Supplementary Information for Transition-metal-free, mild and efficient ring expansion of amino acid derivatives: facile access to densely functionalized azepines

Xingjie Zhang,* Xue Wang, Chenchen Jiao, Jie Zhao, Xiaopan Liu, and Guisheng Zhang*

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road, Xinxiang, Henan 453007 (China)

E-mail: zhangxingjie@htu.edu.cn; zgs@htu.cn

Contents

General information S3
Optimization studies S4-S5
General procedure for the synthesis of pyridinium salts S6-S22
General procedure for the ring expansion of amino acid derivatives S22-S45
Gram scale study S45-S46
One-pot transformation S46-S47
Bioactivity testing for selected azepine derivatives S47-S50
Radical trap experiment S50-S51
Radical clock experiment S51-S52
X-ray diffraction data of $\mathbf{2 n}$ S52-S53
References S54
NMR spectra of all new compounds S55-S136

General information

Unless otherwise noted, commercially available reagents were used as received without further purification and all reactions were carried out using standard Schlenk technique under nitrogen atmosphere. Tetrahydrofuran (THF), dichloromethane (DCM), dimethyl sulfoxide (DMSO), and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were dried using Eminex Solvent Purifier (EX-SPS5-800). Anhydrous dimethylformamide (DMF), dimethylacetamide (DMA), 1,2-dimethoxyethane (DME), and 1,4-dioxane were purchased from J\&K Chemical Company. Anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}$ was purchased from Acros. Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was purchased from Kelong Chemical Company. Flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 400 MHz and 600 MHz spectrometers at room temperature in CDCl_{3} (containing 0.03% TMS) solution. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane (0.00 ppm) or solvent residual peak $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right)$ as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ as internal reference. Data are represented as follows: chemical shift, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. High-resolution mass spectra were obtained by using Bruker UHR-ES-TOF MS. The IR spectra were measured on a PerkinElmer Spectrum 400 FT-IR/FT-FIR spectrometer. Single crystal X-ray diffraction data was collected at 293 K for complex 2n on a SuperNova diffractometer. The corresponding pyridinium salts used in this work were prepared according to literature procedures. ${ }^{1}$

Optimization studies

Table S1. Effect of base ${ }^{a}$

${ }^{a}$ Conditions: 1a ($0.3 \mathrm{mmol}, 167.2 \mathrm{mg}$), base (0.33 mmol), 1,4-dioxane (3.0 mL), $30^{\circ} \mathrm{C}$, 12 h , in a sealed tube, under N_{2} atmosphere. ${ }^{b}$ NMR yields with 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Isolated yield

Table S2. Effect of solvent ${ }^{a}$

${ }^{a}$ Conditions: 1a ($0.3 \mathrm{mmol}, 167.2 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$, solvent $(3.0 \mathrm{~mL})$, $30{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, in a sealed tube, under N_{2} atmosphere. ${ }^{b}$ NMR yields with 1,3,5trimethoxybenzene as an internal standard. ${ }^{c}$ Isolated yield.

Table S3. Effect of other parameter ${ }^{a}$

${ }^{a}$ Conditions: 1a ($0.3 \mathrm{mmol}, 167.2 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$, 1,4-dioxane $(3.0 \mathrm{~mL}), 30^{\circ} \mathrm{C}, 12 \mathrm{~h}$, in a sealed tube, under N_{2} atmosphere. ${ }^{b} \mathrm{NMR}$ yields with $1,3,5$-trimethoxybenzene as an internal standard.

Table S4. For all known pyridinium salts used in this work

General procedure for the synthesis of pyridinium salts

According to the previous reported procedure, ${ }^{1}$ amino acid methyl ester (1.0 equiv), crushed $4 \AA$ MS ($0.5 \mathrm{~g} / \mathrm{mmol}$), 2,4,6-triphenylpyrylium tetrafluoroborate (1.0 equiv), dichloromethane (0.5 M with respect to amino acid methyl ester), and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) were added to a round-bottomed flask fitted with a stir bar, sequentially. After stirring at room temperature for 30 min , acetic acid (2.0 equiv) was added via syringe. The reaction mixture was stirred at room temperature for an additional 5 h . Then, the resulting mixture was filtered through a short pad of celite and rinsed with dichloromethane. The filtrate was washed with aqueous $\mathrm{HCl}(1 \mathrm{M})$, saturated aqueous NaHCO_{3}, water, and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then, the organic layer was filtered, and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel to afford the target pyridinium salt product.

1a

1-(1-Methoxy-1-oxo-3-phenylpropan-2-yl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate (1a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ (s, 2H), 7.83-7.79 (m, 4H), 7.62-7.44 (m, 11H), 7.13-7.05 (m, 3H), 6.76 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=4.4,7.6 \mathrm{~Hz}$, 1 H), 3.70 (s, 3H), 3.43 (dd, $J=4.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (dd, $J=7.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.7,156.89,156.85,136.1,133.6,132.4,132.1,131.5$, 129.6, 129.5, 129.0, 128.9, 128.6, 128.5, 127.7, 127.2, 70.1, 53.7, 37.6. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-Fluorophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1b). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (s, 2H), 7.81-7.80 (m, 4H), 7.61-7.47 (m, 11H), 6.81-6.73 (m, 4H), $5.57(\mathrm{dd}, J=3.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.43$ (dd, $J=3.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=8.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.6, $161.7(\mathrm{~d}, ~ J=243.9 \mathrm{~Hz}), 156.9,156.7,133.6,132.3,132.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 132.1$, 131.5, 130.6 (d, $J=7.7 \mathrm{~Hz}$), 129.6, 129.2, 129.0, 128.4, 127.7, 115.2 (d, $J=20.7 \mathrm{~Hz}$), 69.9 , $53.7,36.8$. The spectroscopic data are in agreement with that previously reported. ${ }^{2}$

1-(3-(4-Chlorophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 4 \mathrm{H})$, 7.62-7.46 (m, 11H), 7.02 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{dd}, J=2.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (dd, $J=2.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=8.8,14.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{2}$ NMR (100 MHz, CDCl_{3}): $\delta 167.6,157.0,156.6,135.2,133.7,132.9,132.3,132.2$, $131.5,130.4,129.6,129.3,129.1,128.5,128.4,127.8,69.8,53.7,37.1$. The spectroscopic data are in agreement with that previously reported. ${ }^{3}$

1-(3-(4-Bromophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1d). 10.0 mmol scale, purification of the crude product by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$ to dichloromethane: acetone $=10: 1$, gradient) afforded the title product in 38% yield (2.42 g) as a light-red solid. M.p. $=131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~s}, 2 \mathrm{H})$, 7.84-7.70 (m, 4H), 7.63-7.49 (m, 11H), 7.18 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.57 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=14.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $14.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,156.8,156.5,135.5,133.5,132.2$, $132.0,131.4,131.3,130.7,129.5,129.1,129.0,128.3,127.6,120.9,69.5,53.7,37.0 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-152.52$, -152.57. IR (neat): 3061, 2957, 1749, 1618, 1596, 1557, 1491, 1229, 1050, 1011, 886, 764, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{2} 7 \mathrm{BrNO}_{2}$ $\left[\mathrm{M}_{\left.-\mathrm{BF}_{4}\right]^{+}: 548.1220 \text {, found 548.1221. }}\right.$

1-(3-(4-Iodophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1e). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 4 \mathrm{H})$, 7.61-7.46 (m, 11H), 7.37 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.55 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.57 (dd, $J=2.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=2.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=8.4,14.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}{ }^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,157.0,156.6,137.4,136.4,133.7,132.3,132.2$,
$131.5,131.0,129.6,129.3,129.1,128.5,127.8,92.6,69.7,53.8,37.2$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-Cyanophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1f). 6.0 mmol scale, purification of the crude product by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$ to dichloromethane: acetone $=10: 1$, gradient $)$ afforded the title product in 54% yield $(1.89 \mathrm{~g})$ as a light-red solid. M.p. $=130-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, 2 H), 7.81-7.80 (m, 4H), 7.62-7.47 (m, 11H), $7.34(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.56 (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94-2.90 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,157.1,156.5,142.4,133.6$, $132.4,132.1,131.6,129.9,129.6,129.2,129.1,128.4,127.8,118.5,110.8,69.2,53.9,37.7$ (1 aromatic carbon signal is not observed due to signal overlap). ${ }^{19} \mathrm{~F}$ NMR (565 MHz , CDCl_{3}): $\delta-152.30,-152.35$. IR (neat): $3065,2957,2226,1745,1618,1559,1231,1050$, 999, 889, 763, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 495.2067$, found 495.2067.

