), trieth ylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was p urified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (210.63 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 2H), 7.86–7.80 (m, 4H), 7.45–7.39 (m, 4H), 7.37–7.30 (m, 2H), 5.50 (d, *J* = 1.7 Hz, 2H), 5.22–5.12 (m, 2H), 4.11–4.05 (m, 2H), 3.61 (d, *J* = 15.7 Hz, 2H), 3.53–3.49 (m, 2H), 3.45(d, *J* = 15.8 Hz, 2H), 3.30 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 170.4, 147.9, 139.1, 129.9, 128.9, 128. 5, 125.8, 118.3, 110.4, 69.8, 64.9, 61.8, 58.8, 34.6, 27.0; HRMS (ESI) m/z cal culated for C₂₉H₃₀N₆O₄Na [M+Na]⁺: 549.2227, found:549.2200.

(4f) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), methyl 3-oxohexanoate (35.4 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (211.90 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 2H), 7.83–7.78 (m, 4H), 7.42 (t, *J* = 7.4 Hz, 4H), 7.37–7.32 (m, 2H), 5.50 (d, *J* = 1.7 Hz, 2H), 5.15–5.10 (m, 2H), 3.62–3.49 (m, 7H), 2.44 (t, *J* = 7.3 Hz, 2H), 1.43 (q, *J* = 7.4 Hz, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 171.0, 147.9, 139.3, 129.9, 128.9, 128.5, 125.9, 118.2, 109.9, 61.4, 52.9, 41.1, 34.5, 16.9, 13.5; HRMS (ESI) m/z calculated for C₂₉H₃₀N₆O₃Na [M+Na]⁺: 533.2277, found: 533.2357.

(4g) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), 1,3-cyclopentanedione (22.2 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (197.42 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 2H), 7.85–7.79 (m, 4H), 7.42 (t, *J* = 7.4

Hz, 4H), 7.38–7.31 (m, 2H), 5.50 (d, J = 1.6 Hz, 2H), 5.12 (d, J = 1.6 Hz, 2H), 3.23 (s, 4H), 2.70 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 213.1, 148.3, 138.2, 129.8, 128.9, 128.6, 125.9, 117.9, 110.0, 57.8, 37.5, 35.5; HRMS (ESI) m/z calculated for C₂₇H₂₄N₆O₂Na [M+Na]⁺: 487.1859, found: 487.1882.

(4h) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), 2,2-dimethyl-1,3-dioxane-4,6-dione (31.9 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (216.99 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.86–7.79 (m, 4H), 7.42 (t, *J* = 7.5 Hz, 4H), 7.34 (t, *J* = 7.4 Hz, 2H), 5.67 (d, *J* = 1.8 Hz, 2H), 5.23 (d, *J* = 1.6 Hz, 2H), 3.66 (s, 4H), 1.74 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 148.5, 137.7, 129.8, 128.9, 128.7, 126.0, 118.0, 117.9, 110.0, 53.1, 38.0, 28.2; HRMS (ESI) m/z calculated for C₂₈H₂₆N₆O₄Na [M+Na]⁺: 533.1914, found: 533.1930.

(4i) 0.25 mmol scale: Prepared following the general procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.),

1,3-cycloheptanedione (28.7 μL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (184.72 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.88–7.81 (m, 4H), 7.44 (t, J = 7.4 Hz, 4H), 7.39-7.33 (m, 2H), 5.48 (d, J = 1.5 Hz, 2H), 5.27–5.21 (m, 2H), 3.47 (s, 4H), 2.28 (s, 4H), 1.74 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 148.2, 139.5, 129.8, 128.9, 128.6, 125.9, 118.5, 110.9, 66.6, 42.4, 33.7, 28.6; HRMS (ESI) m/z calculated for C₂₉H₂₈N₆O₂Na [M+Na]⁺: 515.2172, found: 515.2155.

