Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Table of Contents

1. General experiment information.	S1
Table S1. Optimization of acyloxylation reaction with metal catalysts	S2
Table S2. Optimization of acyloxylation reaction with silver salts	S2
Table S3. Optimization of acyloxylation reaction with other conditions	S3
2. Preliminary mechanistic studies.	S4
2.1 Kinetic isotope effect of this transformation	S4
2.2 The effects of addition of radical scavengers of this reaction	S7
2.3 Study of intermediate.	S8
3. Gram-scale experiments	S9
4. Synthetic transformation	S9
Scheme S1. Pathways to obtain acetamide intermediate	S11
Scheme S2. Failure synthetic strategies to obtain macrocyclic compound.	S11
5. Single crystal data of product 3aa-8	S12
6. Characterization data of silver carboxylates 2a-1–2d-12	S22
7. Characterization data of products 3aa-1–3wa	S33
8. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of silver carboxylates 2a-1–2d-12	S59
9. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of products 3aa-1–3wa	S131
10. Failure examples of C–H bond acyloxylation	S215
11. References	S216

1. General experiment information.

General experimental. Unless otherwise noted, reactions were carried out insingle-neck or two-neck flask round bottom flasks, with magnetic stirring. Air- or water-sensitive liquids and solutions were transferred *via* syringe. Organic solutions were concentrated by rotary evaporation at 23–40 °C under 40 Torr (house vacuum). Analytical thin layer chromatography (TLC) was performed with Silicycle normal phase glass plates (0.25 mm, 60-A pore size, 230–400 mesh). Visualization was done under a 254 nm UV light source. Purification of reaction products was generally done by flash chromatography with Silicycle 200–300 mesh silica gel.

Materials. Unless otherwise indicated, all reagents and solvents were purchased for commercial suppliers and used without additional purification. Distilled water was used in the reactions. Picolinamides **1a–1z** and **D-1a** were prepared according to literature procedures.^[S1]

Instrumentation. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 MHz spectrometer (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F NMR) at room temperature. All chemical shift values are quoted in ppm referenced residual CHCl₃ at 7.26 ppm, Pyridine at 8.72 and DMSO at 2.50 ppm for ¹H NMR; relative to residual CHCl₃ at 77.0 ppm, Pyridine at 123.44 and DMSO at 40.0 ppm for ¹³C unless otherwise noted. HRMS (ion trap) were obtained from mass spectrometer (ESI). Melting points were recorded on an electrothermal digital melting point apparatus and were uncorrected.

The general procedure for silver carboxylates of 2a-1–2d-16: The substrate carboxylic acid 1 (6 mmol) and silver oxide (2 mmol) were added to 25.0 mL round-bottomed flask, followed by addition of 20.0 mL acetonitrile. The mixture was stirred at room temperature for 12 h. This solid was recovered by filtration and washed with 10 mL of cold acetonitrile (stored in dark). Subsequent drying under vacuum led to the desired product 2.

The general procedure for new compounds of 3aa-1–3wa: The substrate picolinamides 1 (0.2 mmol), substrate silver carboxylates 2 (0.44 mmol) and CoCl₂ (0.02 mmol, 2.6 mg) were added to 5.0 mL round-bottomed flask, followed by addition of 2.0 mL toluene. The mixture was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was added with 10 mL of water and then extracted by ethyl acetate (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography (Silica Gel: 200–300 mesh) to afford the desired product 3.

O N	N H Catalyst AgOAc toluene		N H AcO
Entry	Catalyst (x mol%)	Yield (%) ^[b]	r.r. (%) ^{[b],[c]}
1	none	N.R.	>95%
2	CuCl ₂ ·2H ₂ O (20)	N.R.	>95%
3	PdCl ₂ (20)	N.R.	>95%
4	CuI (20)	N.R.	70%
5	NiCl ₂ (20)	N.R.	>95%
6	[Rh(COD)Cl]2 (20)	N.R.	70%
7	[Ir(COD)Cl]2 (20)	N.R.	60%
8	Co(acac) ₃ (20)	N.R.	90%
9	Co(OAc) ₂ (20)	90%	8%

Table S1. Optimization of acyloxylation reaction with metal catalysts^[a]

^[a] The reaction was carried out with picolinamide **1a** (0.2 mmol, 49.6 mg), **catalyst** (20 mol%) and AgOAc (0.4 mmol, 56.6mg) in 2.0 mL of toluene at 100 °C for 24 h. ^[b] Determined by ¹H-NMR. ^[c] r.r. = Recovery rate.

Table S2. Optimization of acyloxylation reaction with silver salts^[a]

	O N H	CoX ₂ AgX toluene		
Entry	CoX ₂	AgX	Yield (%) ^[b]	r.r. (%) ^{[b],[c]}
1	CoCl ₂	AgF	N.R.	>95%
2	CoCl ₂	AgCl	N.R.	90%
3	CoBr ₂	AgBr	N.R.	>95%
4	CoI ₂	AgI	N.R.	90%
5	Co(OAc) ₂	AgOAc	90	<5%
6 ^[d]	CoCl ₂	AgOTfa	N.R.	>95%
7 ^[d]	CoCl ₂	AgOTf	N.R.	>95%
8	CoCl ₂	AgSCN	N.R.	>95%
9	CoCl ₂	AgSeCN	N.R.	>95%
10	CoCl ₂	AgOCN	N.R.	>95%
11	CoCl ₂	AgOMs	N.R.	90%
12	CoCl ₂	AgOTs	N.R.	90%
13	CoCl ₂	Tol-SOOAg	N.R.	95%
15	CoCl ₂	AgNBn ₂	N.R.	>95%

20	CoCl ₂	CH ₃ COSAg	N.R.	>95%	-
21	CoCl ₂	O N-Ag	N.R.	>95%	
22	CoCl ₂	AgNTf ₂	N.R.	>95%	
23	$CoCl_2$	AgBF ₄	N.R.	>95%	
24	CoCl ₂	Ag ₂ WO ₃	N.R.	>95%	

^[a]The reaction was carried out with picolinamide **1a** (0.2 mmol, 49.6 mg), Co catalyst (20 mol%) and AgX (0.4 mmol, 2.0 eq) in 2.0 mL of toluene at 100 °C for 24 h. ^[b]Determined by ¹H-NMR. ^[c]r.r. = Recovery rate. ^[d]Quenched with water before ¹H-NMR analysis.

Table S3. Optimization of acyloxylation reaction with other conditions^[a]

	O H				
	N H	solven base		N X	
Entry	CoX ₂ (x mol%)	AgOAc (x eq.)	solvent	additive (x eq.)	Yield (%) ^[b]
1	Co(OAc) ₂ (20)	2.0	DMSO	-	9%
2	Co(OAc) ₂ (20)	2.0	DME	-	82%
3	Co(OAc) ₂ (20)	2.0	1,4-dioxane	-	58%
4	Co(OAc) ₂ (20)	2.0	18-crown-6	-	20%
5	Co(OAc) ₂ (20)	2.0	toluenen	-	90%
6	Co(OAc) ₂ (20)	2.0	toluenen	$Cs_2CO_3(2.0)$	2%
7	Co(OAc) ₂ (20)	2.0	toluenen	KOAc (2.0)	50%
8	Co(OAc) ₂ (20)	2.0	toluenen	DMAP (2.0)	N.R.
9	Co(OAc) ₂ (20)	2.0	toluenen	H ₂ O (5.0)	29%
10 ^[c]	Co(OAc) ₂ (20)	2.0	toluenen	-	91%
11 ^[d]	Co(OAc) ₂ (20)	2.0	toluenen	-	88%
12 ^[e]	Co(OAc) ₂ (20)	2.0	toluenen	-	87%
13	CoF ₂ (20)	2.0	toluenen	-	3%
14	CoCl ₂ (20)	2.0	toluenen	-	91%
15	CoBr ₂ (20)	2.0	toluenen	-	71%
16	CoI ₂ (20)	2.0	toluenen	-	74%
17	CoCO ₃ (20)	2.0	toluenen	-	<1%
18	Co(SCN)2 (20)	2.0	toluenen	-	67%
19	CoSO ₄ (20)	2.0	toluenen	-	8%
20	Co(acac) ₃ (20)	2.0	toluenen	-	N.R.
21 ^[f]	$CoCl_2(1)$	2.0	toluenen	-	12%
22 ^[f]	$CoCl_2(5)$	2.0	toluenen	-	32%
23 ^[f]	$CoCl_2(10)$	2.0	toluenen	-	83%

24	$CoCl_2(10)$	2.0	toluenen	-	60%
25	$CoCl_2(10)$	0.6	toluenen	-	23%
26	$CoCl_2(10)$	1.0	toluenen	-	43%
27	$CoCl_2(10)$	2.2	toluenen	-	82%
28 ^{[g],[h]}	$CoCl_2(10)$	2.2	toluenen	-	92%

^[a]Unless other notes, the reaction was carried out with picolinamide 1a (0.2 mmol, 49.6 mg), Co catalyst (20 mmol%) and AgOAc (0.4 mmol, 66.8 mg, 2.0 eq) in 2.0 mL of solvent at 100 °C for 24 h. ^[b]Determined by ¹H-NMR. ^[c]Under O₂ atmosphere. ^[d]Under N₂ atmosphere. ^[e]Aged Co(OAc)₂. ^[f]For 48 h. ^[g]For 12 h. ^[h]At 110 °C.

2. Preliminary mechanistic studies.

2.1 Kinetic isotope effect (KIE) of the transformation

The picolinamides (**2a**, 0.2 mmol, 49.6 mg or **D-2a**, 0.2 mmol, 49.8 mg), AgOAc (**2a-1**, 0.44 mmol, 73.5 mg) and CoCl₂ (0.02 mmol, 2.6 mg) were added to 5.0 mL round-bottomed flask, followed by addition of 2.0 mL xylene as solvent. The mixture was stirred at 110 °C. An aliquot of each reaction mixture was taken at 1 h, 2 h, 3 h and 4 h. Afer the solvent of each aliquot (0.5 mL) was removed under reduced pressure conditions and analyzed by ¹H NMR spectrum in CDCl₃ (see Figure S1 and Figure S2). The relative yield of **1a** and **D-1a** were shown in Table S4. A sample plot of the initial rate data for the reaction of both **1a** and **D-1a** was shown in Figure S3 and Figure S4. The reaction progress in the early stage (0-4 h) indicated a kinetic isotope effect (KIE) of 1.46.

Figure S1. The conversion of 1a was monitored by ¹H NMR method

9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7

Figure S2. The conversion of D-1a was monitored by ¹H NMR method

	Suu I wus I	nonneorea og	II I WINT INC	mou.
Time [h]	1	2	3	4
¹ H NMR yield of 3aa from 2a [%]	2.22	11.42	31.15	54.95
¹ H NMR yield of 3aa from D-2a [%]	1.78	10.48	21.41	38.76

Table S4. The relative yields (%) of 3aa-1 was monitored by ¹H NMR method.

Figure S3. The plot of initial rates for the conversion of 1a

Figure S4. The plot of initial rates for the conversion of D-1a

2.2 The effects of addition of radical scavengers of the reaction.

The picolinamides **1a** (0.2 mmol, 49.6 mg), $CoCl_2$ (0.02 mmol, 2.6 mg), AgOAc (0.44 mmol, 73.5 mg) and **TEMPO** (0.4 mmol, 62.5 mg, 2.0 eq.) were added to 5.0 mL round-bottomed flask, followed by addition of 2.0 mL toluene as solvent. The mixture was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was added with 10 mL of water and then extracted by ethyl acetate (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the yield of **3aa-1** was determined by ¹H-NMR in CDCl₃. (**The result indicated that radical process should not involve in the acyloxylation reaction.**)

The picolinamides **1a** (0.2 mmol, 49.6 mg), $CoCl_2$ (0.02 mmol, 2.6 mg), AgOAc (0.44 mmol, 73.5 mg) and **BHT** were added to 5.0 mL round-bottomed flask, followed by addition of 2.0 mL toluene as solvent. The mixture was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was added with 10 mL of water and then extracted by ethyl acetate (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the yields of **3da** with different loading amount of BTH was determined by ¹H-NMR in CDCl₃. (**The result indicated that radical process should not involve in the acyloxylation reaction. BHT might be oxidized by AgOAc.**)

In order to figure out the relationship/reaction between AgOAc and BHT, the following reaction was carried out: AgOAc (0.2 mmol, 53.4 mg) and BHT (0.2 mmol, 44.0 mg) were added to 5.0 mL round-bottomed flask, followed by addition of 2.0 mL toluene as solvent. The mixture was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was filtered. The filtrate was concentrated under vacuum. A crude ¹H-NMR analysis in CDCl₃ was tested without further purification. (The result of the ¹H-NMR analysis indicated that BHT could be oxidized by AgOAc. The oxidation reaction is similar to the reaction between BHT and Ag₂O in hexane reported by Prof. Richard Cosstick.^[S2])

2.3 Study of intermediate.

The picolinamides **1a** (0.5 mmol, 124.0 mg) and Co(OAc)₂ (0.5 mmol, 88.5 mg) were added to 25.0 mL round-bottomed flask, followed by addition of 5.0 mL CF₃CH₂OH as solvent. The mixture was stirred at 70 °C for 12 h under O₂ atmosphere. After cooling to room temperature, the reaction mixture was concentrated under vacuum to remove CF₃CH₂OH, and the resulting residue was purified by column chromatography (PE:EA=1:1, then 100% of EA) to afford the intermediate **Co-1d**.^[S3]

The intermediate **Co-1d** (0.02 mmol, 7.6 mg), picolinamides **1d** (0.18 mmol, 47.2 mg) and AgOAc (0.4 mmol, 66.8 mg) were added to 25.0 mL round-bottomed flask, followed by addition of 5.0 mL toluene as solvent. The mixture was stirred at 110 °C for **6 h**. After cooling to room temperature, the reaction mixture was added with 10 mL of water and then extracted by ethyl acetate (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography to afford the desired product **3da** in 42% yield (*vs* the 73% yield under the optmized condition for **12 h**). (**The result indicated that complex Co-1d should be the key intermediate for the further acyloxylation reaction to form product 3da**.)

3. Gram-scale experiments

The picolinamides **1a** (0.5 mmol, 1.984 g), CoCl₂ (0.8 mmol, 0.104 g) and AgOAc (17.6 mmol, 2.939 g) were added to 100.0 mL round-bottomed flask, followed by addition of 50.0 mL toluene as solvent. The mixture was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was added with 100 mL of water and then extracted by ethyl acetate (50 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography to afford the desired product **3aa-1** in 80% yield.

4. Synthetic transformation.

3aa-1 (61.2 mg, 0.2 mmol, 1.0 equiv.), $Cu(OAc)_2$ (8.0 mg, 0.04 mmol, 0.2 equiv.), PhI(OAc)_2 (128.8 mg, 0.4 mmol, 2.0 equiv.) and CH₃COOH (2 mL) were successively added into a sealed tube. The mixture was stirred at 80 °C under air for 12 h. After cooling to ambient temperature, the resulting mixture was filtered through a pad of tripolite and washed with ethyl acetate. The filtrate was concentrated under vacuum and purified by column chromatography (Silica Gel: 200–300 mesh) to afford the desired product **4**.

3aa-1 (61.2 mg, 0.2 mmol, 1.0 equiv.), $Cu(OAc)_2$ (8.0 mg, 0.04 mmol, 0.2 equiv.), TBHP (5.5 mol / L in decane, 0.2 mmol, 1.0 equiv.), CF₃SO₂Na (93.6 mg, 0.6 mmol, 3.0 equiv.), and CH₃CN (2 mL) were successively added into a sealed tube. The mixture was stirred at 80 °C under air for 48 h. After cooling to ambient temperature, the resulting mixture was filtered through a pad of tripolite and washed

with ethyl acetate. The filtrate was concentrated under vacuum and purified by column chromatography (Silica Gel: 200–300 mesh) to afford the desired product **5**.

3aa-1 (61.2 mg, 0.2 mmol, 1.0 equiv.), $Cu(OAc)_2$ (8.0 mg, 0.04 mmol, 0.2 equiv.), $Mn(OAc)_3$ (185.6 mg, 0.8 mmol, 4.0 equiv.), NaOAc (49.2 mg, 0.6 mmol, 3.0 equiv.), TsNa (142.4 mg, 0.8 mmol, 4.0 equiv.), and HFIP (2 mL) were added into a sealed tube. The mixture was stirred at 60 °C for 2 h. After cooling to ambient temperature, the resulting mixture was filtered through a pad of tripolite and washed with ethyl acetate. The filtrate was concentrated under vacuum and purified by column chromatography (Silica Gel: 200–300 mesh) to afford the desired product **6**.

3aa-1 (61.2 mg, 0.2 mmol, 1.0 equiv.), NaOH (16.0 mg, 0.4 mmol, 2.0 equiv.), and solvent (THF/MeOH/H₂O, v:v:v=2:1:1, 2 mL) were successively added into a sealed tube. The mixture was stirred at room temperature for 12 h. The reaction mixture was added with 10 mL of H₂O and then extracted by DCM (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography to afford the desired product **7**.

3aa-1 (61.2 mg, 0.2 mmol, 1.0 equiv.), NaOH (64.0 mg, 1.6 mmol, 8.0 equiv.), and solvent (THF/EtOH/H₂O, v:v:v=2:1:1, 2 mL) were successively added into a sealed tube. The mixture was stirred at 100 °C for 48 h under N₂ atmosphere. The reaction mixture was added with 10 mL of H₂O and then extracted by ethyl acetate (10 mL×3), the organic layers were combined, dried with anhydrous Na₂SO₄, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography to afford the desired product **8**.

Scheme S1. Pathways to obtain acetamide intermediate 8

Scheme S2. Failure synthetic strategies to obtain macrocyclic compound

5. Single crystal data of product 3aa-8 (CCDC 2160352)

Figure S5. The single crystal structure of 3aa

Table	S3.	Crys	tal d	ata and	d structu	re ref	finemer	nt for 3	aa-	8
	т 1			1			001001	TA CO2	0	(2 0

Identification code	0912CHACC3_0m (3aa-8)			
Empirical formula	C20 H16 N2 O3			
Formula weight	332.35			
Temperature	150 K			
Wavelength	0.71073 A			
Space group Crystal system	triclinic			
Space group IT number	2			
Space group name H-M alt	P -1			
Unit cell dimensions	a = 10.6196(8) A alpha = 75.187(2) deg.			
	b = 12.7360(9) A beta = 70.684(2) deg.			
	c = 13.6446(9) A gamma = 69.536(2) deg.			
Volume	1611.1(2) A^3			
Z, Calculated density	4, 1.370 Mg/m^3			
Absorption coefficient	0.094 mm^-1			
F(000)	696			
Crystal size	0.15 x 0.08 x 0.05 mm			
Theta range for data collection	2.124 to 26.436 deg.			
Limiting indices	-13<=h<=13, -15<=k<=15, -17<=l<=14			
Reflections collected	4253			
Completeness to theta $= 25.242$	99.7%			
Absorption correction	SADABS-2016/2 (Bruker,2016/2)			
The ratio of min. to max.	0.8704			
transmission				
Refinement method	none			
Data / restraints / parameters	6559 / 0 / 451			
Goodness-of-fit on F^2	1.048			
Final R indices [Fo>4sigma(Fo)]	R1 = 0.0532			
R indices (all data)	R1 = 0.0991, wR2 = 0.1295			
Absolute structure parameter	n/a			
Largest diff. peak and hole	0.21 and -0.26 e.A^-3			

purumeters (i i i				
Atom	x/a	y/b	z/c	U/eq
O6	0.9303(2)	1.0408(1)	0.8505(1)	0.0453(5)
O5	0.7635(2)	0.9509(1)	0.9163(1)	0.0279(4)
O4	0.5028(2)	1.2659(1)	0.7073(1)	0.0357(4)
O3	0.5618(2)	0.7053(1)	0.6329(1)	0.0406(4)
O2	0.7443(2)	0.5550(1)	0.5824(1)	0.0282(4)
O1	1.0380(2)	0.5891(2)	0.7826(1)	0.0500(5)
N4	0.5673(2)	1.1096(2)	0.8276(1)	0.0274(4)
N3	0.6761(2)	0.9781(2)	0.6807(1)	0.0300(4)
N2	0.8121(2)	0.4237(2)	0.8281(1)	0.0340(5)
N1	0.9361(2)	0.5601(2)	0.6710(1)	0.0281(4)
H9	1.24650	0.73480	0.45410	0.0440
H8	1.14890	0.63650	0.61540	0.0390
H5	0.69610	0.31920	0.88800	0.0510
H4A	0.61160	1.03650	0.83320	0.0330
H40B	1.14390	0.76480	0.72500	0.0460
H40A	1.15520	0.87100	0.76910	0.0460
H4	0.78200	0.22880	1.03300	0.0540
H39B	1.03440	1.00530	0.64770	0.0500
H39A	1.02310	0.89910	0.60370	0.0500
H38	0.89170	0.83510	0.77720	0.0350
H36	0.55160	1.14290	1.24470	0.0370
H35	0.74380	0.98560	1.23490	0.0400
H34	0.84220	0.90160	1.08110	0.0370
H30	0.37150	1.28510	1.16920	0.0400
H3	0.95060	0.28740	1.06310	0.0520
H29	0.26980	1.36390	1.03180	0.0440
H28	0.35980	1.28430	0.87720	0.0390
H24	0.54020	1.20470	0.53270	0.0350
H23	0.62070	1.07740	0.41230	0.0390
H22	0.73560	0.88750	0.46350	0.0400
H21	0.77080	0.83090	0.63010	0.0420
H20B	0.35920	0.47830	0.73550	0.0650
H20A	0.34700	0.61490	0.68860	0.0650
H2	1.03340	0.43200	0.94000	0.0430
H19B	0.42710	0.62630	0.82790	0.0660
H19A	0.43930	0.48970	0.87480	0.0660
H18	0.60750	0.43690	0.71280	0.0400
H15	0.67020	0.63250	0.41500	0.0360

