Supporting Information for

Thiophene/Selenophene-Based Windmill-Shaped Triple

[6]Helicenes

Wan Xu, Jichang Wei, Kun Tang, Zhiying Ma, Jianwu Shi, Chunli Li* and Hua Wang*

Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China

*Corresponding author: Chunli Li (Email: chunli79@126.com); Hua Wang (Email:

hwang@henu.edu.cn).

Table of Contents

1. Experimental Section	S3
General procedures and materials.	S3
Synthesis of 3	S4
Synthesis of (TMS) ₂ - DTS	S4
Synthesis of 4b	S4
Synthesis of 5b	S5
Synthesis of 6a .	S5
Synthesis of 6b	S6
Synthesis of 6c	S6
Synthesis of 6d.	S6
Synthesis of <i>rac</i> -1a	S7
Synthesis of <i>rac</i> -1b	S7
Synthesis of <i>rac</i> -1c	S8
Synthesis of <i>rac</i> -1d	S8
2. NMR and HRMS Spectra	S8
NMR and HRMS spectra of 3 .	S8
NMR and HRMS spectra of (TMS) ₂ -DTS	S10
NMR and HRMS spectra of 4b.	S11

NMR and HRMS spectra of 5b	S13
NMR and HRMS spectra of 6a .	S14
NMR and HRMS spectra of 6b	S16
NMR and HRMS spectra of 6c .	S17
NMR and HRMS spectra of 6d.	S18
NMR and HRMS spectra of <i>rac</i> -1a.	S19
NMR and HRMS spectra of <i>rac</i> -1b.	S20
NMR and HRMS spectra of <i>rac</i> -1c	S22
NMR and HRMS spectra of <i>rac</i> -1d.	S23
3. Quantum Calculation of <i>rac</i> -1(a)–(d)	S25
UV-vis spectra prediction and transition nature <i>rac</i> -1(a)–(d)	S25
4. Resolution of <i>rac</i> -1c	S27
HPLC trace of (+)-1c, (-)-1c, and <i>rac</i> -1c	S27
Racemization of (-)-1c	S27
5. X-ray Crystallographic Data	S30
X-ray crystallographic data of <i>rac</i> -1a	S30
X-ray crystallographic data of <i>rac</i> -1b	
X-ray crystallographic data of <i>rac</i> -1c	
X-ray crystallographic data of <i>rac</i> -1d	S36
6. References	S41

1. Experimental Section

General Procedures and Materials

Ether and tetrahydrofuran (THF) for use on vacuum line were freshly distilled from sodium/benzophenone prior to use. *t*-BuLi (pentane) and *n*-BuLi (hexane) were obtained from Energy Chemical, and their concentrations were determined by titration with *N*-pivaloyl-o-toluidine.¹ Column chromatography was carried out on silica gel (300–400 mesh). Analytical thin-layer chromatography was performed on glass plates of silica gel GF-254 with detection by UV. Standard techniques for synthesis under inert atmosphere, using gasbag and Schlenk glassware equipped with an 8 mm PTFE vacuum stopcock, were employed. All starting materials and reagents were commercially available.

¹H NMR and ¹³C NMR spectra were recorded on 300 or 400 or 600 MHz NMR instruments using CDCl₃ (δ H (7.26 ppm) and CDCl₃ δ C (77.00 ppm))as solvent. IR spectra were obtained using an FT-IR instrument. HRMS analysis was carried out on a mass spectrometer equipped with EI⁺, DART-FTICR and DART-Positive. Melting point determination was taken on a Melt-Temp apparatus and was uncorrected. Ultraviolet-visible (UV-vis) absorption spectra were recorded on PE Lambda 950 equipment. The steady-state photoluminescence (PL) spectra and the fluorescence measurements for all samples were recorded on a JY HORIBA FluoroLog-3. CD spectrum was recorded on Aviv Biomedical Inc Model 420SF. Cyclic voltammetry (CV) behaviors were recorded on IM6eX equipment with three electrode cell in the solution of 0.1 M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) dissolved in CH₂Cl₂. Platinum electrode (0.6 cm²), Pt wire and Ag/AgCl electrode were used as the working electrode, counter electrode and reference electrode, respectively. The X-ray crystallographic analyses were performed using crystals of compounds rac-1(a)-(d) with sizes of $0.48 \times 0.23 \times 0.22$, $0.17 \times 0.09 \times 0.04$, $0.1611 \times 0.1222 \times 0.0669$ and 0.1525 \times 0.0577 \times 0.0404 mm³, respectively. The intensity data were collected with the ω scan mode (296, 298, 293, 293 K) on a diffractometer with CCD detector using Cu K α radiation ($\lambda = 1.54178$, 1.54184 Å). The data were corrected for Lorentz and polarization effects, and absorption corrections were performed using SADABS program.² The crystal structures were solved using the SHELXTL program and refined using full-matrix least-squares.³ Further details were in the deposited CIF files. Slow evaporation of solutions of rac-1(a)-(d) in CHCl₃/CH₃OH (3/1, 2/1, 3/2, 1/1, v/v) were employed for growing single crystals. The fluorescence quantum yields (Φ_F) of *rac*-1(**a**)–(**d**) were characterized in dichloromethane with quinine sulfate in 0.1 N H₂SO₄ as the control. The predicted absorption spectra were computed within the TD-DFT/PCM approaches based on B3LYP/6-31G* level. HOMO and LUMO distributions and isomerization barriers of *rac*-1(**a**)–(**d**) (i.e., the TMS replaced by hydrogen atom) were at the B3LYP/6-31G* level.