1-(3-(2-Chlorophenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1g). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 3 \mathrm{H})$, 7.63-7.61 (m, 4H), 7.57-7.51 (m, 7H), 7.18-7.16 (m, 2H), 7.10-7.08 (m, 2H), $6.83(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=4.8,15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.26 (dd, $J=8.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,157.4,157.1,134.2$, 133.2, 132.7, 132.3, 131.9, 131.7, 130.7, 129.75, 129.68, 129.4, 129.3, 129.2, 128.6, 127.8, 68.1, 54.0, 34.7. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Methoxy-1-oxo-3-(o-tolyl)propan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1h). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 3 \mathrm{H})$, 7.64-7.49 (m, 10H), 7.40-7.17 (m, 2H), 7.07 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.25-3.15 (m, 2H), $1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.4,157.1,156.9,136.8$, 133.3, 133.2, 132.6, 132.0, 131.6, 130.8, 129.7, 129.5, 129.1, 128.5, 128.0, 127.7, 127.5, $126.3,68.7,53.8,34.0,18.7$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Isopropoxy-1-oxo-3-phenylpropan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1i). 10.0 mmol scale, purification of the crude product by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$ to dichloromethane: acetone $=10: 1$, gradient $)$ afforded the title product in 24% yield $(1.43 \mathrm{~g})$
as a light-red solid. M.p. $=103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~s}, 2 \mathrm{H})$, 7.87-7.66 (m, 5H), 7.63-7.50 (m, 10H), 7.10-7.06 (m, 3H), 6.83-6.80 (m, 2H), $5.60(\mathrm{dd}, J=$ 8.8, 3.2 Hz, 1H), 4.96-4.87 (m, 1H), 3.50 (dd, $J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, $J=14.4,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.0,156.6,156.3,136.1,133.1,132.1,132.0,131.2,129.3,129.1,128.8,128.5,128.2$, $128.1,127.3,126.8,72.0,70.4,37.1,21.1,20.8 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-152.76$, -152.81. IR (neat): 2982, 1728, 1619, 1594, 1374, 1048, 999, 889, 760. $699 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{2}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 498.2428$, found 498.2428 .

1-(1-(tert-Butoxy)-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1j). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~s}, 3 \mathrm{H}), 7.81-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 3 \mathrm{H})$, $7.55-7.50(\mathrm{~m}, 8 \mathrm{H}), 5.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 168.3,156.9,156.3,133.8,133.2,132.1,131.2,129.5,128.9$, 128.2, 84.7, 65.9, 27.6, 16.9. The spectroscopic data are in agreement with that previously reported. ${ }^{4}$

1-(1-(Allyloxy)-1-oxo-3-phenylpropan-2-yl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate ($\mathbf{1 k}$). 5.0 mmol scale, purification of the crude product by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$ to dichloromethane: acetone $=10: 1$, gradient $)$ afforded the title product in 18% yield $(0.52 \mathrm{~g})$
as a light-purple solid. M.p. $=95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~s}, 2 \mathrm{H})$, 7.87-7.79 (m, 4H), 7.63-7.50 (m, 11H), 7.10-7.05 (m, 3H), $6.79(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.82-5.72 (m, 1H), 5.67 (dd, $J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (dd, $J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=$ $14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,156.8,136.1,133.5,132.4,132.1$, $131.5,130.0,129.6,129.4,129.0,128.9,128.5,128.4,127.7,127.1,120.5,70.2,67.7 .37 .4$ (1 aromatic carbon signal is not observed due to signal overlap). ${ }^{19} \mathrm{~F}$ NMR (565 MHz , CDCl_{3}): δ-152.72, -152.77. IR (neat): 3061, 1745, 1618, 1596, 1562, 1493, 1048, 999, 936, 891, 764, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{2}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 496.2271$, found 496.2271 .

1-(1-Methoxy-1-oxo-4-phenylbutan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (11). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H})$, 7.74-7.69 (m, 2H), 7.56-7.45 (m, 11H), 7.15-7.11 (m, 3H), 6.93-6.91 (m, 2H), 5.36 (dd, $J=$ 2.8, $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.3,156.82,156.76,138.6,133.7,132.3,132.2,131.3,129.6,129.1,128.8$, $128.5,128.44,128.35,127.8,126.4,67.9,53.7,33.2,33.0$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1m).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~s}, 2 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 4 \mathrm{H})$, 7.57-7.53 (m, 5H), 7.49-7.47 (m, 2H), $5.53(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,156.9,156.6,133.8,132.5,132.1$, $131.3,129.5,129.0,128.9,128.3,127.7,64.4,53.6,17.1$. The spectroscopic data are in agreement with that previously reported. ${ }^{4}$

1-(1-Methoxy-3-methyl-1-oxobutan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1n). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H})$, 7.71 (br, 2H), 7.68-7.61 (m, 7H), 7.58-7.52 (m, 4H), 5.17 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 2.13-2.07 (m, 1H), 0.77-0.75 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,157.1,157.0$, $133.0,132.8,131.9,131.8,129.8,129.4,128.9,128.6,127.7,73.5,53.7,29.9,22.3,19.2$. The spectroscopic data are in agreement with that previously reported. ${ }^{4}$

1-(1-Methoxy-4-methyl-1-oxopentan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (10). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.74(\mathrm{br}, 2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{dd}, J=4.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.59(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,156.7$, $156.6,133.6,132.4,132.2,131.4,129.5,129.3,129.0,128.4,127.8,67.2,53.7,40.3,26.0$, 22.2, 20.6. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(Benzylthio)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1p). 5.0 mmol scale, purification of the crude product by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$ to dichloromethane: acetone $=10: 1$, gradient $)$ afforded the title product in 36% yield (1.08 g) as a white solid. M.p. $=105-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.84-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.71$ (dd, $J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 3H), $3.60(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.08 (dd, $J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dd, $J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 167.3,157.2,136.8,133.5,132.6,132.1,131.7,129.7,129.3,128.9,128.52$, $128.50,127.6,127.2,69.0,54.0,37.1,32.7$ (2 aromatic carbon signals are not observed due to signal overlap). ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-152.37,-152.43$. IR (neat): 3065, 1747, 1618, 1557, 1494, 1236, 1051, 999, 912, 763, 726, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 516.1992$, found 516.1993.

19
1-(1-Methoxy-4-(methylthio)-1-oxobutan-2-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1q). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.81-7.80(\mathrm{~m}, 5 \mathrm{H})$, 7.63-7.53 (m, 8H), 7.50-7.48 (m, 2H), 5.95 (dd, $J=2.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 2.35-2.30 (m, 2H), 2.27-2.24 (m, 1H), 1.91-1.89 (m, 1H), $1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 168.5,156.9,133.8,132.5,132.1,131.4,129.5,129.0,128.4,128.0,66.6$, 53.7, 31.3, 30.6, 14.6. The spectroscopic data are in agreement with that previously
reported. ${ }^{1}$