Table S4. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **3aa-8**

H14	0.76650	0.74180	0.25960	0.0410
H13	0.95990	0.79300	0.24650	0.0390
H10	1.14400	0.78730	0.31800	0.0410
H1	0.87500	0.52800	0.67100	0.0340
C9	1.1644(3)	0.7154(2)	0.4630(2)	0.0364(6)
C8	1.1063(2)	0.6556(2)	0.5595(2)	0.0326(5)
C7	0.9892(2)	0.6242(2)	0.5747(2)	0.0267(5)
C6	0.9679(2)	0.5421(2)	0.7635(2)	0.0312(5)
C5	0.7665(3)	0.3418(2)	0.8984(2)	0.0425(6)
C40	1.1019(2)	0.8442(2)	0.7383(2)	0.0385(6)
C4	0.8161(3)	0.2880(2)	0.9858(2)	0.0448(7)
C39	1.0274(3)	0.9269(2)	0.6636(2)	0.0416(6)
C38	0.9450(2)	0.8883(2)	0.7716(2)	0.0291(5)
C37	0.8843(2)	0.9687(2)	0.8467(2)	0.0296(5)
C36	0.5900(2)	1.1090(2)	1.1828(2)	0.0310(5)
C35	0.7039(3)	1.0164(2)	1.1771(2)	0.0331(5)
C34	0.7624(2)	0.9661(2)	1.0855(2)	0.0312(5)
C33	0.7044(2)	1.0100(2)	1.0029(2)	0.0262(5)
C32	0.5850(2)	1.1059(2)	1.0040(2)	0.0246(5)
C31	0.5278(2)	1.1558(2)	1.0984(2)	0.0282(5)
C30	0.4092(2)	1.2524(2)	1.1066(2)	0.0333(5)
C3	0.9159(3)	0.3217(2)	1.0030(2)	0.0435(6)
C29	0.3490(3)	1.2988(2)	1.0256(2)	0.0365(6)
C28	0.4033(2)	1.2510(2)	0.9329(2)	0.0329(5)
C27	0.5176(2)	1.1576(2)	0.9209(2)	0.0265(5)
C26	0.5540(2)	1.1639(2)	0.7305(2)	0.0257(5)
C25	0.6088(2)	1.0863(2)	0.6504(2)	0.0244(5)
C24	0.5870(2)	1.1270(2)	0.5516(2)	0.0293(5)
C23	0.6348(2)	1.0521(2)	0.4807(2)	0.0329(5)
C22	0.7026(2)	0.9408(2)	0.5105(2)	0.0337(6)
C21	0.7221(2)	0.9078(2)	0.6104(2)	0.0346(6)
C20	0.3951(3)	0.5430(2)	0.7270(3)	0.0545(8)
C2	0.9644(3)	0.4068(2)	0.9308(2)	0.0357(6)
C19	0.4445(3)	0.5499(2)	0.8124(2)	0.0547(8)
C18	0.5495(2)	0.5180(2)	0.7121(2)	0.0334(5)
C17	0.6131(2)	0.6043(2)	0.6417(2)	0.0286(5)
C16	0.8040(2)	0.6249(2)	0.4936(2)	0.0266(5)
C15	0.7486(2)	0.6551(2)	0.4101(2)	0.0299(5)
C14	0.8068(2)	0.7192(2)	0.3171(2)	0.0338(5)
C13	0.9212(2)	0.7491(2)	0.3096(2)	0.0324(5)
C12	0.9235(2)	0.6529(2)	0.4911(2)	0.0265(5)
C11	0.9836(2)	0.7159(2)	0.3940(2)	0.0291(5)

C10	1.1046(2)	0.7458(2)	0.3825(2)	0.0338(6)
C1	0.9102(2)	0.4541(2)	0.8452(2)	0.0285(5)
Table S5. Bond	d lengths [A] and ang	gles [deg] for 3	aa-8	_
	O2-C17		1.375(3)	
	O2-C16		1.413(2)	
	O5-C33		1.410(2)	
	O5-C37		1.374(3)	
	O4-C26		1.222(2)	
	O3-C17		1.201(3)	
	O6-C37		1.200(3)	
	O1-C6		1.225(3)	
	N1-H1		0.8800	
	N1-C7		1.412(3)	
	N1-C6		1.355(3)	
	N4-H4A		0.8800	
	N4-C26		1.357(3)	
	N4-C27		1.414(3)	
	N3-C25		1.341(3)	
	N3-C21		1.336(3)	
	N2-C1		1.335(3)	
	N2-C5		1.333(3)	
	C33-C32		1.419(3)	
	C33-C34		1.363(3)	
	C26-C25		1.496(3)	
	C25-C24		1.381(3)	
	C32-C27		1.435(3)	
	C32-C31		1.436(3)	
	C11-C12		1.435(3)	
	C11-C13		1.416(3)	
	C11-C10		1.413(3)	
	C12-C7		1.435(3)	
	C12-C16		1.421(3)	
	C7-C8		1.373(3)	
	C17-C18		1.462(3)	
	C1-C6		1.505(3)	
	C1-C2		1.377(3)	
	C37-C38		1.467(3)	
	C27-C28		1.369(3)	
	C15-H15		0.9500	
	C15-C16		1.361(3)	
	C15-C14		1.401(3)	

C31-C36	1.413(3)
C31-C30	1.417(3)
C8-H8	0.9500
C8-C9	1.405(3)
C24-H24	0.9500
C24-C23	1.383(3)
C13-H13	0.9500
C13-C14	1.361(3)
C34-H34	0.9500
C34-C35	1.406(3)
C35-H35	0.9500
C35-C36	1.359(3)
C38-H38	1.0000
C38-C40	1.508(3)
C38-C39	1.502(3)
C23-H23	0.9500
C23-C22	1.370(3)
C14-H14	0.9500
C10-H10	0.9500
C10-C9	1.353(3)
C28-H28	0.9500
C28-C29	1.403(3)
C36-H36	0.9500
C22-H22	0.9500
C22-C21	1.382(3)
C2-H2	0.9500
C2-C3	1.386(3)
C30-H30	0.9500
C30-C29	1.360(3)
C18-H18	1.0000
C18-C20	1.509(3)
C18-C19	1.496(3)
C21-H21	0.9500
C29-H29	0.9500
С9-Н9	0.9500
C40-H40A	0.9900
C40-H40B	0.9900
C40-C39	1.475(3)
C39-H39A	0.9900
С39-Н39В	0.9900
С3-Н3	0.9500
C3-C4	1.377(4)

C5-H5	0.9500
C5-C4	1.384(3)
C4-H4	0.9500
C20-H20A	0.9900
C20-H20B	0.9900
C20-C19	1.459(4)
C19-H19A	0.9900
C19-H19B	0.9900
C17-O2-C16	116.98(16)
C37-O5-C33	117.10(15)
C7-N1-H1	116.100
C6-N1-H1	116.100
C6-N1-C7	127.88(18)
C26-N4-H4A	116.500
C26-N4-C27	127.07(19)
C27-N4-H4A	116.500
C21-N3-C25	116.93(19)
C5-N2-C1	116.9(2)
O5-C33-C32	120.13(18)
C34-C33-O5	116.7(2)
C34-C33-C32	123.0(2)
O4-C26-N4	125.2(2)
O4-C26-C25	121.29(19)
N4-C26-C25	113.49(19)
N3-C25-C26	116.73(19)
N3-C25-C24	123.3(2)
C24-C25-C26	120.0(2)
C33-C32-C27	126.74(19)
C33-C32-C31	115.78(19)
C27-C32-C31	117.5(2)
C13-C11-C12	120.1(2)
C10-C11-C12	120.2(2)
C10-C11-C13	119.7(2)
C7 C12-C11	117.54(19)
C16 C12-C11	115.75(19)
C16 C12-C7	126.71(19)
N1-C7-C12	119.83(18)
C8-C7-N1	120.3(2)
C8-C7-C12	119.9(2)
O2-C17-C18	110.97(18)
O3-C17-O2	122.2(2)
O3-C17-C18	126.8(2)

N2-C1-C6	117.3(2)
N2-C1-C2	123.8(2)
C2-C1-C6	118.8(2)
O5-C37-C38	110.67(18)
O6-C37-O5	122.5(2)
O6-C37-C38	126.8(2)
N4-C27-C32	119.63(19)
C28-C27-N4	120.1(2)
C28-C27-C32	120.2(2)
C16-C15-H15	119.800
C16-C15-C14	120.3(2)
C14-C15-H15	119.800
C36-C31-C32	120.1(2)
C36-C31-C30	120.0(2)
C30-C31-C32	119.9(2)
O2-C16-C12	120.00(19)
C15-C16-O2	116.85(19)
C15-C16-C12	122.95(19)
С7-С8-Н8	119.300
C7-C8-C9	121.4(2)
С9-С8-Н8	119.300
C25-C24-H24	120.800
C25-C24-C23	118.5(2)
C23-C24-H24	120.800
С11-С13-Н13	119.400
C14-C13-C11	121.2(2)
C14-C13-H13	119.400
O1-C6-N1	125.8(2)
O1-C6-C1	120.5(2)
N1-C6-C1	113.64(19)
С33-С34-Н34	120.000
C33-C34-C35	120.0(2)
С35-С34-Н34	120.000
С34-С35-Н35	120.100
C36-C35-C34	119.8(2)
С36-С35-Н35	120.100
С37-С38-Н38	117.000
C37-C38-C40	116.79(19)
C37-C38-C39	117.44(19)
C40-C38-H38	117.000
С39-С38-Н38	117.000
C39-C38-C40	58.70(15)

C24-C23-H23	120.400
C22-C23-C24	119.1(2)
C22-C23-H23	120.400
C15-C14-H14	120.200
C13-C14-C15	119.7(2)
C13-C14-H14	120.200
C11-C10-H10	119.900
C9-C10-C11	120.3(2)
C9-C10-H10	119.900
C27-C28-H28	119.200
C27-C28-C29	121.5(2)
C29-C28-H28	119.200
C31-C36-H36	119.400
C35-C36-C31	121.2(2)
С35-С36-Н36	119.400
С23-С22-Н22	120.700
C23-C22-C21	118.6(2)
C21-C22-H22	120.700
C1-C2-H2	120.700
C1-C2-C3	118.5(2)
С3-С2-Н2	120.700
С31-С30-Н30	119.700
C29-C30-C31	120.6(2)
С29-С30-Н30	119.700
C17-C18-H18	117.400
C17-C18-C20	115.9(2)
C17-C18-C19	117.5(2)
C20-C18-H18	117.400
C19-C18-H18	117.400
C19-C18-C20	58.07(18)
N3-C21-C22	123.6(2)
N3-C21-H21	118.200
C22-C21-H21	118.200
C28-C29-H29	119.900
C30-C29-C28	120.3(2)
С30-С29-Н29	119.900
C8-C9-H9	119.600
C10-C9-C8	120.7(2)
С10-С9-Н9	119.600
C38-C40-H40A	117.700
C38-C40-H40B	117.700
H40A-C40-H40B	114.800

C39-C40-C38	60.45(15)
C39-C40-H40A	117.700
С39-С40-Н40В	117.700
С38-С39-Н39А	117.700
С38-С39-Н39В	117.700
C40-C39-C38	60.84(15)
C40-C39-H39A	117.700
С40-С39-Н39В	117.700
H39A-C39-H39B	114.800
С2-С3-Н3	120.800
C4-C3-C2	118.4(2)
С4-С3-Н3	120.800
N2-C5-H5	118.300
N2-C5-C4	123.5(2)
С4-С5-Н5	118.300
C3-C4-C5	118.8(2)
C3-C4-H4	120.600
С5-С4-Н4	120.600
C18-C20-H20A	117.700
C18-C20-H20B	117.700
H20A-C20-H20B	114.800
C19-C20-C18	60.52(17)
C19-C20-H20A	117.700
C19-C20-H20B	117.700
C18-C19-H19A	117.600
C18-C19-H19B	117.600
C20-C19-C18	61.41(18)
C20-C19-H19A	117.600
C20-C19-H19B	117.600
H19A-C19-H19B	114.700

 Table S6. Anisotropic displacement parameters (A^2 x 10^3) for 3aa-8

Tuble 50. Amsotropic displacement parameters (17.2 x 10.5) for 500 0						
Atom	U11	U22	U33	U12	U13	U23
O2	0.0248(8)	0.0250(8)	0.0319(8)	-0.0072(7)	-0.0052(7)	-0.0025(7)
05	0.0278(9)	0.0282(8)	0.0264(8)	-0.0085(7)	-0.0029(7)	-0.0074(7)
O4	0.0491(11)	0.0242(9)	0.0324(9)	-0.0062(8)	-0.0139(8)	-0.0047(7)
03	0.0481(11)	0.0242(9)	0.0395(10)	-0.0064(8)	-0.0016(8)	-0.0070(7)
O6	0.0536(11)	0.0415(10)	0.0433(10)	-0.0287(9)	0.0061(9)	-0.0150(8)
01	0.0767(14)	0.0540(11)	0.0395(10)	-0.0414(11)	-0.0229(10)	0.0002(9)
N1	0.0300(11)	0.0279(10)	0.029(1)	-0.0109(8)	-0.0087(8)	-0.0040(8)
N4	0.0317(11)	0.0252(10)	0.0249(10)	-0.0053(8)	-0.0085(8)	-0.0062(8)
N3	0.0319(11)	0.0265(10)	0.0295(10)	-0.0063(9)	-0.0070(9)	-0.0056(8)

N2	0.0309(11)	0.0386(11)	0.0306(11)	-0.0122(9)	-0.0040(9)	-0.0047(9)
C33	0.0283(12)	0.0272(12)	0.0245(11)	-0.0121(10)	-0.0018(10)	-0.0074(10)
C26	0.0263(12)	0.0281(12)	0.0253(11)	-0.0107(10)	-0.0074(10)	-0.0039(10)
C25	0.0233(12)	0.0259(11)	0.0268(11)	-0.0101(9)	-0.0055(9)	-0.0061(9)
C32	0.0262(12)	0.0240(11)	0.0246(11)	-0.0114(10)	-0.0021(9)	-0.0057(9)
C11	0.0320(13)	0.0196(11)	0.0314(12)	-0.0052(10)	-0.0049(10)	-0.0047(10)
C12	0.0292(12)	0.0192(11)	0.0281(12)	-0.0033(9)	-0.0055(10)	-0.0066(9)
C7	0.0281(13)	0.0199(11)	0.0295(12)	-0.0061(9)	-0.0037(10)	-0.0058(9)
C17	0.0285(13)	0.0308(13)	0.0283(12)	-0.008(1)	-0.0096(10)	-0.0061(10)
C1	0.0292(13)	0.0268(12)	0.0274(12)	-0.0046(10)	-0.0059(10)	-0.0079(10)
C37	0.0331(13)	0.0252(12)	0.0284(12)	-0.0092(10)	-0.0076(11)	-0.0003(10)
C27	0.0285(13)	0.0275(12)	0.0257(11)	-0.0102(10)	-0.0053(10)	-0.0077(10)
C15	0.0299(13)	0.0272(12)	0.0323(13)	-0.0036(10)	-0.0095(11)	-0.0093(10)
C31	0.0307(13)	0.0298(12)	0.0271(12)	-0.0138(10)	-0.0038(10)	-0.0078(10)
C16	0.0277(12)	0.0205(11)	0.0270(11)	-0.0057(9)	-0.0031(10)	-0.0033(9)
C8	0.0367(14)	0.0296(12)	0.0349(13)	-0.0112(11)	-0.0108(11)	-0.007(1)
C24	0.0304(13)	0.0299(12)	0.0268(12)	-0.0084(10)	-0.0068(10)	-0.0047(10)
C13	0.0356(14)	0.0267(12)	0.0264(12)	-0.0038(10)	-0.0035(10)	-0.0037(10)
C6	0.0371(14)	0.0269(12)	0.0308(12)	-0.0085(11)	-0.0094(11)	-0.0072(10)
C34	0.0335(13)	0.0302(12)	0.0302(12)	-0.009(1)	-0.0104(11)	-0.0031(10)
C35	0.0411(15)	0.0357(13)	0.0269(12)	-0.0148(12)	-0.0121(11)	-0.0033(11)
C38	0.0279(13)	0.0287(12)	0.0293(12)	-0.0074(10)	-0.0044(10)	-0.0076(10)
C23	0.0354(14)	0.0398(14)	0.0250(12)	-0.0114(11)	-0.0086(11)	-0.0064(11)
C14	0.0383(14)	0.0316(13)	0.0263(12)	-0.0033(11)	-0.0094(11)	-0.0042(10)
C10	0.0373(14)	0.0258(12)	0.0354(13)	-0.0121(11)	-0.0051(11)	-0.0018(10)
C28	0.0314(13)	0.0358(13)	0.0313(13)	-0.0061(11)	-0.0105(11)	-0.0074(11)
C36	0.0376(14)	0.0330(13)	0.0261(12)	-0.0150(11)	-0.0047(11)	-0.0093(10)
C22	0.0354(14)	0.0348(13)	0.0312(13)	-0.0083(11)	-0.0048(11)	-0.0135(11)
C2	0.0403(15)	0.0371(14)	0.0318(13)	-0.0101(11)	-0.0119(11)	-0.0076(11)
C30	0.0350(14)	0.0343(13)	0.0297(12)	-0.0084(11)	-0.0025(11)	-0.0142(11)
C18	0.0259(13)	0.0283(12)	0.0437(14)	-0.0079(10)	-0.0057(11)	-0.0067(11)
C21	0.0382(14)	0.0289(12)	0.0346(13)	-0.0042(11)	-0.0082(11)	-0.0111(11)
C29	0.0342(14)	0.0348(13)	0.0357(13)	-0.0016(11)	-0.0073(11)	-0.0123(11)
C9	0.0339(14)	0.0318(13)	0.0452(15)	-0.0158(11)	-0.0062(12)	-0.0060(11)
C40	0.0297(14)	0.0394(14)	0.0461(15)	-0.0089(11)	-0.0045(12)	-0.0155(12)
C39	0.0438(16)	0.0402(15)	0.0324(13)	-0.0110(12)	0.0013(12)	-0.0083(12)
C3	0.0535(17)	0.0423(15)	0.0308(13)	-0.0122(13)	-0.0135(12)	0.0011(12)
C5	0.0414(16)	0.0516(16)	0.0362(14)	-0.0240(13)	-0.0056(12)	-0.0017(13)
C4	0.0495(17)	0.0447(15)	0.0349(14)	-0.0212(14)	-0.0038(13)	0.0035(12)
C20	0.0289(15)	0.0395(15)	0.093(2)	-0.0095(12)	-0.0150(15)	-0.0102(15)
 C19	0.0538(18)	0.0462(16)	0.0552(18)	-0.0239(14)	0.0101(15)	-0.0124(14)

6. Characterization data of silver carboxylates 2a-1–2d-16

 Ag^{-}_{Ag} Silver(I) acetate (2a-1). Following the general procedure, 2a-1 was obtained as a grav solid (752 mg 0000) have F2.45 (s, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 176.4, 24.6. 2a-1

 $\bigwedge_{O}^{O}_{Ag}$ Silver(I) propionate (2a-2). Following the general procedure, 2a-2 was obtained as a grav solid (810 mg O10() have a δ 2.12 (q, J = 7.6 Hz, 2H), 1.01 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (100 2a-2 MHz, DMSO-*d*₆) δ 178.2, 30.2, 11.7.

Silver(I) butyrate (**2a-3**). Following the general procedure, **2a-3** was obtained as a gray solid (873 mg, 90%). ¹H NMR (400 MHz, DMSO- d_6) δ 2.10 (t, J = 7.4 Hz, 2H), 1.58-1.46 (m, 2H), 0.86 (t, J = 2a-3 7.4 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_6) δ 177.4, 39.3, 20.2, 14.6.

Silver(I) isobutyrate (2a-4). Following the general procedure, 2a-4 was obtained as a gray solid (922 mg, 95%). ¹H NMR (400 MHz, DMSO-d₆) δ 2.39 (sep, J = 6.8 Hz, 1H), 1.05 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 180.9, 36.2, 21.2.

Silver(I) pivalate (2a-5). Following the general procedure, 2a-5 was obtained as a gray solid (1009 mg, 97%). ¹H NMR (400 MHz, DMSO- d_6) δ 1.10 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 182.3, 39.6, 29.4.