(4j) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (30.2 μ L, 0.28 mmol, 1.1 eq.), VA (112.4 mg, 0.28 mmol, 1.1 eq.), 1,3-cycloheptanedione (28.7 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=8:1) as white solid (85.68 mg, 85%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 24.5 Hz, 3H), 7.41 (d, *J* = 33.6 Hz, 3H), 7.25 (s, 3H), 7.10 (s, 2H), 5.61 (s, 1H), 5.19 (s, 1H), 3.58 (s, 3H), 3.46 (t, *J* = 13.3 Hz, 2H), 3.27 (d, *J* = 5.2 Hz, 2H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.1, 171.5, 147.8, 139.6, 135.5, 130.0, 129.9, 128.9, 128.6, 128.5, 127.3, 125.9, 118.4, 110.4, 63.8, 52.6, 39.0, 35.6, 29.7, 28.1; HRMS (ESI) m/z calculated for C₂₄H₂₅N₃O₃Na [M+Na]⁺: 426.1794, found: 426.1765.

(4k) 0.25 mmol scale: Prepared following the general procedure showed above using phenylacetylene (30.2 µL, 0.28 mmol, 1.1 eq.), VA (112.4 mg, 0.28 mmol, 1.1 eq.), 1,3-cycloheptanedione (28.7 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=8:1) as white solid (73.21 mg, 73%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.90- 7.80 (m, 2H), 7.44 (m, 3H), 7.38-7.32 (m, 1H), 7.30-7.26 (m, 1H), 7.16 (d, *J* = 7.7 Hz, 1H), 5.55 (s, 1H), 5.24 (s, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.81 (d, *J* = 14.8 Hz, 1H), 3.48 (d, *J* = 14.8 Hz, 1H), 3.12-2.98 (m, 1H), 2.83 (m, 1H), 2.53-2.43 (m, 1H), 2.04-1.97 (m, 1H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 171.1, 147.8, 142.9, 139.3, 134.1, 131.9, 130.2, 128.9, 128.7, 128.4, 128.1, 126.8, 125.8, 118.0, 110.1, 61.8, 57.6, 36.4, 31.0, 25.9, 13.4; HRMS (ESI) m/z calculated for C₂₄H₂₃N₃O₃Na [M+Na]⁺:424.1637, found: 424.1664.

(6a) 0.25 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a

silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (99.93 mg, 88%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 2H), 7.85 (d, *J* = 7.5 Hz, 4H), 7.42 (t, *J* = 7.5 Hz, 4H), 7.34 (t, *J* = 7.4 Hz, 2H), 5.48 (s, 2H), 5.11 (s, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.18 (d, *J* = 7.1 Hz, 4H), 3.07 (q, *J* = 7.3, 6.9 Hz, 1H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 147.9, 140.7, 130.1, 128.9, 128.4, 125.9, 117.5, 106.3, 61.0, 41.8, 35.3, 14.2. HRMS (ESI) m/z calculated for C₂₈H₃₀N₅O₄Na [M+Na]⁺: 477.2015, found: 477.2065.

(6b) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-methoxyphenylacetylene (74.1 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (110.56 mg, 86%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 2H), 7.73 – 7.67 (m, 4H), 6.91 – 6.84 (m, 4H), 5.39 (s, 2H), 5.02 (s, 2H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 6H), 3.10 (d, *J* = 7.0 Hz, 4H), 3.02 – 2.95 (m, 1H), 1.12 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.3, 146.0, 140.5, 134.4, 132.7, 126.2, 118.9, 118.6, 111.9, 107.2, 61.1, 41.6, 35.2, 14.3. HRMS (ESI) m/z calculated for C₂₈H₃₀N₅O₄Na [M+Na]⁺: 537.2226, found: 537.2256.

(6c) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethoxyphenylacetylene (81.2 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (111.16 mg, 82%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 2H), 7.75 (d, J = 7.8 Hz, 4H), 6.93 (d, J = 8.1 Hz, 4H), 5.46 (s, 2H), 5.08 (s, 2H), 4.07 (q, J = 7.0 Hz, 6H), 3.16 (d, J = 6.8 Hz, 4H), 3.06 (q, J = 6.9 Hz, 1H), 1.44 (t, J = 6.9 Hz, 6H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 159.2, 147.8, 140.6, 127.2, 122.6, 116.6, 114.8, 106.0, 63.5, 61.0, 41.7, 35.2, 14.8, 14.2. HRMS (ESI) m/z calculated for C₃₀H₃₄N₆O₄Na [M+Na]⁺: 565.2539, found: 565.2547.