1-(1,5-Dimethoxy-1,5-dioxopentan-2-yl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate (1r). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (s, 2H), 7.84-7.82 (m, 2H), 7.76-7.72 (m, 2H), 7.63-7.55 (m, 8H), 7.54-7.48 (m, 3H), $5.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $171.9,168.0,157.0,133.6,132.4,132.2,131.5,129.6,129.2,128.5,127.9,67.5,53.8,51.6$, 30.6, 26.9. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(1H-Indol-3-yl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.81(\mathrm{~m}, 5 \mathrm{H})$, 7.56-7.44 (m, 10H), 7.36-7.35 (m, 3H), 7.06-7.04 (m, 1H), 6.81-6.76 (m, 3H), $5.73(\mathrm{dd}, J=$ $4.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=4.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=10.2,15.6 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,156.9,136.0,133.1,132.7,131.7,131.4,129.7$, 129.0, 128.5, 126.3, 123.6, 121.9, 119.3, 116.8, 112.0, 106.3, 69.4, 53.9, 26.9. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-Hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1t). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H})$, $7.69(\mathrm{br}, 2 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 9 \mathrm{H}), 7.18(\mathrm{br}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=7.2,15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.6,157.2,156.7,156.2$, $133.1,132.7,131.8,131.7,129.7,129.6,129.1,128.4,127.5,125.7,116.0,70.5,53.8,36.4$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Methoxy-1,5-dioxo-5-(tritylamino)pentan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1u). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 3 \mathrm{H})$, $7.70(\mathrm{~s}, 2 \mathrm{H}), 7.61-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 15 \mathrm{H}), 5.54(\mathrm{dd}, J=4.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.6,169.2,157.3,144.7,133.8,132.7,132.3,131.5,129.6$, $129.2,128.6,128.5,127.6,126.5,70.1,69.0,53.8,31.7,25.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(6-(((Benzyloxy)carbonyl)amino)-1-methoxy-1-oxohexan-2-yl)-2,4,6-triphenylpyridi n-1-ium tetrafluoroborate (1v). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (s, 2H), 7.80-7.77 $(\mathrm{m}, 2 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 6 \mathrm{H}), 5.44$ (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 1 \mathrm{H})$, 1.13-1.08 (m, 1H), 1.06-0.97 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,156.8,156.5$, 136.8, 133.6, 132.3, 131.5, 129.6, 129.5, 129.1, 129.0, 128.4, 128.34, 128.30, 127.8, 127.7, $127.6,68.9,66.0,53.7,39.8,30.9,28.4,23.9$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Methoxy-1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1w). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (s, 2H), 7.85-7.83 (m, 2H), 7.75-7.69 (m, 2H), 7.60-7.50 (m, 8H), 7.47-7.41 (m, 3H), 6.15 (br, 2H), 5.84 (br, 1H), $5.30(\mathrm{dd}, J=4.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.8,158.3,156.7,155.9,138.0,133.2,133.1,132.5,131.9$, 131.8, 131.7, 129.6, 129.3, 128.6, 128.2, 124.3, 117.1, 86.1, 68.3, 53.7, 43.0, 39.0, 29.1, $28.4,26.9,19.0,17.7,12.3$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(2-Methoxy-2-oxo-1-phenylethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1x). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95$ (s, 2H), 7.87-7.86 (m, 2H), 7.81-7.74 (m, 2H), 7.56-7.44 (m, 7H), 7.42-7.26 (m, 2H), $7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.99 (br, 2H), 6.79-6.78 (m, 3H), $3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.4$, $157.4,157.2,133.6,132.8,132.4,130.9,130.7,129.6,129.0,128.9,128.7,128.6,128.5$, 128.4, 128.1, 71.5, 54.0. The spectroscopic data are in agreement with that previously reported. ${ }^{2}$

1-(1-Cyanoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1y). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~s}, 4 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 6 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 158.0,157.4,133.6,132.6,132.0,129.8,129.7,129.6,128.5,128.3$, $116.9,52.6,19.3$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

12
1-(2-Oxotetrahydrofuran-3-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1z). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.70$
(br, 1H), 7.64-7.57 (m, 6H), 7.54-7.48 (m, 4H), 5.64 (dd, $J=9.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, J $=8.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{td}, J=4.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,159.1,156.8,156.2,133.4,132.6,132.5,131.7$, $131.5,131.13,131.06,130.0,129.7,129.3,128.6,128.3,126.5,66.5,63.5,27.3$. The spectroscopic data are in agreement with that previously reported. ${ }^{2}$

1-(1-(2-(tert-Butoxy)-2-oxoethyl)-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-2, 4,6-triphenylpyridin-1-ium tetrafluoroborate (1za). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (br, 2H), $7.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 6 \mathrm{H})$, $7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}$, $2 \mathrm{H}), 7.00-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.53(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=7.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.35$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,166.9$, $158.4,157.5,155.7,139.3,135.2,133.9,133.2,132.8,131.9,130.8,130.6,129.7,129.54$, $129.50,128.8,128.6,128.3,128.2,127.53,128.45,127.4,126.2,121.9,82.4,69.1,51.6$, $32.5,27.9,27.4$. The spectroscopic data are in agreement with that previously reported. ${ }^{5}$

1-(1-Methoxy-3-(4-(((S)-2-(6-methoxynaphthalen-2-yl)propanoyl)oxy)phenyl)-1-oxopr opan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1zb). ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.877(\mathrm{~s}, 1 \mathrm{H}), 7.873(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 7 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 12 \mathrm{H}), 7.14-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{dd}, J=4.8,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.884(\mathrm{~s}, 1.5 \mathrm{H}), 3.881(\mathrm{~s}, 1.5 \mathrm{H}), 3.669(\mathrm{~s}, 1.5 \mathrm{H}), 3.663(\mathrm{~s}, 1.5 \mathrm{H})$,
3.38-3.35 (m, 1H), 2.95-2.91(m, 1H), 1.65-1.63 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $173.08,173.07,167.4,157.6,156.8,149.9,134.9,134.8,133.7$, 133.53, 133.48, 133.4, $132.3,132.0,131.5,129.9,129.5,129.4,129.1,129.0,128.8,128.40,128.39,127.31$, $127.28,126.0,125.92,125.88,121.6,121.5,119.0,105.5,69.9,55.2,53.7,45.3,36.84$, $36.80,18.34,18.30$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-((2-(4-Isobutylphenyl)propanoyl)oxy)phenyl)-1-methoxy-1-oxopropan-2-yl)-2, 4,6-triphenylpyridin-1-ium tetrafluoroborate (1zc). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.886(\mathrm{~s}, 1 \mathrm{H}), 7.883(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.56$ (m, 2H), 7.53-7.51 (m, 5H), 7.47-7.40 (m, 4H), 7.26-7.25 (m, 2H), 7.14-7.12 (m, 2H), $6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{dd}, J=5.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.682(\mathrm{~s}, 1.5 \mathrm{H})$, $3.677(\mathrm{~s}, 1.5 \mathrm{H}), 3.37(\mathrm{dt}, J=4.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=7.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J$ $=3.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 3 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.11,173.09,167.3,156.8,149.9,140.7,137.0,136.9,133.5$, $133.4,132.3,131.9,131.5,129.8,129.5,129.4,129.3,129.0,128.4,127.6,127.02,127.00$, $121.6,121.5,69.9,53.7,45.0,44.8,36.84,36.79,30.0,22.2,18.36,18.35$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-((2-(3-Cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy)phenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1zd). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.10 (dd, $J=2.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (s,

2H), 7.85-7.83 (m, 4H), 7.63-7.49 (m, 11H), 7.07 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.64 (dd, $J=4.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (s, 3H), 3.48 (dd, $J=4.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=7.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (s, 3H), 2.20-2.17 (m, 1H), $1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,167.6$, $162.9,162.6,160.3,156.9,149.3,134.1,133.5,132.8,132.4,132.1,132.0,131.6,130.2$, $129.6,129.4,129.1,128.5,127.8,125.6,121.8,120.3,115.3,112.8,102.8,75.6,70.0,53.8$, $36.9,28.0,18.9,17.6$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(3-(4-(2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)phenyl)-1-methoxy-1-oxopropan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1ze). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52$ (m, 7H), 7.49-7.43 (m, 6H), $7.01(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76$ $(\mathrm{m}, 4 \mathrm{H}), 6.68(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=4.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=4.8,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=7.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,168.2,167.5,156.9,156.8,156.0,149.7,139.2$, 136.1, 133.8, 133.7, 133.5, 132.4, 132.0, 131.5, 131.1, 130.7, 130.4, 130.0, 129.6, 129.4, 129.1, 128.5, 127.7, 121.6, 114.9, 111.9, 111.6, 101.2, 70.0, 55.7, 53.7, 36.9, 30.3, 13.3. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-(2-(Methoxycarbonyl)pyrrolidin-1-yl)-1-oxo-3-phenylpropan-2-yl)-2,4,6-tripheny
lpyridin-1-ium tetrafluoroborate (1zf). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23$ (br, 2H), $7.87(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 11 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H})$, 5.84 (dd, $J=3.0,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=2.4$, $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=4.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H})$, 1.34-1.30 (m, 1H), 1.28-1.24 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,165.7,157.3$, 155.7, 135.9, 134.01, 133.97, 133.7, 132.1, 131.0, 129.7, 129.6, 128.8, 128.6, 128.3, 128.1, $127.2,72.7,60.2,52.1,46.1,39.2,28.4,24.8$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