 $c_{8}H_{17}$ o_{Ag}^{-} Silver(I) nonanoate (**2a-6**). Following the general procedure, **2a-6** was obtained as a white solid (212) obtained as a white solid (2124 mg, 80%). ¹H NMR (400 MHz, Pyridine- d_5) δ 2.82 (t, J = 7.6 Hz, 2H), 2.12-2.04 (m, 2H), 1.57-1.47 (m, 2a-6 2H), 1.35-1.27 (m, 2H), 1.25-1.11 (m, 6H), 0.79 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine-d₅) δ 179.0, 38.5, 32.0, 30.4, 30.0, 29.6, 28.0, 22.8, 14.2.

Silver(I) adamantane-1-carboxylate (2a-7). Following the general f^{o} Ag⁺ procedure, **2a-7** was obtained as a gray solid (1148 mg, 80%). ¹H NMR (400 MHz, Pyridine-d₅) δ 2.49-2.43 (m, 6H), 2.03 (s, 3H), 1.81 (s, 1H), 1.78 (s, 2H), 1.73 (s, 2H), 1.70 (s, 1H). ¹³C{¹H} NMR (100

MHz, Pyridine-*d*₅) δ 183.2, 42.1, 41.6, 37.5, 39.3.

Silver(I) cyclopropanecarboxylate (2a-8). Following the general procedure, 2a-8 was obtained as a gray solid (682 mg, 71%). ¹H NMR (400 MHz, DMSO- d_6) δ 1.51-1.38 (m, 1H), 0.69-0.54 (m, 4H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 178.5, 15.6, 7.3.

Silver(I) cyclobutanecarboxylate (2a-9). Following the general procedure, 2a-9 was obtained as a gray solid (618 mg, 60%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.03-2.91 (m, 1H), 2.16-2.00 (m, 4H), 1.88-1.68 (m, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 179.4, 40.8,

26.7, 18.2.

Silver(I) cyclopentanecarboxylate (2a-10). Following the general procedure, 2a-10 was obtained as a gray solid (880 mg, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.63-2.53 (m, 1H), 1.80-1.36 (m, 8H). $^{13}C{^{1}H}$ NMR (100 MHz, DMSO- d_6) δ 180.3, 46.5, 31.2, 25.9.

Silver(I) cyclohexanecarboxylate (2a-11). Following the general procedure, 2a-11 was obtained as a gray solid (995 mg, 85%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.14-2.04 (m, 1H), 1.78-1.74 (m, 2H), 1.70-1.60 (m, 2H), 1.59-1.52 (m, 1H), 1.35-1.13 (m, 5H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 179.8, 45.5, 30.9, 26.4, 26.1.

Silver(I) 2-(naphthalen-1-yl)acetate (2a-12). Following the general procedure, **2a-12** was obtained as a gray solid (1241 mg, 85%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.12-7.99 (m, 1H), 7.94-7.83 (m, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.51-7.43 (m, 2H), 7.43-7.31 (m,

2H), 3.91 (s, 2H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO-*d*₆) δ 175.4, 135.3, 133.8, 132.7, 128.6, 127.9, 126.8, 126.1, 125.9, 125.8, 125.2, 42.3.

2,2,3,3-tetramethylcyclopropane-1-carboxylate Silver(I) (2a-13).Following the general procedure, 2a-13 was obtained as a gray solid (930 mg, 75%). ¹H NMR (400 MHz, DMSO- d_6) δ 1.19 (s, 6H), 1.13 (s, 1H), 1.08 (s, 6H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO-*d*₆) δ 176.7, 26.3,

2a-13 24.4, 17.9.

Silver(I) 3-(2-bromophenyl)propanoate (2a-14). Following the $^{O}_{Ag}^{+}$ general procedure, **2a-14** was obtained as a gray solid (1598 mg, 80%). ¹H NMR (400 MHz, Pyridine-d₅) δ 7.57-7.49 (m, 2H), 7.14 (t, J = 7.2 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 3.54 (t, J = 8.0 Hz,

2H), 3.11 (t, J = 8.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 176.3, 141.6, 131.3, 129.5, 126.4, 126.2, 123.4, 36.8, 33.0.

Silver(I) 2-methylbenzoate (2b-1). Following the general procedure, 2b-1 was obtained as a gray solid (1150 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (d, J = 8.0 Hz, 1H), 7.24-7.19 (m, 1H), 7.18-7.08 (m, 2H), 2.49 (s, 3H). ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_6) δ 173.2, 138.8,

136.9, 130.9, 129.7, 129.0, 125.5, 21.8.

Silver(I) 2-methoxybenzoate (**2b-2**). Following the general procedure, **2b-2** was obtained as a gray solid (1226 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.43 (dd, J = 7.6, 2.0 Hz, 1H), 7.31-7.25 (m, 1H), 6.98 (dd, J = 8.4, 1.2 Hz, 1H), 6.89 (dt, J = 7.6, 1.2 Hz, 1H), 3.73 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 171.8, 156.7, 129.9, 129.7, 129.4, 120.2, 112.2, 55.8.

Silver(I) 2-acetylbenzoate (**2b-3**). Following the general procedure, **2b-3** was obtained as a gray solid (1283 mg, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 2.59 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 198.3, 169.7, 141.8, 138.2, 130.0, 128.2, 27.4.

Silver(I) 2-cyanobenzoate (**2b-4**). Following the general procedure, **2b-4** was obtained as a gray solid (1201 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.02 (dd, J = 7.6, 1.2 Hz, 1H), 7.77 (dd, J = 7.6, 1.2 Hz, 1H), 7.66 (dt, J = 7.6, 1.2 Hz, 1H), 7.55 (dd, J = 7.6, 1.2 Hz, 1H).

¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 168.2, 141.5, 134.3, 132.7, 131.0, 130.4, 119.7, 112.1.

Silver(I) 3-methylbenzoate (**2b-5**). Following the general procedure, **2b-5** was obtained as a gray solid (1138 mg, 94%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.78 (s, 1H), 7.75 (d, J = 6.4 Hz, 1H), 7.29-7.21 (m, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, 2.127 10, 121 2, 120 7, 128 1, 127 2, 21 5

DMSO- d_6) δ 170.8, 137.21, 137.19, 131.3, 130.7, 128.1, 127.2, 21.5.

Silver(I) 3-methoxybenzoate (**2b-6**). Following the general procedure, **2b-6** was obtained as a gray solid (1226 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.60-7.40 (m, 2H), 7.32-7.23 (m, 1H), 7.05-6.92 (m, 1H), 3.77 (s, 3H). ¹³C{¹H} NMR (100 MHz,

DMSO-*d*₆) δ 170.4, 159.3, 136.2, 129.3, 122.4, 116.6, 114.9, 55.5.

Silver(I) 3-acetylbenzoate (**2b-7**). Following the general procedure, **2b-7** was obtained as a gray solid (1242 mg, 92%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.51 (s, 1H), 8.18 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 2.60

(s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 198.3, 169.7, 137.9, 137.0, 134.4, 130.3, 129.5, 128.7, 27.3.

Silver(I) 3-cyanobenzoate (2b-8). Following the general procedure, 2b-8 was obtained as a gray solid (1213 mg, 96%). ¹H NMR (400 MHz, DMSO-d₆) δ 8.24-8.18 (m, 2H), 7.90-7.85 (m, 1H), 7.60 (t, J = 8.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 168.5, 139.0, 134.4, 133.9, 133.2, 129.7, 129.3, 111.3.

Silver(I) benzoate (2b-9). Following the general procedure, 2b-9 was obtained as a gray solid (1053 mg, 93%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.85 (d, J = 8.0 Hz, 2H), 7.49-7.38 (m, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine-*d*₅) δ 171.8, 140.2, 130.6, 129.5, 127.8.

2b-10

Silver(I) 4-methylbenzoate (2b-10). Following the general procedure, **2b-10** was obtained as a gray solid (1150 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 8.0 Hz, 2H), 7.17 (d, J= 8.0 Hz, 2H), 2.33 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 170.7, 140.3, 134.5, 130.1, 128.8, 21.5.

Silver(I) 4-methoxybenzoate (2b-11). Following the general procedure, 2b-11 was obtained as a gray solid (1225 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.89 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.78 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 170.5, 161.4, 131.8, 129.7, 113.4, 55.6.

PhO

2b-12

Silver(I) 4-phenoxybenzoate (2b-12). Following the general procedure, 2b-12 was obtained as a gray solid (1225 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.96 (d, J = 8.8 Hz, 2H), 7.42 (dd, J = 8.8, 7.2 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 170.0, 159.2,

156.4, 132.2, 132.1, 130.6, 124.4, 119.8, 117.4.

Silver(I) 4-acetylbenzoate (2b-13). Following the general procedure, **2b-13** was obtained as a gray solid (1245 mg, 92%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.04 (d, J = 8.2 Hz, 2H), 7.98 (d, J = 8.2 Hz, 2H), 2.60 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) *δ* 198.3, 168.8, 139.6, 138.9, 130.0, 128.4, 27.4.

Silver(I) 4-chlorobenzoate (2b-14). Following the general procedure, **2b-14** was obtained as a gray solid (1179 mg, 90%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 (d, J = 8.4 Hz, 2H), 7.45 (d, J =8.4 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 169.1, 136.0,

135.1, 131.8, 128.5.

NC 2b-15

Silver(I) 4-cyanobenzoate (**2b-15**). Following the general procedure, **2b-15** was obtained as a gray solid (1175 mg, 93%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.06 (d, J = 8.0 Hz, 2H), 7.84 (d, J= 8.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 169.0, 142.0, 132.4, 130.5, 119.3, 112.8.

Silver(I) 4-(trifluoromethyl)benzoate (2b-16). Following the general procedure, **2b-16** was obtained as a gray solid (1406 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.13 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ

169.3, 141.4, 130.7 (q, $J_{C-F} = 31.3 \text{ Hz}$), 130.6, 125.2 (q, $J_{C-F} = 14.0 \text{ Hz}$), 124.7 (q, J_{C-F} = 270.6 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.1.

Silver(I) 4-nitrobenzoate (2b-17). Following the general procedure, 2b-17 was obtained as a gray solid (1256 mg, 92%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.21 (d, J = 8.8 Hz, 2H), 8.12 (d, J = 8.8Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 168.6, 148.8, 144.2, 130.9, 123.4.

Silver(I) furan-2-carboxylate (2b-18). Following the general procedure, 2b-18 was obtained as a gray solid (872 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (dd, J = 1.6, 0.8 Hz, 1H), 6.81 (dd, J = 3.2, 0.8 Hz, 1H), 6.48 (dd, J = 3.2, 1.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz,

DMSO-*d*₆) δ 163.2, 151.7, 144.2, 113.8, 111.6.

Silver(I) oxazole-2-carboxylate (2b-19). Following the general procedure, **2b-19** was obtained as a gray solid (876 mg, 80%). ¹H NMR (400 MHz, Pyridine- d_5) δ 7.97 (s, 1H), 7.24 (s, 1H). ¹³C{¹H} NMR (100 MHz, Pyridine-*d*₅) δ 162.9, 159.6, 139.9, 127.5.

Silver(I) thiophene-2-carboxylate (2b-20). Following the general procedure, **2b-20** was obtained as a gray solid (936 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.58 (dd, J = 4.8, 1.2 Hz, 1H), 7.47 (dd, J =3.6, 1.2 Hz, 1H), 7.05 (dd, J = 4.8, 3.6 Hz, 1H). ¹³C{¹H} NMR (100

MHz, DMSO-*d*₆) δ 166.2, 143.0, 130.6, 130.3, 127.9.

Silver(I) thiazole-2-carboxylate (2b-21). Following the general procedure, **2b-21** was obtained as a gray solid (940 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 (d, J = 3.2 Hz, 1H), 7.88 (d, J = 3.2 Hz, 1H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO- d_6) δ 172.4, 160.8, 143.0,

125.5.

Silver(I) furan-3-carboxylate (2b-22). Following the general procedure, 2b-22 was obtained as a gray solid (894 mg, 83%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (dd, J = 1.6, 0.8 Hz, 1H), 7.60 (t, J = 1.6 Hz, 1H), 6.60 (dd, J = 1.6, 0.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 167.3, 146.1, 143.6, 125.5, 111.7.

2b-23

Silver(I) oxazole-4-carboxylate (2b-23). Following the general procedure, 2b-23 was obtained as a gray solid (876 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.52 (d, J = 0.8 Hz, 1H), 8.45 (d, J =0.8 Hz, 1H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO- d_6) δ 163.1, 152.7,

143.5, 136.3.

Silver(I) thiophene-3-carboxylate (2b-24). Following the general procedure, 2b-24 was obtained as a gray solid (937 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 (dd, J = 3.2, 0.8 Hz, 1H), 7.44 (dd, J = 4.8, 3.2 Hz, 1H), 7.37 (dd, J = 4.8, 0.8 Hz, 1H). ¹³C{¹H} NMR

(100 MHz, DMSO-*d*₆) δ 167.3, 141.3, 129.9, 129.5, 125.8.

Silver(I) thiazole-4-carboxylate (2b-25). Following the general procedure, 2b-25 was obtained as a gray solid (942 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.20 (d, J = 2.0 Hz, 1H), 8.39 (d, J =2.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 163.6, 156.7,

150.8, 127.0.

Silver(I) picolinate (2b-26). Following the general procedure, 2b-26 was obtained as a gray solid (1031 mg, 91%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.69 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.99 (dt, J = 7.6, 1.6 Hz, 1H), 7.66-7.59 (m, 1H). ¹³C{¹H} NMR (100 MHz,

DMSO-*d*₆) δ 166.6, 150.0, 149.3, 138.1, 127.4, 125.1.

Silver(I) nicotinate (2b-27). Following the general procedure, 2b-27 was obtained as a gray solid (912 mg, 80%). ¹H NMR (400 MHz, Pyridine- d_5) δ 10.10 (d, J = 2.0 Hz, 1H), 8.91 (dt, J = 7.6, 2.0 Hz, 1H), 8.72 (dd, J = 4.8, 2.0 Hz, 1H), 7.27 (dd, J = 7.6, 4.8 Hz, 1H). ¹³C{¹H}

NMR (100 MHz, Pyridine-*d*₅) δ 170.1, 152.4, 150.4, 137.5, 123.0.

Silver(I) isonicotinate (2b-28). Following the general procedure, **2b-28** was obtained as a gray solid (1005 mg, 88%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.85 (dt, J = 4.0, 2.0 Hz, 2H), 8.52 (dt, J = 4.0,2.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 169.9, 150.2,

147.8, 124.7.

Silver(I) 2-naphthoate (2b-29). Following the general procedure, **2b-29** was obtained as a gray solid (1181 mg, 85%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.55 (s, 1H), 8.07 (dd, J = 8.4, 1.4 Hz, 1H), 8.05-8.00 (m, 1H), 7.96-7.92 (m, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.60-7.50 (m, 2H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO- d_6) δ 170.5, 134.5, 134.3, 132.9,

130.0, 129.4, 127.9, 127.6, 127.5, 127.3, 126.6.

Silver(I) quinoline-2-carboxylate (2b-30). Following the general procedure, **2b-30** was obtained as a gray solid (1173 mg, 84%). ¹H NMR (400 MHz, Pyridine- d_5) δ 9.03 (d, J = 8.8 Hz, 1H), 8.64 (d, J= 8.4 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H),

7.70-7.64 (m, 1H), 7.53-7.47 (m, 1H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, Pyridine- d_5) δ 168.2, 156.6, 146.1, 137.8, 130.4, 130.3, 129.3, 128.1, 127.6, 123.0.

Silver(I) 1-naphthoate (2b-31). Following the general procedure, 2b-31 was obtained as a gray solid (1188 mg, 86%). ¹H NMR (400 MHz, DMSO-d₆) δ 8.97-8.88 (m, 1H), 7.98-7.87 (m, 3H), 7.55-7.44 (m, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO- d_6) δ 172.7, 136.9, 133.9,

131.2, 129.7, 128.4, 127.8, 127.7, 126.3, 125.9, 125.5.

Silver(I) benzo[d][1,3]dioxole-5-carboxylate (2b-32). Following the general procedure, **2b-32** was obtained as a gray solid (1292 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.54 (dd, J = 8.0, 1.6 Hz, 1H), 7.38 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.05 (s, 2H).

¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 169.7, 149.6, 147.3, 131.1, 124.8, 109.9, 107.9.101.7.

Silver(I) acrylate (2c-1). Following the general procedure, 2c-1 was obtained as a gray solid (712 mg, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) 2c-1 δ 6.15 (dd, J = 17.2, 10.0 Hz, 1H), 5.97 (dd, J = 17.2, 2.8 Hz, 1H), 5.52 (dd, J = 10.0, 2.8, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 170.7, 135.7, 125.4.

2c-2

2c-3

Silver(I) methacrylate (2c-2). Following the general procedure, 2c-2 was obtained as a gray solid (772 mg, 81%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.76 (dd, J = 7.2, 4.8, 1H), 5.26-5.22 (m, 1H), 1.86 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 172.0, 143.6, 120.6, 20.8.

Silver(I) cinnamate (2c-3). Following the general procedure, 2c-3 was obtained as a gray solid (1143 mg, 90%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.17 (d, J = 16.0 Hz, 1H), 7.59 (d, J = 7.2 Hz, 2H), 7.43 (d, J = 16.0 Hz, 1H), 7.29-7.18 (m, 3H). ¹³C{¹H} NMR (100

MHz, Pyridine-*d*₅) δ 172.6, 138.1, 137.5, 129.3, 128.9, 128.3, 127.5.

Silver(I) 3-(*p*-tolyl)acrylate (**2c-4**). Following the general procedure, **2c-4** was obtained as a gray solid (1206 mg, 90%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.17 (d, *J* = 15.6 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 15.6 Hz, 1H), 7.07 (d, *J*

= 8.0 Hz, 2H), 2.15 (s, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 172.5, 138.5, 138.2, 134.6, 129.6, 127.63, 127.59, 21.0.

Silver(I) 3-(4-methoxyphenyl)acrylate (**2c-5**). Following the general procedure, **2c-5** was obtained as a gray solid (1278 mg, 90%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.60 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 16.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H),

6.38 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 168.9, 161.1, 142.8, 130.1, 127.7, 118.8, 114.8, 55.7.

Silver(I) 3-(4-(trifluoromethyl)phenyl)acrylate (2c-6). Following the general procedure, 2c-6 was obtained as a gray solid (1450 mg, 90%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.09 (d, J = 16.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.55 (d, J =

8.0 Hz, 2H), 7.47 (d, J = 16.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 171.5, 141.2, 136.9, 131.3, 129.3 (q, $J_{C-F} = 31.8$ Hz), 127.9, 125.7 (q, $J_{C-F} = 3.8$ Hz), 124.8 (q, $J_{C-F} = 270.2$ Hz). ¹⁹F NMR (376 MHz, Pyridine- d_5) δ -61.9.

Silver(I) 3-(2-bromophenyl)acrylate (**2c-7**). Following the general procedure, **2c-7** was obtained as a gray solid (1560 mg, 92%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.49 (d, J = 15.6 Hz, 1H), 7.75 (dd,

^{2c-7} J = 8.0, 1.6 Hz, 1H), 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.28 (d, J = 15.6 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.06 (dt, J = 7.6, 1.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 171.2, 137.5, 136.6, 133.3, 130.4, 130.0, 128.00, 127.98, 124.7.

Silver(I) (*R*)-2-((1*R*,4*R*,4a*S*,8a*S*)-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydrona phthalen-1-yl)propanoate (**2d-1**). Following the general procedure, **2d-1** was obtained as a gray solid (1368 mg, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.17 (s, 1H), 2.45-2.30 (m, 2H), 1.92-1.71 (m, 3H), 1.60 (s, 3H), 1.54-1.43 (m, 3H), 1.40-1.29 (m, 2H), 1.21-1.14

(m, 1H), 1.02-0.95 (m, 3H), 0.89-0.73 (m, 5H). ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_6) δ 180.6, 134.9, 120.7, 44.7, 44.4, 41.8, 36.6, 35.6, 28.0, 27.9, 26.7, 25.9, 24.2, 20.2, 16.6.

Silver(I) (S)-2-(6-methoxynaphthalen-2-yl)propanoate (2d-2). Following the general procedure, 2d-2 was obtained as a gray solid (1182 mg, 83%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.19 (s, 1H), 8.12 (dd, J = 8.4, 1.2 Hz, 1H),

7.83 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 2.4 Hz, 1H), 7.24 (dd, J = 8.8, 2.4 Hz, 1H), 4.43 (q, J = 7.2 Hz, 1H), 3.76 (s, 3H), 1.97 (d, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 179.3, 157.4, 142.2, 133.7, 126.7, 129.5, 128.5, 126.6, 126.1, 118.6, 106.1, 55.1, 49.5, 21.1.

Silver(I) 5 Ag 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate

(2d-3). Following the general procedure, 2d-3 was obtained as a gray solid (1950 mg, 92%). ¹H NMR (400 MHz, Pyridine- d_5) δ 7.73 (d, J = 9.2 Hz, 2H),

7.66 (d, J = 8.4 Hz, 2H), 7.49-7.41 (m, 4H), 2.07 (s, 6H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 193.7, 177.1, 162.8, 137.54, 137.50, 132.1, 131.3, 128.6, 128.4, 117.6, 82.8, 27.2.