(6d) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-methylphenylacetylene (47.7 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (96.50 mg, 80%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 2H), 7.73 (d, *J* = 7.6 Hz, 4H), 7.22 (d, *J* = 7.6 Hz, 4H), 5.46 (s, 2H), 5.09 (s, 2H), 4.08 (q, *J* = 7.0 Hz, 2H), 3.17 (d, *J* = 6.7 Hz, 4H), 3.08 (q, *J* = 7.5, 6.8 Hz, 1H), 2.38 (s, 6H), 1.19 (t, *J* = 7.2 Hz, 3H);¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 147.9, 140.6, 138.3, 129.5, 127.3, 125.8, 117.2, 106.1, 61.0, 41.8, 35.2, 21.3, 14.2. HRMS (ESI) m/z calculated for C₂₈H₃₀N₆O₂Na [M+Na]⁺: 505.2328, found: 505.2378.

(6e) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-ethylphenylacetylene (77.8 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (103.33 mg, 81%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 2H), 7.77 (d, *J* = 8.1 Hz, 4H), 7.25 (d, *J* = 7.4 Hz, 4H), 5.47 (s, 2H), 5.10 (s, 2H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 7.0 Hz, 4H), 3.11 – 3.03 (m, 1H), 2.68 (q, *J* = 7.6 Hz, 4H), 1.26 (t, *J* = 7.6 Hz, 6H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 148.0, 144.7, 140.7, 128.4, 127.5, 125.9, 117.2, 106.1, 61.0, 41.8, 35.3, 28.7, 15.5, 14.2. HRMS (ESI) m/z calculated for C₃₀H₃₄N₆O₂Na [M+Na]⁺: 533.2641, found: 533.2657.

(6f) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-n-propyl phenylacetylene (87.2 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily
liquid (104.97 mg, 78%); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.97 (s, 2H), 7.76 (d, J = 7.9 Hz, 4H), 7.22 (d, J = 7.9 Hz, 4H), 5.47 (s, 2H), 5.09 (s, 2H), 4.08 (q, J = 7.1 Hz, 2H), 3.17 (d, J = 7.0 Hz, 4H), 3.10 – 3.02 (m, 1H), 2.61 (t, J = 7.6 Hz, 4H), 1.70 – 1.64 (m, 4H), 1.19 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.3 Hz, 6H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.6, 148.0, 143.1, 140.6, 127.5, 125.8, 117.2, 106.1, 61.0, 41.8, 37.9, 35.3, 24.5, 14.2, 13.8. **HRMS** (ESI) m/z calculated for C₃₂H₃₈N₆O₂Na [M+Na]⁺: 561.2954, found: 561.2974.

(6g) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-tert-butyl phenylacetylene (99.2 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (107.60 mg, 76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (s, 2H), 7.79 (d, J = 7.8 Hz, 4H), 7.44 (d, J = 7.9 Hz, 4H), 5.48 (s, 2H), 5.09 (s, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.17 (d, J = 6.8 Hz, 4H), 3.06 (q, J = 10.1, 5.8 Hz, 1H), 1.35 (s, 18H), 1.19 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 151.5, 147.9, 140.6, 127.3, 125.8, 125.7, 117.2, 106.1, 61.0, 41.8, 35.3, 34.7, 31.3, 14.2. HRMS (ESI) m/z calculated for C₃₄H₄₂N₆O₂Na [M+Na]⁺: 589.3267, found: 589.3245.

(6h) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-bromophenylacetylene (99.6 mg, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (115.90 mg, 78%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 2H), 7.70 (d, J = 8.6 Hz, 4H), 7.54 (d, J = 8.5 Hz, 4H), 5.47 (s, 2H), 5.12 (s, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.22 – 3.11 (m, 4H), 3.04 – 2.95 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 146.8, 140.6, 132.0, 129.0, 127.4, 122.4, 117.8, 106.7, 61.1, 41.6, 35.2, 14.3. HRMS (ESI) m/z calculated for C₂₆H₂₄Br₂N₆O₂Na [M+Na]⁺: 635.0205, found: 635.0227.

