Synthesis of the Cyclic Heptapeptide Core of Callipeltin A

Alexander Horn, Uli Kazmaier*
Saarland University, Institute for Organic Chemistry, Building C4.2
P. O. Box 151150, 66041 Saarbruecken, Germany
Email: u.kazmaier@mx.uni-saarland.de

Supporting Information

General Information 1
General Procedures 1
Synthesis of the Compounds 2
NMR Spectra 15
Literature 37

General Information

All air- or moisture-sensitive reactions were carried out in dried glassware ($>100{ }^{\circ} \mathrm{C}$) under an atmosphere of nitrogen. THF was dried over sodium/benzophenone and was distilled before use. Dry DCM, diethylether, DMF, DMSO, toluene and pyridine were purchased from Acros Organics. The products were purified by flash chromatography on silica gel columns (Macherey-Nagel 60, 0.040.063 mm) and with a Reveleris ${ }^{\circledR}$ flash chromatography system from Grace with RediSep ${ }^{\circledR}$-columns from Teledyne Isco. Mixtures of ethyl acetate and petroleum ether ($40-60^{\circ} \mathrm{C}$ fraction), diethyl ether and pentane, dichloromethane and methanol or acetonitrile and water (for reversed phase) were generally used as eluents. Analytical TLC was performed on pre-coated silica gel plates (MachereyNagel GmbH \& Co. KG, Silica on TLC PET-foils, $4 \times 8 \mathrm{~cm}$). Visualization was accomplished with UV-light (254 nm), Cerium-molybdenum solution, KMnO_{4} solution or with an iodine chamber. Melting points were determined with a MEL-TEMP II melting point apparatus from Laboratory devices and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AV400 [400 MHz (${ }^{1} \mathrm{H}$) and 100 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$], a Bruker AV500 and a Bruker Neo $500\left[500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right]$ in CDCl_{3}, or DMSO-d ${ }_{6}$. Chemical shifts are reported in ppm relative to $\mathrm{TMS}\left(\mathrm{CDCl}_{3}\right)$ or the residual solvent signal (DMSO- d_{6}). Peaks were assigned using ($\left.{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)$-COSY, $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$-HSQC and $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$-HMBC spectra. The $\alpha-$ carbon atoms of the alkylboronic esters could not be observed in most ${ }^{13} \mathrm{C}$ NMR spectra. Diastereomeric ratios were determined by NMR and/or HPLC. Mass spectra were recorded with a Finnigan MAT 95 spectrometer (quadrupole) using the Cl technique. LCMS analyses were accomplished on a Shimadzu system (LC-10At, autoinjector SCL-6B, mass spectrometer LCMS-2020). A Phenomenex Luna C 18 (2) column ($50 \times 4.6 \mathrm{~mm}$, grain size $3 \mu \mathrm{~m}$) was used as the column. Optical rotations were measured with a Perkin-Elmer polarimeter (model 341) in a thermostated $\left(20^{\circ} \mathrm{C} \pm 1\right.$ $\left.{ }^{\circ} \mathrm{C}\right)$ cuvette, using a sodium vapor lamp $(\lambda=589 \mathrm{~nm})$ as radiation source. $[\alpha]_{\mathrm{D}}^{20}$ values are given in 10^{-} ${ }^{1} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{~g}^{-1}$.

General Procedures (GP's)

GP-1: Matteson homologation

Preparation of the $\boldsymbol{\alpha}$-halo-boronic ester: A Schlenk tube was flame dried and DIPA (1.1-2.0 equiv.) was dissolved in dry THF ($0.2 \mathrm{~mL} / \mathrm{mmol}$). The tube was cooled to $-20^{\circ} \mathrm{C}$ and n-butyllithium (1.0-2.0 equiv.) was added dropwise. After complete addition the mixture was stirred for 20 minutes at room temperature. In a second Schlenk tube zinc chloride (2.0-5.0 equiv.) was dried under high vacuum with a heat gun and after cooling to room temperature dissolved in THF ($0.5 \mathrm{~mL} / \mathrm{mmol}$). The third Schlenk tube was flame dried and the boronic ester (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (3.0 equiv.) and THF $(1.4 \mathrm{~mL} / \mathrm{mmol})$ were added. After cooling to $-40^{\circ} \mathrm{C}$ the freshly prepared LDA solution was slowly added, and the mixture was stirred for 10-15 minutes at the same temperature. The zinc chloride solution was rapidly added, and the reaction was stirred for 4-16 hours at room temperature.

Reaction with a nucleophile: The mixture was cooled to $0^{\circ} \mathrm{C}$, a solution of the nucleophile was dropwise added, and the reaction was stirred at room temperature until complete consumption of the α-halo-boronic ester was observed (NMR). Then, the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and water and extracted thrice with pentane. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the combined organic layer, the solvent was removed in vacuo and the residue was purified by rapid filtration over a short column of silica.

GP-2: Fmoc deprotection

To a solution of Fmoc-protected amino acid or peptide (1.0 equiv.) in MeCN (0.05 M) $\mathrm{Et}_{2} \mathrm{NH}$ (80 equiv.) was added and the mixture was stirred at room temperature until complete deprotection was observed by TLC or LC-MS. The volatiles were removed in vacuo and the crude amine was used in the next step.

Synthesis of the Compounds

Ethyl (2S,3R)-3-(4-(benzyloxy)phenyl)-2,3-dihydroxypropanoate (2) ${ }^{1}$

To a well stirred mixture of $t-\mathrm{BuOH}(420 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(420 \mathrm{~mL})$ were successively added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($35.1 \mathrm{~g}, 254 \mathrm{mmol}, 3.0$ equiv.), $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(84.0 \mathrm{~g}, 254 \mathrm{mmol}, 3.0\right.$ equiv.), (DHQD) ${ }_{2}$ Phal (633 mg , $813 \mu \mathrm{~mol}, ~ 9.6 \mathrm{~mol} \%)$ and $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right] \quad(131 \mathrm{mg}, 356 \mu \mathrm{~mol}, 4.2 \mathrm{~mol} \%)$. After addition of methanesulfonamide ($8.05 \mathrm{~g}, 85.0 \mathrm{mmol}, 1.0$ equiv.) the solution was cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 minutes and cinnamyl ester $1^{1}(23.9 \mathrm{~g}, 85.0 \mathrm{mmol}, 1.0$ equiv.) was added. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 2 hours and then at room temperature until complete consumption of the starting material was observed by TLC. The reaction was quenched by addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and the mixture was extracted twice with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Recrystallization (PE/EtOAc) and flash chromatography (silica, PE/EtOAc 1:1) afforded diol 2 ($23.6 \mathrm{~g}, 74.5 \mathrm{mmol}, 88 \%,>98 \% \mathrm{ee}$) as white solid, $m p 123-125{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(\mathbf{2})=0.27(\mathrm{PE} / E t O A c 1: 1) .[\alpha]_{\mathrm{D}}^{20}=-7.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{dd}, J=5.9 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, 6.97 (m, 2 H), $7.37(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1,62.1,70.0,74.2,74.7,114.7,127.4$, 127.6, 127.9, 128.5, 132.3, 136.9, 158.6, 172.7. HRMS (CI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 298.1200, found: 298.1179.