2d-4

ö

2d-3

Silver(I) hexa-2,4-dienoate (2d-4). Following the general procedure, 2d-4 was obtained as a gray solid (937 mg, 86%). ¹H NMR (400 MHz, Pyridine- d_5) δ 7.73 (dd, J = 15.2, 10.8 Hz, 1H),

6.73 (d, J = 15.2 Hz, 1H), 6.33-6.23 (m, 1H), 5.86-5.75 (m, 1H), 1.58 (d, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine-*d*₅) δ 171.2, 146.7, 140.0, 134.7, 131.1, 13.7.

Silver(I) 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carb oxylate (**2d-5**). Following the general procedure, **2d-5** was obtained as a gray solid (1730 mg, 82%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.47 (d, J = 2.0 Hz, 1H), 8.23

(dd, J = 8.8, 2.0 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 3.76 (d, J = 6.8 Hz, 2H), 3.25 (s, J = 6.3H), 2.07-1.95 (m, 1H), 0.96 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 166.8, 163.2, 161.7, 155.0, 132.5, 131.6, 127.8, 116.3, 113.3, 102.6, 75.5, 28.2, 18.9, 17.3.

Silver(I) $\bar{o}^{Ag^{\dagger}}$ (1*R*,3*R*)-3-((*Z*)-2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dime thylcyclopropane-1-carboxylate (**2d-6**). Following the general procedure, **2d-6** was obtained as a gray solid (1566 mg, 90%).

¹H NMR (400 MHz, Pyridine- d_5) δ 8.30 (d, J = 9.6 Hz, 1H), 2.64 (d, J = 8.0 Hz, 1H), 2.10 (t, J = 9.2 Hz, 1H), 1.60 (s, 3H), 1.20 (s, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 174.9, 137.1 (q, $J_{C-F} = 4.4$ Hz), 121.8 (q, $J_{C-F} = 274.4$ Hz), 116.9 (q, $J_{C-F} = 36.5$ Hz), 39.5, 30.3, 28.9, 27.3, 16.3. ¹⁹F NMR (376 MHz, Pyridine- d_5) δ -67.2.

Silver(I) 3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)no na-2,4,6,8-tetraenoate (**2d-7**). Following the general procedure, **2d-7** was obtained as a gray solid (1624 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 6.90 (dd, J = 15.2, 11.6 Hz, 1H), 6.37 (d, J = 15.2 Hz, 1H), 6.26-6.11 (m, 3H), 5.82 (s, 1H), 2.24 (s, 3H), 2.00 (t, J = 6.0 Hz, 2H), 1.96 (s, 3H), 1.68 (s, 3H), 1.60-1.54 (m, 2H), 1.46-1.41 (m, 2H), 1.01 (s, 6H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 170.1, 138.2, 137.8, 137.6, 136.9, 130.6, 129.7, 129.63, 129.62, 127.7, 39.7, 34.4, 33.1, 29.3, 22.0, 19.2, 13.9, 13.1.

Silver(I) benzoylglycinate (**2d-8**). Following the general procedure, **2d-8** was obtained as a gray solid (1182 mg, 83%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.47 (t, J = 5.6 Hz, 1H), 7.88-7.82 (m, 2H), 7.53-7.41 (m, 3H), 3.81 (d, J = 5.6 Hz, 2H).

¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 173.6, 166.1, 135.1, 131.5, 128.7, 127.6, 44.0.

Silver(I)

Silver(I)

(1*R*,4a*R*,4b*R*,10a*R*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b, 5,6,10,10a-decahydrophenanthrene-1-carboxylate (2d-9). Following the general procedure, 2d-9 was obtained as a gray solid (1773 mg, 90%). ¹H NMR (400 MHz, DMSO-*d*₆)

δ 5.74 (s, 1H), 5.35 (s, 1H), 2.34-2.12 (m, 2H), 2.09-2.01 (m, 3H), 1.84-1.70 (m, 6H), 1.51-1.43 (m, 4H), 1.54 (s, 3H), 0.97 (dd, *J* = 6.8, 1.2 Hz, 6H), 0.74 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 182.0, 144.4, 135.2, 123.0, 121.7, 51.1, 47.1, 46.1, 38.8, 38.5, 34.7, 34.6, 27.3, 25.9, 22.5, 21.8, 21.2, 19.0, 18.8, 14.3.

5-ethyl-8-oxo-5,8-dihydro-[1,3]dioxolo[4,5-g]quinoline-7-carb oxylate (**2d-10**). Following the general procedure, **2d-10** was obtained as a gray solid (1508 mg, 82%). ¹H NMR (400 MHz, Pyridine- d_5) δ 9.07 (s, 1H), 8.26 (s, 1H), 7.14 (s, 1H), 6.08 (s, 2H), 4.17-3.91 (m, 2H), 1.14 (t, J = 6.8 Hz, 3H). ¹³C{¹H}

NMR (100 MHz, Pyridine-*d*₅) δ 175.2, 170.8, 152.0, 146.7, 145.7, 136.3, 125.2, 104.5, 102.5, 95.8, 48.5, 14.3.

Silver(I)

(*R*)-4-((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-tr ioxohexadecahydro-1*H*-cyclopenta[a]phenanthren-17-yl)pent anoate (**2d-11**). Following the general procedure, **2d-11** was obtained as a gray solid (2088 mg, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.07-2.94 (m, 2H), 2.83 (t, *J* = 12.6 Hz, 1H), 2.43 (dt, *J* = 12.4, 5.2 Hz, 1H), 2.34-1.92 (m, 9H), 1.87-1.63 (m, 6H), 1.49 (dt, *J* = 14.4, 4.0 Hz, 1H), 1.32 (s,

3H), 1.29-1.19 (m, 4H), 1.00 (s, 3H), 0.75 (d, J = 5.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 212.8, 210.4, 210.3, 178.2, 55.8, 51.8, 48.6, 46.6, 46.2, 45.1, 44.7, 43.1, 39.0, 36.7, 36.2, 35.9, 35.1, 34.5, 32.9, 27.9, 25.2, 21.7, 19.5, 12.1.

Silver(I) 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate (2d-12). Following the general procedure, 2d-12 was obtained as a gray solid (1602 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.98 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.15-7.07 (m, 2H), 6.98 (dt, J = 8.0, 1.6 Hz, 1H), 6.79 (dt, J = 7.2, 1.6 Hz, 1H), 6.28 (dd, J = 8.0, 1.2 Hz, 1H), 3.56 (s, 2H). ¹³C{¹H} NMR (100 MHz, 200 MHz)

DMSO- d_6) δ 176.0, 143.3, 138.1, 130.7, 129.6, 129.4, 127.6, 126.8, 124.8, 120.9, 116.4, 42.6.

Silver(I) 2-oxo-2H-pyran-5-carboxylate (**2d-13**). Following the general procedure, **2d-13** was obtained as a gray solid (984 mg, 80%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.26 (dd, J = 2.6, 1.0 Hz, 1H), 7.88 (dd, J = 9.6, 2.6 Hz, 1H), 6.28 (dd, J = 9.6, 1.0 Hz).

¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.4, 161.4, 156.7, 145.7, 117.4, 114.0.

Silver(I) 4-oxo-4H-pyran-2-carboxylate (**2d-14**). Following the general procedure, **2d-14** was obtained as a gray solid (1082 mg, 88%). ¹H NMR (400 MHz, Pyridine- d_5) δ 8.04 (d, J = 5.6 Hz, 1H), 7.62 (d, J = 2.8 Hz, 1H), 6.45 (dd, J = 5.6, 2.8 Hz, 1H). ¹³C{¹H}

NMR (100 MHz, Pyridine-*d*₅) δ 179.9, 163.5, 161.0, 155.8, 117.7, 117.5.

Silver(I) 2-oxopropanoate (**2d-15**). Following the general procedure, **2d-15** was obtained as a gray solid (873 mg, 90%). ¹H NMR (400 MHz, DMSO- d_6) δ 2.20 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 203.0, 169.5, 27.8.

Silver(I) 4-oxo-4-(2,4,5-triethoxyphenyl)butanoate (2d-16). Following the general procedure, 2d-16 was obtained as a gray solid (1893 mg, 91%). ¹H NMR (400 MHz, Pyridine- d_5) δ 7.80 (s, 1H), 6.65 (s, 1H), 4.06 (q, J = 6.8 Hz, 2H), 4.01 (q, J = 6.8 Hz, 2H), 3.92-3.85 (m, 4H), 3.37 (t, J = 6.8 Hz, 2H), 1.37 (t, J = 6.8 Hz, 3H), 1.32 (t, J = 6.8 Hz, 3H), 1.23 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 200.5, 178.1, 154.8, 153.7, 142.9, 120.7, 115.8, 99.5, 65.0, 64.9, 64.5, 42.3, 33.1, 15.0, 14.83, 14.76.

7. Characterization data of products 3aa-1–3wa

8-(Picolinamido)naphthalen-1-yl acetate (**3aa-1**). Following the general procedure, **3aa-1** was obtained as a colorless solid (56.4 mg, 92%). $R_f = 0.40$ (n-hexane/EtOAc 3:1). m.p. 160.0–162.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.52 (s, 1H), 8.77 (d, J = 7.6 Hz, 1H), 8.68-8.62 (m, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.97-7.10 (m, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.56-7.49

(m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.3, 150.3, 147.6, 145.8, 137.8, 136.4, 132.4, 127.2, 126.6, 126.4, 125.2, 125.0, 122.9, 120.4, 119.5, 119.2, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₅N₂O₃: 307.1083; found: 307.1077. FT-IR (neat, cm⁻¹) υ 3338, 2920, 1759, 1673, 1529, 1495, 1182, 724.

8-(Picolinamido)naphthalen-1-yl propionate (**3aa-2**). Following the general procedure, **3aa-2** was obtained as a colorless solid (49.9 mg, 78%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 136.0–138.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.77 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 4.4 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.95 (dd, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.55-7.50 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.18 (dd, J = 7.6, 1.2 Hz, 1H), 2.84 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.2, 162.2, 150.3, 147.5, 126.0, 137.8, 136.4, 132.5, 127.1, 126.6, 126.4, 125.3, 125.0, 123.0, 120.3, 119.4, 119.3, 28.0, 8.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) υ 3343, 2925, 1761, 1674, 1530, 1496, 1108, 748.

8-(Picolinamido)naphthalen-1-yl butyrate (**3aa-3**). Following the general procedure, **3aa-3** was obtained as a yellow solid (34.7 mg, 52%). R_f = 0.52 (n-hexane/EtOAc 3:1). m.p. 104.0–106.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.50 (s, 1H), 8.76 (d, *J* = 7.6 Hz, 1H), 8.66 (d, *J* = 4.4 Hz, 1H), 8.38 (d, *J* = 8.0 Hz, 1H), 7.95 (t, *J* = 7.6

Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.56-7.50 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.17 (dd, J = 7.6, 0.8 Hz, 1H), 2.77 (t, J = 7.6 Hz, 2H), 1.77-1.67 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.3, 162.2, 150.4, 147.6, 146.0, 137.8, 136.4, 132.5, 127.1, 126.6, 126.4, 125.3, 125.0, 123.0, 120.3,

119.4, 119.3, 36.3, 18.2, 13.5. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{20}H_{19}N_2O_3$: 335.1396; found: 335.1390. FT-IR (neat, cm⁻¹) v 3338, 2925, 1759, 1677, 1529, 1496, 748.

8-(Picolinamido)naphthalen-1-yl isobutyrate (**3aa-4**). Following the general procedure, **3aa-4** was obtained as a yellow solid (24.7 mg, 37%). $R_f = 0.52$ (n-hexane/EtOAc 3:1). m.p. 100.0–102.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.52 (s, 1H), 8.78 (d, J = 7.6 Hz, 1H), 8.63 (d, J = 4.8 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.95 (dt, J = 7.6, 1.6 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.0 Hz,

1H), 7.55-7.50 (m, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.13 (dd, J = 7.6, 0.8 Hz, 1H), 3.29-3.20 (m, 1H), 1.27 (d, J = 7.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.1, 162.3, 150.4, 147.5, 146.3, 137.8, 136.4, 132.6, 127.0, 126.5, 126.4, 125.3, 125.0, 123.0, 120.1, 119.3, 33.9, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉N₂O₃: 335.1396; found: 335.1390. FT-IR (neat, cm⁻¹) υ 3346, 2923, 1763, 1684, 1530, 1497, 1075, 754.

8-(Picolinamido)naphthalen-1-yl pivalate (**3aa-5**). Following the general procedure, **3aa-5** was obtained as a yellow oil (45.2 mg, 65%). $R_f = 0.52$ (n-hexane/EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.66 (d, J = 4.0 Hz, 1H), 8.47 (d, J = 7.6 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.93 (dt, J = 7.6, 1.6 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.55-7.48 (m,

2H), 7.45 (t, J = 7.6 Hz, 1H), 7.04 (dd, J = 7.6, 1.2 Hz, 1H), 1.26 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.1, 162.7, 150.3, 147.9, 147.3, 137.7, 136.4, 132.1, 127.0, 126.5, 126.3, 125.6, 125.4, 123.0, 121.0, 120.9, 120.0, 39.5, 26.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₂₁N₂O₃: 349.1552; found: 349.1547. FT-IR (neat, cm⁻¹) v 3349, 2925, 1752, 1683, 1528, 1495, 1086, 752.

8-(Picolinamido)naphthalen-1-yl nonanoate (**3aa-6**). Following the general procedure, **3aa-6** was obtained as a colorless solid (38.8 mg, 48%). $R_f = 0.75$ (n-hexane/EtOAc 3:1). m.p. 94.0–96.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.50 (s, 1H), 8.76 (dd, J = 7.6, 0.8 Hz, 1H), 8.65 (d, J = 4.8 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.95 (dt, J = 7.6, 1.6 Hz, 1H), 7.76 (dd, J = 8.0, 1.2 Hz, 1H), 7.68 (dd, J = 8.0,

1.2 Hz, 1H), 7.56-7.50 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.17 (dd, J = 7.6, 0.8 Hz, 1H), 2.77 (t, J = 7.6 Hz, 2H), 1.70-1.64 (m, 2H), 1.32-1.21 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.5, 162.2, 150.4, 147.6, 146.0, 137.8, 136.4, 132.5, 127.1, 126.5, 126.4, 125.3, 125.0, 123.0, 120.3, 119.4, 119.3, 34.5, 31.7, 29.2, 29.1, 24.7, 22.6, 14.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₉N₂O₃: 405.2178; found: 405.2173. FT-IR (neat, cm⁻¹) v 3361, 2922, 1766, 1683, 1529, 1496, 1091, 750.

8-(picolinamido)naphthalen-1-yl adamantane-1-carboxylate (**3aa-7**). Following the general procedure, **3aa-7** was obtained as a yellow solid (50.3 mg, 59%). $R_f = 0.52$ (n-hexane/EtOAc 3:1). m.p. 204.0–206.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 8.69 (d, J = 4.4 Hz, 1H), 8.36 (d, J = 7.6 Hz, 2H), 7.93 (dt, J = 7.6, 1.6 Hz, 1H), 7.78-7.68 (m, 2H), 7.55-7.47 (m, 2H), 7.44 (t, J = 8.0 Hz,

1H), 7.00 (dd, J = 7.6, 1.2 Hz, 1H), 2.10-1.96 (m, 1H), 1.94-1.86 (m, 8H), 1.66-1.60 (m, 3H), 1.52-1.46 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 177.1, 162.7, 150.5, 148.0, 147.3, 137.7, 136.4, 132.0, 126.9, 126.5, 126.2, 125.8, 125.5, 123.1, 121.4, 121.2, 120.2, 41.4, 38.3, 36.2, 27.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₇H₂₇N₂O₃: 427.2022; found: 427.2016. FT-IR (neat, cm⁻¹) υ 3365, 2914, 1746, 1684, 1527, 1496, 1198, 1032, 752.

8-(Picolinamido)naphthalen-1-yl cyclopropanecarboxylate (**3aa-8**). Following the general procedure, **3aa-8** was obtained as a colorless solid (39.9 mg, 60%). $R_f = 0.46$ (n-hexane/EtOAc 3:1). m.p. 148.0–150.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.55 (s, 1H), 8.68 (dd, J = 8.0, 1.2 Hz, 1H), 8.60 (d, J = 4.4 Hz, 1H), 8.38 (d, J = 8.0Hz, 1H), 7.94 (dt, J = 7.6, 1.6 Hz, 1H), 7.76 (dd, J = 8.0, 1.2 Hz,

1H), 7.69 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.51-7.47 (m, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.19 (dd, J = 7.6, 1.2 Hz, 1H), 2.19-2.12 (m, 1H), 1.04-0.98 (m, 2H), 0.73-0.67 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.8, 162.3, 150.5, 147.6, 146.2, 137.6, 136.4, 132.4, 127.1, 126.41, 126.31, 125.5, 125.1, 122.8, 120.4, 119.8, 119.6, 13.5, 9.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₇N₂O₃: 333.1239; found: 333.1234. FT-IR (neat, cm⁻¹) υ 3357, 2923, 1752, 1683, 1530, 1498, 1125, 1086, 752.

8-(Picolinamido)naphthalen-1-yl cyclobutanecarboxylate (**3aa-9**). Following the general procedure, **3aa-9** was obtained as a colorless solid (33.2 mg, 48%). $R_f = 0.52$ (n-hexane/EtOAc 3:1). m.p. 127.0–129.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.46 (s, 1H), 8.77-8.69 (m, 2H), 8.37 (d, J = 8.0 Hz, 1H), 7.95 (dt, J = 7.6, 1.6 Hz, 1H), 7.76 (dd, J = 8.0, 1.2 Hz, 1H), 7.68 (dd, J = 8.0, 1.2 Hz,

1H), 7.57-7.50 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.17 (dd, J = 7.6, 1.2 Hz, 1H), 3.81-3.70 (m, 1H), 2.43-2.32 (m, 2H), 2.18-2.08 (m, 2H), 2.00-1.92 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.3, 162.2, 150.5, 147.5, 146.1, 137.8, 136.4, 132.5, 127.0, 126.6, 126.4, 125.3, 125.0, 123.0, 120.2, 119.4, 119.3, 38.2, 25.3, 18.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₉N₂O₃: 347.1396; found: 347.1390. FT-IR (neat, cm⁻¹) v 3345, 2924, 1758, 1682, 1529, 1496, 1108, 1032, 753.

8-(Picolinamido)naphthalen-1-yl cyclopentanecarboxylate (**3aa-10**). Following the general procedure, **3aa-10** was obtained as a yellow solid (30.2 mg, 42%). $R_f = 0.60$ (n-hexane/EtOAc 3:1). m.p. 116.0–118.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.53 (s, 1H), 8.76 (d, J = 7.6 Hz, 1H), 8.62 (d, J = 3.6 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.68 (d,

J = 8.0 Hz, 1H), 7.57-7.49 (m, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 3.46-3.35 (m, 1H), 1.94-1.82 (m, 4H), 1.79-1.71 (m, 2H), 1.61-1.53 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 162.2, 150.5, 147.4, 146.2, 137.8, 136.4, 132.6, 127.0, 126.5, 126.4, 125.3, 125.0, 123.0, 120.2, 119.4, 119.3, 43.8, 30.2, 25.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₁N₂O₃: 361.1552; found: 361.1547. FT-IR (neat, cm⁻¹) v 3339, 2928, 1760, 1682, 1529, 1496, 1105, 752.

8-(Picolinamido)naphthalen-1-yl cyclohexanecarboxylate (**3aa-11**). Following the general procedure, **3aa-11** was obtained as a colorless solid (56.1 mg, 75%). $R_f = 0.65$ (n-hexane/EtOAc 3:1). m.p. 148.0–150.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.42 (s, 1H), 8.74-8.67 (m, 2H), 8.38 (d, J = 8.0 Hz, 1H), 7.96 (dt, J = 8.0, 1.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H),

7.56-7.50 (m, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.10 (dd, J = 7.6, 1.2 Hz, 1H), 2.95-2.86 (m, 1H), 1.97-1.90 (m, 2H), 1.83-1.68 (m, 3H), 1.66-1.61 (m, 1H), 1.59-1.50 (m, 2H), 1.20-1.12 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.0, 162.2, 150.5, 147.7, 146.3, 137.8, 136.4, 132.5, 127.0, 126.5, 126.4, 125.3, 125.1, 123.0, 120.2, 119.6, 119.5, 42.7, 28.8, 25.6, 25.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₃N₂O₃: 375.1709; found: 375.1703. FT-IR (neat, cm⁻¹) υ 3344, 2928, 1761, 1684, 1531, 1497, 1106, 1023, 751.

8-(Picolinamido)naphthalen-1-yl 2-(naphthalen-2-yl)acetate (**3aa-12**). Following the general procedure, **3aa-12** was obtained as a colorless solid (78.6 mg, 91%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 178.0–180.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.67 (s, 1H), 8.81 (dd, J = 8.0, 1.2 Hz, 1H), 8.68 (d, J = 4.4 Hz, 1H), 8.42 (d, J = 7.6 Hz, 1H), 8.10-8.04 (m, 1H), 7.93 (dt, J = 7.6, 1.6 Hz, 1H), 7.90-7.85 (m, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.58-7.41 (m, 6H), 7.36 (t, J = 8.0 Hz, 1H), 6.99 (dd, J = 7.6, 1.2 Hz, 1H), 4.58 (s, 2H). ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 170.2, 162.3, 150.4, 147.7, 146.0, 137.9, 136.4, 133.9, 132.4, 132.0, 129.7, 128.8, 128.4, 127.9, 127.2, 126.7, 126.6, 126.5, 125.9, 125.5, 125.2, 125.1, 123.6, 123.1, 120.2, 119.6, 119.2, 39.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₁N₂O₃: 433.1552; found: 433.1547. FT-IR (neat, cm⁻¹) υ 3349, 2923, 1766, 1682, 1530, 1497, 1101, 753.