(6i) 0.25 mmol scale: Prepared following the genernal procedure showed above using 4-cyanophenylacetylene (69.9 mg, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (95.80 mg, 76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 2H), 7.99 – 7.94 (m, 4H), 7.72 (d, *J* = 8.4 Hz, 4H), 5.51 (s, 2H), 5.17 (s, 2H), 4.11 (q, *J* = 7.1 Hz,

2H), 3.19 (d, J = 7.1 Hz, 4H), 3.05 – 2.98 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.3, 146.0, 140.5, 134.4, 132.7, 126.2, 118.9, 118.6, 111.9, 107.2, 61.1, 41.6, 35.3, 14.3. **HRMS** (ESI) m/z calculated for C₂₈H₂₄N₆O₂Na [M+Na]⁺: 527.1920, found: 527.1928.

(6j) 0.25 mmol scale: Prepared following the genernal procedure showed above using 3-methylphenylacetylene (71.0 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (98.90 mg, 82%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 2H), 7.70 (s, 2H), 7.63 (d, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 5.47 (s, 2H), 5.10 (s, 2H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 6.9 Hz, 4H), 3.08 (q, *J* = 7.0, 6.6 Hz, 1H), 2.39 (s, 6H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 148.0, 140.7, 138.5, 123.0, 129.2, 128.8, 126.6, 123.0, 117.5, 106, 61.00, 41.8, 35.2, 21.4, 14.2.HRMS (ESI) m/z calculated for C₂₈H₃₀N₆O₂Na [M+Na]⁺: 505.2328, found: 505.2386.

(6k) 0.25 mmol scale: Prepared following the general procedure showed above using 3-chlorophenylacetylene (67.7 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.),

triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (97.90 mg, 75%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 2H), 7.86 (s, 2H), 7.74 (d, *J* = 7.4 Hz, 2H), 7.38 – 7.28 (m, 4H), 5.48 (s, 2H), 5.13 (s, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 5.7 Hz, 4H), 3.04 – 2.96 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 146.6, 140.6, 134.9, 131.8, 130.2, 128.4, 125.9, 124.0, 118.1, 106.8, 61.1, 41.6, 35.3, 14.3. HRMS (ESI) m/z calculated for C₂₆H₂₄Cl₂N₆O₂Na [M+Na]⁺: 545.1236, found: 545.1356.

(6) 0.25 mmol scale: Prepared following the genernal procedure showed above using 3-fluorophenylacetylene (63.6 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (88.30 mg, 72%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 2H), 7.65 – 7.55 (m, 4H), 7.42 – 7.33 (m, 2H), 7.03 (t, *J* = 8.5 Hz, 2H), 5.49 (s, 2H), 5.13 (s, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 6.1 Hz, 4H), 3.02 (q, *J* = 6.6 Hz, 1H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 164.4 (d, *J* = 247.4 Hz), 146.8 (d, *J* = 2.5 Hz), 140.6, 132.2 (d, *J* = 8.6 Hz), 130.5 (d, *J* = 8.6 Hz), 121.5 (d, *J* = 2.8 Hz), 118.1, 115.4 (d, *J* = 21.0 Hz), 113.0 (d, *J* = 23.0 Hz), 106.8, 61.1, 41.6, 35.3, 14.2. HRMS (ESI) m/z calculated for C₂₆H₂₄F₂N₆O₂Na [M+Na]⁺: 513.1827, found: 513.1878.

(6m) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-methoxyphenylacetylene (71.1 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid 102.85 mg, 80%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 7.7 Hz, 2H), 8.25 (s, 2H), 7.35 – 7.29 (m, 2H), 7.07 (t, *J* = 7.5 Hz, 2H), 6.97 (d, *J* = 8.3 Hz, 2H), 5.47 (s, 2H), 5.07 (s, 2H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 6H), 3.19 (s, 5H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 155.8, 143.2, 140.8, 129.2, 127.8, 121.0, 120.7, 119.0, 110.8, 105.7, 60.9, 55.5, 41.9, 35.2, 14.2. HRMS (ESI) m/z calculated for C₂₈H₃₀N₆O₄Na [M+Na]⁺: 537.2227, found: 537.2256.