Ethyl (2S,3R)-3-(4-(benzyloxy)phenyl)-3-hydroxy-2-(((2-nitrophenyl)sulfonyl)oxy)propanoate (2a) ${ }^{1}$

2

2a
94\%
Diol 2 ($6.00 \mathrm{~g}, 19.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous DCM (150 mL), the solution cooled to $0^{\circ} \mathrm{C}$ and 2-nitrobenzenesulfonyl chloride ($5.46 \mathrm{~g}, 24.7 \mathrm{mmol}, 1.3$ equiv.) was added. After dropwise addition of triethylamine ($3.44 \mathrm{~mL}, 24.7 \mathrm{mmol}, 1.3$ equiv.) over 5 min . the mixture was stirred for 5.5 hours at $0-3^{\circ} \mathrm{C}$. The reaction was acidified to $\mathrm{pH}=2$ by addition of aqueous $\mathrm{HCl}(1 \mathrm{M})$, the layers were separated, and the aqueous layer extracted twice with DCM. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated at room temperature under reduced pressure. Rapid flash chromatography (silica, DCM/EtOAc 9:1) afforded nosylate 2a (9.31 g, 17.8 mmol, 94%, contains $4 \% \mathrm{EtOAc}$) as yellow resin which was immediately used in the consecutive step. $\mathrm{R}_{\mathrm{f}}(\mathbf{2 a})=0.40(\mathrm{DCM} / E t O A c 9: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{bs}, 1$ H), 4.09 (dq, $J=10.8 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=10.8 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 5.08$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H})$, $7.66(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~m}, 2 \mathrm{H}) 8.00(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,62.2,69.9$, $73.4,83.5,114.8,124.8,127.4,127.8,128.1,128.6,129.3,129.6,131.3,132.3,134.8,136.7,148.0$, 159.0, 166.2.

Ethyl (2R,3R)-2-azido-3-(4-(benzyloxy)phenyl)-3-hydroxypropanoate (3) ${ }^{1}$

Under an atmosphere of N_{2}, freshly prepared nosylate 2a ($9.51 \mathrm{~g}, 19.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous DMF and sodium azide ($2.47 \mathrm{~g}, 37.9 \mathrm{mmol}, 2.0$ equiv.) was added. After heating to $50^{\circ} \mathrm{C}$ overnight the mixture was diluted with EtOAc, washed three times with water and once with brine. The solvent was evaporated, and the crude product purified by column chromatography (silica, PE/EtOAc 8:2) to obtain azide 3 ($5.40 \mathrm{~g}, 15.8 \mathrm{mmol}, 83 \%$) as a yellow solid, $\mathrm{mp} 95-98{ }^{\circ} \mathrm{C}$ (decomposition). $\mathrm{R}_{\mathrm{f}}(3)=0.33$ (PE/EtOAc 4:1). $[\alpha]_{\mathrm{D}}^{20}=+8.4$ (c $=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=7.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,62.1,66.8,70.0,73.7,114.9,127.4$, 127.9, 128.0, 128.6, 131.3, 136.8, 159.1, 168.9. HRMS (CI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]^{+}$: 305.1739, found: 305.1692.

Ethyl (2R,3R)-2-azido-3-(4-(benzyloxy)phenyl)-3-methoxypropanoate (4)

To a solution of azide $3(7.50 \mathrm{~g}, 22.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (440 mL) were added silver oxide (10.2 g , $43.9 \mathrm{mmol}, 2.0$ equiv.) and methyl iodide ($41.2 \mathrm{~mL}, 659 \mathrm{mmol}, 30.0$ equiv.). The mixture was stirred at reflux overnight, additional silver oxide ($5.09 \mathrm{~g}, 22.0$, 1.0 equiv.) was added, and the reaction stirred for another 8 hours before being filtrated through a pad of celite. The solvent was removed in vacuo and the residue purified by flash chromatography (silica, PE/EtOAc 95:5 \rightarrow 9:1) to afford methyl ether $4(6.79 \mathrm{~g}, 19.1 \mathrm{mmol}, 87 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}(4)=0.31$ (PE/EtOAc 8:2). $[\alpha]_{\mathrm{D}}^{20}=+14.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{dq}, J=10.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dq}, J=10.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1,56.9,61.8,66.4,70.0,82.7,114.9,127.5,128.0,128.6,128.8,128.8,136.8,159.3$, 168.5. HRMS (CI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+}: 327.1465$, found: 327.1482.

Ethyl (2R,3R)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxy propanoate (5)

Methyl ether 4 ($9.06 \mathrm{~g}, 25.5 \mathrm{mmol}$) was dissolved in THF/ $\mathrm{H}_{2} \mathrm{O}(255 \mathrm{~mL}, 25: 1)$, triphenyl-phosphine ($20.1 \mathrm{~g}, 76.0 \mathrm{mmol}, 3.0$ equiv.) was added and the mixture was heated to $50^{\circ} \mathrm{C}$ for 16 hours. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ ($350 \mathrm{~mL}, 2.5: 1$). $\mathrm{Boc}_{2} \mathrm{O}\left(7.10 \mathrm{~mL}, 30.6 \mathrm{mmol}, 1.2\right.$ equiv.) and $\mathrm{NaHCO}_{3}(4.28 \mathrm{~g}$, $51.0 \mathrm{mmol}, 2.0$ equiv.) were added and the reaction was stirred for 6 hours at $0{ }^{\circ} \mathrm{C}$. The mixture was acidified with $1 \mathrm{M} \mathrm{HCl}(\mathrm{pH}=2)$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (silica, PE/EtOAc 85:15) afforded Boc-protected amine 5 ($10.8 \mathrm{~g}, 25.2 \mathrm{mmol}, 99 \%$) as a colorless resin. $\mathrm{R}_{\mathrm{f}}(5)=$ 0.24 (PE/EtOAc 85:15). $[\alpha]_{\mathrm{D}}^{20}=+21.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=8.7 \mathrm{~Hz}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37 (m, 5 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,28.2,57.4,58.4,61.1,70.0,79.8,83.3,114.7$, $127.4,128.0,128.2,128.6,129.2,136.9,155.1,158.8,170.3$. HRMS (CI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}: 430.2224$, found: 430.2248 .
(2R,3R)-3-(4-(Benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxypropanoic acid (6)