8-(Picolinamido)naphthalen-1-yl

2,2,3,3-tetramethylcyclopropane-1-carboxylate (3aa-13). Following the general procedure, 3aa-13 was obtained as a white solid (38.1 mg, 49%). $R_f = 0.70$ (n-hexane/EtOAc 3:1). m.p. 172.0–174.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.70 (s, 1H), 8.77 (d, J = 7.2 Hz, 1H), 8.67 (d, J = 4.8 Hz, 1H), 8.40 (d, J = 8.0 Hz, 1H), 7.93 (dt, J = 8.0, 1.6 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.66

(d, J = 7.6 Hz, 1H), 7.54-7.43 (m, 3H), 7.18 (dd, J = 7.6, 0.8 Hz, 1H), 1.79 (s, 1H), 1.16 (s, 6H), 0.90 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.1, 162.0, 150.5, 147.9, 145.9, 137.7, 136.3, 132.8, 126.7, 126.4, 126.3, 125.2, 124.7, 122.9, 121.0, 119.5, 118.6, 35.2, 32.0, 22.9, 16.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₅N₂O₃: 389.1865; found: 389.1860. FT-IR (neat, cm⁻¹) υ 3336, 2923, 1750, 1685, 1533, 1499, 1098, 1030, 752.

8-(picolinamido)naphthalen-1-yl 3-(2-bromophenyl)propanoate (**3aa-14**). Following the general procedure, **3aa-14** was obtained as a white solid (59.9 mg, 63%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 124.0–126.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.48 (s, 1H), 8.78 (d, J = 7.6 Hz, 1H), 8.46 (d, J = 4.4 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 7.91 (t, J = 7.2 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.68 (d,

J = 8.4 Hz, 1H), 7.57-7.49 (m, 2H), 7.47-7.38 (m, 2H), 7.24-7.14 (m, 2H), 7.13-7.07 (m, 2H), 3.19-3.09 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.4, 162.2, 150.2, 147.7, 145.8, 139.3, 137.7, 136.4, 132.9, 132.5, 130.5, 128.3, 127.6, 127.2, 126.51, 126.45, 125.2, 125.0, 124.3, 122.9, 120.3, 119.4, 119.1, 34.3, 31.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₀BrN₂O₃: 475.0657; found: 475.0652. FT-IR (neat, cm⁻¹) v 3344, 2921, 1765, 1682, 1529, 1496, 1100, 750.

8-(Picolinamido)naphthalen-1-yl 2-methylbenzoate (**3ab-1**). Following the general procedure, **3ab-1** was obtained as a yellow solid (64.9 mg, 85%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 128.0–130.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.43 (s, 1H), 8.66 (d, J = 7.6 Hz, 1H), 8.26 (dd, J = 7.6, 0.8 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.75-7.68 (m, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.43 (dt, J = 7.6, 1.2 Hz, 1H),

7.30-7.22 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 7.13-7.07 (m, 1H), 2.47 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.3, 162.4, 149.6, 147.1, 146.9, 141.7, 137.1, 136.5, 132.7, 132.4, 131.8, 131.7, 129.0, 127.3, 126.5, 125.81, 125.80, 125.5, 125.2, 122.0, 120.2, 120.1, 120.0, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₃: 383.1396; found: 383.1390. FT-IR (neat, cm⁻¹) υ 3334, 2922, 1741, 1685, 1531, 1497, 1218, 1031, 737.

8-(Picolinamido)naphthalen-1-yl 2-methoxybenzoate (**3ab-2**). Following the general procedure, **3ab-2** was obtained as a yellow solid (39.8 mg, 50%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 144.0–146.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.54 (s, 1H), 8.69 (d, J = 7.6 Hz, 1H), 8.18 (d, J = 7.6 Hz, 1H), 8.06 (dd, J = 7.6, 1.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.75-7.68 (m, 2H), 7.55 (t, J =

8.0 Hz, 1H), 7.52-7.45 (m, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.15-7.08 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 3.72 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.7, 162.4, 159.9, 149.8, 147.2, 146.9, 137.0, 136.4, 134.3, 132.7, 132.6, 127.0, 126.4, 125.7, 125.4, 125.0, 122.0, 120.0, 119.9, 119.7, 119.5, 111.9, 55.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₄: 399.1345; found: 399.1339. FT-IR (neat, cm⁻¹) υ 3336, 2925, 1750, 1684, 1531, 1495, 1214, 1025, 754.

8-(Picolinamido)naphthalen-1-yl 2-acetylbenzoate (**3ab-3**). Following the general procedure, **3ab-3** was obtained as a yellow solid (50.0 mg, 61%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 176.0–178.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.02 (s, 1H), 8.46 (d, J = 7.6 Hz, 1H), 8.25 (d, J = 8.0 Hz, 2H), 8.14 (d, J = 6.8 Hz,

3ab-3 CH₃ 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 6.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 4.0 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 7.15-7.03 (m, 1H), 2.64 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.3, 164.9, 162.4, 149.5, 147.0, 146.5, 140.4, 137.2, 136.5, 133.4, 131.8, 130.8, 128.0, 127.6, 126.5, 125.9, 125.8, 125.5, 122.3, 121.4, 120.6, 120.1, 26.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉N₂O₄: 411.1345; found: 411.1339. FT-IR (neat, cm⁻¹) υ 3351, 2922, 1742, 1685, 1529, 1496, 1226, 1055, 754.

8-(picolinamido)naphthalen-1-yl 3-methylbenzoate (**3ab-5**). Following the general procedure, **3ab-5** was obtained as a yellow solid (63.1 mg, 71%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 156.0–158.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.31 (s, 1H), 8.59 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.6 Hz, 1H), 8.00 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.77-7.69 (m, 2H),

7.56 (t, J = 8.0 Hs, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.35-7.30 (m, 2H), 7.23 (dd, J = 7.6, 0.4 Hz. 1H), 7.15-7.09 (m, 1H), 2.37 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.1, 162.6, 149.7, 147.2, 147.1, 138.2, 137.0, 136.5, 134.3, 132.3, 131.2, 129.8, 128.3, 128.0, 127.3, 126.5, 125.8, 125.5, 125.4, 122.1, 120.5, 120.4, 120.1, 21.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₃: 383.1396; found: 383.1390. FT-IR (neat, cm⁻¹) υ 3344, 2920, 1739, 1684, 1530, 1496, 1260, 1177, 1050, 748.

8-(Picolinamido)naphthalen-1-yl 3-methoxybenzoate (**3ab-6**). Following the general procedure, **3ab-6** was obtained as a yellow solid (50.9 mg, 64%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 142.0–144.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.26 (s, 1H), 8.57 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.6

3ab-6 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.77-7.65 (m, 3H), 7.56 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 4.4 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.23 (dd, J = 7.6, 0.8 Hz, 1H), 7.16-7.08 (m, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 162.5, 159.4, 149.6, 147.2, 146.9, 137.0, 136.4, 132.2, 131.0, 129.3, 127.3, 126.5, 125.9, 125.5, 125.4, 123.2, 122.1, 120.7, 120.4, 120.3, 120.0, 114.7, 55.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₄: 399.1345; found: 399.1339. FT-IR (neat, cm⁻¹) v 3351, 2916, 1737, 1683, 1529, 1492, 1263, 1206, 1032, 748.

8-(Picolinamido)naphthalen-1-yl 3-acetylbenzoate (**3ab-7**). Following the general procedure, **3ab-7** was obtained as a yellow solid (49.2 mg, 60%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 147.0–149.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.00 (s, 1H), 8.67 (s, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 8.16-8.10 (m, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.67 (dt, J = 7.6, 1.2 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.50

(dt, J = 7.6, 2.4 Hz, 2H), 7.40 (d, J = 4.4 Hz, 1H), 7.24 (dd, J = 7.6, 0.8 Hz, 1H), 7.08 (dd, J = 7.6, 4.4 Hz, 1H), 2.59 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.9, 164.9, 162.3, 149.4, 147.0, 146.5, 137.1, 136.4, 134.8, 132.6, 131.7, 130.5, 130.2, 128.8, 127.5, 126.5, 125.9, 125.8, 125.5, 122.2, 121.6, 120.7, 120.1, 26.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉N₂O₄: 411.1345; found: 411.1339. FT-IR (neat, cm⁻¹) ν 3344, 2920, 1743, 1686, 1529, 1496, 1211, 749.

8-(Picolinamido)naphthalen-1-yl 3-cyanobenzoate (**3ab-8**). Following the general procedure, **3ab-8** was obtained as a yellow solid (35.4 mg, 45%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 176.0–178.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.8 (s, 1H), 8.45 (s, 1H), 8.35 (dt, J = 8.8, 1.6 Hz, 1H), 8.31(d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.86 (dd, J = 8.4, 1.2 Hz, 1H), 7.82-7.74 (m,

(d, J = 8.0 Hz, H), 7.80 (dd, J = 8.4, 1.2 Hz, H), 7.82-7.74 (fi, 3H), 7.72 (d, J = 4.8 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.53-7.46 (m, 2H), 7.25-7.20 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 162.4, 149.5, 147.2, 146.2, 137.4, 136.5, 136.3, 134.5, 134.0, 131.4, 130.9, 129.3, 127.9, 126.6, 126.21, 126.18, 125.5, 122.5, 122.3, 121.0, 120.1, 117.5, 112.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₆N₃O₃: 394.1192; found: 394.1186. FT-IR (neat, cm⁻¹) υ 3362, 2918, 1745, 1684, 1529, 1495, 1258, 1166, 749.

8-(Picolinamido)naphthalen-1-yl benzoate (**3ab-9**). Following the general procedure, **3ab-9** was obtained as a yellow solid (62.6 mg, 85%). m.p. 148.0–150.0 °C. R_f = 0.38 (n-hexane/EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃) δ 11.34 (s, 1H), 8.63 (d, *J* = 7.6 Hz, 1H), 8.23 (d, *J* = 7.2 Hz, 2H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.76-7.67 (m, 2H), 7.63-7.54 (m, 2H), 7.49 (t, *J* = 8.0 Hz,

1H), 7.44 (t, J = 8.0 Hz, 2H), 7.31 (t, J = 4.4 Hz, 1H), 7.23 (dd, J = 7.6, 0.8 Hz, 1H), 7.13-7.08 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.9, 162.5, 149.6, 147.2, 147.0, 137.1, 136.5, 133.5, 132.3, 130.7, 129.9, 128.4, 127.3, 126.5, 125.8, 125.5, 125.4, 122.1, 120.4, 120.3, 120.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₇N₂O₃: 369.1239; found: 369.1234. FT-IR (neat, cm⁻¹) υ 3345, 2921, 1740, 1683, 1529, 1495, 1220, 1049, 752.

8-(Picolinamido)naphthalen-1-yl 4-methylbenzoate (**3ab-10**). Following the general procedure, **3ab-10** was obtained as a yellow solid (71.8 mg, 94%). $R_f = 0.38$ (n-hexane/EtOAc 3:1). m.p. 159.0–161.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.33 (s, 1H), 8.62 (d, J = 7.6 Hz, 1H), 8.15 (d, J = 7.6 Hz, 1H), 8.10 (d, J = 7.6 Hz, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.75-7.68 (m, 2H), 7.56 (t, J = 8.0

Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 4.4 Hz, 1H), 7.24-7.18 (m, 3H), 7.15-7.09 (m, 1H), 2.43 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 162.5, 149.6, 147.2, 147.0, 144.3, 137.0, 136.4, 132.3, 130.8, 129.0, 127.2, 127.1, 126.4, 125.6, 125.5, 125.3, 122.1, 120.31, 120.29, 120.0, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₃: 383.1396; found: 383.1390. FT-IR (neat, cm⁻¹) υ 3345, 2920, 1737, 1683, 1529, 1496, 1219, 1049, 748.

8-(Picolinamido)naphthalen-1-yl 4-methoxybenzoate (**3ab-11**). Following the general procedure, **3ab-11** was obtained as a white solid (54.1 mg, 68%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 209.0–211.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 8.59 (dd, J = 7.6, 0.8 Hz, 1H), 8.22-8.14 (m, 3H), 7.80 (dd, J =8.4, 1.2 Hz, 1H), 7.77-7.72 (m, 2H), 7.56 (t, J = 8.0 Hz, 1H),

7.52-7.46 (m, 2H), 7.22 (dd, J = 7.6, 1.2 Hz, 1H), 7.20-7.15 (m, 1H), 6.92-6.86 (m, 2H), 3.90 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 163.8, 162.4, 149.7, 147.2, 147.1, 137.3, 136.5, 133.0, 132.3, 127.1, 126.5, 125.8, 125.5, 125.4, 122.3, 122.2, 120.5, 120.4, 120.1, 113.6, 55.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₄: 399.1345; found: 399.1339. FT-IR (neat, cm⁻¹) υ 3337, 2922, 1731, 1680, 1527, 1496, 1247, 1028, 754.

8-(Picolinamido)naphthalen-1-yl 4-phenoxybenzoate (**3ab-12**). Following the general procedure, **3ab-12** was obtained as a white solid (88.3 mg, 96%). $R_f = 0.38$ (n-hexane/EtOAc 3:1). m.p. 137.0–139.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.31 (s, 1H), 8.62 (dd, J = 8.0, 1.2 Hz, 1H), 8.24-8.17 (m, 3H), 7.84-7.74 (m, 3H),

3ab-12 7.65-7.61 (m, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.53-7.43 (m, 3H), 7.29-7.22 (m, 3H), 7.13-7.07 (m, 2H), 7.00-7.95 (m, 2H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 165.2, 162.4, 162.2, 155.3, 149.7, 147.2, 146.9, 137.1, 136.4, 132.9, 132.2, 130.1, 127.2, 126.4, 125.8, 125.5, 125.4, 124.7, 123.8, 122.2, 120.5, 120.3, 120.1, 120.0, 117.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₉H₂₁N₂O₄: 461.1501; found: 461.1496. FT-IR (neat, cm⁻¹) υ 3344, 2922, 1737, 1684, 1530, 1494, 1240, 1048, 751.

8-(Picolinamido)naphthalen-1-yl 4-acetylbenzoate (**3ab-13**). Following the general procedure, **3ab-13** was obtained as a yellow solid (25.4 mg, 31%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 173.0–175.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.01 (s, 1H), 8.46 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 2H), 8.14 (d, J

^bO **3ab-13** = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 4.8 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.13-7.07 (m, 1H), 2.65 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.3, 164.9, 162.5, 149.6, 147.1, 146.6, 140.5, 137.2, 136.5, 133.4, 131.8, 130.9, 128.0, 127.6, 126.6, 125.9, 125.8, 125.5, 122.3, 121.5, 120.6, 120.1, 26.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉N₂O₄: 411.1345; found: 411.1339. FT-IR (neat, cm⁻¹) v 3355, 2917, 1741, 1684, 1529, 1496, 1228, 1053, 754.

8-(Picolinamido)naphthalen-1-yl 4-chlorobenzoate (**3ab-14**). Following the general procedure, **3ab-14** was obtained as a yellow solid (70.8 mg, 88%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 143.0–145.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.00 (s, 1H), 8.45 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 8.09 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.78-7.71 (m, 2H), 7.59-7.53 (m,

2H), 7.48 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 2H), 7.24-7.18 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.9, 162.4, 149.5, 147.1, 146.6, 139.9, 137.2, 136.4, 131.9, 131.8, 128.6, 128.1, 127.5, 126.5, 125.9, 125.8, 125.5, 122.3, 121.5, 120.7, 120.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₆ClN₂O₃: 403.0849; found: 403.0844. FT-IR (neat, cm⁻¹) v 3349, 2926, 1740, 1683, 1528, 1492, 1219, 1051, 750.

8-(Picolinamido)naphthalen-1-yl 4-cyanobenzoate (**3ab-15**). Following the general procedure, **3ab-15** was obtained as a white solid (55.0 mg, 70%). $R_f = 0.25$ (n-hexane/EtOAc 3:1). m.p. 163.0–165.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.35 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.0 Hz, 2H), 8.15 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.82-7.72 (m, 2H), 7.63 (d, J = 8.0

Hz, 2H), 7.60-7.54 (m, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.25-7.19 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.1, 162.4, 149.5, 147.0, 146.2, 137.4, 136.5, 133.4, 132.0, 131.4, 131.0, 127.9, 126.6, 126.2, 126.1, 125.5, 122.5, 122.3, 120.8, 120.1, 117.7, 116.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₆N₃O₃: 394.1192; found: 394.1186. FT-IR (neat, cm⁻¹) υ 3352, 2921, 1745, 1685, 1530, 1496, 1251, 1222, 1061, 754.

8-(Picolinamido)naphthalen-1-yl 4-(trifluoromethyl)benzoate (**3ab-16**). Following the general procedure, **3ab-16** was obtained as a yellow solid (49.7 mg, 57%). $R_f = 0.52$ (n-hexane/EtOAc 3:1). m.p. 150.0–152.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.24 (d, J = 8.0 Hz, 2H), 8.13 (d, J = 8.0Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.71

(dt, J = 7.6, 1.6 Hz, 1H), 7.61-7.48 (m, 5H), 7.25 (dd, J = 7.6, 0.8 Hz, 1H), 7.17-7.11 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.5, 162.5, 149.5, 147.1, 146.4, 137.3, 136.6, 134.7 (q, $J_{C-F} = 32.6$ Hz), 132.9, 131.6, 130.9, 127.8, 126.6, 126.2, 126.1, 125.3, 125.2 (q, $J_{C-F} = 3.7$ Hz), 123.5 (q, $J_{C-F} = 271.1$ Hz), 122.4, 121.0, 120.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₆F₃N₂O₃: 437.1113; found: 437.1108. FT-IR (neat, cm⁻¹) v 3345, 2920, 1744, 1684, 1528, 1494, 1321, 1063, 752.

8-(Picolinamido)naphthalen-1-yl 4-nitrobenzoate (**3ab-17**). Following the general procedure, **3ab-17** was obtained as a yellow solid (57.8 mg, 70%). $R_f = 0.28$ (n-hexane/EtOAc 3:1). m.p. 187.0–189.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.30 (d, J = 8.8 Hz, 3H), 8.13 (d, J = 8.8 Hz, 3H), 7.86 (dd, J = 8.0, 1.2 Hz, 1H), 7.72 (dt, J = 7.6, 1.6 Hz,

1H), 7.63-7.60 (m, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.25 (dd, J = 7.6, 1.2 Hz, 1H), 7.18-7.13 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 162.4, 150.5, 149.5, 147.0, 146.1, 137.4, 136.5, 134.9, 131.6, 131.3, 127.9, 126.6, 126.3, 126.1, 125.5, 123.2, 122.6, 122.5, 120.9, 120.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₆N₃O₅: 414.1090; found: 414.1084. FT-IR (neat, cm⁻¹) υ 3342, 2923, 1742, 1673, 1523, 1496, 1240, 1063, 753.

8-(Picolinamido)naphthalen-1-yl furan-2-carboxylate (**3ab-18**). Following the general procedure, **3ab-18** was obtained as a white solid (40.1 mg, 56%). $R_f = 0.25$ (n-hexane/EtOAc 3:1). m.p. 167.0–169.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.19 (s, 1H), 8.51 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 4.0 Hz,

^{3ab-18} 1H), 7.83-7.72 (m, 3H), 7.59-7.52 (m, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.29-7.21 (m, 2H), 6.50-6.42 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.5, 157.2, 149.8, 147.4, 147.1, 146.0, 144.2, 137.3, 136.4, 132.0, 127.5, 126.5, 125.9, 125.6, 125.4, 122.3, 121.1, 120.4, 120.2, 120.0, 112.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₅N₂O₄: 359.1032; found: 359.1026. FT-IR (neat, cm⁻¹) v 3347, 2921, 1741, 1683, 1530, 1496, 1066, 753.

8-(Picolinamido)naphthalen-1-yl thiophene-2-carboxylate (**3ab-20**). Following the general procedure, **3ab-20** was obtained as a white solid (66.6 mg, 89%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 180.0–182.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.34 (s, 1H), 8.62 (d, J = 7.6 Hz, 1H), 8.20 (d, J = 7.6 Hz, 1H), 8.00 (d, J = 3.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.78-7.72 (m, 2H), 7.63 (d, J = 100

4.4 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.29-7.24 (m, 1H), 7.22-7.17 (m, 1H), 7.10 (t, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.5, 161.1, 149.6, 147.1, 146.5, 137.1, 136.4, 135.2, 133.9, 133.3, 132.1, 127.8, 127.4, 126.4, 125.9, 125.40, 125.36, 122.1, 120.6, 120.3, 120.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₅N₂O₃S: 375.0803; found: 375.0798. FT-IR (neat, cm⁻¹) v 3333, 2917, 1717, 1679, 1490, 1420, 1252, 1218, 736.