Synthesis of 2,7-Bis(trimethylsilyl)-[1,2]diselenino[3,4-b:6,5-b']dithiophene (3)

n-BuLi (2.38 M in hexane, 6.12 mL, 14.56 mmol, 2.05 equiv) was added dropwise into a solution of **2** (3.10 g, 6.62 mmol) in Et₂O (100 mL) at -78 °C, and then the reaction mixture was kept for 2 h. Dry Se (metals basis) (2.61 g, 33.1 mmol, 5.0 equiv) was added at -78 °C; the reaction mixture was kept at -78 °C for 2 h and -55 °C for 2 h, and then warmed up slowly to ambient temperature overnight. The reaction mixture was quenched with methanol at -78 °C, extracted with dichloromethane (3 × 25 mL), and then washed with water (3 × 30 mL). After drying over anhydrous MgSO₄, the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel with petrol ether (60–90 °C) as eluent to yield **3** (1.02 g, 33%) as a red solid. Mp: 137–138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 2H), 0.35 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 142.2, 132.3, 119.2, -0.1. HRMS (DART-Positive) *m/z* [M + H]⁺ calcd for C₁₄H₂₁S₂Se₂Si₂ 468.8948; found 468.8950. IR (KBr): 3050, 2947, 1252, 986, 830 cm⁻¹.

Synthesis of 2,5-Bis(trimethylsilanyl)dithieno[2,3-b:3',2'-d]selenophene((TMS)₂-DTS)

Compound **3** (300 mg, 0.64 mmol) and Cu nanopowder (200 mg, 3.22 mmol, 5.0 equiv) were heated to 145 °C without use of any solvent for 0.5 h. The residue was purified by column chromatography on silica gel with petrol ether (60–90 °C) as eluent to yield (TMS)₂-**DTS** (120.7 mg, 50%) as a yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.51 (s, 2H), 0.36 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 141.6, 141.2, 126.4, 0.0. HRMS (DART-Positive) m/z [M + H]⁺ calcd for C₁₄H₂₁SeS₂Si₂ 388.9783; found 388.9785. IR (KBr): 3061, 2978, 1251, 963, 845 cm⁻¹.

Synthesis of 5-Bromo-2-(trimethylsilanyl)dithieno[2,3-b:3',2'-d]selenophene (4b)

 $(TMS)_2$ -**DTS** (605 mg, 1.56 mmol) was dissolved in CHCl₃ (20 mL), and NBS (333 mg, 1.87 mmol, 1.2 equiv) was dissolved in 16 mL of HOAc/CHCl₃ (v/v = 1/8) and added dropwise under good stirring at 0 °C in an ice-water bath. After stirring for 2 h, the reaction mixture was quenched with H₂O, extracted with dichloromethane (3 × 10 mL), and then washed with saturated NaHCO₃ (20

mL) and water (2 × 20 mL). The organic layer was dried over anhydrous MgSO₄. After the solvent was removed under vacuum, the residue was washed with 3 × 5 mL hexane to yield **4b** (326.2 mg, 53%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.41 (s, 1H), 0.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 142.0, 140.7, 139.0, 134.7, 126.2, 123.5, 113.2, -0.1. HRMS (EI⁺) *m/z* [M⁺] calcd for C₁₁H₁₁BrS₂⁷⁴SeSi 387.8480; found 387.8478. IR (KBr): 3084, 2963, 1259, 910, 842 cm⁻¹.

Synthesis of 5-(trimethylsilyl)dithieno[2,3-b:3',2'-d]selenophene-2-carbaldehyde (5b)

n-BuLi (2.45 M in hexane, 0.98 mL, 2.40 mmol, 1.05 equiv) was added dropwise to **4b** (900 mg, 2.28 mmol) in THF (30 mL) at -78 °C. After 2 h at -78 °C, DMF (0.36 mL, 4.57 mmol, 2.0 equiv) was added at -78 °C and kept 0.5 h, and then the reaction mixture was warmed up slowly to ambient temperature overnight. The reaction mixture was quenched with H₂O and extracted with dichloromethane (3 × 15 mL). The organic layer was washed with saturated NaHCO₃ (20 mL) and water (2 × 20 mL) and then dried over anhydrous MgSO₄. The residue was purified by column chromatography on silica gel with petrol ether (60–90 °C) Hexane/CH₂Cl₂ (v/v = 2/1) as eluent to yield **5b** (243 mg, 31%) as a brown solid. Mp: 124–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.01 (s, 1H), 7.54 (s, 1H), 0.39 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 147.7, 147.5, 147.2, 141.9, 141.6, 140.0, 128.7, 126.1, –0.1. HRMS (DART-FTICR) *m/z* [M + H]⁺ calcd for C₁₂H₁₃OS₂SeSi 344.9337; found 344.9337. IR (KBr): 3091, 2938, 1656, 993, 849 cm⁻¹.

1,3,5-tris(2-(5-(trimethylsilyl)dithieno[2,3-b:3',2'-d]thiophene-2-yl)vinyl)benzene (6a)

n-BuLi (2.5 M in hexane, 0.29 mL, 0.74 mmol, 3.5 equiv) was added dropwise into the phosphonium salt (241 mg, 0.21 mmol, 1.0 equiv) in THF at -78 °C for 2 h, then a solution of 5- (trimethylsilanyl)dithieno[2,3-*b*:3',2'-*d*]thiophene-2-carbaldehyde **5a** (200 mg, 0.67 mmol, 3.2 equiv) in dry THF (5 mL) was added at -78 °C. After keeping stirring for 2 h, the reaction mixture was warmed up slowly to ambient temperature overnight. The reaction was quenched with water at -78 °C, extracted with dichloromethane (3 × 15 mL), washed with H₂O (3 × 25 mL), and then dried over anhydrous MgSO₄. After the solvent was removed in vacuum, the residue was purified by column chromatography on silica gel with petroleum ether (60–90 °C) Hexane/CH₂Cl₂(v/v = 1/1) as eluent to give 1,3,5-tris(2-(5-(trimethylsilyl)dithieno[2,3-*b*:3',2'-*d*]thiophene-2-yl)vinyl)-benzene **6a** (100.3 mg, 50%) as a yellow solid. Mp: 157–159 °C. ¹H NMR (400 MHz, CDCl₃) δ

7.45 (s, 6H), 7.32 (t, J = 8.0 Hz, 6H), 6.91 (d, J = 16.0 Hz, 3H), 0.40 (s, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 144.6, 143.7, 140.6, 138.4, 137.8, 137.5, 127.4, 124.9, 123.5, 123.0, 118.1, -0.1. HRMS (MALDI MS EI⁺) m/z [M⁺] calcd for C₄₅H₄₂S₉Si₃ 954.0081; found 954.0075. IR (KBr) 3017, 2955, 1259, 941, 833 cm⁻¹.