To a solution of ethyl ester 5 ($1.66 \mathrm{~g}, 3.86 \mathrm{mmol}$) in THF (39 mL) was slowly added a freshly prepared solution of lithium hydroxide ($4.25 \mathrm{~mL}, 4.25 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 1.1$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After complete conversion (TLC), the mixture was concentrated, the residue redissolved in water and acidified with $1 \mathrm{M} \mathrm{HCl}(\mathrm{pH}=2)$. The aqueous layer was extracted twice with EtOAc, and the combined organic layer washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo to afford carboxylic acid 6 ($1.53 \mathrm{~g}, 3.81 \mathrm{mmol}, 99 \%$) as a white solid, $\mathrm{mp} 105-107^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(6)=0.09$ (PE/EtOAc $7: 3$). $[\alpha]_{\mathrm{D}}^{20}=+35.9$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33(\mathrm{~s}, 9 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$
(dd, J = 8.9 Hz, J = $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.99(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.2,57.3,58.2,70.0$, 80.3, 83.0, 114.8, 127.5, 128.0, 128.2, 128.6, 136.8, 126.9, 158.9, 159.0, 174.0. HRMS (CI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 402.1911$, found: 401.1887.
(4S,5S)-2-((S)-1-(Benzyloxy)ethyl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (8)

According to GP-1, boronic ester $\mathbf{7}^{2}(4.00 \mathrm{~g}, 16.0 \mathrm{mmol})$ was reacted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3.09 \mathrm{~mL}, 48.0 \mathrm{mmol}$, 3.0 equiv.), DIPA ($3.08 \mathrm{~mL}, 21.6 \mathrm{mmol}, 1.35$ equiv.), n-BuLi ($7.99 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1.25 equiv.) and zinc chloride ($4.36 \mathrm{~g}, 32.0 \mathrm{mmol}, 2.0$ equiv.) overnight. The nucleophile solution was prepared by suspending sodium hydride ($831 \mathrm{mg}, 20.8 \mathrm{mmol}, 1.3$ equiv.) in dry DMSO/THF (42 mL , 3:1) and stirring at room temperature for 6 hours after addition of benzyl alcohol (2.33 mL , $22.4 \mathrm{mmol}, 1.4$ equiv.). To the solution of the chloro-boronic ester mixture was added the nucleophile solution at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature until complete consumption of the starting material was observed (NMR). After aqueous work-up and flash chromatography (silica, pentane/diethyl ether 9:1), benzyl ether 8 ($4.01 \mathrm{~g}, 10.8 \mathrm{mmol}, 68 \%$) was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}(8)=0.30$ (pentane/diethyl ether $9: 1$). $[\alpha]_{\mathrm{D}}^{20}=-57.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta=1.11(\mathrm{~m}, 10 \mathrm{H}), 1.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 6 \mathrm{H}), 3.45(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, J= $12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}, 13-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=16.8,25.9,26.0,26.4,27.3,28.1,42.9,62.8,71.6,83.6,127.3,127.8,128.2,139.1$. HRMS $(\mathrm{Cl}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{BO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 371.2752$, found: 371.2784 .

(4S,5S)-2-((1S,2R)-1-Azido-2-(benzyloxy)propyl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (9)

According to GP-1, benzyl ether $8(3.80 \mathrm{~g}, 10.3 \mathrm{mmol})$ was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.98 \mathrm{~mL}, 30.8 \mathrm{mmol}$, 3.0 equiv.), DIPA ($1.97 \mathrm{~mL}, 13.9 \mathrm{mmol}, 1.35$ equiv.), n-BuLi ($5.13 \mathrm{~mL}, 12.8 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1.25 equiv.) and zinc chloride ($4.20 \mathrm{~g}, 30.8 \mathrm{mmol}, 3.0$ equiv.) overnight. After aqueous work up and removal of the solvent, the chloro-boronic ester was dissolved in DMF (103 mL). Sodium azide ($6.67 \mathrm{~g}, 103 \mathrm{mmol}, 10.0$ equiv.) was added and the mixture was stirred at room temperature for 12 hours. Aqueous work up and flash chromatography (silica, pentane/diethyl ether 95:5) afforded azide $9(3.43 \mathrm{~g}, 8.02 \mathrm{mmol}, 79 \%,>98: 2 \mathrm{dr})$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}(9)=0.49$ (pentane/diethyl ether 9:1). $[\alpha]_{\mathrm{D}}^{20}=-41.6 .0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.06(\mathrm{~m}, 10 \mathrm{H}), 1.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 6 \mathrm{H}), 3.30(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{qd}, J=6.4 \mathrm{~Hz}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.)_{3}\right): \delta=$ $17.2,25.8,25.9,26.3,27.3,28.3,42.8,53.2,70.7,77.0,84.2,127.4,127.4,128.3,138.4$. HRMS (CI): The compound decomposes during the measurements.

Methyl (2R,3R)-2-azido-3-(benzyloxy)butanoate (10)

According to GP-1, azide $9(2.00 \mathrm{~g}, 4.70 \mathrm{mmol})$ was treated with dibromomethane ($985 \mathrm{\mu L}$, $14.1 \mathrm{mmol}, 3.0$ equiv.), DIPA ($905 \mu \mathrm{~L}, 6.35 \mathrm{mmol}, 1.35$ equiv.), n-BuLi ($2.35 \mathrm{~mL}, 5.88 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1.25 equiv.) and zinc chloride ($1.92 \mathrm{~g}, 14.1 \mathrm{mmol}, 3.0$ equiv.) at $-78^{\circ} \mathrm{C}$ and stirred at room temperature for 12 hours. After aqueous work up, the bromo-boronic ester was suspended in t $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(135 \mathrm{~mL}, 2: 1)$ and 2-methyl-2-butene ($19.9 \mathrm{~mL}, 188 \mathrm{mmol}, 40.0$ equiv.), sodium chlorite ($5.31 \mathrm{~g}, 47.0 \mathrm{mmol}, 10.0$ equiv.) and $\mathrm{KH}_{2} \mathrm{PO}_{4}(6.40 \mathrm{~g}, 47.0 \mathrm{mmol}, 10.0$ equiv.) were added. The mixture was stirred at room temperature overnight, acidified with 10% citric acid (pH 4) and extracted three times with diethyl ether. Washing of the combined organic layer with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was followed by esterification of the cleaved diol with methylboronic acid ($338 \mathrm{mg}, 5.64 \mathrm{mmol}, 1.2$ equiv.) in diethyl ether (40 mL) in the presence of $\mathrm{MgSO}_{4}(1.13 \mathrm{~g}$, $9.40 \mathrm{mmol}, 2.0$ equiv.). After filtration of the mixture and evaporation of the solvent, the residue was dissolved in toluene/ $\mathrm{MeOH}(94 \mathrm{~mL}, 5: 1$) and TMS-diazomethane ($3.53 \mathrm{~mL}, 7.05 \mathrm{mmol}, 1.5$ equiv.) was added. After complete consumption of the starting material (TLC), the reaction was diluted with diethyl ether and quenched by addition of 10% acetic acid. The layers were separated, the aqueous layer extracted once with diethyl ether and the combined organic layer was washed with sat. NaHCO_{3} solution and brine. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purification via flash chromatography (silica, pentane/diethyl ether 92:8) afforded methyl ester $10(1.13 \mathrm{~g}, 4.53 \mathrm{mmol}, 96 \%)$ as a colorless oil. $R_{f}(\mathbf{1 0})=0.41$ (pentane/diethyl ether 4:1). $[\alpha]_{\mathrm{D}}^{20}=-23.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{qd}, J=6.2 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (d, J = $11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.62(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.9,52.6$, $65.5,71.3,75.3,127.6,127.8,128.4,137.6,169.0$. HRMS (CI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+}$: 221.1046, found: 221.1057.