1-(1-Cyclopropyl-2-methoxy-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (s, 2H), 7.89-7.88 (m, 2H), 7.69 (br, 2H), $7.62-7.51(\mathrm{~m}, 11 \mathrm{H}), 4.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 1 \mathrm{H})$, $0.61-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.43-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.05-0.01(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $168.3,156.9,156.5,133.5,132.6,132.4,131.5,129.7,129.2,128.5,128.4,127.6,74.5$, $54.0,13.2,10.7,4.9$. The spectroscopic data are in agreement with that previously reported. ${ }^{1}$

General procedure for the ring expansion of amino acid derivatives

A sealable Schlenk tube (15.0 mL) was heated under vacuum using a heatgun, and evacuated and back-filled with nitrogen for three times. After the tube was cooled to room
temperature, pyridinium salts $\mathbf{1}$ (1.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv) were added under N_{2} atmosphere. Then, the tube was re-evacuated and refilled with nitrogen for three times before adding 1,4-dioxane (0.1 M with respect to $\mathbf{1}$) via a syringe. The Schlenk tube was securely sealed and immersed into an oil bath preheated at $30^{\circ} \mathrm{C}$. After stirring at the same temperature for 12 h , the reaction mixture was filtered through a short pad of silica gel, and rinsed with ethyl acetate. Then, the resulting organic layer was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel to afford the target azepine product $\mathbf{2}$.

Methyl 2-benzyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2a). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 a}(0.3 \mathrm{mmol}, 167.2 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30{ }^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=50: 1$ to $25: 1$, gradient) to afford the title product in 98% yield (137.6 mg) as a white solid. M.p. $=97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.82-7.81 (m, 2H), 7.42 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.3,164.1,147.5,147.3,140.1,140.0,139.7,137.2,130.6,129.83,129.81,129.0,128.8$, 128.7, 128.6, 128.3, 128.0, 127.7, 127.4, 127.2, 126.5, 72.2, 51.3, 47.0 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 3027, 1709, 1493, 1257, 1206, 1082, 886, 767, 758, 739, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 470.2115$, found 470.2115 .

Methyl 2-(4-fluorobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2b). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 b}$ ($0.3 \mathrm{mmol}, 172.6 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 92% yield (134.0 mg) as a white solid. M.p. $=95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}): $\delta 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.38(\mathrm{~m}$, 3 H), 7.36-7.31 (m, 4H), 7.26 (dd, $J=7.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.46$ (s, $1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.3,164.3,161.9(\mathrm{~d}, J=242.9 \mathrm{~Hz}), 147.4,147.3,140.0,139.9,139.6$, 132.9 (d, $J=3.3 \mathrm{~Hz}$), 131.9 (d, $J=7.7 \mathrm{~Hz}$), 129.9, 129.8, 128.9, 128.8, 128.7, 128.5, 128.3, 128.1, 127.8, 127.5, 127.1, 114.2 (d, $J=20.9 \mathrm{~Hz}$), 72.0, 51.3, 46.1. ${ }^{19}$ F NMR (565 MHz , CDCl_{3}): $\delta-116.82$. IR (neat): $2947,1723,1595,1508,1220,1156,835,756,695,601,573$, $565 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 488.2020$, found 488.2021.

Methyl 2-(4-chlorobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2c). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 c}(0.3 \mathrm{mmol}, 177.6 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title
product in 88% yield (133.3 mg) as a white solid. M.p. $=92-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 7 \mathrm{H})$, 7.25-7.20 (m, 4H), $6.46(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,164.3,147.4,147.3,140.0,139.8$, $139.5,135.8,132.4,131.9,129.9,129.8,128.9,128.8,128.7,128.5,128.3,128.1,127.8$, 127.6, 127.5, 127.1, 72.0, 51.4, 46.2. IR (neat): 2945, 1721, 1593, 1490, 1174, 1075, 1016, 840, 756, 694, 603, $566 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 504.1725$, found 504.1725.

Methyl 2-(4-bromobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2d). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 d}(0.3 \mathrm{mmol}, 190.9 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 93% yield $(153.7 \mathrm{mg})$ as a white solid. M.p. $=106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}): $\delta 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 9 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,164.2,147.3,147.2$, $139.9,139.8,139.4,136.2,132.2,130.5,129.9,129.7,128.80,128.78,128.7,128.5,128.3$, $128.0,127.8,127.5,127.1,120.6,71.9,51.3,46.2$. IR (neat): 2947, 1723, 1487, 1172, 1070, 1012, 836, 755, 694, 644, 603, $563 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 548.1220, found 548.1220.

Methyl 2-(4-iodobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2e). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 e}(0.3 \mathrm{mmol}, 205.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4 -dioxane (3.0 mL) were stirred at $30{ }^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 85% yield $(151.7 \mathrm{mg})$ as a white solid. M.p. $=100-101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88-7.87$ (m, 2H), $7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 7 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, $3.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,164.3,147.4,147.3$, $140.0,139.8,139.5,137.0,136.5,132.6,129.9,129.8,128.9,128.84,128.75,128.6,128.4$, $128.1,127.8,127.5,127.2,92.3,71.9,51.4,46.4$. IR (neat): 2945, 1723, 1484, 1241, 1172, 1008, 836, 755, 694, 636, 603, $562 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 596.1081, found 596.1081.

Methyl 2-(4-cyanobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2f). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 f}(0.3 \mathrm{mmol}, 174.7 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford the title product in 95% yield $(141.0 \mathrm{mg})$ as a white solid. M.p. $=97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87-7.85(\mathrm{~m}$,

2H), 7.54-7.49 (m, 4H), 7.46-7.40 (m, 9H), 7.38-7.34 (m, 5H), 6.47 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 171.9,164.3,147.4,146.9,143.1,139.7,139.5,139.3,131.3,131.1,130.0$, 129.7, 128.9, 128.7, 128.4, 128.3, 128.1, 127.8, 127.6, 127.0, 119.1, 110.3, 71.8, 51.4, 46.7 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2945, 2225, 1725, 1241, 1174, 1071, 844, 756, 695, 603, 577, $564 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 495.2067$, found 495.2068.

Methyl 2-(2-chlorobenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2g). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 g}(0.3 \mathrm{mmol}, 177.6 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, 45.6 mg) and 1,4 -dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 88% yield $(132.9 \mathrm{mg})$ as a white solid. M.p. $=158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.89-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 7 \mathrm{H})$, 7.27-7.22 (m, 2H), $7.12(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7$, $163.9,147.8,147.6,140.1,139.8,139.6,135.1,134.9,134.1,129.8,129.7,129.0,128.8$, 128.71, 128.69, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.2, 125.5, 70.8, 51.9, 42.5. IR (neat): $3028,1719,1593,1443,1251,1176,1079,973,757,746,697,564 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 504.1725 , found 504.1725 .

Methyl 2-(2-methylbenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2h). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 h}(0.3 \mathrm{mmol}, 171.4 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, $45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 92% yield $(133.8 \mathrm{mg})$ as a white solid. M.p. $=149-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86-7.84$ $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 9 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-7.10 (m, 3H), 6.47 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,164.0,147.9$, 147.4, $140.2,140.1,139.7,137.5,135.7,131.5,129.8,129.72,129.69,129.0,128.8,128.7,128.4$, 128.2, 127.9, 127.8, 127.4, 127.2, 126.5, 124.8, 72.2, 51.3, 43.0, 20.1. IR (neat): 2922, 1711, 1492, 1445, 1258, 1024, 758, 748, 702, 694, 595, $568 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 484.2271$, found 484.2272

Isopropyl 2-benzyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2i). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 i}(0.3 \mathrm{mmol}, 175.6 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ $\mathrm{mg})$ and 1,4-dioxane $(3.0 \mathrm{~mL})$ were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1)$ to afford the title product in 88% yield $(131.4 \mathrm{mg})$ as
a white solid. M.p. $=152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.87(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.54 (m, 2H), 7.50-7.42 (m, 5H), 7.40-7.30 (m, 9H), 7.24 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.19-7.16 (m, 1H), $6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.2,164.3,147.8,146.8,140.2,140.1,139.9,137.4,130.8,129.8$, 129.7, 129.0, 128.8, 128.7, 128.6, 128.3, 127.7, 127.40, 127.35, 127.1, 126.4, 71.9, 68.3, 47.2, 21.6, 21.0 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2975, 1715, 1595, 1492, 1368, 1107, 1079, 878, 755, 740, 695, $601 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{3} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 498.2428$, found 498.2428 .

tert-Butyl 2-methyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2j). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1} \mathbf{j}(0.3 \mathrm{mmol}, 157.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ mg) and 1,4-dioxane (3.0 mL) were stirred at $50^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 78% yield (101.9 mg) as a white solid. M.p. $=143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.90-7.87 (m, 2H), 7.61-7.59 (m, 2H), 7.44-7.34 (m, 9H), 7.33-7.31 (m, 3H), 6.48 (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,164.7,148.1$, $147.5,140.5,140.0,139.8,129.6,129.5,128.9,128.6,128.3,127.60,127.56,127.30$, 127.28, 127.2, 80.9, 68.4, 28.4, 27.6 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2975, 1725, 1445, 1368, 1233, 1158, 1121, 846, 766, 753, 698, $690,568 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 436.2271$, found 436.2271.