1,3,5-tris(2-(5-(trimethylsilyl)dithieno[2,3-b:3',2'-d]selenophene-2-yl)vinyl)benzene (6b)

Compound **6b** was synthesized according to the procedure for making **6a**. From the reaction on the 200 mg scale of **5b**, 27.9 mg (14%) of **6b** was obtained as yellow solid. Mp: >300 °C. ¹H NMR (400 MHz, CDCl₃) (for a mixture of *cis* and *trans* isomers of **6b**) δ 7.51 (d, *J* = 8.0 Hz), 7.49 (d, *J* = 6.0 Hz), 7.45 (d, *J* = 1.6 Hz), 7.39 (d, *J* = 7.2 Hz), 7.33(s), 7.27(s), 6.97 (s), 6.93 (t, *J* = 8.0 Hz), 6.83 (d, *J* = 8.0 Hz), 6.63 (d, *J* = 12.0 Hz), 0.39 (s), 0.38 (s), 0.33 (s); the ratio of integral areas of the peaks are 1 : 1 : 0.5 : 1.5 : 0.5 : 0.5 : 0.5 : 1 : 0.3 : 0.3 : 7 : 3 : 1. HRMS (AP-MALDI- Positive) *m/z* [M⁺] calcd for C₄₅H₄₂S₆⁸⁰Se₃Si₃ 1097.8409; found 1097.8435. IR (KBr) 3029, 2954, 1259, 941, 834 cm⁻¹.

1,3,5-tris(2-(5-(trimethylsilyl)diseleno[2,3-b:3',2'-d]thiophene-2-yl)vinyl)benzene (6c)

Compound **6c** was synthesized according to the procedure for making **6a**. From the reaction on the 200 mg scale of **5c**, 21.7 mg (11%) of **6c** was obtained as yellow solid. Mp: 258–260 °C. ¹H NMR (400 MHz, CDCl₃) (for a mixture of *cis* and *trans* isomers of **6c**) δ 7.74 (s), 7.71 (d, *J* = 4.4 Hz), 7.56 (d, *J* = 6.0 Hz), 7.49 (d, *J* = 3.6 Hz), 7.43 (d, *J* = 11.2 Hz), 7.37 (d, *J* = 7.2 Hz), 6.93 (d, *J* = 11.6 Hz), 6.83 (d, *J* = 6.0 Hz), 6.79 (d, *J* = 6.0 Hz), 6.66 (d, *J* = 10.8 Hz), 0.39 (s), 0.38 (s), 0.35 (s); the ratio of integral areas of the peaks are 1 : 0.5 : 1 : 1 : 1 : 0.15 : 0.85 : 0.85 : 0.15 : 9 : 3 : 3. HRMS (AP-MALDI-Positive) *m/z* [M⁺] calcd for C₄₅H₄₂S₃⁸⁰Se₆Si₃ 1241.6742; found 1241.6768. IR (KBr) 3015, 2950, 1245, 908, 833 cm⁻¹.

1,3,5-tris(2-(5-(trimethylsilyl)diseleno[2,3-b:3',2'-d]selenophene-2-yl)vinyl)benzene (6d)

Compound **6d** was synthesized according to the procedure for making **6a**. From the reaction on the 200 mg scale of **5d**, 19.7 mg (10%) of **6d** was obtained as yellow solid. Mp: 280–282 °C. ¹H NMR (400 MHz, CDCl₃) (for a mixture of *cis* and *trans* isomers of **6d**) δ 7.76 (s), 7.74 (d, *J* = 4.0 Hz), 7.59 (d, *J* = 6.0 Hz), 7.53 (d, *J* = 11.6 Hz), 7.48 (s), 7.43 (d, *J* = 10.4 Hz), 7.38 (d, *J* = 4.4 Hz), 7.33(s), 6.93 (d, *J* = 11.6 Hz), 6.83 (d, *J* = 4.8 Hz), 6.79 (d, *J* = 4.4 Hz), 6.65 (d, *J* = 11.6 Hz), 0.39 (s), 0.37 (s), 0.35 (s); the ratio of integral areas of the peaks are 1 : 1 : 1 : 1 : 1 : 1 : 0.7 : 0.3 : 0.3 :

0.7 : 0.7 : 0.3 : 9 : 6 : 3. HRMS (AP-MALDI-Positive) *m*/*z* [M⁺] calcd for C₄₅H₄₂⁸⁰Se₉Si₃ 1385.5076; found 1385.5099. IR (KBr) 3010, 2950, 1245, 911, 832 cm⁻¹.