Methyl N-((allyloxy)carbonyl)-O-benzyl-D-allo-threoninate (11)

To a solution of azide 10 ($900 \mathrm{mg}, 3.61 \mathrm{mmol}$) in THF/ $\mathrm{H}_{2} \mathrm{O}$ (36 mL , 25:1) was added $\mathrm{PPh}_{3}(2.84 \mathrm{~g}$, $10.8 \mathrm{mmol}, 3.0$ equiv.) and the mixture was heated to $50^{\circ} \mathrm{C}$ for 15 hours. After cooling to room temperature, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(607 \mathrm{mg}, 7.22 \mathrm{mmol}, 2.0$ equiv.) were added. The mixture was cooled to $0^{\circ} \mathrm{C}$, allyl chloroformate ($578 \mu \mathrm{~L}, 5.42 \mathrm{mmol}, 1.5$ equiv.) was added dropwise and the reaction was stirred overnight. The reaction was quenched with 1 M HCl , the mixture extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was washed with brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporation of the solvent under reduced pressure and flash chromatography (silica, pentane/diethyl ether $3: 1 \rightarrow 2: 1$) the Alloc-protected amine $\mathbf{1 1}(891 \mathrm{mg}, 2.90 \mathrm{mmol}, 80 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 1})=0.15$ (pentane/diethyl ether 3:1). $[\alpha]_{\mathrm{D}}^{20}=-12.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}$,
$J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.8 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.1,52.3,57.2,65.8,70.9,74.9,117.8,127.6,127.7,128.3$, 132.5, 137.8, 155.8, 170.7. HRMS (CI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 308.1492, found: 308.1486 .

N-((Allyloxy)carbonyl)-O-benzyl-D-allo-threonine (12)

Methyl ester 11 ($400 \mathrm{mg}, 1.30 \mathrm{mmol}$) was dissolved in THF (13 mL) and LiOH ($1.43 \mathrm{~mL}, 1.43 \mathrm{mmol}$, $1.0 \mathrm{M}, 1.0$ equiv.) was added at $0^{\circ} \mathrm{C}$. After stirring at room temperature until complete conversion was observed by (TLC), the reaction was acidified (pH 2) with 1 M HCl and extracted three times with diethyl ether. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo to afford carboxylic acid $12(377 \mathrm{mg}, 1.28 \mathrm{mmol}, 99 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 2})=$ 0.06 (pentane/diethyl ether 7:3). $[\alpha]_{\mathrm{D}}^{20}=-17.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.8 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.1,56.9,65.9,71.0,74.9,117.8,127.8,127.8,128.4,132.6,137.8,156.0,172.8$. HRMS (CI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 294.1336$, found: 294.1355.

Methyl N-((2R,3R)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxy-propan-oyl)-N-methyl-L-alaninate (13)

To a solution of tyrosine $6(7.93 \mathrm{~g}, 19.8 \mathrm{mmol})$ in dry DMF $(198 \mathrm{~mL})$ were added N-methyl-L-alanine methyl ester hydrochloride ($6.07 \mathrm{~g}, 39.5 \mathrm{mmol}, 2.0$ equiv.), DIPEA ($10.4 \mathrm{~mL}, 59.3 \mathrm{mmol}, 3.0$ equiv.) and $\operatorname{HBTU}\left(7.87 \mathrm{~g}, 20.7 \mathrm{mmol}, 1.05\right.$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature overnight, was diluted with EtOAc and successively washed with sat. solution of $\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{HCl}$ and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed in vacuo and the residue purified twice via column chromatography (silica, PE/EtOAc 8:2 \rightarrow 7:3 \rightarrow 1:1) to obtain dipeptide 13 ($9.29 \mathrm{~g}, 18.6 \mathrm{mmol}, 94 \%$) as a colorless resin. $\mathrm{R}_{\mathrm{f}}(13)=0.15$ (PE/EtOAc 7:3). $[\alpha]_{\mathrm{D}}^{20}=+43.2$ ($c=1.0, \mathrm{CHCl}_{3}$). Main rotamer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.91(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, $5.25(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3,28.1,31.7$, 52.2, 52.5, 54.2, 57.0, 70.0, 79.4, 85.4, 114.6, 127.4, 127.9, 128.6, 129.0, 129.9, 136.9, 154.5, 158.9, 171.5, 172.0. Minor rotamer (selected signals): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21(\mathrm{~s}, 9 \mathrm{H}), 1.50$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=16.2,28.1,29.8,54.0,56.8,85.0,114.5,127.4,128.1,128.6,129.1,129.8$, 172.0. HRMS (CI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 501.2595$, found: 501.2602.

(9H-Fluoren-9-yl)methyl (S)-5-oxo-4(3-oxo-3-(tritylamino)propyl)oxazolidine-3-carboxylate (SI-1) ${ }^{3}$

In a 500 mL three-neck round-bottom flask fitted with a Dean-Stark apparatus, p-formaldehyde ($9.83 \mathrm{~g}, 327 \mathrm{mmol}, 20$ equiv.) and $p-\mathrm{TsOH}$ ($311 \mathrm{mg}, 1.64 \mathrm{mmol}, 0.1$ equiv.) were suspended in dry toluene (250 mL). After addition of a solution of N_{δ}-Trityl- N_{α}-Fmoc-glutamine ($10.0 \mathrm{~g}, 16.4 \mathrm{mmol}$) in DMF (20 mL) the mixture was heated to reflux for two hours. The resulting clear solution was cooled to room temperature, diluted with EtOAc and successively washed with sat. $\mathrm{NaHCO}_{3}(3 x)$, water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo and the residue purified by flash chromatography (silica, PE/EtOAc 6:4) to afford oxazolidinone 13a ($9.66 \mathrm{~g}, 15.5 \mathrm{mmol}, 95 \%$) as a white solid, $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(13 \mathrm{a})=0.30(\mathrm{PE} / \mathrm{EtOAc} 6: 4) .[\alpha]_{\mathrm{D}}^{20}=-17.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=1.85(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{dd}, J=10.3 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=10.3 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{bs}, 1 \mathrm{H}), 5.32(\mathrm{~m}$, $1 \mathrm{H}), 7.15(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 6 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.3 \mathrm{~Hz}$, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=26.0,30.8$, 46.6, 54.9, 67.2, 77.8, 120.2, 125.2, 126.4, 127.3, 127.5, 127.8, 128.6, 140.8, 143.6, 144.9, 170.8, 172.4. HRMS (CI): m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 623.2540$, found: 623.2562 .