(6n) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-fluorophenylacetylene (62.3 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (91.90 mg, 75%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (t, *J* = 7.6 Hz, 2H), 8.08 (d, *J* = 3.4 Hz, 2H), 7.27 – 7.21 (m, 2H), 7.18 – 7.13 (m, 2H), 7.09 – 7.02

(m, 2H), 5.41 (s, 2H), 5.04 (s, 2H), 4.01 (q, J = 7.2 Hz, 2H), 3.12 (d, J = 6.8 Hz, 4H), 3.04 (d, J = 6.8 Hz, 1H), 1.12 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.5, 160.6 (d, J = 249.6 Hz), 141.3 (d, J = 2.2 Hz), 140.6, 129.6 (d, J = 8.5 Hz), , 128.0 (d J = 3.4 Hz), 124.6 (d, J = 3.4 Hz), 120.6 (d, J = 12.9 Hz), 118.2 (d, J = 12.9Hz), 115.6 (d, J = 21.6 Hz), 106.3, 61.0, 41.67, 35.2, 14.2. **HRMS** (ESI) m/z calculated for C₂₆H₂₄F₂N₆O₂Na [M+Na]⁺: 513.1827, found: 513.1867.

(60) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-chlorophenylacetylene (66.8 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (93.98 mg, 72%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (s, 2H), 8.23 (d, *J* = 7.9 Hz, 2H), 7.45 (d, *J* = 6.5 Hz, 2H), 7.36 (t, *J* = 6.9 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 5.51 (s, 2H), 5.14 (s, 2H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.21 (d, *J* = 6.4 Hz, 4H), 3.17 – 3.10 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 144.1, 140.6, 131.4, 130.2, 123.0, 129.2, 128.8, 127.2, 121.0, 106.5, 61.0, 41.7, 35.2, 14.3, 14.2. HRMS (ESI) m/z calculated for C₂₆H₂₄Cl₂N₆O₂Na [M+Na]⁺: 545.1236, found: 545.1287.

(6p) 0.25 mmol scale: Prepared following the general procedure showed above using 2-ethynylthiophene (55.1 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol,

2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (88.56 mg, 76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 2H), 7.73 (s, 2H), 7.47 (d, *J* = 5.0 Hz, 2H), 7.42 – 7.34 (m, 2H), 5.47 (s, 2H), 5.10 (s, 2H), 4.09 (q, *J* = 6.9 Hz, 2H), 3.16 (d, *J* = 6.9 Hz, 4H), 3.03 (q, *J* = 7.2 Hz, 1H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 144.1, 140.5, 131.3, 126.4, 125.9, 121.7, 117.3, 106.3, 61.0, 41.7, 35.3, 14.2. HRMS (ESI) m/z calculated for C₂₂H₃₄N₆O₂S₂Na [M+Na]⁺: 437.2641, found: 437.2641.

(6q) 0.25 mmol scale: Prepared following the genernal procedure showed above using 2-ethynyl naphthalene (83.7 mg, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (98.38 mg, 71%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 2H), 8.15 (s, 2H), 7.92 (d, J = 10.2 Hz, 2H), 7.85 – 7.79 (m, 6H), 7.47 (q, J = 5.2, 4.4 Hz, 4H), 5.52 (s, 2H), 5.14 (s, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.21 (d, J = 6.9 Hz, 4H), 3.11 (q, J = 6.7 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 147.9, 140.7, 133.5, 133.3, 128.6, 128.3, 127.8, 127.4, 126.5, 126.3, 123.9, 117.9, 106.5, 61.1, 41.7, 35.3, 14.3. HRMS (ESI) m/z calculated for C₃₄H₃₀N₆O₂Na [M+Na]⁺: 577.2328, found: 577.2356.

(6r) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-ethynylcyclohex-1-ene (64.7 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (80.90 mg, 70%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (s, 2H), 6.59 (s, 2H), 5.36 (s, 2H), 5.01 (s, 2H), 4.07 (d, *J* = 7.1 Hz, 2H), 3.10 (d, *J* = 7.1 Hz, 4H), 2.98 – 2.94 (m, 1H), 2.39 (s, 4H), 2.22 (s, 4H), 1.81 – 1.75 (m, 4H), 1.68 (q, *J* = 5.8, 4.8 Hz, 4H), 1.18 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 149.4, 126.8, 125.8, 116.1, 105.6, 60.9, 41.7, 35.2, 26.3, 25.3, 22.4, 22.2, 14.2. HRMS (ESI) m/z calculated for C₂₆H₃₄N₆O₂Na [M+Na]⁺: 485.2641, found: 485.2661.