1,3,5-tris(trimethylsilyl)benzo[1,2-b:3,4-b']-tris(dithieno[2,3-b:3',2'-d]thiophene)benzene (rac-1a)

Iodine (22 mg, 0.088 mmol, 3.0 equiv) and 2-methyloxirane (0.1 mL) were added into solution of **6a** (28 mg, 0.029 mmol) in dry toluene (25 mL). The reaction solution was irradiated with a 450 W unfiltered Hg medium pressure lamp. The reaction was monitored by thin layer chromatography every hour, and irradiation was stopped when the **6a** was consumed. The reaction was quenched with saturated Na₂S₂O₃ (10 mL). The reaction mixture was extracted with dichloromethane (3 × 10 mL) and washed with H₂O (3 × 10 mL) and then dried over anhydrous MgSO₄. After the solvent was removed in vacuum, the crude product was purified by PTLC with petroleum ether (60–90 °C) Hexane/CH₂Cl₂ (v/v = 2/1) as developer to yield *rac*-**1a** (10.0 mg, 35%) as a light yellow solid. Mp: 258–260 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.8 Hz, 3H), 7.77 (d, *J* = 8.8 Hz, 3H), 6.53 (s, 3H), 0.10 (s, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 143.0, 142.0, 141.6, 141.6, 135.1, 130.2, 127.6, 127.5, 127.2, 126.6, 119.2, -0.3. HRMS (MALDI MS EI⁺) *m/z* [M⁺] calcd for C₄₅H₃₆S₉S₁₃ 947.9611, found 947.9606. IR (KBr) 3074, 2953, 2920, 1253, 979, 838 cm⁻¹.

1,3,5-tris(trimethylsilyl)benzo[1,2-b:3,4-b']-tris(dithieno[2,3-b:3',2'-d]selenophene)benzene (rac-1b)

Rac-1**b** was synthesized according to the procedure for making *rac*-1**a**. From the reaction on the 32.5 mg scale of **6b**, 6.5 mg (20%) of *rac*-1**b** was obtained as yellow solid. Mp: > 300 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.8 Hz, 3H), 7.72 (d, *J* = 8.4 Hz, 3H), 6.51 (s, 3H), 0.02 (s, 27H). ¹³C NMR (125 MHz, CDCl₃) δ 144.2, 143.5, 142.4, 140.5, 140.2, 136.7, 131.8, 128.3, 127.9, 127.6, 126.9, 118.8, -0.4. HRMS (AP-MALDI-Positive) *m/z* [M⁺] calcd for C₄₅H₃₆S₆Se₃Si₃ 1091.7049; found 1091.7936. IR (KBr) 3061, 2963, 1265, 970, 834 cm⁻¹.

1,3,5-tris(trimethylsilyl)benzo[1,2-b:3,4-b']-tris(diseleno[2,3-b:3',2'-d]thiophene)benzene (rac-1c)

Rac-1c was synthesized according to the procedure for making *rac*-1a. From the reaction on the 35.5 mg scale of 6c, 3.5 mg (10%) of *rac*-1c was obtained as yellow solid. Mp: 290–292 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.8 Hz, 3H), 7.69 (d, *J* = 8.8 Hz, 3H), 6.68 (s, 3H), -0.05

(s, 27H). ¹³C NMR (150 MHz, CDCl₃) δ 147.2, 145.4, 144.7, 142.8, 139.3, 139.2, 132.7, 129.4, 128.8, 128.7, 126.6, 122.0, -0.2. HRMS (DART-Positive) m/z [M⁺] calcd for C₄₅H₃₆S₃Se₆Si₃ 1235.6278; found 1235.6322. IR (KBr) 3080, 2957, 1251, 944, 833 cm⁻¹.

1,3,5-tris(trimethylsilyl)benzo[1,2-b:3,4-b']-tris(diseleno[2,3-b:3',2'-d]selenophene)benzene (rac-1d)

Rac-1d was synthesized according to the procedure for making *rac*-1a. From the reaction on the 37.3 mg scale of 6d, 3.0 mg (8%) of *rac*-1d was obtained as yellow solid. Mp: >300 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 3H), 7.65 (d, *J* = 8.4 Hz, 3H), 6.71 (s, 3H), -0.16 (s, 27H). ¹³C NMR (150 MHz, CDCl₃) δ 148.4, 146.9, 145.8, 141.2, 141.2, 138.6, 133.9, 130.5, 128.9, 128.4, 126.5, 121.6, -0.4. HRMS (DART-Positive) *m/z* [M⁺] calcd for C₄₅H₃₆Se₉Si₃ 1379.4612; found 1379.4645. IR (KBr) 3070, 2950, 1251, 935, 833 cm⁻¹.

2. NMR and HRMS Spectra

Fig. S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Fig. S2. ¹³C NMR (100 MHz, CDCl₃) spectra of 3

Fig. S3. HRMS spectra of 3

NMR and HRMS spectra of ((TMS)₂-DTS)

Fig. S4. ¹H NMR (300 MHz, CDCl₃) spectrum of ((TMS)₂-DTS)

Fig. S5. ¹³C NMR (100 MHz, CDCl₃) spectra of ((TMS)₂-DTS)

Fig. S6. HRMS spectra of ((TMS)₂-DTS)

Fig. S7. ¹H NMR (400 MHz, CDCl₃) spectrum of 4b

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of 4b

lChi	National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report					
Instrume	nt: Waters Mic	cromass	GCT Pre	emier	Ionisation	Mode: EI ⁺
Electron	Energy: 70eV	Ca	ard Seria	l Numb	er: GCT-P-	Г19-ОЅ-866
Operator	:: Li	D	ate: 2019	9/11/18		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
387.8478	387.8480	-0.2	-0.5	8.0	5546026.5	C11H11SiS274SeBr
	387.8473	0.5	1.3	9.0	5546026.5	C11H7O4S74SeBr
	387.8472	0.6	1.5	19.0	5546025.5	C18HSiS2Br
	387.8466	1.2	3.1	18.5	5546026.5	C17HNO74SeBr
	387.8498	-2.0	-5.2	13.5	5546026.5	C13H5NO2Si74SeBr

