Supporting Information

Palladium-catalyzed $a z a$-Wacker cyclization of O-homoallyl benzimidates: expeditious access to heteroatom-rich substituted 1, 3-oxazines via alkene trifunctionalization
Linlin Zhang ${ }^{\dagger}$, Lin $\mathrm{Qi}^{*}{ }^{,}{ }^{\dagger}$, Hui-Jie Du^{\dagger}, Jia-Li Liu ${ }^{\dagger}$, Tong-Yang Cao ${ }^{\dagger}$, Zhi-Min Yan ${ }^{\dagger}$, Wei $\mathrm{Li}^{*}{ }^{\dagger, \hbar}$, and Li-Jing Wang ${ }^{*, t, \%}$
${ }^{\dagger}$ College of Chemistry \& Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
${ }^{\dagger}$ Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.

Table of Contents
1 General experimental procedures S2

2 Starting materials S2

3 The typical procedure for the preparation of product 2a S3

4 Procedures for the formation of $\mathbf{2 a} \mathbf{(5 \mathbf { ~ m m o l ~ s c a l e }) , \mathbf { 3 , ~ 4 , 5 , 6 } \text { and } 7 \quad \text { S3 }}$

5 Scheme S1 S6

6 Characterization Data of $\mathbf{1 g}, \mathbf{1 m - 1 p}, \mathbf{1 s}$, and $\mathbf{1 u - 1 y}$ S6

7 Characterization Data of 2a-2y, 2aa, 3, 4, 5, $\mathbf{6}$ and $7 \quad$ S9

8 The ${ }^{\mathbf{1}} \mathbf{H},{ }^{13} \mathbf{C}$, and ${ }^{19} \mathbf{F}$ spectra of new starting materials and products S25

General experimental procedures

Reaction progress was monitored via thin layer chromatography (TLC) performed on GF254 silica gel plates. Column chromatography was carried out with silica gel (200300 mesh) or aluminum oxide (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on 400 MHz or 600 MHz in $\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}$ NMR spectra were recorded on 100 MHz or 150 MHz in CDCl_{3}, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on 564 MHz in CDCl_{3}. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), and m (multiplet). The new starting materials $\mathbf{1}$ and all products $\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{6}$, and 7 were further characterized by high-resolution MS (TLQ) (ESI ionization sources); copies of their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra are provided in the Supporting Information. Commercial grade solvents and reagents were used without further purification.

Starting materials

The O-homoallyl-benzimidates 1a-s and 1ee were synthesized according to literature procedures ${ }^{1}$.

A mixture of aromatic cyanide ($10 \mathrm{mmol}, 2.0$ equiv) in 4 M HCl in dioxane (12.5 mL , $50 \mathrm{mmol}, 10.0$ equiv) was stirred under argon at room temperature. After 1 h , corresponding but-3-en- 1 -ol ($5 \mathrm{mmol}, 1.0$ equiv) was added dropwise and stirred for 24 hours at $50^{\circ} \mathrm{C}$. After being cooled again to room temperature, the mixture was concentrated in vacuo. The residue was dissolved in DCM (35 mL) and washed with Sat. $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$. The aqueous layer was extracted with DCM (3 x 35 mL). The combined organic phase was washed with brine (35 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel column chromatography in petroleum ethyl acetate (5:1) to afford the desired product.

Preparation of O-homoallyl-benzimidates $\mathbf{1 t - 1 z}$, and $\mathbf{1 a a}{ }^{1}$.

To a pressure tube equipped with a stir bar was added nitrile (1.0 equiv), trifluoroethanol (12.0 equiv), and acetyl chloride (8.0 equiv). The solution was heated to $80^{\circ} \mathrm{C}$ and stirred. After 48 h the reaction was cooled to room temperature and carefully vented (Note: HCl gas is formed as a by-product, see below for additional instructions on safe handling), which immediately induced precipitation of the benzimidate hydrochloride salt. The benzimidate salt was collected via filtration with cold hexanes.

A mixture of corresponding alcohol ($5 \mathrm{mmol}, 1.0$ equiv) and 2,2,2-trifluoroethyl benzimidate hydrochloride ($8 \mathrm{mmol}, 1.6$ equiv) in acetonitrile was stirred under argon at $50{ }^{\circ} \mathrm{C}$ for 24 hours. The mixture was cooled to room temperature and diluted in dichloromethane, washed with NaHCO_{3} and brine. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel ($10-40 \%$ EtOAc in hexanes) to give the desired product.

The O-homoallyl trichloroacetimidate $\mathbf{1 b b} \quad N$-(but-3-en-1-yl)- N phenylbenzimidamide 1cc, and 1-phenylhex-5-en-1-imine 1dd were synthesized according to literature procedures ${ }^{1}$.