Allyl 2-benzyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2k). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 k}(0.3 \mathrm{mmol}, 175.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 94% yield (139.8 mg) as a white solid. M.p. $=64-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.10-7.06 (m, 1H), $6.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}$, $J=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,164.3,147.5,147.1,140.0,139.8$, 137.2, 131.7, 130.6, 129.8, 129.7, 128.9, 128.74, 128.72, 128.6, 128.3, 127.9, 127.7, 127.4, 127.1, 126.5, 117.9, 72.2, 65.1, 47.0 (2 aromatic carbon signals are not observed due to signal overlap). IR (neat): 3026, 1719, 1593, 1492, 1441, 1239, 1172, 1079, 755, 695, 599 cm^{-1}. HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 496.2271$, found 496.2270.

Methyl 2-phenethyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (21). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $11(0.3 \mathrm{mmol}, 171.4 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ mg) and 1,4-dioxane (3.0 mL) were stirred at $50^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent:
petroleum ether: ethyl acetate $=100: 1$) to afford the title product in 90% yield (130.6 mg) as a white solid. M.p. $=69-70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.54$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{td}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{td}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{td}, J=$ $12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{td}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2$, $164.3,147.6,147.3,142.3,140.1,140.0,139.5,129.9,129.6,128.9,128.82,128.75,128.5$, 128.4, 128.2, 128.0, 127.7, 127.5, 127.2, 125.6, 70.7, 51.9, 42.0, 30.9 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 3023, 1731, 1596, 1493, 1444, 1224, 1169, 1072, 876, 755, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 484.2271, found 484.2273.

Methyl 2-methyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2m). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 m}(0.3 \mathrm{mmol}, 144.4 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 85% yield (100.5 mg) as a white solid. M.p. $=155-156{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.92-7.90 (m, 2H), 7.54 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44-7.43 (m, 3H), 7.43-7.37 (m, 6H), 7.35-7.31 (m, 3H), $6.49(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 175.0,164.4,148.2,147.5,140.1,140.0,139.3,129.8,129.6,128.81,128.76$, $128.7,128.3,127.8,127.6,127.42,127.38,127.2,68.1,52.0,28.3$. IR (neat): 3050,1729 , $1442,1368,1227,1123,972,880,762,698,680 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{24} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 394.1802$, found 394.1801.

Methyl 2-isopropyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (2n). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 n}(0.3 \mathrm{mmol}, 152.8 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=50: 1)$ to afford the title product in 95% yield $(120.1 \mathrm{mg})$ as a white solid. M.p. $=161-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95-7.93(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.55 (m, 2H), 7.45-7.37 (m, 9H), 7.35-7.27 (m, 3H), $6.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,163.2,147.6,147.2,140.7,140.0,139.7,129.74,129.67,129.5$, 128.81, 128.77, 128.7, 128.3, 127.8, 127.6, 127.3, 126.9, 74.4, 51.1, 34.3, 18.13, 18.11. IR (neat): 2957, 1732, 1489, 1444, 1325, 1204, 1136, 1036, 872, 768, 707, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 422.2115$, found 422.2116 .

Methyl 2-isobutyl-3,5,7-triphenyl-2 \mathbf{H}-azepine-2-carboxylate (20). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 0}(0.3 \mathrm{mmol}, 157.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ mg) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 97% yield (126.1 mg) as a white solid. M.p. $=148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.93-7.90 (m, 2H), 7.54-7.52 (m, 2H), 7.46-7.35 (m, 9H), 7.33-7.26 (m, 3H), $6.40(\mathrm{~d}, J=$
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (s, 3H), 2.09 (dd, $J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 173.1,163.8,147.6,147.2,140.13,140.11,139.6,129.8,129.7,128.8,128.7$, 128.4, 128.3, 127.9, 127.5, 127.2, 127.1, 71.0, 51.6, 48.9, 24.6, 24.4, 24.3 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2952, 1733, 1594, 1489, $1445,1366,1205,1132,1029,876,756,695 \mathrm{~m}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 436.2271$, found 436.2271.

Methyl 2-((benzylthio)methyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2p). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 p}$ ($0.3 \mathrm{mmol}, 181.0 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33$ $\mathrm{mmol}, 45.6 \mathrm{mg}$) and 1,4-dioxane (3.0 mL) were stirred at $20^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 63% yield $(97.4 \mathrm{mg})$ as a white solid. M.p. $=64-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.83(\mathrm{~m}$, $2 \mathrm{H}), 7.43$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 5 \mathrm{H})$, $6.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,164.5,147.6,146.4,140.0,139.4$, $139.3,138.5,129.9,129.7,129.0,128.87,128.85,128.7,128.33,128.26,128.0,127.7$, 127.5, 127.1, 126.7, 71.9, 52.0, 41.9, 37.6 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): $3059,1732,1619,1594,1549,1493,1444,1027,760,694 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 516.1992$, found 516.1992.

Methyl 2-(2-(methylthio)ethyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2q). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 q}(0.3 \mathrm{mmol}, 162.4 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33$ $\mathrm{mmol}, 45.6 \mathrm{mg}$) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 89% yield $(121.1 \mathrm{mg})$ as a white solid. M.p. $=84-85{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93-7.91(\mathrm{~m}$, 2H), 7.53-7.51 (m, 2H), 7.46-7.44 (m, 3H), 7.42-7.36 (m, 6H), 7.35-7.31 (m, 3H), 6.44 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=12.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.29$ (m, 1H), 1.95 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,164.4,147.7,147.0,140.0$, 139.7, 139.3, 129.9, 129.5, 128.9, 128.8, 128.7, 128.4, 128.3, 127.9, 127.8, 127.6, 127.1, 70.4, 52.0, 40.1, 29.1, 15.4. IR (neat): 2970, 1730, 1594, 1491, 1444, 1217, 1165, 1073, 876, 756, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 454.1835$, found 454.1835 .

Methyl 2-(3-methoxy-3-oxopropyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2r). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 r}(0.3 \mathrm{mmol}, 166.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33$ mmol, 45.6 mg) and 1,4 -dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford the title product in 93% yield
$(130.2 \mathrm{mg})$ as a white solid. M.p. $=63-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.90(\mathrm{~m}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 4 \mathrm{H})$, $6.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H})$, 2.37-2.32 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.9,172.7,164.5,147.6,147.1$, $139.9,139.5,139.2,129.9,129.5,128.8,128.73,128.67,128.3,128.2,127.9,127.7,127.5$, 127.0, 69.5, 51.9, 51.4, 34.8, 29.2. IR (neat): 2948, 1732, 1594, 1491, 1436, 1368, 1220, 1170, 1072, 874, 757, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 466.2013$, found 466.2013.

Methyl 2-(($\mathbf{1 H}$-indol-3-yl)methyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2s). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $1 \mathrm{~s}(0.3 \mathrm{mmol}, 178.9 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33$ $\mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4 -dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 60% yield $(91.6 \mathrm{mg})$ as a yellow solid. M.p. $=108-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ (s, $1 \mathrm{H}), 7.91-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 10 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7$, 164.2, 147.8, 147.2, $140.22,140.19,139.6,135.6,129.8,129.7,128.9,128.7,128.5,128.4,128.3,128.2,127.8$, 127.4, 127.2, 123.8, 121.3, 119.1, 118.7, 110.82, 110.75, 71.6, 51.6, 36.5 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 3380, 2921, 1721, 1572, 1491, 1338, 1074, 1006, 876, 756, 740, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 509.2224$, found 509.2224.