Fig. S9. HRMS data of 4b

NMR and HRMS spectra of 5b

Fig. S11. ¹³C NMR (100 MHz, CDCl₃) spectra of **5b**

Fig. S12. HRMS spectra of 5b

Fig. S13. ¹H NMR (400 MHz, CDCl₃) spectra of 6a

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Fig. S14. ¹³C NMR (100 MHz, CDCl₃) spectra of 6a

Fig. S15. HRMS data of 6a

NMR and HRMS spectra of 6b

Fig. S17. HRMS spectrum of 6b

NMR and HRMS spectra of 6c

Fig. S19. HRMS spectrum of 6c

NMR and HRMS spectra of 6d

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Card Serial Number: H-W190998 Operator : QHL Operation Mode: AP- MALDI Positive Ion Mode Date: 2019/11/1 Elemental composition search on mass 1385.5099 m/z= 1380.5099-1390.5099 m/z Theo. Mass Delta RDB Composition equiv. (ppm) 1385.5099 1385.5076 28.0 C45 H42 Se9 Si3 1.67 XW-3Se-w-s #683 RT: 4.13 AV: 1 NL: 3.51E3 T: FTMS + p NSI Full ms [400.0000-1500.0000] 1377.5145 100-90-1379.5177 1375.5197 80-1380.5176 70 Relative Abundance 1374.5222 1383.5118 60 1373.5194 50-1385.5099 1372.5198 40-1370.5212 30 20-10 0 1370 1375 1380 1385 m/z

Fig. S21. HRMS spectrum of 6d

NMR and HRMS spectra of rac-1a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Fig. S23.** ¹³C NMR (100 MHz, CDCl₃) spectra of *rac*-1a Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: IonSpec 4.7 Tesla FTMSCard Serial Number: WI132017Operator: HuaQinDate: 2013/10/16Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target m/z = 947.9608 ± 0.004 Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
н	1.007825	0	100
Si	27.976927	0	4
S	31.972071	0	10

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results:

Number of Hits = 5

m/z	Delta m/z	DBE	Formula
947.96057	0.00023	28.0	C45H36Si3S9+1
947.96193	-0.00113	55.0	C ₆₂ H ₁₆ SiS ₅ ⁺¹
947.95856	0.00224	60.0	C ₆₅ H ₁₂ SiS ₄ ⁺¹
947.96394	-0.00314	23.0	C42H40Si3S10+1
947.95720	0.00360	33.0	$C_{48}H_{32}Si_3S_8^{+1}$

Fig. S24. HRMS data of rac-1a

NMR and HRMS spectra of rac-1b

Fig. S25. ¹H NMR (400 MHz, CDCl₃) spectrum of rac-1b

Fig. S27. HRMS spectra of rac-1b

NMR and HRMS spectra of rac-1c

Fig. S28. ¹H NMR (400 MHz, CDCl₃) spectrum of *rac*-1c

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Fig. S29. ¹³C NMR (150 MHz, CDCl₃) spectra of *rac*-1c

Fig. S30. HRMS spectra of rac-1c

NMR and HRMS spectra of rac-1d

Fig. S31. ¹H NMR (400 MHz, CDCl₃) spectrum of rac-1d

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Fig. S33. HRMS spectra of rac-1d

3. Quantum Calculation of *rac*-1(a)–(d)

UV-vis spectra prediction and transition nature of *rac*-1(a)–(d)

Fig. S34. The simulated UV-vis spectra of compounds *rac*-1(a)–(d) in dichloroethane solvent at the PCM-TD-B3LYP/6-31G* level of theory.

Table S1 Selected computational absorption energies (nm), oscillator strength (f), and transitionnature in dichloromethane solvent for compounds rac-1(a)-(d) at the TD-B3LYP/6-31G* level oftheory.

		states	λ	f	Transition Contributions
					HOMO-1 \rightarrow LUMO (9%)
		C . C	262 0 (2 42)	0.6268	HOMO-1 \rightarrow LUMO+1 (39%)
		$S_0 \rightarrow S_3$	303.0 (3.42)	0.0208	HOMO \rightarrow LUMO (39%)
waa 1a	Dand I				$HOMO \rightarrow LUMO+1(9\%)$
rac-1a	Danu-I				HOMO−1 → LUMO (39%)
		5 . 5	363.0 (3.42)	0.6270	HOMO-1 \rightarrow LUMO+1 (9%)
		$S_0 \rightarrow S_4$			HOMO \rightarrow LUMO (9%)
					$HOMO \rightarrow LUMO+1(39\%)$
		$S_0 \rightarrow S_3$	366.7 (3.38)	0.6282	HOMO−1 → LUMO (31%)
					HOMO−1 → LUMO+1 (17%)
					HOMO \rightarrow LUMO (16%)
uga 1b Da	Dand I				$HOMO \rightarrow LUMO+1(31\%)$
740-10	Danu-I				HOMO−1 → LUMO (16%)
		5.5	2667(2.28)	0.6279	HOMO−1 → LUMO+1 (31%)
		$S_0 \rightarrow S_4$	300.7 (3.38)	0.0278	HOMO \rightarrow LUMO (31%)
					$HOMO \rightarrow LUMO+1(17\%)$

			201.2 (2.25)	0.5000	HOMO−1 → LUMO (9%) HOMO−1 → LUMO+1 (40%)
		$S_0 \rightarrow S_3$	381.2 (3.25)	0.5000	HOMO \rightarrow LUMO (36%)
waa 1 0	Dand I	T			$HOMO \rightarrow LUMO+1(11\%)$
740-10	ac-ic Band-i			HOMO−1 → LUMO (37%)	
		$S_0 \rightarrow S_4$	380.9 (3.26)	0.5101	HOMO−1 → LUMO+1 (11%)
					HOMO \rightarrow LUMO (9%)
					$HOMO \rightarrow LUMO+1(39\%)$
				0.4095	HOMO−1 → LUMO (46%)
<i>rac-</i> 1d	D 11	$S_0 \rightarrow S_3$	383.3 (3.24)	0.4985	$HOMO \rightarrow LUMO+1(48\%)$
	Dand-1		202.0 (2.24)	0 5061	HOMO−1 → LUMO (49%)
		$S_0 \rightarrow S_4$	383.0 (3.24)	0.3061	$HOMO \rightarrow LUMO+1(45\%)$

Fig. S35. Visualizations of HOMO and LUMO distributions (B3LYP/6-31G*) for *rac*-1(a)–(d).