N^{2}-(((9H-Fluoren-9-yl)methoxy)carbonyl)- N^{2}-methyl-L-glutamine (SI-2) ${ }^{3}$

Oxazolidinone 13a ($9.00 \mathrm{~g}, 14.5 \mathrm{mmol}$) was dissolved in $\mathrm{CHCl}_{3}(115 \mathrm{~mL})$ and trifluoroacetic acid ($78.0 \mathrm{~mL}, 1.01 \mathrm{~mol}, 70$ equiv.) was added which resulted in a dark orange solution. After addition of $\mathrm{Et}_{3} \mathrm{Si}-\mathrm{H}$ ($9.23 \mathrm{~mL}, 57.8 \mathrm{mmol}, 4.0$ equiv.) the reaction was sealed and over 4 days the mixture gradually turned colorless again. The solvent was removed in vacuo and the residue co-evaporated with toluene twice. Flash chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 95: 5 \rightarrow 9: 1$) yielded glutamine 13b ($4.86 \mathrm{~g}, 12.7 \mathrm{mmol}, 88 \%$) as a white solid, $\mathrm{mp} 150-151^{\circ} \mathrm{C}$ (decomposition). $\mathrm{R}_{\mathrm{f}}(\mathbf{1 3 b})=0.21$ (DCM/MeOH 9:1). $[\alpha]_{\mathrm{D}}^{20}=-9.3$ (c = 1.0, CHCl_{3}). Major rotamer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.42$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 2 \mathrm{H}), 12.85(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz DMSO$\left.d_{6}\right): \delta=24.0,30.6,31.5,46.6,58.2,66.9,120.1,125.1,127.2,127.7,140.7,143.8,143.8,156.1,172.4$, 173.3. Minor rotamer (selected signals): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=2.77$ (s, 3 H), $6.80(\mathrm{~s}, 1 \mathrm{H})$, 7.63 ($d, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (CI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+2 \mathrm{H}]^{+}$: 384.1680, found: 384.1668.

Methyl $N-((2 R, 3 R)-2-((S)-2-(((9 H-f l u o r e n-9-y l) m e t h o x y) c a r b o n y l)(m e t h y l) a m i n o)-5-a m i n o-5-o x o-~$ pentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (14)

Dipeptide 13 ($3.10 \mathrm{~g}, 6.19 \mathrm{mmol}$) was dissolved in DCM (15 mL) and treated with $\mathrm{HCl}(15.5 \mathrm{~mL}$, $61.9 \mathrm{mmol}, 4.0 \mathrm{M}$ in dioxane, 10.0 equiv.) at $0^{\circ} \mathrm{C}$ until complete Boc-deprotection was observed by TLC. The mixture was concentrated, dried in high vacuum and redissolved in dry DMF (62 mL). To the hydrochloride solution were added, N-Fmoc- N-Me-glutamine ($2.49 \mathrm{~g}, 6.50 \mathrm{mmol}, 1.05$ equiv.), DIPEA $\left(2.27 \mathrm{~mL}, 13.0 \mathrm{mmol}, 2.1\right.$ equiv.) and HATU ($2.59 \mathrm{~g}, 6.81 \mathrm{mmol}, 1.1$ equiv.) at $0{ }^{\circ} \mathrm{C}$ and the reaction was stirred overnight. The mixture was diluted with EtOAc and washed with 1 M HCl , sat. NaHCO_{3} solution and brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed under reduced pressure and the residue purified by flash chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 98: 2 \rightarrow 97: 3$) to yield tripeptide 14 ($4.37 \mathrm{~g}, 5.71 \mathrm{mmol}, 92 \%$) as a white amorphous solid. $\mathrm{R}_{\mathrm{f}}(14)=0.27$ ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$). $[\alpha]_{\mathrm{D}}^{20}=-29.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}$, $2 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{bs}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.35(\mathrm{~m}, 11 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3,23.7$, $29.9,31.8,47.2,47.2,52.2,52.7,57.0,58.3,70.0,77.2,84.5,114.7,120.0,125.0,127.1,127.5,127.7$, 127.7, 128.1, 128.6, 129.7, 136.7, 141.3, 141.3, 158.9, 168.7, 170.8, 171.8. HRMS (CI): m/z calcd for $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 765.3494$, found: 765.3477.

Methyl N-((2R,3R)-2-((S)-5-amino-2-((S)-2-((tert-butoxycarbonyl)amino)-N,4-dimethyl-pentanami-do)-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (15a)

To a solution of tripeptide $14(723 \mathrm{mg}, 945 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was added diethylamine (7.90 mL , $76.0 \mathrm{mmol}, 80.0$ equiv.) and the mixture was stirred at room temperature for 30 minutes. The solvent was removed in vacuo and the crude product was dried in high vacuum for 4 hours. The amine and Boc-L-leucine hydrate ($471 \mathrm{mg}, 1.89 \mathrm{mmol}, 2.0$ equiv.) were dissolved in dry DMF (18 mL) and treated with DIPEA ($660 \mu \mathrm{~L}, 3.78 \mathrm{mmol}, 4.0$ equiv.) and HATU ($719 \mathrm{mg}, 1.89 \mathrm{mmol}, 2.0$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After warming to room temperature overnight, the reaction was diluted with EtOAc and successively washed with 1 M HCl , sat. NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo and the residue purified by flash chromatography (silica, DCM/MeOH 97:3 \rightarrow 95:5) to afford tetrapeptide 15 a ($660 \mathrm{mg}, 873 \mu \mathrm{~mol}, 92 \%$) as a white foam.
$\mathrm{R}_{f}(15 \mathrm{a})=0.29$ ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$). $[\alpha]_{\mathrm{D}}^{20}=-31.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 373 \mathrm{~K}\right):$ $\delta=0.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}$, $2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H})$, $4.77(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{bs}, 1 \mathrm{H}), 6.53(\mathrm{bs}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d ${ }_{6}$: $\delta=13.4,21.0,22.1,23.4,23.8,27.7,29.6,31.1,31.4,40.1,48.9,51.1,52.0,52.6,55.4$, 56.0, 69.2, 77.8, 82.7, 114.1, 127.0, 127.1, 127.8, 128.5, 129.8, 136.8, 154.7, 158.0, 168.5, 169.7, 170.9, 172.8. HRMS (CI): m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$: 756.4178, found: 756.4201.