(6s) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-hexyne (63.2 μL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (82.85 mg, 80%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (s, 2H), 5.35 (s, 2H), 5.00 (s, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.10 (d, *J* = 6.8 Hz, 4H), 3.02 (q, *J* = 7.1, 6.6 Hz, 1H), 2.72 (t, *J* = 7.8 Hz, 4H), 1.71-1.63 (m,4H), 1.45-1.36 (m, 4H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 148.6, 140.7, 118.6, 105.3, 60.8, 41.7, 35.1, 31.4, 25.3, 22.3, 14.2, 13.8. HRMS (ESI) m/z calculated for C₂₂H₃₄N₆O₂Na [M+Na]⁺: 437.2641, found: 437.2669.

(6t) 0.25 mmol scale: Prepared following the genernal procedure showed above using 1-octyne (81.1 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (92.90 mg, 79%);¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (s, 2H), 5.34 (s, 2H), 5.00 (s, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.10 (d, *J* = 6.8 Hz, 4H), 3.02 (q, *J* = 7.0, 6.6 Hz, 1H), 2.71 (t, *J* = 7.8 Hz, 4H), 1.67 (q, *J* = 7.6 Hz, 4H), 1.40 – 1.28 (m, 12H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.92 – 0.85 (m, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 148.6, 140.7, 118.5, 105.3, 60.8, 41.8, 35.1, 31.6, 29.3, 29.0, 25.6, 22.6, 14.2, 14.1., 13.8.HRMS (ESI) m/z calculated for C₂₆H₄₂N₆O₂Na [M+Na]⁺: 493.3267, found: 493.3247.

(6u) 0.25 mmol scale: Prepared following the genernal procedure showed above using 5-chloropentyne (58.3 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (86.50 mg, 76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (s, 2H), 5.36 (s, 2H), 5.03 (s, 2H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 4H), 3.10 (d, *J* = 7.0 Hz, 4H), 3.00 (q, *J* = 6.7 Hz, 1H), 2.90 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 2.23-2.16 (m, 4H), 1.20 (t, *J* = 7.3 Hz, 4H), 3.10 (m, *J* = 7.3 Hz, 4H), 3.20 (m, *J* =

J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.5, 146.6, 140.6, 119.2, 105.7, 60.9, 44.2, 41.6, 35.1, 31.7, 22.6, 14.2. HRMS (ESI) m/z calculated for C₂₀H₂₈N₆O₂Na [M+Na]⁺: 477.1549, found: 477.1549.

(6v) 0.25 mmol scale: Prepared following the genernal procedure showed above using prop-2-yn-1-yl benzoate (88.0 mg, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (111.19 mg, 78%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.2 Hz, 4H), 7.93 (s, 2H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 4H), 5.47 (s, 4H), 5.41 (d, *J* = 1.8 Hz, 2H), 5.07 (s, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.12 (d, *J* = 6.5 Hz, 4H), 3.08 – 3.02 (m, 1H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.4, 166.4, 143.1, 140.5, 133.3, 130.0, 128.4, 122.0, 106.5, 61.0, 57.9, 41.6, 35.01, 14.2. HRMS (ESI) m/z calculated for C₃₀H₃₀N₆O₆Na [M+Na]⁺: 593.2125, found: 593.2165.