8-(Picolinamido)naphthalen-1-yl furan-3-carboxylate (**3ab-22**). Following the general procedure, **3ab-22** was obtained as a white solid (55.5 mg, 72%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 147.0–149.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.25 (s, 1H), 8.60 (d, J = 8.0 Hz, 1H), 8.30-8.21 (m, 2H), 7.95 (d, J = 4.4 Hz, 1H),

3ab-22 7.84-7.78 (m, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 1.6 Hz, 1H), 7.35-7.30 (m, 1H), 7.24 (dd, J = 7.8, 0.8 Hz, 1H), 6.85 (d, J = 1.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.5, 161.7, 149.8, 149.5, 147.2, 146.2, 143.6, 137.3, 136.4, 132.1, 127.3, 126.4, 126.1, 125.5, 125.4, 122.4, 120.7, 120.3, 120.1, 118.9, 110.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₅N₂O₄: 359.1032; found: 359.1026. FT-IR (neat, cm⁻¹) v 3333, 2921, 1735, 1680, 1491, 1428, 1114, 750.

8-(picolinamido)naphthalen-1-yl thiophene-3-carboxylate (**3ab-24**). Following the general procedure, **3ab-24** was obtained as a white solid (68.1 mg, 91%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 162.0–164.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.29 (s, 1H), 8.58 (d, J = 7.8 Hz, 1H), 8.32 (d, J = 1.6 Hz, 1H), 8.18 (d, J = 8.0 Hz,

3ab-24 1H), 7.82-7.71 (m, 3H), 7.65 (t, J = 4.4 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.30-7.26 (m, 1H), 7.24-7.16 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.5, 161.5, 149.6, 147.3, 146.6, 137.1, 136.4, 134.8, 133.0, 132.2, 128.7, 127.3, 126.4, 126.0, 125.9, 125.4, 125.3, 122.2, 120.5, 120.3, 120.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₅N₂O₃S: 375.0803; found: 375.0798. FT-IR (neat, cm⁻¹) υ 3328, 2916, 1728, 1678, 1529, 1494, 1238, 1188, 746.

8-(Picolinamido)naphthalen-1-yl 2-naphthoate (**3ab-29**). Following the general procedure, **3ab-29** was obtained as a white solid (62.7 mg, 75%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 191.0–193.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.76 (s, 1H), 8.48 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.07 (d,

3ab-29 J = 7.6 Hz, 1H), 7.89 (t, J = 7.2 Hz, 2H), 7.83 (t, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.60-7.45 (m, 4H), 7.30 (d, J = 7.2 Hz, 1H), 7.09 (d, J = 4.4 Hz, 1H), 6.73-6.65 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.0, 162.6, 149.4, 146.92, 146.89, 136.8, 136.5, 135.6, 132.4, 132.2, 132.0, 129.4, 128.7, 128.1, 127.7, 127.3, 126.9, 126.8, 126.4, 125.8, 125.7, 125.6, 125.4, 122.0, 121.3, 120.8, 120.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₇H₁₉N₂O₃: 419.1396; found: 419.1390. FT-IR (neat, cm⁻¹) υ 3349, 2924, 1737, 1684, 1530, 1497, 1217, 1186, 755.

8-(Picolinamido)naphthalen-1-yl 1-naphthoate (**3ab-31**). Following the general procedure, **3ab-31** was obtained as a yellow solid (66.8 mg, 80%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 172.0–174.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 8.77-8.69 (m, 1H), 8.56 (d, J = 7.6 Hz, 1H), 8.52 (d, J = 7.2 Hz, 1H), 7.99 (d. J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.82-7.75 (m, 2H), 7.61-7.45 (m, 5H), 7.41 (t, J = 7.6

Hz, 1H), 7.35 (dd, J = 7.6, 1.2 Hz, 1H), 6.91 (d, J = 4.4 Hz, 1H), 6.78-6.71 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.1, 162.3, 149.2, 146.7, 146.5, 136.5, 136.4, 134.1, 133.5, 132.2, 131.5, 131.4, 128.22, 128.19, 127.4, 126.5, 126.4, 126.3, 125.54, 125.51, 125.4, 125.3, 124.3, 121.7, 120.7, 120.5, 120.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₇H₁₉N₂O₃: 419.1396; found: 419.1390. FT-IR (neat, cm⁻¹) υ 3343, 2917, 1735, 1684, 1530, 1497, 1108, 752.

8-(Picolinamido)naphthalen-1-yl

benzo[d][1,3]dioxole-5-carboxylate (**3ab-32**). Following the general procedure, **3ab-32** was obtained as a white solid (61.8 mg, 75%). $R_f = 0.25$ (n-hexane/EtOAc 3:1). m.p. 181.0–183.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.6 (s, 1H), 8.51 (d, J = 7.6 Hz, 1H),

3ab-32 8.18 (d, J = 7.6 Hz, 1H), 7.85-7.73 (m, 5H), 7.61 (d, J = 1.6 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.25-7.18 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 6.04 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.1, 162.5, 152.0, 149.8, 147.5, 147.3, 146.9, 137.1, 136.5, 132.1, 127.2, 126.9, 126.4, 125.8, 125.6, 125.5, 123.6, 122.3, 120.9, 120.6, 120.1, 110.5, 107.9, 101.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₇N₂O₅: 413.1137; found: 413.1132. FT-IR (neat, cm⁻¹) υ 3340, 2924, 1733, 1684, 1531, 1495, 1258, 1034, 753.

8-(picolinamido)naphthalen-1-yl acrylate (**3ac-1**). Following the general procedure, **3ac-1** was obtained as a white solid (24.8 mg, 39%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 159.0–161.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.48 (s, 1H), 8.73 (d, J = 7.6 Hz, 1H), 8.61 (d, J = 4.4 Hz, 1H), 8.33 (d, J = 7.6 Hz, 1H), 7.91 (dt, J = 7.6,

1.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.51-7.44 (m, 2H), 7.23 (d, J = 7.2 Hz, 1H), 6.60 (d, J = 5.2 Hz, 1H), 6.59 (s, 1H), 5.91 (dd, J = 7.6, 4.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.8, 162.3, 150.2, 147.6, 145.9, 137.6, 136.4, 132.7, 132.4, 128.0, 127.3, 126.5, 126.4, 125.3, 125.1, 122.8, 120.1, 120.0, 119.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₅N₂O₃: 319.1083; found: 319.1077. FT-IR (neat, cm⁻¹) υ 3340, 2921, 1745, 1675, 1533, 1497, 1121, 757.

8-(picolinamido)naphthalen-1-yl methacrylate (**3ac-2**). Following the general procedure, **3ac-2** was obtained as a white solid (27.9 mg, 42%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 169.0–171.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.21 (s, 1H), 8.60 (dd, J = 8.0, 1.2Hz, 1H), 8.48 (d, J = 4.8 Hz, 1H), 8.30 (dt, J = 8.0, 1.2 Hz, 1H), 7.88 (dt, J = 7.6, 1.2 Hz, 1H), 7.77 (dd, J = 8.4, 1.2 Hz, 1H), 7.72

(dd, J = 8.4, 1.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.48-7.42 (m, 2H), 7.13 (dd, J = 7.6, 1.2 Hz, 1H), 6.42 (s, 1H), 5.70 (t, J = 1.2 Hz, 1H), 1.99 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 162.4, 150.2, 147.4, 146.9, 137.5, 136.4, 135.9, 132.2, 127.9, 127.2, 126.4, 126.3, 125.4, 125.3, 122.5, 120.4, 120.3, 120.0, 18.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₇N₂O₃: 333.1239; found: 333.1234. FT-IR (neat, cm⁻¹) υ 3324, 2924, 1730, 1675, 1533, 1494, 1104, 759.

8-(picolinamido)naphthalen-1-yl cinnamate (**3ac-3**). Following the general procedure, **3ac-3** was obtained as a yellow solid (63.0 mg, 80%). R_f = 0.48 (n-hexane/EtOAc 3:1). m.p. 131.0–133.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.44 (s, 1H), 8.63 (d, *J* = 7.6 Hz, 1H), 8.41 (d, *J* = 4.4 Hz, 1H), 8.28 (d, *J* = 7.6 Hz, 1H), 7.83-7.70 (m, 4H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.44-7.35

(m, 5H), 7.27 (d, J = 8.0 Hz, 1H), 7.22-7.17 (m, 1H), 6.79 (d, J = 15.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 162.2, 150.1, 147.6, 146.9, 146.2, 137.5, 136.4, 134.0, 132.3, 130.8, 128.9, 128.2, 127.1, 126.4, 126.1, 125.4, 125.3, 122.7, 122.6, 120.2, 119.8, 117.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉N₂O₃: 395.1396; found: 395.1390. FT-IR (neat, cm⁻¹) υ 3342, 2925, 1736, 1683, 1530, 1496, 1113, 753.

8-(picolinamido)naphthalen-1-yl 3-(p-tolyl)acrylate (**3ac-4**). Following the general procedure, **3ac-4** was obtained as a white solid (67.7 mg, 83%). $R_f = 0.60$ (n-hexane/EtOAc 3:1). m.p. 171.0–173.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.49 (s, 1H), 8.66 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 4.4 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.82-7.73 (m, 3H), 7.69 (d, J = 8.4 Hz, 1H),

7.53 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.27-7.21 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 16.0 Hz, 1H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 162.3, 150.2, 147.7, 147.0, 146.3, 141.4, 137.5, 136.4, 132.4, 131.3, 129.6, 128.3, 127.0, 126.4, 126.1, 125.4, 125.2, 122.7, 120.2, 119.9, 119.7, 116.4, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₂₁N₂O₃: 409.1552; found: 409.1547. FT-IR (neat, cm⁻¹) v 3343, 2925, 1737, 1684, 1531, 1498, 1110, 753.

8-(picolinamido)naphthalen-1-yl

3-(4-methoxyphenyl)acrylate (**3ac-5**). Following the general procedure, **3ac-5** was obtained as a yellow solid (67.8 mg, 80%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 149.0–151.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.67 (d, J = 8.0 Hz, 1H), 8.42 (d, J = 4.8 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H),

7.81-7.73 (m, 3H), 7.70 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.27-7.21 (m, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 15.6 Hz, 1H), 3.86 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.9, 162.3, 161.8, 150.2, 147.7, 146.6, 146.3, 137.4, 136.4, 132.4, 130.0, 127.0, 126.7, 126.4, 126.1, 125.4, 125.1, 122.6, 120.2, 119.9, 119.7, 114.9, 114.3, 55.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₂₁N₂O₄: 425.1501; found: 425.1496. FT-IR (neat, cm⁻¹) υ 3341, 2927, 1735, 1684, 1600, 1532, 1510, 1108, 757.

8-(picolinamido)naphthalen-1-yl

3-(4-(trifluoromethyl)phenyl)acrylate (**3ac-6**). Following the general procedure, **3ac-6** was obtained as a white solid (42.5 mg, 46%). $R_f = 0.70$ (n-hexane/EtOAc 3:1). m.p. 209.0–211.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.30 (s, 1H), 8.59 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 4.8 Hz, 1H), 8.29 (d, J = 7.6 Hz, 1H),

7.82-7.71 (m, 4H), 7.63 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.52-7.46 (m, 3H), 7.27 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 1H), 6.84 (d, J = 16.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.0, 162.2, 150.2, 147.6, 146.0, 144.8, 137.6, 137.4, 137.3, 136.5, 132.2 (q, $J_{C-F} = 32.5$ Hz), 132.1, 128.3, 127.3, 126.5, 126.1, 125.8 (q, $J_{C-F} = 3.8$ Hz), 125.5, 125.4, 123.7 (q, $J_{C-F} = 270.5$ Hz), 122.8, 120.6, 120.2, 119.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₁₈F₃N₂O₃: 463.1270; found: 463.1264. FT-IR (neat, cm⁻¹) υ 3350, 2922, 1737, 1683, 1532, 1500, 1324, 1114, 750.

8-(picolinamido)naphthalen-1-yl 3-(2-bromophenyl)acrylate (**3ac-7**). Following the general procedure, **3ac-7** was obtained as a yellow solid (62.3 mg, 66%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 151.0–153.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.35 (s, 1H), 8.61 (d, J = 7.6 Hz, 1H), 8.38 (d, J = 4.4 Hz, 1H), 8.30 (d, J = 7.6 Hz, 1H), 8.15 (d, J = 15.6 Hz, 1H), 7.82-7.71 (m, 3H), 7.64-7.59 (m,

1H), 7.55 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.39-7.34 (m, 1H), 7.31-7.25 (m, 3H), 7.21-7.15 (m, 1H), 6.73 (d, J = 16.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.9, 162.3, 150.2, 147.6, 146.1, 145.1, 137.5, 136.4, 134.1, 133.6, 132.2, 131.6, 127.7, 127.6, 127.2, 126.4, 126.0, 125.6, 125.37, 125.36, 122.8, 120.4, 120.3, 120.2, 119.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₈BrN₂O₃: 473.0501; found: 473.0495. FT-IR (neat, cm⁻¹) υ 3341, 2922, 1735, 1680, 1527, 1494, 1114, 750.

8-(picolinamido)naphthalen-1-yl

(*R*)-2-((*1R*,4*R*,4*aS*,8*aS*)-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahy dronaphthalen-1-yl)propanoate (**3ad-1**). Following the general procedure, **3ad-1** was obtained as a white solid (74.2 mg, 77%). $R_f = 0.84$ (n-hexane/EtOAc 3:1). m.p. 154.0–156.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.6 (s, 1H), 8.79 (d, *J* = 7.6 Hz,

1H), 8.77 (d, J = 4.4 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.95 (dt, J = 7.6, 1.2 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.57-7.49 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.6, 0.8 Hz, 1H), 5.03 (s, 1H), 3.16-3.06 (m, 1H), 2.45 (s, 1H), 1.97-1.72 (m, 4H), 1.68 (s, 3H), 1.58-1.44 (m, 3H), 1.38-1.29 (m, 1H), 1.24-1.19 (m, 1H), 1.09 (d, J = 7.2 Hz, 3H), 0.97-0.87 (m, 2H), 0.84 (d, J = 6.4 Hz, 3H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 176.3, 162.1, 150.6, 147.8, 145.8, 137.8, 136.4, 136.0, 132.6, 127.0, 126.5, 126.4, 125.2, 124.8, 123.0, 120.5, 119.5, 119.2, 119.0, 44.1, 41.8, 41.5, 36.5, 35.1, 27.6, 27.4, 26.5, 25.6, 23.9, 19.6, 15.0. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{31}H_{35}N_2O_3$: 483.2648; found: 483.2642. FT-IR (neat, cm⁻¹) υ 3342, 2918, 1764, 1686, 1532, 1498, 1105, 1040, 753.

8-(picolinamido)naphthalen-1-yl

(S)-2-(6-methoxynaphthalen-2-yl)propanoate

(3ad-2). Following the general procedure, 3ad-2 was obtained as a white solid (87.6 mg, 92%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 146.0–148.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 11.58 (s, 1H), 8.84-8.71 (m, 2H), 8.41 (d, J = 7.6 Hz, 1H), 7.97 (dt, J = 7.6, 1.6 Hz, 1H), 7.79-7.64 (m, 5H), 7.59-7.51 (m, 3H), 7.31 (t, J = 8.0 Hz, 1H), 7.21-7.12 (m, 2H), 6.77 (dd, J = 7.6, 1.2 Hz, 1H), 4.67 (q, J = 7.2 Hz, 1H), 3.93 (s, 3H), 1.53 (d, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.4, 162.2, 157.8, 150.5, 147.6, 146.3, 137.9, 136.3, 134.6, 133.9, 132.4, 129.3, 129.0, 127.5, 127.1, 126.7, 126.4, 126.2, 126.1, 125.2, 125.0, 123.1, 119.7, 119.5, 119.3, 119.2, 105.6, 55.3, 45.1, 18.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₀H₂₅N₂O4: 477.1814; found: 477.1809. FT-IR (neat, cm⁻¹) υ 3355, 2933, 1763, 1685, 1531, 1497, 1109, 753.

8-(picolinamido)naphthalen-1-yl

2-(4-(4-chlorobenzoyl)phenoxy)-2-methylprop anoate (**3ad-3**). Following the general procedure, **3ad-3** was obtained as a yellow solid (83.5 mg, 74%). $R_f = 0.48$

(n-hexane/EtOAc 3:1). m.p. 163.0–165.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (s, 1H), 8.67 (d, J = 4.4 Hz, 1H), 8.51 (d, J = 7.6 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.72-7.65 (m, 5H), 7.55-7.43 (m, 5H), 7.14 (d, J = 7.2 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 1.68 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 194.2, 172.8, 162.6, 159.0, 150.1, 147.9, 146.0, 138.5, 137.7, 136.5, 136.2, 132.0, 131.9, 131.2, 131.1, 128.6, 127.6, 126.6, 126.5, 125.5, 125.2, 122.9, 120.4, 120.2, 120.0, 118.5, 79.9, 25.2. HRMS (ESI): m/z [M-H]⁻ calcd for C₃₃H₂₄ClN₂O₅: 563.1374; found: 563.1379. FT-IR (neat, cm⁻¹) υ 3341, 2923, 1737, 1652, 1594, 1543, 1504, 1251, 1145, 758.

8-(Picolinamido)naphthalen-1-yl (2*E*, 4*E*)-hexa-2,4-dienoate (**3ad-4**). Following the general procedure, **3ad-4** was obtained as a yellow solid (27.2 mg, 38%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 145.0–147.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.56 (s, 1H), 8.74 (d, J

= 7.6 Hz, 1H), 8.56 (d, J = 4.0 Hz, 1H), 8.31 (d, J = 7.6 Hz, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.48-7.36 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 6.26-6.10 (m, 3H), 1.87 (d, J = 4.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.9, 162.3, 150.3, 147.6, 147.3, 146.3,

141.3, 137.5, 136.4, 132.6, 129.4, 126.9, 126.4, 126.2, 125.3, 125.0, 122.7, 120.1, 119.50, 119.46, 118.4, 18.8. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{22}H_{19}N_2O_3$: 359.1396; found: 359.1390. FT-IR (neat, cm⁻¹) v 3332, 2923, 1724, 1677, 1526, 1494, 1111, 1000, 740.

8-(Picolinamido)naphthalen-1-yl

2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazol e-5-carboxylate (**3ad-5**). Following the general procedure, **3ad-5** was obtained as a yellow solid (30.7 mg, 28%). $R_f = 0.23$ (n-hexane/EtOAc 3:1). m.p. 190.0–192.0 °C. ¹H NMR (400 MHz,

DMSO-*d*₆) δ 10.7 (s, 1H), 8.19 (d, J = 2.4 Hz, 1H), 8.10 (dd, J = 8.8, 2.4 Hz, 1H), 8.08-8.04 (m, 1H), 8.02-7.94 (m, 3H), 7.87 (d, J = 7.2 Hz, 1H), 7.78 (dt, J = 7.8, 1.6 Hz, 1H), 7.65-7.56 (m, 2H), 7.14 (dd, J = 7.2, 1.2 Hz, 1H), 7.37 (d, J = 8.8, 1H), 7.26-7.21 (m, 1H), 4.02 (d, J = 6.8 Hz, 2H), 2.55 (s, 3H), 2.16-2.06 (m, 1H), 1.04 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 168.1, 163.0, 162.7, 162.1, 160.8, 149.6, 147.9, 145.9, 138.0, 136.4, 133.7, 132.1, 132.0, 128.0, 127.1, 126.8, 126.7, 126.3, 125.4, 125.0, 122.6, 122.3, 121.3, 121.2, 115.8, 114.4, 102.1, 75.6, 28.1, 19.2, 17.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₂₇N₄O₄S: 563.1753; found: 563.1748. FT-IR (neat, cm⁻¹) v 3356, 2928, 1731, 1686, 1531, 1500, 1430, 1289, 1246, 1030, 753.

8-(picolinamido)naphthalen-1-yl

(1R,3R)-3-((Z)-2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropane-1-carboxylate (**3ad-6**). Following the general procedure, **3ad-6** was obtained as a white solid (76.1 mg, 78%). R_f = 0.64

(n-hexane/EtOAc 3:1). m.p. 123.0–125.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.46 (s, 1H), 8.69 (d, J = 7.6 Hz, 1H), 8.64 (d, J = 4.4 Hz, 1H), 8.40 (d, J = 7.6 Hz, 1H), 7.96 (t, J = 7.6 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.57-7.51 (m, 2H), 7.47 (t, J = 8.4 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 9.2 Hz, 1H), 2.57 (d, J = 8.0 Hz, 1H), 1.96 (t, J = 8.4 Hz, 1H), 1.22 (s, 3H), 1.04 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.9, 161.9, 150.3, 147.7, 145.6, 137.9, 136.4, 132.3, 128.9 (q, J_{C-F} = 4.4 Hz), 127.3, 126.6, 126.5, 125.2, 125.1, 123.1, 122.4 (q, J_{C-F} = 37.6 Hz), 120.6, 120.1 (q, J_{C-F} = 269.8 Hz), 119.7, 119.4, 32.6, 31.8, 29.9, 27.9, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₁ClF₃N₂O₃: 489.1193; found: 489.1187. FT-IR (neat, cm⁻¹) v 3348, 2932, 1751, 1687, 1532, 1499, 1275, 1115, 1059, 753.