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((($9 \mathrm{H}-\mathrm{fluoren}-9-\mathrm{yl}) m e t h o x y)$ carbonyl)amino)-N,4-dimethyl-pent-anamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-Lalaninate (15b)

A solution of tripeptide $14(2.11 \mathrm{mg}, 2.76 \mathrm{mmol})$ in $\mathrm{MeCN}(55 \mathrm{~mL})$ was treated with diethylamine ($23.1 \mathrm{~mL}, 221 \mathrm{mmol}, 80.0$ equiv.) at room temperature for 60 minutes. The solvent was removed in vacuo and the crude product was dried in high vacuum for 4 hours. The residue was dissolved in dry DMF (55 mL) and Fmoc-L-leucine ($1.95 \mathrm{~g}, 5.52 \mathrm{mmol}, 2.0$ equiv.), DIPEA ($1.93 \mathrm{~mL}, 11.0 \mathrm{mmol}$, 4.0 equiv.) as well as HATU ($2.10 \mathrm{~g}, 5.52 \mathrm{mmol}, 2.0$ equiv.) were added at $0^{\circ} \mathrm{C}$. After 15 hours, the mixture was diluted with EtOAc and washed with 1 M HCl , sat. NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo and the crude product purified by flash chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 97: 3 \rightarrow 95: 5$) to afford tetrapeptide 15b (2.30 g , $2.62 \mathrm{mmol}, 95 \%$) as a colorless foam. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 5 b})=0.36(\mathrm{DCM} / \mathrm{MeOH} 95: 5) .[\alpha]_{\mathrm{D}}^{20}=-61.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 373 \mathrm{~K}$): $\delta=0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2$ $\mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=8.2 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 5.03$ (m, 1 H), $5.10(\mathrm{~s}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{bs}, 2 \mathrm{H}), 6.97(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.39(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta=13.4,21.3,22.3,23.4,23.7,28.4,31.5,31.5,44.9,48.7,51.1,52.0,52.6,55.0,56.0$, 69.2, 83.0, 108.4, 114.1, 119.3, 120.7, 126.6, 126.8, 126.9, 127.1, 127.8, 128.3, 128.5, 128.8, 136.8, 139.1, $142.3,158.0,161.3,166.1,169.8,170.9,172.8$. HRMS (CI): m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$: 756.4178, found: 756.4201.

Methyl $N-((2 R, 3 R)-2-((S)-2-((S)-2-((R)-2-((()(9 H-f l u o r e n-9-y l) m e t h o x y)$ carbonyl)amino)-5-(3-((2,2,4,6, 7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)- $\mathrm{N}, 4$-dimethylpentan-amido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropan-oyl)-N-methyl-Lalaninate (16)

After Fmoc-deprotection of tetrapeptide 15b ($74.0 \mathrm{mg}, 84.3 \mu \mathrm{~mol}$) with diethylamine ($704 \mu \mathrm{~L}$, $6.74 \mathrm{mmol}, 80$ equiv.) in MeCN (1.7 mL) according to GP-2, the amine was dissolved in dry DMF $(840 \mu \mathrm{~L})$ and N_{α}-Fmoc- N_{ω}-Pbf-D-arginine ($82.0 \mathrm{mg}, 126 \mu \mathrm{~mol}, 1.5$ equiv.) was added. Addition of DIPEA ($41.1 \mu \mathrm{~L}, 235 \mu \mathrm{~mol}, 2.8$ equiv.) and $\mathrm{HBTU}\left(47.8 \mathrm{mg}, 126 \mu \mathrm{~mol}, 1.5\right.$ equiv.) at $0^{\circ} \mathrm{C}$ was followed by stirring for 15 hours and dilution with EtOAc. The mixture was washed with 1 M HCl , sat. NaHCO_{3} solution and brine, the organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 95: 5 \rightarrow 9: 1$) afforded pentapeptide 16 ($86.2 \mathrm{mg}, 67.0 \mu \mathrm{~mol}$, 80%) as a colorless foam. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 6})=0.08$ ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$). $[\alpha]_{\mathrm{D}}^{20}=-49.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.\mathrm{d}_{6}, 373 \mathrm{~K}\right): \delta=0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{bs}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H})$, $3.00(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~m}, 5 \mathrm{H}), 3.62(\mathrm{bs}, 3 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2$ H), $4.37(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2$ H), $7.68(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6} : $\delta=11.4,13.4,16.8,18.1,21.1,22.4,23.8,25.0,27.7,29.1,29.8,31.1,31.4,39.5,39.9$, 42.2, 46.4, 47.1, 51.1, 51.9, 52.5, 54.1, 55.5, 56.0, 65.5, 69.2, 82.7, 85.6, 114.1, 115.7, 119.4, 123.7, $124.6,126.5,126.5,126.9,127.0,127.1,127.8,128.5,129.8,131.0,134.2,136.6,136.8,140.3,143.3$, 143.4, 155.2, 155.7, 157.1, 158.0, 168.5, 169.8, 170.8, 172.1, 172.1, 172.8. HRMS (ESI): m/z calcd for $\mathrm{C}_{68} \mathrm{H}_{88} \mathrm{~N}_{9} \mathrm{O}_{14} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1286.6166$, found: 1286.6201.

Methyl $N-((2 R, 3 R)-2-((S)-2-((S)-2-((R)-2-((2 R, 3 R)-2-(($ (allyloxy)carbonyl)amino)-3-(benzyl-oxy)-butan-amido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) guanidino)pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)-phenyl)-3-methoxy-propanoyl)-N-methyl-L-alaninate (17)

According to GP-2 pentapeptide $\mathbf{1 6}(1.80 \mathrm{~g}, 1.40 \mathrm{mmol})$ was treated with diethylamine (11.7 mL , $112 \mathrm{mmol}, 80.0$ equiv.) in $\mathrm{MeCN}(28 \mathrm{~mL})$ for 30 minutes. To a solution of the deprotected amine in dry DMF (14 mL) were added N-Alloc-($O B n$)-D-allo-threonine ($605 \mathrm{mg}, 1.96 \mathrm{mmol}, 1.4$ equiv.), DIPEA
($611 \mu \mathrm{~L}, 3.50 \mathrm{mmol}, 2.5$ equiv.) and HBTU ($743 \mathrm{mg}, 1.96 \mathrm{mmol}, 1.4$ equiv.) at $0^{\circ} \mathrm{C}$. After stirring at room temperature overnight, the reaction was diluted with EtOAc and washed with 1 M HCl , sat. NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed under reduced pressure and the residue purified by flash chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 95: 5 \rightarrow 9: 1$) to afford hexapeptide $17(1.59 \mathrm{~g}, 1.19 \mathrm{mmol}, 85 \%)$ as a white foam. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 7})=0.13$ ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$). $[\alpha]_{\mathrm{D}}^{20}=-47.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{-}, 373 \mathrm{~K}$): $\delta=0.85(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 3$ H), $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{bs}, 3 \mathrm{H})$, 2.96 (bs, 2 H), $3.00(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{bs}, 3 \mathrm{H}), 3.63(\mathrm{bs}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H})$, $4.38(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, 5.16 (dq, $J=10.7 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=17.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddt}, J=17.2 \mathrm{~Hz}, J=$ $10.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.25 (m, 2 H), $7.31(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): $\delta=11.5,13.4,15.0,16.8,18.1,21.0,22.4,23.7,24.8,27.7,29.2,29.7$, 31.1, 31.5, 39.4, 39.9, 42.2, 47.0, 51.1, 52.0, 52.6, 55.3, 56.0, 57.6, 64.2, 69.2, 69.6, 74.1, 82.7, 85.6, $114.1,115.7,116.5,123.8,126.6,126.8,126.9,127.1,127.5,127.8,128.5,129.8,131.0,132.9,134.2$, 136.7, 136.8, 138.3, 155.3, 155.7, 157.1, 158.0, 168.9, 169.8, 170.8, 172.0, 172.8. HRMS (ESI): m/z calcd for $\mathrm{C}_{68} \mathrm{H}_{93} \mathrm{~N}_{10} \mathrm{O}_{16} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 1337.6486, found: 1337.6451 .