Compound	λ_{onset} (nm)	$\Phi_{ m F}$	Time (ns)	E _{ox} (V)	E _g ^{opt} (eV)	HOMO (eV) experimental	HOMO (eV) theory	LUMO (eV) experimental	LUMO (eV)
							meery		- meery
rac-1	437	0.029	3.35	1.18	2.84	-5.54	-5.37	-2.70	-1.59
rac- 2	441	0.020	3.10	1.16	2.81	-5.50	-5.32	-2.69	-1.56
rac-3	446	0.011	2.47	1.14	2.78	-5.47	-5.30	-2.69	-1.66
rac-4	449	0.008	2.11	1.10	2.76	-5.44	-5.25	-2.68	-1.63

 Table S2 Optical and electrochemical data of *rac*-1(a)–(d).

Measured in anhydrous CH₂Cl₂/Bu₄F₆NP (0.1 M), [C] = 1×10^{-3} mol L⁻¹, vs Fc/Fc⁺. $E_{\text{HOMO}} = -[E_{\text{ox}}^{\text{Onset}} - E_{(\text{Fc/Fc}^+)} + 4.8]$ eV. $E_{\text{LUMO}} = E_{\text{g (opt)}} + E_{\text{HOMO}}$.

4. Resolution of *rac*-1c

The resolution of the *rac*-1c was carried out by chiral HPLC with methanol/dichloromethane/diethylamine (80/20/0.1, v/v/v) as eluent. The two enantiomers were obtained on a semipreparative scaled chiral column (ID). From the 15 mg scale of *rac*-1c, 0.6 mg (*ee* > 97%) of (+)-1c and 1.6 mg (*ee* > 99%) of (-)-1c were efficiently obtained.

HPLC trace of (+)-1c, (-)-1c, and rac-1c

Fig. S36. HPLC trace of *rac*-1c (top), (+)-1c (bottom left, ee > 97%) and (-)-1c (bottom right, ee > 99%) at room temperature. Conditions: Eluent: methanol/dichloromethane/diethylamine (80/20/0.1, v/v/v), Flow Rate: 1.0 mL/min, Column: CHIRALPAK-ID.

Racemization of (-)-1c

Racemization of (–)-1c was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-ID) with methanol/dichloromethane/diethylamine (80/20/0.1, v/v/v) as eluent. The half-life of racemization of (–)-1c is proposed as below:

$$(+) -\mathbf{1c} \rightarrow (-) -\mathbf{1c}$$
$$t = 0 \qquad C_0 \qquad 0$$
$$t = t \qquad C_t \qquad C_0 - C_t$$

The racemization of (-)-1c could be taken as first-order reaction, so

$$\ln C_0 / C_t = kt$$

Here, C_0 is the concentration of (-)-1c before heating, and C_t is the concentration of (-)-1c after heating for time of *t*.

Because

$$ee = \frac{C_t - (C_0 - C_t)}{C_t + (C_0 + C_t)} = \frac{2C_t - C_0}{C_0} = 2\frac{C_t}{C_0} - 1$$
$$\Rightarrow \frac{C_t}{C_0} = \frac{ee + 1}{2}$$

So, we can obtain the formula as below:

$$\frac{C_0}{\ln C_t} = \ln \frac{2}{ee+1} = kt$$
$$\Rightarrow \ln \frac{ee+1}{2} = -kt$$

Fig. S37. Time-dependent enantiomeric excess value decay profiles at (a) 70 °C, (b) 75 °C,
(c) 80 °C, (d) 85 °C and (e) 90 °C, respectively.

Fig. S38. The half-life of (-)-1c at different temperatures.

 Table S3. The half-life of (-)-1c at different temperatures.

T/ºC	70	75	80	85	90
<i>t</i> _{1/2} /h	7.61	5.19	4.00	3.00	2.34

5. X-ray Crystallographic Data

X-ray crystallographic data of *rac*-1a

Table S4. Crystal data and structure refinement for rac-1a

Identification code	rac-1a
Empirical formula	$C_{45}H_{36}OS_9Si_3$
Formula weight	965.55
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_1/c$
Unit cell dimensions	$a = 25.663(6) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 18.397(5) \text{ Å}$ $\beta = 104.320(5)^{\circ}$
	$c = 23.432(6) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	10719(5) Å ³
Z	8
Density (Calculated)	1.197 Mg/m ³
Absorption coefficient	0.469 mm^{-1}
F(000)	4000
Crystal size	$0.48 \times 0.23 \times 0.22 \text{ mm}^3$
Theta range for data collection	1.98 to 25.00°
Limiting indices	-26<=h<=30, -21<=k<=21, -24<=l<=27
Reflections collected / unique	$54813 / 18767 [R_{int} = 0.0435]$
Completeness to theta $= 25.00$	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9038 and 0.8060
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	18767 / 84 / 1063
Goodness-of-fit on F ²	1.129
Final R indices [I>2sigma(I)]	$R_1 = 0.0791, wR_2 = 0.1948$
R indices (all data)	$R_1 = 0.1233, wR_2 = 0.2077$
Largest diff. peak and hole	1.291 and -0.564 e. Å ⁻³

Fig. S39. Molecular structure for *rac*-1a, Carbon, selenium, sulfur, and silicon atoms are depicted with thermal ellipsoids set at 30% probability level, and all hydrogen atoms are omitted for clarity.