Methyl 2-(4-hydroxybenzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2t). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 t}(0.3 \mathrm{mmol}, 172.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, $45.6 \mathrm{mg})$ and dimethylacetamide (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was quenched with water, extracted with ethyl acetate, and the organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) to afford the title product in 87% yield $(126.2 \mathrm{mg})$ as a white solid. M.p. $=113-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.88$ $(\mathrm{m}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6,164.7,154.7$, 147.6, 147.4, 140.0, 139.9, 139.6, 131.4, 129.9, 129.8, 129.0, 128.8, 128.74, 128.70, 128.6, 128.3, 128.1, 127.7, 127.4, 127.1, 114.6, 72.3, 51.6, 46.1. IR (neat): 3400, 3023, 1723, 1594, 1511, 1442, 1172, 1072, 831, 756, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 486.2064$, found 486.2064.

Methyl 2-(3-oxo-3-(tritylamino)propyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2u). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 u}$ ($0.3 \mathrm{mmol}, 234.2 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on
silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) to afford the title product in 85% yield (176.1 mg) as a white solid. M.p. $=89-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.88-7.86 (m, 2H), 7.53-7.51 (m, 2H), 7.43-7.34 (m, 7H), 7.27-7.26 (m, 6H), 7.21-7.17 (m, $9 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.33 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,172.1,165.4,148.1,147.1$, $144.8,139.8,139.5,139.1,130.1,129.5,128.95,128.91,128.74,128.67,128.3,128.1$, $128.0,127.8,127.7,127.6,127.1,126.7,70.2,69.6,52.2,35.4,32.5$. IR (neat): 3288,2961 , 1728, 1487, 1445, 1261, 1219, 1082, 1019, 876, 799, 756, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 693.3112$, found 693.3111 .

Methyl 2-(4-(((benzyloxy)carbonyl)amino)butyl)-3,5,7-triphenyl-2H-azepine-2-
carboxylate (2v). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 v}$ (0.3 mmol , $201.8 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $50^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $5: 1$, gradient) to afford the title product in 84% yield $(147.9 \mathrm{mg})$ as a white solid. M.p. $=$ 124-125 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-7.40 (m, 5H), 7.39-7.36 (m, 4H), 7.34-7.28 (m, 8H), $6.44(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}$, $2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H})$, 1.69-1.68 (m, 1H), 1.44-1.40 (m, 1H), 1.39-1.34 (m, 1H), 1.23-1.19 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1,164.6,156.3,147.6,147.2,140.1,139.9,139.5,136.7,129.8$, 129.6, 128.8, 128.7, 128.5, 128.4, 128.3, 128.1, 128.01, 127.98, 127.7, 127.4, 127.1, 70.7, 66.4, 51.8, 40.8, 39.8, 29.9, 21.4 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): $3465,2938,1719,1489,1445,1242,1193,1174,1016,756,694 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 585.2748$, found 585.2749.

Methyl 2-(3-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) guanidino)propyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2w). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 w}$ ($0.3 \mathrm{mmol}, 245.6 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ $\mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: acetone $=3: 1$) to afford the title product in 64% yield $(139.9 \mathrm{mg})$ as a yellow solid. M.p. $=135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H}), 6.44(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{br}, 1 \mathrm{H}), 6.03(\mathrm{br}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,165.4,158.5$, $156.0,147.6,147.0,139.7,139.5,139.1,138.2,133.2,132.2,130.0,129.5,129.0,128.74$, $128.65,128.4,128.2,128.1,127.8,127.6,127.0,124.4,117.2,86.1,70.6,52.0,43.1,41.4$, 36.7, 28.5, 24.3, 19.2, 17.8, 12.4. IR (neat): 3440, 3338, 2970, 1728, 1549, 1446, 1368, 1232, 1146, 1090, 756, 697, $665 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{43} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 731.3262, found 731.3261.

Methyl 2,3,5,7-tetraphenyl-2H-azepine-2-carboxylate (2x). 0.3 mmol scale, under N_{2}
atmosphere, pyridinium salt $\mathbf{1 x}(0.3 \mathrm{mmol}, 163.0 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $80^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the title product in 71% yield $(97.4 \mathrm{mg})$ as a yellow solid. M.p. $=104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H})$, 7.55-7.53 (m, 2H), 7.43-7.36 (m, 4H), 7.33-7.29 (m, 4H), 7.23-7.20 (m, 2H), 7.18-7.13 (m, $6 \mathrm{H}), 6.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 169.4,148.6,141.8,140.9,139.55,139.46,137.0,131.1,130.1,130.0,129.6$, $128.9,128.6,128.1,127.9,127.8,127.6,127.5,127.1,126.65,126.63,126.5,52.5,51.5$. IR (neat): $3019,1736,1491,1444,1261,1176,1014,910,779,764,692,673 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 456.1958 , found 496.1957.

2-Methyl-3,5,7-triphenyl-2H-azepine-2-carbonitrile (2y). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 y}(0.3 \mathrm{mmol}, 134.5 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 90% yield $(97.3 \mathrm{mg})$ as a green solid. M.p. $=69-70{ }^{\circ}{ }^{\circ}$ C. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H})$, 7.37-7.26(m, 7H), $6.72(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 147.8,141.2,137.4,135.1,134.2,130.5,129.6,129.0,128.8,128.5,128.3$, 127.8, 127.4, 127.1, 127.0, 119.6, 114.2, 35.6, 21.6 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2923, 1732, 1568, 1445, 1220, 1088, 1002, 759, $695,667 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 361.1699$, found 361.1699.

7,9,11-Triphenyl-2-oxa-6-azaspiro[4.6]undeca-6,8,10-trien-1-one (2z). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 z}(0.3 \mathrm{mmol}, 143.8 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6$ $\mathrm{mg})$ and 1,4-dioxane $(3.0 \mathrm{~mL})$ were stirred at $30^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate: dichloromethane $=20: 1: 5)$ to afford the title product in 83% yield (97.4 mg) as a white solid. M.p. $=168-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~s}, 5 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H}), ~ 2.53-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.5,164.4,149.2,144.2,140.1,139.3,139.2,130.1$, 129.2, 129.0, 128.94, 128.92, 128.8, 128.4, 128.3, 128.2, 126.9, 126.8, 69.0, 65.1, 34.4. IR (neat): 3021, 1776, 1444, 1376, 1214, 1178, 1033, 963, 870, 756, 715, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 392.1645$, found 392.1644.

tert-Butyl 2-(2'-oxo-3,5,7-triphenyl-4',5'-dihydrospiro[azepine-2,3'-benzo[b]azepin]$\left.\mathbf{1}^{\prime} \mathbf{(2 ' H}\right)$-yl)acetate (2za). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt 1za (0.3 mmol, 200.6 mg), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg}$) and 1,4-dioxane (3.0 mL) were stirred at $30{ }^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to petroleum ether: ethyl acetate: dichloromethane $=25: 1: 4$, gradient) to afford the title
product in 83% yield $(145.2 \mathrm{mg})$ as a white solid. M.p. $=224-225{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}): $\delta 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.25$ (m, 4H), 7.20-7.16 (m, 3H), 7.03-6.99 (m, 3H), 6.79 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,168.0,161.2,149.2,146.6,143.4,140.5,140.0,139.0$, 136.9, 129.7, 129.5, 129.4, 128.9, 128.49, 128.45, 128.3, 128.1, 127.53, 127.50, 127.0, 126.0, 125.7, 122.1, 81.3, 71.5, 52.1, 44.5, 29.2, 27.7 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2974, 1740, 1652, 1596, 1493, 1365, 1272, 1221, 1156, 1025, 870, 755, 703, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 581.2799, found 581.2799.