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((R)-2-((2R,3R)-2-((2R,3R)-2-(((allyloxy)carbonyl)amino)-3-hydroxy-butanamido)-3-(benzyloxy)butanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydro-benzofuran-5-yl)sulfonyl)guanidino)pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (18)

To a solution of Alloc-protected peptide $17(1.27 \mathrm{~g}, 948 \mu \mathrm{~mol})$ in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(19 \mathrm{~mL}, 1: 1)$ were added diethylamine ($495 \mu \mathrm{~L}, 4.74 \mathrm{mmol}, 5.0$ equiv.), TPPTS ($22.0 \mathrm{mg}, 38.0 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($948 \mu \mathrm{~L}, 19.0 \mu \mathrm{~mol}, 0.02 \mathrm{M}$ in $\mathrm{MeCN}, 2 \mathrm{~mol} \%$) and the mixture was stirred for 3 hours at room temperature. After removal of the solvent in vacuo and drying in high vacuum, the residue was dissolved in dry DMF (9.5 mL) and cooled to $0^{\circ} \mathrm{C}$. Alloc-D-allo-threonine ($359 \mathrm{mg}, 1.66 \mathrm{mmol}$, 1.75 equiv.), DIPEA ($662 \mu \mathrm{~L}, 3.79 \mathrm{mmol}, 4.0$ equiv.) and PyAOP ($865 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.75$ equiv.) were added and the reaction was stirred overnight. The mixture was diluted with EtOAc, successively washed with 1 M HCl , sat. NaHCO_{3} solution and brine and the organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, flash chromatography (silica, DCM/MeOH 96:4 \rightarrow 95:5) and lyophilization, heptapeptide $18(1.17 \mathrm{~g}, 812 \mu \mathrm{~mol}, 86 \%)$ was obtained as a white amorphous solid. $\mathrm{R}_{\mathrm{f}}(\mathbf{1 8})=0.29$ (DCM/MeOH 93:7). $[\alpha]_{\mathrm{D}}^{20}=-15.1$ (c = 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 373 \mathrm{~K}$): δ $=0.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.52$ ($\mathrm{s}, 3 \mathrm{H}$), $2.73(\mathrm{bs}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 5 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{bs}, 3 \mathrm{H}), 3.63(\mathrm{bs}, 3 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 4.09$ (dd, J = $8.5 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.31(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=$ $7.5 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{dq}$,
$J=10.5 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=17.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddt}, J=17.3 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d ${ }_{6}$): $\delta=11.4,13.4,15.2,16.8,18.1,19.3,21.0,22.4,23.7,24.8,27.7,28.0,28.9,29.6,31.4$, 39.4, 39.9, 42.2, 47.1, 51.1, 51.9, 52.0, 52.6, 55.3, 55.6, 57.6, 60.1, 64.1, 66.8, 69.2, 69.6, 73.9, 82.7, 85.6, 114.1, 115.7, 116.3, 123.7, 126.6, 126.9, 126.9, 127.1, 127.4, 127.8, 128.5, 129.8, 131.0, 133.0, 134.2, 136.6, 136.8, 138.2, 155.2, 155.7, 157.1, 158.0, 168.7, 169.8, 170.3, 170.8, 172.1, 172.9. HRMS (ESI): m / z calcd for $\mathrm{C}_{72} \mathrm{H}_{100} \mathrm{~N}_{11} \mathrm{O}_{18} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 1438.6963, found: 1438.6937.
$N-((2 R, 3 R)-2-((S)-2-((S)-2-((R)-2-((2 R, 3 R)-2-((2 R, 3 R)-2-((($ Allyloxy $)$ carbonyl)amino)-3-hydroxy-butan-amido)-3-(benzyloxy)butanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydro-benzofuran-5-yl)sulfo-nyl)guanidino)pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentan-amido)-3-(4-(benz-yloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alanine (19)

18
86%

$80^{\circ} \mathrm{C}, 5 \mathrm{~h}$

To a solution of methyl ester $18(300 \mathrm{mg}, 208 \mu \mathrm{~mol})$ in 1,2 -dichlorethane (2 mL) was added trimethyltin hydroxide ($377 \mathrm{mg}, 2.08 \mathrm{mmol}, 10.0$ equiv.) and the reaction was heated to $80^{\circ} \mathrm{C}$ for 5 hours. After cooling to room temperature, the mixture was diluted with EtOAc and washed with 1 M KHSO 4 solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo and the residue purified by reversed-phase chromatography ($\mathrm{C} 18, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} 95: 5 \rightarrow 0: 100$) to afford carboxylic acid 19 ($203 \mathrm{mg}, 142 \mu \mathrm{~mol}, 68 \%$) as an off-white solid, $\mathrm{mp} 93-95^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(19)=0.18$ (DCM/MeOH 9:1). $[\alpha]_{\mathrm{D}}^{20}=-33.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=0.85(\mathrm{~m}, 6 \mathrm{H}), 1.10$ ($\mathrm{d}, J=6.3 \mathrm{~Hz} 6 \mathrm{H}$), $1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.80(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{bs}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 5 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 3.09$ $(\mathrm{m}, 3 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H})$, $4.63(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2$ H), 5.16 (dq, $J=10.5 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=17.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddt}, J=17.2 \mathrm{~Hz}$, $J=10.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 6.51(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ H), $7.24(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=11.5,13.9,15.2,16.8,18.1,19.3,21.0,22.4,23.8,24.8,27.7,28.3$, 28.9, 29.7, $30.8,39.4,39.9,42.2,47.1,51.7,52.0,52.1,55.3,55.6,56.0,60.1,64.1,66.8,69.2,69.6$, $73.9,83.0,85.6,114.1,115.7,116.4,123.8,126.6,126.9,127.1,127.5,127.8,128.5,129.9,131.0$, $133.0,134.2,136.7,136.8,138.2,155.2,155.7,157.1,158.0,168.7,169.8,170.3,172.2,172.9$. HRMS (ESI): m / z calcd for $\mathrm{C}_{71} \mathrm{H}_{98} \mathrm{~N}_{11} \mathrm{O}_{18} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1424.6807$, found: 1424.6851 .