X-ray crystallographic data of *rac*-1b

Identific Empiric Formul	cation code cal formula a weight	<i>rac</i> -1b C ₄₅ H ₃₆ S ₆ Se ₃ Si ₃	
Empiric	al formula a weight	$C_{45}H_{36}S_6Se_3Si_3$	
Formul	a weight		
1 Official		1090.25	
Temper	ature	298.01 K	
Crystal	system, space group	Monoclinic, $P2_1/c$	
Unit cel	l dimensions	a = 25.663(3) Å	$\alpha = 90^{\circ}$
		b = 18.4115(18) Å	$\beta = 90^{\circ}$
		c = 23.619(2) Å	$\gamma = 90^{\circ}$
Volume	;	10803.4(18) Å ³	
Ζ		8	
Density	(Calculated)	1.341 Mg/m ³	
Absorp	tion coefficient	5.502 mm ⁻¹	
F(000)		4368	
Crystal	size	$0.17 \times 0.09 \times 0.04$ r	nm ³
Radiatio	on	$CuK\alpha$ ($\lambda = 1.54178$))
Theta ra	ange for data collection	5.974 to 134.144°	
Index ra	anges	$-30 \le h \le 30, -21 \le 1$	$k \le 21, -28 \le l \le 23$
Reflect	ons collected	88921	
Indeper	dent reflections	19069 [$R_{int} = 0.1462$	2, $R_{sigma} = 0.0953$]
Data / r	estraints / parameters	19069 / 353 / 1108	
Goodne	ss-of-fit on F ²	1.097	
Final R	indices [I>2sigma(I)]	$R_1 = 0.0714, WR_2 =$	0.1780
R indic	es (all data)	$R_1 = 0.1219, WR_2 =$	0.2100
Largest	diff. peak and hole	0.58 and -0.72e. Å-3	3

Table S5. Crystal data and structure refinement for rac-1b

Fig. S40. Molecular structure for *rac*-1b, Carbon, selenium, sulfur, and silicon atoms are depicted with thermal ellipsoids set at 30% probability level, and all hydrogen atoms are omitted for clarity.

X-ray crystallographic data of *rac*-1c

Identification code	rac-1c
Empirical formula	$C_{45}H_{36}S_3Se_6Si_3$
Formula weight	1230.96
Temperature	293(2) K
Crystal system, space group	cubic, Pa-3
Unit cell dimensions	$a = 21.30032(10) \text{ Å} \alpha = 90^{\circ}$
	$b = 21.30032(10) \text{ Å} \beta = 90^{\circ}$
	$c = 21.30032(10) \text{ Å} \gamma = 90^{\circ}$
Volume	9664.03(13) Å ³
Z	7.99992
Density (Calculated)	1.692 Mg/m ³
Absorption coefficient	7.524 mm ⁻¹
F(000)	4800.0
Crystal size	$0.1611 \times 0.1222 \times 0.0669 \ mm^3$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Theta range for data collection	7.188 to 133.822°
Index ranges	$-19 \le h \le 25, -25 \le k \le 24, -19 \le l \le 25$
Reflections collected	23768
Independent reflections	2879 [$R_{int} = 0.0392$, $R_{sigma} = 0.0202$]
Data / restraints / parameters	2879 / 0 / 175
Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	$R_1 = 0.0370, wR_2 = 0.0985$
R indices (all data)	$R_1 = 0.0454, wR_2 = 0.1034$
Largest diff. peak and hole	0.63 and -0.26e. Å ⁻³

 Table S6. Crystal data and structure refinement for rac-1c

Fig. S41. Molecular structure for *rac***-1c**, Carbon, selenium, sulfur, and silicon atoms are depicted with thermal ellipsoids set at 30% probability level, and all hydrogen atoms are omitted for clarity.

X-ray crystallographic data of *rac*-1d

Identification code	rac-1d
Empirical formula	$C_{91}H_{74}Cl_2Se_{18}Si_6$
Formula weight	2828.22
Temperature	293(2) K
Crystal system, space group	Monoclinic, $P2_1/n$
Unit cell dimensions	$a = 15.2593(17) \text{ Å} \alpha = 90^{\circ}$
	$b = 19.9001(3) \text{ Å}$ $\beta = 95.0760(10)^{\circ}$
	$c = 16.53532(18) \text{ Å } \gamma = 90^{\circ}$
Volume	5001.44(10) Å ³
Z	2
Density (Calculated)	1.878 Mg/m ³
Absorption coefficient	9.099 mm ⁻¹
F(000)	2700.0
Crystal size	$0.1525 \times 0.0577 \times 0.0404 \ mm^3$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Theta range for data collection	6.966 to 134.16°
Index ranges	$\text{-18} \le h \le 18, \text{-21} \le k \le 23, \text{-12} \le l \le 19$
Reflections collected	21782
Independent reflections	$8906 [R_{int} = 0.0297, R_{sigma} = 0.0386]$
Data / restraints / parameters	8906 / 106 / 586
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	$R_1 = 0.0455, wR_2 = 0.1246$
R indices (all data)	$R_1 = 0.0596, wR_2 = 0.1354$
Largest diff. peak and hole	0.83 and -0.52e. $Å^{-3}$

 Table S7. Crystal data and structure refinement for rac-1d

Fig. S42. Molecular structure for *rac*-1d, Carbon, selenium, sulfur, and silicon atoms are depicted with thermal ellipsoids set at 30% probability level, and all hydrogen atoms are omitted for clarity.

Fig. S43. Multiple interactions in the crystal packings of *rac*-1a.

Fig. S44. Multiple interactions in the crystal packings of *rac*-1b.