8-(3-methylpicolinamido)naphthalen-1-yl acetate (**3ba**). Following the general procedure, **3ba** was obtained as a white solid (31.4 mg, 49%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 147.0–149.0 °C. ¹H

NMR (400 MHz, CDCl₃) δ 11.49 (s, 1H), 8.65 (d, J = 7.6 Hz, 1H), 8.50 (d, J = 4.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.39 (dd, J = 7.6, 4.8 Hz, 1H), 7.17 (dd, J = 7.6, 0.8 Hz, 1H), 2.85 (s, 3H), 2.33 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 163.8, 147.4, 145.9, 145.1, 141.4, 136.5, 136.4, 132.6, 127.2, 126.4, 126.1, 125.2, 124.9, 120.3, 119.63, 119.57, 21.5, 21.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) v 3346, 2924, 1769, 1682, 1524, 1494, 1430, 1081, 759.

8-(4-methylpicolinamido)naphthalen-1-yl acetate (**3ca**). Following the general procedure, **3ca** was obtained as a white solid (39.7 mg, 62%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 159.0–161.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.76 (dd, J = 8.0, 0.8 Hz, 1H), 8.49 (d, J = 4.8 Hz, 1H), 8.19 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (t,

J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 4.8 Hz, 1H), 7.19 (dd, J = 7.6, 1.2 Hz, 1H), 2.48 (s, 3H), 2.45 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.5, 150.0, 149.3, 147.4, 145.9, 136.4, 132.5, 127.4, 127.2, 126.4, 125.2, 124.9, 123.7, 120.4, 119.4, 119.2, 21.6, 21.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) v 3337, 2934, 1763, 1671, 1528, 1496, 1432, 1179, 1024, 759.

8-(5-methylpicolinamido)naphthalen-1-yl acetate (**3da**). Following the general procedure, **3da** was obtained as a white solid (46.7 mg, 73%). $R_f = 0.46$ (n-hexane/EtOAc 3:1). m.p. 155.0–157.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.46 (s, 1H), 8.77 (d, J = 7.6 Hz, 1H), 8.45 (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.72 (dd, J = 8.0, 1.2 Hz, 1H), 7.67

(d, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H), 2.44 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.5, 148.1, 147.9, 145.9, 138.1, 136.9, 136.4, 132.6, 127.2, 126.4, 125.2, 124.9, 122.5, 120.3, 119.3, 119.1, 21.7, 18.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) υ 3331, 2922, 1766, 1673, 1530, 1499, 1185, 757.

8-(6-methylpicolinamido)naphthalen-1-yl acetate (**3ea**). Following the general procedure, **3ea** was obtained as a gray solid (14.7 mg, 23%). R_f = 0.46 (n-hexane/EtOAc 3:1). m.p. 168.0–170.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.19 (s, 1H), 8.53 (d, *J* = 7.6 Hz, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 7.83 (t, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.47 (t,

J = 8.0 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.19 (dd, *J* = 7.2, 0.8 Hz, 1H), 2.69 (s, 3H),

2.22 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.4, 162.5, 157.0, 149.6, 145.8, 138.0, 136.4, 132.0, 127.3, 126.4, 125.4, 125.3, 120.6, 120.5, 120.2, 120.0, 24.2, 21.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) υ 3362, 2924, 1772, 1687, 1530, 1497, 1179, 746.

8-(4-methoxypicolinamido)naphthalen-1-yl acetate (**3fa**). Following the general procedure, **3fa** was obtained as a yellow solid (52.4 mg, 78%). $R_f = 0.40$ (n-hexane/EtOAc 3:1). m.p. 157.0–159.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.53 (s, 1H), 8.75 (dd, J = 8.0, 1.2 Hz, 1H), 8.43 (d, J = 5.6Hz, 1H), 7.90 (d, J = 2.8 Hz, 1H), 7.76 (dd, J = 8.0, 0.8 Hz,

1H), 7.68 (d, J = 8.0, 0.8 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.19 (dd, J = 7.6, 1.2 Hz, 1H), 7.00 (dd, J = 5.6, 2.8 Hz, 1H), 3.95 (s, 3H), 2.45 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 167.3, 162.2, 152.3, 148.8, 145.9, 136.4, 132.4, 127.2, 126.4, 125.2, 125.0, 120.4, 119.4, 119.2, 113.4, 107.9, 55.6, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₄: 337.1188; found: 337.1183. FT-IR (neat, cm⁻¹) υ 3342, 2927, 1772, 1682, 1529, 1496, 1180, 1030, 758.

8-(4-chloropicolinamido)naphthalen-1-yl acetate (**3ga**). Following the general procedure, **3ga** was obtained as a yellow solid (48.3 mg, 71%). $R_f = 0.72$ (n-hexane/EtOAc 3:1). m.p. 184.0–186.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.44 (s, 1H), 8.75 (d, J = 7.6 Hz, 1H), 8.53 (d, J = 5.2 Hz, 1H), 8.37 (d, J = 2.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H),

7.55-7.50 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.6, 0.8 Hz, 1H), 2.44 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.4, 161.1, 151.8, 148.6, 146.5, 145.8, 136.4, 132.2, 127.3, 126.8, 126.5, 125.4, 125.3, 123.6, 120.5, 119.5, 119.1, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄ClN₂O₃: 341.0693; found: 341.0687. FT-IR (neat, cm⁻¹) v 3350, 2930, 1763, 1672, 1542, 1501, 1194, 1027, 754.

8-(4-bromopicolinamido)naphthalen-1-yl acetate (**3ha**). Following the general procedure, **3ha** was obtained as a yellow solid (55.4 mg, 72%). $R_f = 0.72$ (n-hexane/EtOAc 3:1). m.p. 178.0–180.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.42 (s, 1H), 8.74 (d, J = 7.6 Hz, 1H), 8.53 (d, J = 1.6 Hz, 1H), 8.44 (d, J = 4.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.71-7.65 (m, 2H), 7.53

(t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 2.44 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.4, 160.9, 151.4, 148.3, 145.7, 136.3, 135.0, 132.1, 129.8, 127.2, 126.6, 126.4, 125.32, 125.30, 120.5, 119.5, 119.0, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄BrN₂O₃: 385.0188; found: 385.0182. FT-IR (neat, cm⁻¹) v 3346, 2952, 1759, 1668, 1538, 1497, 1189, 1024, 753.

8-(4-(trifluoromethyl)picolinamido)naphthalen-1-yl acetate (**3ia**). Following the general procedure, **3ia** was obtained as a gray solid (53.2 mg, 78%). $R_f = 0.75$ (n-hexane/EtOAc 3:1). m.p. 170.0–172.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.47 (s, 1H), 8.84-8.80 (m, 1H), 8.78 (dd, J = 8.0, 1.2 Hz, 1H), 6.62 (s, 1H), 7.78-7.73 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.54 (t, J =

8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 2.45 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.3, 160.8, 151.9, 148.7, 145.7, 140.4 (q, J = 34.8 Hz), 136.4, 132.0, 127.3, 126.4, 125.45, 125.36, 122.4 (q, J = 271.9 Hz), 122.2 (q, J = 3.4 Hz), 125.5, 119.5, 119.1 (q, J = 3.5 Hz), 119.0, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₄F₃N₂O₃: 375.0957; found: 375.0951. FT-IR (neat, cm⁻¹) υ 3348, 2924, 1774, 1685, 1534, 1501, 1408, 1330, 1174, 1139, 757.

8-(isoquinoline-1-carboxamido)naphthalen-1-yl acetate (**3ja**). Following the general procedure, **3ja** was obtained as a yellow solid (62.7 mg, 88%). $R_f = 0.70$ (n-hexane/EtOAc 3:1). m.p. 159.0–161.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.64 (s, 1H), 9.80-9.70 (m, 1H), 8.73 (dd, J = 8.0, 1.2, 1H), 8.58 (d, J = 5.6Hz, 1H), 7.94-7.87 (m, 2H), 7.80-7.69 (m, 4H), 7.57 (t, J = 8.0

Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.8, 1.2 Hz, 1H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 163.9, 148.2, 145.9, 139.6, 137.6, 136.4, 132.5, 130.8, 129.1, 127.9, 127.33, 127.25, 127.0, 126.4, 125.3, 125.15, 125.08, 120.4, 119.8, 119.6, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₇N₂O₃: 357.1239; found: 357.1234. FT-IR (neat, cm⁻¹) υ 3338, 2928, 1768, 1676, 1524, 1491, 1181, 754.

8-(quinoline-2-carboxamido)naphthalen-1-yl acetate (**3ka**). Following the general procedure, **3ka** was obtained as a white solid (14.2 mg, 20%). $R_f = 0.68$ (n-hexane/EtOAc 3:1). m.p. 184.0–186.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.66 (d, J = 7.6 Hz, 1H), 8.49 (d, J = 8.4 Hz, 1H), 8.42 (d, J =8.4 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H),

7.87-7.82 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.73-7.66 (m, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.22 (dd, J = 7.2, 0.8, 1H), 2.21 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 162.3, 150.2, 146.1, 145.9, 138.0, 136.4, 132.2, 130.6, 129.5, 129.4, 128.2, 128.1, 127.3, 126.5, 125.4, 125.3, 120.6, 120.2, 119.8, 119.2, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₇N₂O₃: 357.1239; found: 357.1234. FT-IR (neat, cm⁻¹) v 3325, 2924, 1768, 1682, 1529, 1493, 1184, 758.

4-bromo-8-(picolinamido)naphthalen-1-yl acetate (**3ma**). Following the general procedure, **3ma** was obtained as a white solid (62.4 mg, 81%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 161.0–163.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.82 (dd, J = 8.0, 1.2 Hz, 1H), 8.67-8.62 (m, 1H), 8.37 (d, J = 7.6 Hz, 1H), 8.14 (dd, J = 8.4, 0.8 Hz, 1H), 7.95 (dt, J = 7.6, 1.6

Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.55-7.50 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.2, 162.3, 150.1, 147.7, 145.6, 137.9, 134.1, 132.9, 129.5, 127.9, 126.7, 124.5, 123.0, 121.0, 120.6, 120.5, 120.4, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄BrN₂O₃: 385.0188; found: 385.0182. FT-IR (neat, cm⁻¹) v 3337, 2923, 1770, 1685, 1533, 1493, 1174, 741.

5-chloro-8-(picolinamido)naphthalen-1-yl acetate (**3na**). Following the general procedure, **3na** was obtained as a white solid (37.4 mg, 55%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 169.0–171.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.54 (s, 1H), 8.73 (d, J = 8.4 Hz, 1H), 8.64 (d, J = 4.8 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.94 (dt, J = 7.6, 1.2 Hz, 1H),

7.63 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 8.4 Hz, 1H), 7.54-7.49 (m, 1H), 7.26 (d, J = 7.6 Hz, 1H), 2.45 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.3, 162.2, 150.0, 147.6, 146.1, 137.9, 133.1, 131.9, 127.8, 126.9, 126.7, 126.3, 123.6, 123.0, 121.4, 120.3, 119.0, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄ClN₂O₃: 341.0693; found: 341.0687. FT-IR (neat, cm⁻¹) υ 3348, 2922, 1755, 1686, 1531, 1499, 1198, 750.

H₃C² **3pa** СН₃

5-bromo-8-(picolinamido)naphthalen-1-yl acetate (**30a**). Following the general procedure, **30a** was obtained as a white solid (67.0 mg, 87%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 177.0–179.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.58 (s, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.66 (d, J = 4.4 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.26 (dd, J = 8.4, 0.8 Hz, 1H), 7.96 (dt, J = 7.6, 1.6 Hz,

1H), 7.84 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.27 (dd, J = 7.6, 0.8 Hz, 1H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.3, 162.2, 150.0, 147.7, 146.0, 137.9, 134.1, 132.6, 130.7, 126.8, 126.6, 126.5, 123.0, 121.4, 120.4, 119.5, 118.4, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄BrN₂O₃: 385.0188; found: 385.0182. FT-IR (neat, cm⁻¹) v 3339, 2927, 1771, 1683, 1522, 1493, 1176, 750.

5-methyl-8-(picolinamido)naphthalen-1-yl acetate (**3pa**). Following the general procedure, **3pa** was obtained as a white solid (55.0 mg, 86%). $R_f = 0.48$ (n-hexane/EtOAc 3:1). m.p. 154.0–156.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.40 (s, 1H), 8.64 (d, J = 4.4 Hz, 1H), 8.60 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.00-7.89 (m, 2H), 7.53-7.47 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 2.67 (s, 3H), 2.41 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.1, 150.3, 147.6, 146.3, 137.7, 135.2, 131.1, 130.7, 127.3, 126.5, 125.0, 123.2, 122.8, 120.2, 119.6, 119.5, 21.6, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₃: 321.1239; found: 321.1234. FT-IR (neat, cm⁻¹) v 3335, 2925, 1764, 1676, 1528, 1505, 1181, 747.

5-methoxy-8-(picolinamido)naphthalen-1-yl acetate (**3qa**). Following the general procedure, **3qa** was obtained as a yellow solid (55.1 mg, 82%). $R_f = 0.37$ (n-hexane/EtOAc 3:1). m.p. 138.0–140.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.14 (s, 1H), 8.66-8.59 (m, 1H), 8.51 (d, J = 8.8 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.26 (dd, J = 8.8, 1.6 Hz, 1H), 7.91 (dd, J = 7.6, 1.6 HZ,

1H), 7.51-7.42 (m, 2H), 7.22 (d, J = 7.6, 1.2 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.00 (s, 3H), 2.36 (s, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 169.6, 162.1, 152.6, 150.4, 147.6, 145.7, 137.7, 128.0, 126.4, 124.9, 124.7, 122.7, 121.2, 120.92, 120.87, 120.7, 104.2, 55.7, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂O₄: 337.1188; found: 337.1183. FT-IR (neat, cm⁻¹) υ 3350, 2933, 1763, 1670, 1538, 1506, 1185, 1038, 749.

3-(picolinamido)pyren-4-yl acetate (**3ra**). Following the general procedure, **3ra** was obtained as a yellow solid (62.3 mg, 82%). $R_f = 0.26$ (n-hexane/EtOAc 3:1). m.p. 214.0–216.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.75 (s, 1H), 9.25 (d, J = 8.8 Hz, 1H), 8.70 (d, J = 4.4 Hz, 1H), 8.42 (d, J = 7.6 Hz, 1H), 8.24 (d, J = 8.8 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 5.8 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 5.8 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 5.8 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 5.8 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 5.8 H

7.2 Hz, 1H), 8.04-7.92 (m, 4H), 7.76 (s, 1H), 7.56-7.09 (m, 1H), 2.49 (s, 3H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 169.6, 162.3, 150.3, 147.8, 145.0, 137.9, 131.6, 131.3, 130.4, 128.5, 127.6, 127.1, 126.7, 126.6, 126.5, 125.3, 124.4, 123.6, 123.1, 120.8, 120.5, 116.1, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₇N₂O₃: 381.1239; found: 381.1234. FT-IR (neat, cm⁻¹) v 3340, 2927, 1770, 1682, 1517, 1492, 1180, 746.

10-(picolinamido)phenanthren-1-yl acetate (**3sa**). Following the general procedure, **3sa** was obtained as a white solid (57.0 mg, 80%). $R_f = 0.27$ (n-hexane/EtOAc 3:1). m.p. 191.0–193.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.58 (s, 1H), 9.11 (s, 1H), 8.71-8.65 (m, 2H), 8.62-8.56 (m, 1H), 8.40 (d, J = 8.0 Hz, 1H), 7.95 (dt, J = 8.0, 1.2 Hz, 1H), 7.92-7.87 (m, 1H), 7.66 (t, J = 8.0 Hz, 1H),

7.63-7.57 (m, 2H), 7.55-7.50 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.5, 150.3, 147.7, 146.5, 137.9, 133.6, 131.9, 130.0, 128.6, 127.7, 127.5, 126.6, 126.4, 126.2, 122.9, 122.7, 121.7, 121.6, 119.3, 119.2, 21.6. HRMS (ESI): $m/z \ [M+H]^+$ calcd for $C_{22}H_{17}N_2O_3$: 357.1239; found: 357.1234. FT-IR (neat, cm⁻¹) v 3347, 2940, 1771, 1683, 1523, 1169, 755.

6-(picolinamido)-1,2-dihydroacenaphthylen-5-yl acetate (**3ta**). Following the general procedure, **3ta** was obtained as a white solid (35.5 mg, 53%). $R_f = 0.30$ (n-hexane/EtOAc 3:1). m.p. 161.0–163.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 8.74 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 4.4 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H), 7.94 (dt, J = 7.6, 1.6 Hz, 1H), 7.53-7.49 (m, 1H), 7.33

(d, J = 8.0 Hz, 1H), 7.25 (d, J = 7.26 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 3.39 (s, 4H), 2.52 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.9, 162.1, 150.4, 147.6, 144.4, 142.6, 142.1, 141.5, 137.8, 129.1, 126.4, 122.8, 121.4, 120.4, 120.1, 119.1, 117.3, 30.3, 30.1, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₇N₂O₃: 333.1239; found: 333.1234. FT-IR (neat, cm⁻¹) v 3335, 2929, 1767, 1671, 1528, 1498, 1179, 753.

4-(picolinamido)fluoranthen-3-yl acetate (**3ua**). Following the general procedure, **3ua** was obtained as a yellow solid (31.9 mg, 42%). $R_f = 0.27$ (n-hexane/EtOAc 3:1). m.p. 225.0–227.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.62 (s, 1H), 9.05 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 4.8 Hz, 1H), 8.40 (d, J = 8.0 Hz, 1H), 8.00-7.83 (m, 5H), 7.56-7.51 (m, 1H), 7.40-7.31 (m, 3H),

2.64 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.3, 162.3, 150.2, 147.6, 146.1, 139.1, 138.4, 137.9, 135.1, 134.1, 133.8, 132.6, 127.5, 127.1, 126.7, 123.0, 121.7, 121.3, 121.2, 121.1, 120.0, 119.0, 115.8, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₇N₂O₃: 381.1239; found: 381.1234. FT-IR (neat, cm⁻¹) v 3333, 2924, 1762, 1676, 1529, 1443, 1187, 1039, 750.

8-(pyrazine-2-carboxamido)naphthalen-1-yl acetate (**3va**). Following the general procedure, **3va** was obtained as a white solid (17.8 mg, 29%). $R_f = 0.22$ (n-hexane/EtOAc 3:1). m.p. 171.0–173.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.32 (s, 1H), 9.60 (s, 1H), 8.85 (d, J = 2.0 Hz, 1H), 8.78 (d, J = 8.0 Hz, 1H), 8.61 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 1000

8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.2, 160.8, 147.6, 145.7, 145.3, 144.9, 141.9, 136.4, 132.0, 127.3, 126.4, 125.5, 125.4, 120.6, 119.5, 118.9, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₄N₃O₃: 308.1035; found: 308.1030. FT-IR (neat, cm⁻¹) υ 3337, 2925, 1764, 1680, 1534, 1498, 1174, 1020, 754.

8-(pyrimidine-4-carboxamido)naphthalen-1-yl acetate (**3wa**). Following the general procedure, **3wa** was obtained as a yellow solid (35.6 mg, 58%). $R_f = 0.22$ (n-hexane/EtOAc 3:1). m.p. 189.0–191.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.50 (s, 1H), 9.34 (s, 1H), 9.06 (d, J = 4.8 Hz, 1H), 8.77 (d, J = 8.0 Hz, 1H), 8.29 (dd, J = 4.8, 1.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.22 (dd, J = 7.8, 1.6 Hz, 1H), 2.50 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.3, 160.4, 159.7, 157.4, 157.8, 145.7, 136.3, 131.8, 124.3, 126.4, 125.7, 125.5, 120.7, 119.5, 119.1, 118.9, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₄N₃O₃: 308.1035; found: 308.1030. FT-IR (neat, cm⁻¹) v 3328, 2922, 1761, 1676, 1529, 1493, 1180, 756.

4-(picolinamido)naphthalene-1,5-diyl diacetate (4). Following the general procedure, **4** was obtained as a gray solid (29.8 mg, 41%). $R_f = 0.23$ (n-hexane/EtOAc 3:1). m.p. 163.0–165.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 8.78 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 4.4 Hz, 1H), 8.37 (d, J = 7.6 Hz, 1H), 7.95 (t, J = 7.6 Hz, 1H), 7.83 (d, J = 8.4

Hz, 1H), 7.56-7.48 (m, 2H), 7.33 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 7.2 Hz, 1H), 2.47 (s, 3H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.4, 169.3, 162.2, 150.2, 147.7, 146.2, 143.0, 137.9, 130.7, 129.4, 126.7, 125.9, 123.0, 121.1, 120.2, 120.0, 119.0, 118.9, 21.6, 21.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₇N₂O₅: 365.1137; found: 365.1132. FT-IR (neat, cm⁻¹) υ 3345, 2926, 1761, 1678, 1530, 1502, 1177, 749.