Allyl ((3S,6R,9S,12S,15R,18R,21R,22R)-9-(3-amino-3-oxopropyl)-18-((R)-1-(benzyloxy)ethyl) -6-((R)-(4-(benzyloxy)phenyl)(methoxy)methyl)-12-isobutyl-3,4,10,22-tetramethyl-2,5,8,11,14,17,20-hept-aoxo-15-(3-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl) sulfonyl)guanidino)prop-yl)-1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-21-yl)carbamate (20)

To a solution of linear peptide 19 ($180 \mathrm{mg}, 126 \mu \mathrm{~mol}$) in DMF (17 mL) was added DMAP (308 mg , $2.52 \mathrm{mmol}, 20.0$ equiv.) and PyAOP ($79.0 \mathrm{mg}, 151 \mu \mathrm{~mol}, 1.2$ equiv.) and the reaction was heated to $70^{\circ} \mathrm{C}$ for 15 hours. After dilution with EtOAc, the mixture was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$ solution, sat. NaHCO_{3} solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and the residue purified by column chromatography (silica, $\mathrm{DCM} / \mathrm{MeOH} 97: 3 \rightarrow 95: 5$) to afford macro lactone 20 (148 mg, $105 \mu \mathrm{~mol}, 83 \%$) as a white solid, $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(\mathbf{2 0})=0.14$ ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$). $[\alpha]_{\mathrm{D}}^{20}$ $=-51.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.15(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 5 \mathrm{H}), 1.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~m}, 5$ H), $1.67(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{bs}, 3 \mathrm{H}), 2.93(\mathrm{bs}, 5-\mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H})$, $3.16(\mathrm{bs}, 3 \mathrm{H}), 4.03(\mathrm{qd}, J=8.5 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=13.3 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.69$ (dd, $J=13.3 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=8.6 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{~m}, 1 \mathrm{H} 5.26(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.67 (bs, 1 H), 6.01 (m, 2 H), $6.14(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{bs}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2$ H), $\left.7.24(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz,CDCl}_{3}\right): ~$ $\delta=12.4,13.5,13.8,15.9,17.9,19.1,21.0,23.1,23.9,24.7,25.0,28.6,29.7,30.0,30.2,31.2,38.8$, $40.7,43.2,49.5,51.4,51.7,52.6,55.3,56.8,57.6,59.3,66.6,70.0,70.7,70.9,72.6,83.3,86.3,114.5$, $117.3,118.4,124.5,127.5,127.7,128.0,128.0,128.6,128.6,129.7,130.1,132.2,132.4,133.1,136.8$, 137.4, 138.2, 156.2, 156.5, 158.6, 158.8, 168.8, 169.1, 170.1, 170.2, 170.5, 172.5, 173.9, 174.4. HRMS (ESI): m / z calcd for $\mathrm{C}_{71} \mathrm{H}_{95} \mathrm{~N}_{11} \mathrm{O}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1406.6701$, found: 1406.6682.

NMR Spectra

Ethyl (2S,3R)-3-(4-(benzyloxy)phenyl)-2,3-dihydroxypropanoate (2)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Ethyl (2S,3R)-3-(4-(benzyloxy)phenyl)-3-hydroxy-2-(((2-nitrophenyl)sulfonyl)oxy)propanoate (2a) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Ethyl (2R,3R)-2-azido-3-(4-(benzyloxy)phenyl)-3-hydroxypropanoate (3)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Ethyl (2R,3R)-2-azido-3-(4-(benzyloxy)phenyl)-3-methoxypropanoate (4)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Ethyl (2R,3R)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxy propan-oate (5) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

(2R,3R)-3-(4-(Benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxypropanoic acid (6) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

(4S,5S)-2-((S)-1-(Benzyloxy)ethyl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (8) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

(4S,5S)-2-((1S,2R)-1-Azido-2-(benzyloxy)propyl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (9) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Methyl (2R,3R)-2-azido-3-(benzyloxy)butanoate (10)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Methyl N-((allyloxy)carbonyl)-O-benzyl-D-allo-threoninate (11)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

N -((Allyloxy)carbonyl)-O-benzyl-D-allo-threonine (12)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$):

${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}):

$\mathbf{N}^{\mathbf{2}}$-(((9H-Fluoren-9-yl)methoxy)carbonyl)- \mathbf{N}^{2}-methyl-L-glutamine (SI-2)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$):

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}):

Methyl $\quad N$-((2R,3R)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)-3-methoxy-propan-oyl)-N-methyl-L-alaninate (13)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Methyl N-((2R,3R)-2-((S)-2-((($9 \mathrm{H}-$ fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-5-amino-5-oxo-pentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (14)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Methyl N-((2R,3R)-2-((S)-5-amino-2-((S)-2-((tert-butoxycarbonyl)amino)-N,4-dimethyl-pentanami-do)-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (15a)
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}, 373 \mathrm{~K}$):

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((($9 \mathrm{H}-$ fluoren-9-yl)methoxy)carbonyl)amino)-N,4-dimethyl-pent-anamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-Lalaninate (15b)
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $\mathrm{d}_{6} 373 \mathrm{~K}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-}$, 373 K):

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((R)-2-((($9 \mathrm{H}-$ fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)-N,4-dime-thylpentanamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropan-oyl)-N-methyl-L-alaninate (16)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((R)-2-((2R,3R)-2-(((allyloxy)carbonyl)amino)-3-(benzyl-oxy)-butanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) guanidino)-pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)-phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (17)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

Methyl N-((2R,3R)-2-((S)-2-((S)-2-((R)-2-((2R,3R)-2-((2R,3R)-2-(((allyloxy)carbonyl)amino)-3-hydroxy-butanamido)-3-(benzyloxy)butanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydro-benzofuran-5-yl)sulfonyl)guanidino)pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentanamido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alaninate (18)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 373 \mathrm{~K}$):

N-((2R,3R)-2-((S)-2-((S)-2-((R)-2-((2R,3R)-2-((2R,3R)-2-(((Allyloxy)carbonyl)amino)-3-hydroxy-butan-amido)-3-(benzyloxy)butanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydro-benzofuran-5$\mathrm{yl})$ sulfonyl)guanidino)pentanamido)-N,4-dimethylpentanamido)-5-amino-5-oxopentan-amido)-3-(4-(benzyloxy)phenyl)-3-methoxypropanoyl)-N-methyl-L-alanine (19)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}):

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}):

Allyl ((3S,6R,9S,12S,15R,18R,21R,22R)-9-(3-amino-3-oxopropyl)-18-((R)-1-(benzyloxy)ethyl)-6-((R)-(4-(benzyloxy)phenyl)(methoxy)methyl)-12-isobutyl-3,4,10,22-tetramethyl-2,5,8,11,14,17,20-heptaoxo-15-(3-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl) sulfonyl)guanidino)prop-yl)-1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-21-yl)carbamate (20)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Literature

[1] M. J. Martin, R. Rodriguez-Acebes, Y. Garcia-Ramos, V. Martinez, C. Murcia, I. Digon, I. Marco, M. Pelay-Gimeno, R. Fernández, F. Reyes, A. M. Francesch, S. Munt, J. Tulla-Puche, F. Albericio and C. Cuevas, Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase Total Synthesis, and Full Structural Assignment of Stellatolide A, J. Am. Chem. Soc. 2014, 136, 6754-6762.
[2] J. Gorges and U. Kazmaier, Matteson Homologation-based Total Synthesis of Lagunamide A, Org. Lett. 2018, 20, 2033-2036.
[3] T. Sun, W. Zhang, C. Zong, P. Wang and Y. Li, Total Synthesis and Stereochemical Reassignment of Tasiamide B, J. Pept. Sci. 2010, 16, 364-374.