Methyl 2-(4-(((S)-2-(6-methoxynaphthalen-2-yl)propanoyl)oxy)benzyl)-3,5,7-triphenyl $\mathbf{- 2 H}$-azepine-2-carboxylate (2zb). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt 1zb ($0.3 \mathrm{mmol}, 235.7 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg}$) and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=$ 25:1 to 5:1, gradient) to afford a mixture of diastereoisomers (d.r. 1:1) in 89% yield (187.0 $\mathrm{mg})$ as a white solid. M.p. $=95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.85(\mathrm{~m}, 2 \mathrm{H})$, 7.74-7.70 (m, 3H), 7.51-7.41 (m, 8H), 7.40-7.31 (m, 7H), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.15-7.11 (m, 2H), 6.89 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.878(\mathrm{~s}, 1.5 \mathrm{H}), 3.876(\mathrm{~s}, 1.5 \mathrm{H}), 3.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 1.5 \mathrm{H}), 3.16(\mathrm{~s}$, 1.5 H), $3.08(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 173.1, 172.4, (164.20, 164.18), 157.7, 149.6, 147.4, 140.0, 139.9, 139.5, (135.18, 135.17),
134.8, 133.7, 131.3, 129.80, 129.76, 129.3, 128.93, 128.86, 128.8, 128.7, 128.4, 128.3, $128.0,127.8,127.5,127.3,127.1,126.14,126.08,120.3,119.0,105.5,72.2,55.2,51.3$, 46.3, 45.5, 18.4 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2935, 1751, 1604, 1504, 1196, 1165, 1130, 1071, 1030, 852, 756, 730, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{47} \mathrm{H}_{40} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 698.2901$, found 698.2902.

Methyl 2-(4-((2-(4-isobutylphenyl)propanoyl)oxy)benzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2zc). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 z c}(0.3 \mathrm{mmol}$, 228.5 mg), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=25: 1$) to afford the title product in 85% yield (171.8 mg) as a white solid. M.p. $=74-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.22(\mathrm{~m}$, $7 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80-0.78$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1,172.4,164.2,149.6,147.4,140.7,140.0$, $139.9,139.6,137.3,134.8,131.2,129.81,129.78,129.4,128.9,128.8,128.7,128.4,128.3$, $128.1,127.8,127.5,127.2,127.1,120.3,72.2,51.3,46.3,45.2,45.0,30.1,22.3,18.5$ (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2952, 1752, 1721, 1594, 1504, 1444, 1198, 1165, 1135, 1071, 1018, 756, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 674.3265$, found 674.3265 .

4-((2-(Methoxycarbonyl)-3,5,7-triphenyl-2H-azepin-2-yl)methyl)phenyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (2zd). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt 1zd ($0.3 \mathrm{mmol}, 261.5 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate: dichloromethane $=15: 1: 3)$ to afford the title product in 83% yield $(195.1 \mathrm{mg})$ as a yellow solid. M.p. $=124-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{dd}, J=3.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-90(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, $5 \mathrm{H}), 7.43-7.35$ (m, 9H), 7.12 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, $J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 172.3,168.0,164.3,162.7,162.6,160.3,149.1,147.43,147.39,140.0,139.9$, 139.6, 135.4, 132.6, 132.2, 131.5, 129.9, 129.8, 128.9, 128.8, 128.7, 128.5, 128.3, 128.1, $127.8,127.5,127.2,125.9,120.9,120.5,115.3,112.6,103.0,75.7,72.2,51.4,46.3,28.1$, 19.0, 17.6. IR (neat): 2957, 1725, 1602, 1504, 1431, 1372, 1329, 1248, 1193, 1165, 1119, 1054, 1012, 818, 756, 695, $661 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{49} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 784.2840 , found 784.2841.

Methyl
benzyl)-3,5,7-triphenyl-2H-azepine-2-carboxylate (2ze). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt 1ze ($0.3 \mathrm{mmol}, 274.0 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 1,4-dioxane (3.0 mL) were stirred at $30^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of silica gel, rinsed with ethyl acetate, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate: dichloromethane $=15: 1: 3$) to afford the title product in 84% yield (208.0 mg) as a yellow solid. M.p. $=107-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H})$, 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 9 \mathrm{H})$, $7.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=$ $8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.2,169.1,168.1,164.1,156.0,149.5,147.3,140.0,139.8,139.5,139.1,136.0,135.0$, $133.8,131.3,131.1,130.7,130.5,129.8,129.7,129.0,128.8,128.74,128.67,128.4,128.3$, 128.0, 127.7, 127.4, 127.1, 120.2, 114.9, 112.1, 111.7, 101.1, 72.1, 55.6, 51.3, 46.2, 30.4, 13.3 (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 2940, 1747, 1683, 1592, 1478, 1357, 1318, 1241, 1196, 1165, 1126, 1088, 1066, 1014, 923, 836, $755,697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 825.2726$, found 825.2723.

Methyl (2-benzyl-3,5,7-triphenyl-2H-azepine-2-carbonyl)prolinate (2zf). 0.3 mmol scale, under N_{2} atmosphere, pyridinium salt $\mathbf{1 z f}(0.3 \mathrm{mmol}, 196.4 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}$, $45.6 \mathrm{mg})$ and dimethylacetamide $(3.0 \mathrm{~mL})$ were stirred at $80^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was quenched with water, extracted with ethyl acetate, and the organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica
gel (eluent: petroleum ether: ethyl acetate $=25: 1$ to $5: 1$, gradient) to afford a mixture of diastereoisomers (d.r. 1:0.7) in 73% yield $(123.7 \mathrm{mg})$ as a yellow solid. M.p. $=112-113{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.88 (s, 1.4H), $7.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1.4 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 2.1 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $10.2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 11.9 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1.7 \mathrm{H}), 6.46(\mathrm{~s}, 0.7 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 0.7 \mathrm{H}), 3.76(\mathrm{~s}, 2.1 \mathrm{H}), 3.33(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1.4 \mathrm{H})$, $3.16(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 1 \mathrm{H})$, 2.23-2.22 (m, 0.7H), $1.97(\mathrm{br}, 0.7 \mathrm{H}), 1.85(\mathrm{br}, 0.7 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.58(\mathrm{~m}$, $0.7 \mathrm{H}), 1.51-1.50(\mathrm{~m}, 0.7 \mathrm{H}), 1.38-1.36(\mathrm{~m}, 0.7 \mathrm{H}), 1.26-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.62(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8$ (minor), 172.7 (major), 171.74 (minor), 171.70 (major), 163.0 (major), 162.3 (minor), 150.7 (minor), 150.5 (minor), 149.9 (major), 149.7 (major), 140.7 (major), 140.6 (minor), 140.4 (major), 140.0 (minor), 139.4 (minor), 139.3 (major), 137.9 (major), 137.2 (minor), 132.5 (minor), 131.2 (major), 130.1 (major), 129.9 (major), 128.9 (minor), 128.7 (major), 128.6 (minor), 128.53 (major), 128.48 (minor), 128.4 (major), 127.9 (major), 127.8 (minor), 127.72 (major), 127.68 (major), 127.6 (minor), 127.44 (major), 127.36 (minor), 127.3 (minor), 127.2 (minor), 127.1 (major), 126.6 (major), 126.4 (minor), 125.8 (major), 124.6 (minor), 72.9 (major), 72.4 (minor), 61.1 (major), 59.9 (minor), 51.8 (minor), 51.1 (major), 50.7 (major), 49.9 (minor), 48.5 (major), 47.3 (minor), 28.0 (minor), 27.7 (major), 25.5 (minor), 25.4 (major) (several aromatic carbon signals of the isomers are not observed due to signal overlap). IR (neat): 2951, 1739, 1622, 1494, 1395, 1166, 874, 757, 697, $603 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 567.2642$, found 567.2642.

Gram scale study

To an oven-dried sealable Schlenk tube (100.0 mL) equipped with a stir bar was
added pyridinium salts 1a ($3.0 \mathrm{mmol}, 1.67 \mathrm{~g}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.3 \mathrm{mmol}, 456.1 \mathrm{mg})$ under N_{2} atmosphere. Then, the tube was re-evacuated and refilled with nitrogen for three times before adding 1,4-dioxane ($30.0 \mathrm{~mL}, 0.1 \mathrm{M}$ with respect to $\mathbf{1 a}$) via a syringe. The Schlenk tube was securely sealed and immersed into an oil bath preheated at $30^{\circ} \mathrm{C}$. After stirring at the same temperature for 24 h , the reaction mixture was filtered through a short pad of silica gel, and rinsed with ethyl acetate. Then, the resulting organic layer was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=100: 1$ to $25: 1$, gradient) to afford the target azepine product $\mathbf{2 a}$ in 97% yield $(1.37 \mathrm{~g})$ as a white solid. This result highlights the robustness and scalability of this process, as almost no loss in yield was observed when it was conducted on gram-scale experiment.