8-(picolinamido)-5-(trifluoromethyl)naphthalen-1-yl acetate (5). Following the general procedure, 5 was obtained as a gray solid (33.6 mg, 45%). $R_f = 0.25$ (n-hexane/EtOAc 3:1). m.p. 144.0–146.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.71 (d, J = 4.4 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.01-7.92 (m, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.62-7.53

(m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 1.79 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.1, 164.2, 149.0, 148.4, 146.7, 137.7, 137.6, 130.7 (q, J = 2.1 Hz), 129.0, 128.0, 127.4, 127.0, 126.3 (q, J = 28.9 Hz), 124.9, 123.7 (q, J = 272.3 Hz), 122.9, 122.2, 122.1 (q, J = 5.0 Hz), 20.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₄F₃N₂O₃: 375.0957; found: 375.0951. FT-IR (neat, cm⁻¹) υ 3342, 2936, 1765, 1695, 1495, 1181, 1130, 752.

8-(picolinamido)-5-tosylnaphthalen-1-yl acetate (6). Following the general procedure, 6 was obtained as a gray solid (50.2 mg, 51%). $R_f = 0.13$ (n-hexane/EtOAc 3:1). m.p. 215.0–217.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 1H), 9.06 (d, J = 8.8 Hz, 1H), 8.68-8.54 (m, 3H), 8.35 (d, J = 7.6 Hz, 1H), 7.95 (t, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.58-7.49 (m, 2H), 7.27-7.18 (m, 3H), 2.49 (s, 3H), 2.35 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.1, 162.7, 149.5, 147.7, 146.4, 144.0, 138.8, 138.7, 138.0, 131.5, 131.4, 131.3, 129.7, 127.5, 127.4, 127.1, 123.25, 123.19, 121.5, 119.2, 116.0, 21.6, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₁N₂O₅S: 461.1171; found: 461.1166. FT-IR (neat, cm⁻¹) υ 3335, 2925, 1778, 1693, 1521, 1174, 1146, 750.

N-(8-hydroxynaphthalen-1-yl)picolinamide (**7**). Following the general procedure, **7** was obtained as a gray solid (42.2 mg, 80%). $R_f = 0.20$ (n-hexane/EtOAc 3:1). m.p. 226.0–228.0 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 13.26 (s, 1H), 11.44 (s, 1H), 8.86 (d, *J* =

7.6 Hz, 1H), 8.74 (d, J = 4.8 Hz, 1H), 8.23 (d, J = 7.6 Hz, 1H), 8.10 (t, J = 7.6 Hz, 1H), 7.68 (dd, J = 7.6, 4.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*6) δ 126.7, 154.0, 150.8, 149.1, 138.7, 136.7, 135.7, 127.4, 127.0, 126.6, 124.0, 122.8, 120.3, 115.8, 115.3, 110.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₃N₂O₂: 265.0977; found: 265.0972. FT-IR (neat, cm⁻¹) v 2922, 2852, 1655, 1545, 817, 751.

N-(8-hydroxynaphthalen-1-yl)acetamide (8). Following the general procedure, 8 was obtained as a white solid (44.8 mg, 85%). $R_f = 0.10$ (n-hexane/EtOAc 3:1). m.p. 156.0–158.0 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 11.25 (s, 1H), 11.08 (s, 1H), 8.40 (d, J = 7.6 Hz,

1H), 7.49 (dd, J = 8.0, 0.8 Hz, 1H), 7.38-7.32 (m, 2H), 7.28 (t, J = 7.8 Hz, 1H), 6.89 (dd, J = 7.8, 1.2 Hz, 1H), 2.15 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*6) δ 168.1, 153.8, 136.6, 136.1, 126.8, 126.5, 123.3, 120.4, 115.6, 115.1, 110.6, 25.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₂NO₂: 202.0868; found: 202.0863. FT-IR (neat, cm⁻¹) v 2926, 2854, 1659, 1554, 1433, 1300, 818, 759.

8-(4-bromopicolinamido)naphthalen-1-yl

3-(2-bromophenyl)propanoate (**3ha-14**). Following the general procedure, **3ha-14** was obtained as a white solid (33.7 mg, 42%). $R_f = 0.70$ (n-hexane/EtOAc 3:1). m.p. 134.0–136.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 8.73 (d, J = 7.6 Hz, 1H), 8.48 (d, J = 1.6 Hz, 1H), 8.24 (d, J = 5.2 Hz, 1H),

7.76 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.58-7.49 (m, 3H), 7.45 (t, J = 7.6 Hz, 1H), 7.25-7.08 (m, 4H), 3.12 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.3, 160.8, 151.3, 148.4, 145.7, 139.3, 136.4, 134.9, 132.9, 132.2, 123.5, 129.7, 128.3, 127.7, 127.3, 126.6, 126.5, 125.31, 125.27, 124.2, 120.5, 119.5, 119.0, 34.4, 31.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉Br₂N₂O₃: 552.9762; found: 552.9757. FT-IR (neat, cm⁻¹) v 3347, 2926, 1766, 1685, 1529, 1499, 1101, 753.

8-(4-bromopicolinamido)naphthalen-1-yl-3-(2-bromophenyl)ac rylate (**3hc-7**). Following the general procedure, **3hc-7** was obtained as a yellow solid (79.5 mg, 72%). $R_f = 0.50$ (n-hexane/EtOAc 3:1). m.p. 157.0–159.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.53 (d, J = 7.6 Hz, 1H), 8.45 (d, J = 1.2 Hz, 1H), 8.18-8.07 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.55 (t, J =

8.0 Hz, 1H), 7.50 (t, J= 8.0 Hz, 1H), 7.41-7.38 (m, 1H), 7.35-7.27 (m, 4H), 6.66 (d, J = 16.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.8, 161.0, 151.3, 148.2, 146.0, 145.1, 136.4, 134.6, 134.0, 133.7, 131.77, 131.75, 129.2, 127.7, 127.5, 127.3, 126.4, 125.7, 125.6, 125.5, 120.8, 120.3, 120.2, 119.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₇Br₂N₂O₃: 550.9606; found: 550.9600. FT-IR (neat, cm⁻¹) v 3349, 2924, 1741, 1685, 1530, 1497, 1118, 756.

Co-1d was obtained as a red oil. $R_f = 0.50$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.87-7.82 (m, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.58-7.51 (m, 2H), 7.41 (t, J = 7.2 Hz, 1H), 7.33-7.17 (m, 1H), 7.04-6.89 (m, 2H), 1.93-1.64 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.1, 169.6, 154.3, 150.1,

141.5, 139.8, 137.1, 134.1, 131.7, 127.7, 126.4, 125.9, 125.5, 124.9, 124.7, 124.2, 23.8, 18.2. HRMS (ESI): $m/z \ [M+H]^+$ calcd for $C_{19}H_{16}CoN_2O_3$: 379.0493; found: 379.0487. FT-IR (neat, cm⁻¹) υ 3048, 2923, 1634, 1606, 1475, 1398, 796, 773.

$$-3.326 - 3.326 - 3.326 - 3.326 - 3.326 - 3.326 - 3.326 - 3.326 - 3.250 - 3.2$$

 $\begin{array}{c} -3.320\\ -3.320\\ \hline 2.500\\ -2.505\\ -2.505\\ -2.505\\ -2.491$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} -3.341\\ -3.341\\ 2.509\\ 2.509\\ 2.2505\\ 2.2505\\ 2.2495\\ 2.2495\\ 2.2495\\ 1.4455\\ 1.4455\\ 1.4455\\ 1.4455\\ 1.4456\\ 1.4456\\ 1.4456\\ 1.4456\\ 1.4465\\ 1.4466\\ 1.4465\\ 1.4466\\ 1.426\\ 0.667\\ 0.6637\\ 0.6$

$\begin{array}{c} 3.33\\ 2.333\\ 2.997\\ 2.997\\ 2.997\\ 2.976\\ 2.9569\\ 2.29569\\ 2.29569\\ 2.29569\\ 2.29569\\ 2.2933\\ 2.2509\\ 2.2933\\ 2.2509\\ 2.2933\\ 2.2047\\ 2.2074$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} 2.3.324\\ 2.2.500\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.505\\ 2.2.495\\ 1.758\\ 1.778\\ 1.774\\ 1.719\\ 1.772\\ 1.773\\$

-3.325 -3.325 -3.325 -3.325 -3.325 -3.325 -3.325 -2.1491 -2.105 -2.087

 $\begin{array}{c} 8.068 \\ 8.058 \\ 7.8044 \\ 7.884 \\ 7.884 \\ 7.7865 \\ 7.738 \\ 7.758 \\ 7.758 \\ 7.758 \\ 7.758 \\ 7.758 \\ 7.758 \\ 7.758 \\ 7.778 \\ 7.7758 \\ 7.778 \\ 7.7480 \\ 7.7480 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7490 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.7497 \\ 7.758 \\ 7.2505 \\ 2.505 \\ 2.500 \\ 2.25$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

r 8.045 - 8.024 - 7.959 - 7.938

-3.330 7.2.594 7.2.509 2.505 2.500 2.500 2.495

8.027 8.025 8.025 8.008 8.008 8.008 7.772 7.782 7.782 7.760 7.763 7.663 7.663 7.663 7.663 7.663 7.663 7.663 7.663 7.663 7.554 7.554 7.555 7.555 7.555

-3.331 -2.509 -2.500 -2.500 -2.491 -2.491

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} 7.555\\ 7.475\\ 7.475\\ 7.475\\ 7.475\\ 7.272\\ 7.272\\ 7.2263\\ 7.2263\\ 7.2011\\ 7.2263\\ 7.2263\\ 6.991\\ 6.991\\ 6.954\\ 6.954\\ 6.9319\\ -3.319\\ -3.370\\ -3.370\\ -3.370\\ -3.370\\ -3.319\\ -2.2500\\ -2.$

8.506 8.196 8.177 8.026 8.007 8.007 8.007 7.555 7.555 7.536

-3.330 2.604 2.510 2.505 2.500 2.495 2.490

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-3.338 2.509 2.500 2.495 2.491

 $\langle 7.863 \rangle$ $\langle 7.190 \rangle$ $\langle 7.170 \rangle$ $\langle 7.190 \rangle$ $\langle 7.$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

 $\langle 7.907 \rangle$ $\langle 7.885 \rangle$ $\langle 6.890 \rangle$ $\langle 6.80 \rangle$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

8.051 8.031 7.990 7.969

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

 $\left< \frac{7.957}{7.936} \right. \left< \frac{7.956}{7.936} \right. \left< \frac{7.461}{7.439} \right. \right.$

2.509 2.505 2.500 2.491 2.491

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

7.585 7.581 7.572 7.572 7.572 7.478 7.475 7.475 7.475 7.466 7.466 7.466 7.466 7.466 7.466 7.051 7.051 7.051 7.051

-3.344 2.505 $\left\{\begin{array}{c}
2.500\\
2.495\end{array}\right.$

$\begin{array}{c} 7.938\\ 7.937\\ 7.935\\ 7.935\\ 7.933\\ 7.601\\ 7.597\\ 6.599\\ 6.599\\ 6.595\\ 6.595\\ 6.595\\ 6.595\\ 6.595\\ 6.595\\ 6.595\\ 6.295\\ 2.2509\\ 2.2509\\ 2.2495\\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-2.509 -2.505 -2.500 -2.495 -2.491

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10.106 10.101

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30

- 8.551 - 8.561 - 8.091 - 8.097 - 8.087 - 8.066 - 8.066 - 8.066 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 8.055 - 7.949 - 7.5515 - 7.5515 - 7.55566 - 7.55566 - 7.555666 - 7.555666 - 7.55566 - 7.55666 - 7.5556666 - 7.555666 - 7.555666666 - 7.5

$\begin{array}{c} & 8.942 \\ & 8.935 \\ & 8.935 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.931 \\ & 7.932 \\ & 7.933 \\ & 7.933 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.475 \\ & 7.493 \\ & 7.475 \\ & 7.493 \\ & 7.475 \\ & 7.493 \\ & 7.475 \\ & 7.493 \\ & 7.475 \\ & 7.493 \\ & 7.475 \\ & 7.493 \\ & 7.491 \\ & 7.475 \\ & 7.491 \\ & 7.475 \\ & 7.491 \\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2

6.936 6.898 6.898 6.869 6.869 6.869 6.869 6.869 6.386 6.386 6.386 6.238 6.238 6.238 6.236

-3.360-2.509-2.505-2.505-2.505-2.5014-2.2491-2.2491-2.2491-2.2491-2.2491-1.999-1.999-1.999-1.984-1.984-1.984-1.984-1.984-1.570-1.585-1.575-1.585-1.575-1.585-1.575-1.5

(7,8,8,2) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,8,6,7) (7,7,8,1) (7,7,5,1) (7,7,2,1)(7,

-5.6966 -5.312 -5.312 -5.312 -5.312 -5.312 -5.312 -2.505 -2.1495 -2.1495 -2.1485 -2.1485 -2.1485 -2.1485 -2.1485 -2.1485 -2.1495 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1486 -2.1496 -2.1486 -2.1486 -2.1496 -2.1486 -2.1496 -2.1486 -2.1496 -2.14

3d-9 400 MHz, DMSO-*d6*

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-8.720 (8.049) (8.034) (8.034) (7.620) (7.620) (7.620) (7.620) (7.620) (7.620) (6.449) (6.442) (6.442) (6.442)

- 3.339 2.509 2.504 2.504 2.495 2.495 2.197

$\begin{array}{c} -8.720 \\ -8.720 \\ 7.2591 \\ 7.259$

130

9. Copies of ¹H, ¹³C and ¹⁹F NMR spectra of products 3aa-1–3wa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

11.502 8.771 8.752 8.756 8.756 8.756 8.756 8.757 8.756 8.757 8.756 8.757 8.756 8.668 8.668 8.656 8.656 8.656 8.656 8.656 8.656 8.656 8.656 8.656 8.656 7.956 7.935 7.935 7.935 7.935 7.935 7.748 7.753 7.754 7.755 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.457 7.458 7.175<

$\begin{array}{c} -10.528\\ 8.691\\ 8.691\\ 8.680\\ 8.364\\ 7.947\\ 7.943\\ 7.943\\ 7.928\\ 7.924\\ 7.924\\ 7.924\\ 7.924\\ 7.928\\ 7.7.928\\ 7.7.928\\ 7.7.928\\ 7.7.928\\ 7.7.928\\ 7.7.928\\ 7.7.921\\ 7.7.921\\ 7.7.921\\ 7.7.920\\ 7.7.497\\ 7.7.921\\ 7.7.921\\ 7.7.920\\ 7.7.497\\ 7.7.920\\ 7.7.497\\ 7.7.920\\ 7.7.497\\ 7.7.920\\ 7.7.497\\ 7.7.920\\ 7.7.497\\ 7.7.920\\ 7.7.$

11.554 8.690 8.6670 8.6670 8.6670 8.6670 8.6612 7.955 7.792 7.792 7.793 7.793 7.793 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.750 7.750

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

= -11.338 = 8.627 = 8.627 = 8.608 = 8.608 = 8.608 = 8.6162 = 8.608 = 8.6162 = 8.608 = 8.162 = 8.608 = 8.162 = 8.608 = 8.162 = 8.608 = 7.783 = 7.783 = 7.773 = 7.77576 = 7.7733 = 7.77576

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

$\begin{array}{c} 11.311\\ 8.631\\ 8.631\\ 8.618\\ 8.618\\ 8.618\\ 8.619\\ 8.619\\ 8.219\\ 8.219\\ 8.219\\ 7.777\\ 7.812\\ 7.812\\ 7.779\\ 7.725\\ 7.750\\ 7.725\\ 7$

- 165.197 - 165.2385 - 162.3385 - 162.3385 - 147.158 - 147.158 - 147.158 - 147.158 - 147.158 - 135.384 - 135.384 - 135.384 - 135.381 - 125.455 - 135.384 - 125.381 - 125.455 - 125.383 - 125.455 - 122.196 - 122.196 - 122.196 - 122.345 - 1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} -10.995\\ 8.456\\ 8.457\\ 8.459\\ 8.140\\ 8.104\\ 8.104\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.771\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.772\\ 7.722\\$

-10.778 8.355 8.355 8.355 8.256 8.144 7.384 7.7560 7.7560 7.7573 7.7560 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7560 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7574 7.7573 7.7573 7.7574 7.7573 7.7574 7.7574 7.7574 7.7573 7.7574 7.7573 7.7574 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7574 7.7573 7.7573 7.7574 7.7573 7.7574 7.7573 7.7573 7.7574 7.7573 7.7574 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7573 7.7574 7.7573 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7574 7.7577

$\begin{array}{c} -11.185\\ 8.524\\ 8.5231\\ 8.231\\ 7.922\\ 7.922\\ 7.922\\ 7.922\\ 7.795\\ 7.795\\ 7.7755\\ 7.755\\ 7.7555\\$

-11.337 -11.337 8.628 8.628 8.629 8.629 8.629 8.629 7.797 7.809 7.789 7.789 7.7733

>162.489 >161.733 >161.733 >161.733 >161.733 >161.733 >149.458 >147.240 >147.240 >145.2430 >1125.410 >1125.410 >1125.410 >125.410 >125.410 >125.410 >125.410 >125.410 >125.410 1127.331 \$17.318 >08 >177.318 >176.682 >156.682

-11.291 8.595 8.576 8.5328 8.195 8.195 8.195 8.175 7.786 7.7786 7.7786 7.7786 7.7786 7.7744 7.7786 7.7744 7.7754 7.7754 7.7754 7.7754 7.7754 7.7754 7.7754 7.7754 7.7754 7.7752 7.7556 7.7752 7.7256 7.7757 7.7256 7.7757 7.7256 7.7757 7.7256 7.7757 7.7256 7.7757 7.7256 7.7757 7.72567 7.7256 7.7256 7.7256 7.72567 7.72567 7.7256 7.7256 7.725

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{bmatrix} 11.510\\ 8.682\\ 8.662\\ 8.429\\ 8.429\\ 8.4129\\ 7.791\\ 7.7716\\ 7.7751\\ 7.7751\\ 7.7751\\ 7.7751\\ 7.7751\\ 7.7560\\ 7.7560\\ 7.7560\\ 7.7520\\ 7.7560\\ 7.7520\\ 7.7520\\ 7.7250\\$

165.928 162.321 162.321 162.321 165.175 165.175 165.175 146.616 147.712 147.712 147.712 147.712 147.712 147.712 147.712 147.712 147.712 152.621 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 112.657 111.657 112.657 <

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{bmatrix} 10.748\\ 8.191\\ 8.109\\ 8.113\\ 8.109\\ 8.113\\ 8.109\\ 8.105\\ 8.067\\ 8.066\\ 8.066\\ 8.066\\ 8.065\\ 8.06$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-11.486

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

--64.785

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

- 11.581 - 11.581 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 8.653 - 7.978 - 7.978 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.955 - 7.551 - 7.553 - 7.555 - 7.553 - 7.555 - 7.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

= 11.139 = 11.139 = 8.632 = 8.632 = 8.632 = 8.632 = 8.632 = 8.632 = 8.632 = 8.632 = 8.622 = 8.623 = 8.623 = 8.623 = 8.623 = 8.632 = 8.254 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 8.256 = 7.266 = 7.486 = 7.486 = 7.486 = 7.487 = 7.487 = 7.487 = 7.487 = 7.487 = 7.487 = 7.486 =

-11.284 -8.750 -8.642 -8.642 -8.641 -8.651 -8.651 -8.651 -8.651 -8.651 -7.952 -7.923 -7.933

-11.621 -11.621 -11.621 -2.037 -2.037 -2.037 -2.037 -2.037 -2.037 -2.043 -2.043 -7.963 -7.963 -7.963 -7.963 -7.963 -7.963 -7.963 -7.973 -7.948 -7.5519 -7.5522 -7.55

$$-11.507$$

$$-11.507$$

$$-11.507$$

$$-11.507$$

$$-11.507$$

$$-1.207$$

$$-1.297$$

$$-1.297$$

$$-1.297$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.292$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

$$-1.230$$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-1.788

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$$\sim 11.248$$

 ~ 11.083
 ~ 11.083
 ~ 11.083
 ~ 11.083
 ~ 11.083
 ~ 1.2497
 ~ 7.377
 ~ 7.377
 ~ 7.379
 ~ 7.329
 ~ 7.239
 ~ 7.2309
 ~ 7.239
 \sim

$-11.162 \\ -11.162 \\ -11.162 \\ -11.162 \\ -1.162 \\ -1.162 \\ -1.162 \\ -1.162 \\ -1.162 \\ -1.163 \\ -1.1756 \\ -1.1256 \\$

10. Failure examples of C–H bond acyloxylation.

11. References

- (a) J.-Y. Lan, H.-S. Xie, X.-X. Lu, Y.-F. Deng, H.-F. Jiang, W. Zeng, Org. Lett.
 2017, 19, 4279; (b) J. Ying, L.-Y. Fu, G.-Q. Zhong, X.-F. Wu, Org. Lett. 2019,
 21, 5694; (c) Y. Yao, Q. Lin, W. Yang, W. Yang, F. Gu, W. Guo, D. Yang,
 Chem. Eur. J. 2020, 26, 5607.
- 2 K. J. Alexander, M. McConville, K. R. Williams, K. V. Luzyanin, I. A. O'Neil,
 R. Cosstick, *Chem. Eur. J.* 2018, 24, 3013.
- 3 L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209.
- 4 L. Wang, C. W. Barth, M. Sibrian-Vazquez, J. O. Escobedo, M. Lowry, J. Muschler, H. Li, S. L. Gibbs, R. M. Strongin, ACS Omega 2017, 2, 154.