(6w) 0.25 mmol scale: Prepared following the genernal procedure showed above using prop-2-yn-1-yl 4-methylbenzoate (95.7 mg, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), ethyl 4,4,4-trifluoro-3-oxobutanoate (36.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as

yellow oily liquid (107.70 mg, 72%); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.9 Hz, 6H), 7.22 (d, *J* = 8.0 Hz, 4H), 5.45 (s, 4H), 5.41 (d, *J* = 1.8 Hz, 2H), 5.06 (s, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 3.11 (d, *J* = 6.3 Hz, 4H), 3.09 – 3.02 (m, 1H), 2.39 (s, 6H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.4, 166.5, 144.0, 143.3, 140.5, 129.8, 129.1, 126.9, 121.9, 106.5, 61.0, 57.8, 41.6, 21.7, 14.2. **HRMS** (ESI) m/z calculated for C₃₂H₂₄N₆O₆Na [M+Na]⁺:621.2438, found: 621.2445.

(6x) **0.25 mmol scale**: Prepared following the genernal procedure showed above using phenylacetylene (60.4 µL, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), 4,4,4-trifluoro-1-(2-furanyl)-1,3-butanedione (37.1 µL, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (57.16 mg, 78%); ¹**H NMR** (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.56 (s, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.21 (d, J = 3.6 Hz, 1H), 6.53 (d, J = 3.6 Hz, 1H), 5.48 (s, 1H), 5.11 (s, 1H), 3.26 – 3.18 (m, 4H); ¹³**C NMR** (100 MHz, Chloroform-d) δ 191.3, 143.8, 142.4, 134.0, 132.3, 130.1, 128.9, 128.5, 128.3, 117.4, 105.0, 37.1, 27.9. **HRMS** (ESI) m/z calculated forC₁₇H₁₅N₃O₂Na [M+Na]+: 316.1062, found: 316.1036.

(6y) **0.25 mmol scale**: Prepared following the genernal procedure showed above using phenylacetylene (60.4 μ L, 0.55 mmol, 2.2 eq.), VA (224.8 mg, 0.55 mmol, 2.2 eq.), 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione (38.6 μ L, 0.25 mmol, 1.0 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 4.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.4 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.04 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as yellow oily liquid (58.72 mg, 76%); ¹H NMR (400 MHz, Chloroform-d) δ 8.05 (s, 1H), 7.87 (d, J = 7.4 Hz, 2H), 7.70 (s, 1H), 7.62 (d, J = 4.8 Hz, 1H), 7.42 (d, J = 7.3 Hz, 2H), 7.35 (t, J = 7.1 Hz, 1H), 7.11 (s, 1H), 5.47 (s, 1H), 5.11 (s, 1H), 3.26 (s, 4H); ¹³C NMR (100 MHz, Chloroform-d) δ 187.4, 152.4, 147.8, 146.6, 142.4, 130.2, 128.9, 128.5, 125.9, 117.5, 117.3, 112.3, 105.0, 36.1, 27.4. HRMS (ESI) m/z calculated for C₁₇H₁₅N₃OSNa [M+Na]+: 332.0834, found: 332.0838.

CDCI₃ 400MHz

CDCI₃ 400MHz

CDCI₃ 100MHz

CDCI₃ 376MHz

			<u></u>			<u> </u>	<u> </u>		x 1 - x - 1 - x - 1 - x	1. C. D. C.
10	-10	-30	-50	-70	-90	-110	-130	-150	-170 -190	-210
8.44	8.24 8.22 8.22 8.22 7.46	44. 44. 44. 44. 44. 44. 44. 44. 44. 44.	7.39 7.37 7.37 7.37	7.35	7.29	5.66 5.66 5.39	3.99 3.99 3.99	3.95 3.73 3.69 3.53	3.49 1.19 1.17 1.15	0.00

CDCI₃ 400MHz

CDCI₃ 400MHz

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

 7.94

 7.77

 7.77

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

 6.95

5.60 5.50 5.33 5.33 5.33 5.50 5.33 3.96 3.396 3.369 3.369 3.369 3.369 3.369 3.369 3.369 3.369 2.571 2.571 2.571 2.571 1.128 1.128 1.128 1.128 1.128 1.128

7.799 77.77 77.75

7.2

CDCI₃ 100MHz

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

3r CDCI₃ 100MHz

 $\textbf{CDCI}_3 \quad \textbf{400MHz}$

68

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

3ze CDCI₃ 100MHz

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

7.5 5.5 3.5 2.5 0.5 -0. 9.5 8.5 6.5 4.5 1.5

4k CDCI₃ 400MHz

6b

2.0 11.0 10.0

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10