One-pot transformation

To an oven-dried sealable Schlenk tube (15.0 mL) equipped with a stir bar was added methyl phenylalaninate hydrochloride ($0.3 \mathrm{mmol}, 64.7 \mathrm{mg}$), pyrylium salt (0.3 mmol , 118.9 mg), $4 \AA \mathrm{MS}(150.0 \mathrm{mg}), 1,4$-dioxane $(3.0 \mathrm{~mL}, 0.1 \mathrm{M}$ with respect to methyl phenylalaninate hydrochloride) and $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{mmol}, 60.7 \mathrm{mg})$ under N_{2} atmosphere. After stirring at $30^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, \mathrm{AcOH}(0.6 \mathrm{mmol}, 36.0 \mathrm{mg})$ was added via a syringe. Then, the Schlenk tube was securely sealed and stirred at $30^{\circ} \mathrm{C}$ for 5 h . Subsequently, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.63$ $\mathrm{mmol}, 87.1 \mathrm{mg}$) was directly added into the reaction mixture under N_{2} atmosphere without further purification (Note: when 1.1 equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used, the pyridinium salt could not be completely consumed due to the presence of a slight excess of acid in the one-pot conditions). After stirring at the same temperature for 12 h , the reaction mixture was filtered through a short pad of silica gel, and rinsed with ethyl acetate. The resulting organic layer was evaporated under the reduced pressure, and the residue was purified by
column chromatography on silica gel (eluent: petroleum ether: ethyl acetate: dichloromethane $=100: 1: 3$) to afford the target azepine product 2 a in 60% overall yield $(84.5 \mathrm{mg})$ as a white solid. This result would have many advantages in terms of practicability, as it avoids the separation of the resulting pyridinium salt and reduces the waste of solvents in purifications.

Bioactivity testing for selected azepine derivatives

Cell antiproliferative assay: Cell antiproliferative activity was evaluated by the CellTiter-Glo (Promega, USA) assay. Make $1000 \times$ compounds solution in DMSO, add 1 $\mu \mathrm{L} 1000 \times$ compounds to $49 \mu \mathrm{~L}$ growth medium to make $20 \times$ compounds. Dilute cell suspensions in growth medium to desired density and $95 \mu \mathrm{~L}$ were taken to 96 -well plate. Add $5 \mu \mathrm{~L} 20 \times$ compounds into 96 -well plate. Final DMSO concentration in each well was 0.1%. Then the cell was incubated at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ for 72 h . Equilibrate the assay plate to room temperature before measurement. Add $20 \mu \mathrm{~L}$ of CellTiter-Glo ${ }^{\circledR}$ Reagent into each well. Mix contents for 2 minutes on an orbital shaker to induce cell lysis. Incubate at room temperature for 10 minutes to stabilize luminescent signal. Record luminescence using EnVision Multilabel Reader (PerkinElmer). Cell viability (CV\%) was calculated relative to vehicle (DMSO) treated control wells using following formula: Cell viability (\%) = (RLU compound -RLU blank)/(RLU control-RLU blank)* 100%. The IC_{50} values were calculated using GraphPad Prism 6.0 software, fitting to a 4-parameter equation to generate concentration response curves.

Data for bioactivity study:

Radical trap experiment

A sealable Schlenk tube (15.0 mL) was heated under vacuum using a heatgun, and evacuated and back-filled with nitrogen for three times. After the tube was cooled to room temperature, pyridinium salts $1 \mathrm{a}(0.3 \mathrm{mmol}, 167.2 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO, 1.0 or 2.0 equiv) were added successively under nitrogen atmosphere. Then, the tube was re-evacuated and refilled with nitrogen for three times before adding 1,4-dioxane ($3.0 \mathrm{~mL}, 0.1 \mathrm{M}$ with respect to $\mathbf{1 a}$) via a syringe.

The Schlenk tube was securely sealed and immersed into an oil bath preheated at $30^{\circ} \mathrm{C}$. After stirring at the same temperature for 12 h , the reaction mixture was filtered through a short pad of silica gel, and rinsed with ethyl acetate. The resulting organic layer was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=50: 1$ to $25: 1$, gradient) to afford the target azepine product 2a in 88% (123.7 mg) and 84% (119.0 mg) yields, respectively. (Note: the slightly lower yield in this case was attributed to the incomplete consumption of the pyridinium salt 1a.)

Conclusion: These results indicate that a free radical pathway is not likely to be involved in this process.

Radical clock experiment

A sealable Schlenk tube (15.0 mL) was heated under vacuum using a heatgun, and evacuated and back-filled with nitrogen for three times. After the tube was cooled to room temperature, pyridinium salts $\mathbf{3}(0.3 \mathrm{mmol}, 152.2 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}, 45.6 \mathrm{mg})$ were added successively under nitrogen atmosphere. Then, the tube was re-evacuated and refilled with nitrogen for three times before adding 1,4 -dioxane $(3.0 \mathrm{~mL}, 0.1 \mathrm{M}$ with respect to 3) via a syringe. The Schlenk tube was securely sealed and immersed into an oil bath preheated at $30^{\circ} \mathrm{C}$. After stirring at the same temperature for 12 h , the reaction mixture was filtered through a short pad of silica gel, and rinsed with ethyl acetate. Then, the resulting organic layer was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=$ $25: 1)$ to afford the title product 4 in 92% yield (115.8 mg) as a white solid, while no ring-opened product was observed in the reaction mixture.

Conclusion: This result shows that an alkyl radical species might not be generated

in the reaction, otherwise the ring-opened product would be the main product.

Methyl 2-cyclopropyl-3,5,7-triphenyl-2H-azepine-2-carboxylate (4). M.p. $=184-185{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31$ (m, $8 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$, 1.14-1.10 (m, 1H), 1.05-1.01 (m, 1H), 0.89-0.85 (m, 1H), 0.38-0.33 (m, 1H), 0.14-0.10 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0,163.5,148.6,147.8,140.6,140.3,139.5,129.8$, $128.73,128.71,128.6,128.2,127.90,127.85,127.3,127.2,127.1,68.7,51.9,19.5,3.7,2.1$ (1 aromatic carbon signal is not observed due to signal overlap). IR (neat): 3023, 1728, 1598, 1489, 1442, 1225, 1161, 1049, 1028, 876, 756, $695 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 420.1958$, found 420.1955 .

X-ray diffraction data of $\mathbf{2 n}$

Figure S1. X-ray crystal structure of 2n (Ellipsoid probability: 30\%)
Note: The single crystal of $\mathbf{2 n}$ suitable for X-ray diffraction was obtained by volatilizing a mixed solution of $\mathbf{2 n}$ in ethyl acetate and petroleum ether at room temperature.

Table S5. Crystal data of 2n (CCDC 2181086)

References:

[1] X. Zhang, C. Jiao, D. Qi, X. Liu, Z. Zhang and G. Zhang, Nickel-catalyzed deaminative allenylation of amino acid derivatives: catalytic activity enhanced by an amide-type NN_{2} pincer ligand, Org. Lett., 2022, DOI: 10.1021/acs.orglett.2c02042.
[2] C.-S. Zhang, L. Bao, K.-Q. Chen, Z.-X. Wang and X.-Y. Chen, Photoinduced α-alkenylation of Katritzky salts: synthesis of β, γ-unsaturated esters, Org. Lett., 2021, 23, 1577-1581.
[3] F. J. R. Klauck, M. J. James and F. Glorius, Deaminative strategy for the visible-light-mediated generation of alkyl radicals, Angew. Chem. Int. Ed., 2017, 56, 12336-12339.
[4] M. E. Hoerrner, K. M. Baker, C. H. Basch, E. M. Bampo and M. P. Watson, Deaminative arylation of amino acid-derived pyridinium salts, Org. Lett., 2019, 21, 7356-7360.
[5] X. Jiang, M.-M. Zhang, W. Xiong, L.-Q. Lu and W.-J. Xiao, Deaminative (carbonylative) alkyl-Heck-type reactions enabled by photocatalytic C-N bond activation, Angew. Chem. Int. Ed., 2019, 58, 2402-2406.

NMR spectra of all new compounds
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2a

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2c

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(1)

	\mid	$\stackrel{\leftrightarrow}{8}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

い込

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2t

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 Lu4

$205 \quad 2.28 \int^{508} \int_{4}^{405}$
1 做机
${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
目

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