Fig. S45. Multiple interactions in the crystal packings of *rac*-1c.

Fig. S46. Multiple interactions in the crystal packings of *rac*-1d.

Compound	Intermolecular interactions (Å)				
	S6…S17: 3.39, S10…S13: 3.49, S11…S13: 3.60, C13…S16: 3.40,				
1	C54…S15: 3.44, C83…S6: 3.38, S18…H46A: 2.78, C11…H78A:				
rac-1a	2.85, C52…H71B: 2.81, C66…H89C: 2.79, C79…H36A: 2.85,				
	C83…H46A: 2.63				
	S2…S3: 3.43, S8…S12: 3.45, C27…S10: 3.32, C67…S7: 3.49,				
rac-1b	Se6…S8: 3.47, Se4…Se6: 3.63, H13A…H15A: 2.29,				
	H87C…S9: 2.83, H87C…C58: 2.66				
	Se2…H4: 3.09, C4…H13B: 2.79, H13C…H13C: 2.33,				
rac-1c	H13A…H15A: 2.29				
	Se1…Se5: 3.55, Se2…Se4: 3.78, Se2…Se5: 3.65, Se5…Se8: 3.66,				
11	Se6…Se9: 3.77, Se9…Se4: 3.50, Se6…C32: 3.60, Se1…H39B: 2.88,				
rac-1d	Se3…H4: 2.90, C38…H42C: 2.50, C42…H38A: 2.84, C43…H39A:				
	2.86, H37B…H16: 2.29, H43C…H39A: 2.35, H42C…H38B: 2.36				

Table S8. Intermolecular interactions (Å) of *rac*-1(a)–(d)

_

	Ring	Dihedral	Ring	Dihedral	Ring	Dihedral
	plane	angles/°	plane	angles/°	plane	angles/°
rac-1a	AB	6.36	A'B'	2.49	A″B″	5.67
	BC	8.60	B'C'	7.77	B″C″	9.17
	CD	9.73	C'D'	10.63	C″D″	9.25
	DO	14.41	D'O'	16.15	D″O″	16.13
	AD″	46.69	A'D	43.43	A″D′	50.80
rac-1b	AB	4.48	A'B'	5.68	A″B″	6.16
	BC	6.75	B'C'	8.17	B″C″	8.65
	CD	9.84	C'D'	9.34	C″D″	8.70
	DO	17.13	D'O'	18.35	D″O″	15.62
	AD″	44.39	A'D	49.64	A″D′	45.64
rac-1c	AB	5.69	A'B'	5.69	A″B″	5.69
	BC	7.89	B'C'	7.89	B″C″	7.89
	CD	9.23	C'D'	9.23	C″D″	9.23
	DO	15.98	D'O'	15.98	D″O″	15.98
	AD″	44.63	A'D	44.63	A″D′	44.63
rac-1d	AB	4.29	A'B'	7.41	A″B″	4.34
	BC	6.00	B'C'	5.35	B″C″	10.92
	CD	10.45	C'D'	6.31	C″D″	8.74
	DO	21.46	D'O'	14.97	D″O″	17.71
	AD″	52.60	A'D	44.95	A″D′	44.95

	Carbon atoms	Torsion	Carbon atoms	Torsion	Carbon atoms	Torsion
Carbon atoms		angles/°	Carbon atoms	angles/°	Carbon atoms	angles/°
rac-1a	C(5-6-9-10)	1.65	C(34-33-30-28)	4.83	C(40-39-22-20)	0.58
	C(6-9-10-15)	14.66	C(33-30-28-29)	11.47	C(39-22-20-21)	12.78
	C(9-10-15-16)	26.06	C(30-28-29-14)	28.08	C(22-20-21-24)	27.61
	C(10-15-16-17)	20.45	C(28-29-14-13)	16.59	C(20-21-24-25)	20.85
rac-1b	C(2-4-6-8)	0.84	C(24-22-20-18)	2.40	C(36-34-32-30)	2.39
	C(4-6-8-9)	11.66	C(22-20-18-14)	10.52	C(34-32-30-26)	15.59
	C(6-8-9-13)	21.58	C(20-18-14-25)	22.65	C(32-30-26-10)	21.78
	C(8-9-13-15)	19.72	C(18-14-25-27)	15.68	C(30-26-10-11)	15.73
rac-1c	C(11-10-7-6)	2.77	C(11-10-7-6)	2.77	C(11-10-7-6)	2.77
	C(10-7-6-1)	12.58	C(10-7-6-1)	12.58	C(10-7-6-1)	12.58
	C(7-6-1-2)	27.15	C(7-6-1-2)	27.15	C(7-6-1-2)	27.15
	C(6-1-2-3)	20.49	C(6-1-2-3)	20.49	C(6-1-2-3)	20.49
rac-1d	C(11-10-7-6)	6.00	C(23-22-19-18)	8.51	C(35-34-31-30)	0.83
	C(10-7-6-1)	13.39	C(22-19-18-13)	21.11	C(34-31-30-25)	9.68
	C(7-6-1-26)	24.12	C(19-18-13-2)	26.01	C(31-30-25-14)	32.80
	C(6-1-26-27)	25.17	C(18-13-2-3)	14.22	C(30-25-14-15)	19.97

Table S10. Torsion angles of the internal helix of *rac*-1(a)–(d)

6. References

- J. Suffert, Simple Direct Titration of Organolithium Reagents Using N-Pivaloyl-otoluidine and/or N-pivaloyl-o-benzylaniline, J. Org. Chem., 1989, 54, 509–510.
- [2] G. M. Sheldrick, SADABS, University of gottingen: Germany, 1996.
- [3] G. M. Sheldrick, SHELXTL, version. 5.1; Bruker analytical X-ray systems, Inc.: Madison, WI, 1997.