The typical procedure for the preparation of product $\mathbf{2 a}$

2 mL DMSO was added to $0.3 \mathrm{mmol} 1 \mathrm{1a}, 0.1$ equiv $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 2.0 equiv $\mathrm{Cu}(\mathrm{OAc})_{2}$ under air atmosphere. The mixture was stirred for 11 h at $28^{\circ} \mathrm{C}$. After the reaction finished as indicated by TLC, the reaction mixture was quenched by water and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ (1 x 25 mL) and saturated brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: $\mathrm{EtOAc} /$ Petroleum ether $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}$) to give the desired product 2a (86%).

5 mmol scale reaction for the preparation of product $\mathbf{2 a}$

1a, 5 mmol
2a, 68\% (584.6 mg)
15 mL DMSO was added to 5.0 mmol 1a, 0.1 equiv $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 2.0 equiv $\mathrm{Cu}(\mathrm{OAc})_{2}$ under air atmosphere. The mixture was stirred for 11 h at $28^{\circ} \mathrm{C}$. After the reaction finished as indicated by TLC, the reaction mixture was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 25 \mathrm{~mL})$ and saturated brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether 1/50-1/10, v / v) to give the desired product 2a (68\%).

Procedures for the formation of $3^{2}, 4,5,6^{2}$, and 7.

The 4-methylene-1,3-oxazine 2a (0.2 mmol) and \mathbf{A} (2.0 equiv) were dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ and stirred at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched with water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether 1/10-1/3, v/v) to give the pure product 3 .

The 4-methylene-1,3-oxazine $2 \mathbf{2 a}(0.2 \mathrm{mmol})$ and \mathbf{A} (2.0 equiv) were dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was stirred for 1 h at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched with water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether $1 / 50-1 / 20$, v / v) to give the pure product 4.
Methods A (synthesis of 5a-5b):

The 4-methylene-1,3-oxazine $\mathbf{2 a}(0.2 \mathrm{mmol})$ and N -iodosuccinimide (2.0 equiv) were dissolved in the corresponding alcohol solvent (2 mL). The mixture was stirred for 1 h at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched by water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether $1 / 50-1 / 20$, v/v) to give the pure products $\mathbf{5 a} \mathbf{- 5 b}$.
Methods B (synthesis of $\mathbf{5 c - 5 h}$):

The 4-methylene-1,3-oxazine 2a (0.2 mmol), N-iodosuccinimide (2.0 equiv) and
corresponding alcohol (10.0 equiv) were dissolved in MeCN solvent (2 mL). The mixture was stirred for 1 h at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched by water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on a neutral alumina oxide column (elute: EtOAc/Petroleum ether $1 / 50-1 / 20$, v / v) to give the pure products $\mathbf{5 c - 5 h}$.

Methods C:

The 4-methylene-1,3-oxazine 2a (0.2 mmol), N-iodosuccinimide (2.0 equiv) and potassium phthalimide (10.0 equiv) were dissolved in MeCN solvent (2 mL). The mixture was stirred for 1 h at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched with water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on a neutral alumina oxide column (elute: EtOAc/Petroleum ether $1 / 50-1 / 20$, v/v) to give the pure product $\mathbf{5 i}$.

The 4-methylene-1,3-oxazine $\mathbf{2 a}$ (0.2 mmol), $\mathrm{Br}_{2} \mathrm{CNOH}$ (1.1 equiv) and NaHCO_{3} (1.5 equiv) were dissolved in ethyl acetate solvent (2 mL). The mixture was stirred for 24 h at room temperature. Upon completion indicated by TLC, the reaction mixture was quenched with water (25 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: $\mathrm{EtOAc} /$ Petroleum ether $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}$) to give the pure product 6 .

The 4-methylene-1,3-oxazines 2 (0.2 mmol) and NIS (2.0 equiv) was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$. Upon completion indicated by TLC, the reaction mixture was quenched with water (25 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with saturated brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether $1 / 50-1 / 20$, v/v) to give
the pure product 7 .

Scheme S1

2 mL DMSO was added to 0.3 mmol 2a, 0.1 equiv $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 2.0 equiv $\mathrm{Cu}(\mathrm{OAc})_{2}$ under air atmosphere. The mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$. The reaction mixture was quenched by water and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 25 \mathrm{~mL})$ and saturated brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by chromatography on silica gel (elute: EtOAc/Petroleum ether $1 / 50-1 / 10$, v/v) to recovered 2a (42%).

Characterization Data of $\mathbf{1 g}, \mathbf{1 m}-1 \mathrm{p}, \mathbf{1 s}$, and 1u-1y

but-3-en-1-yl [1,1'-biphenyl]-4-carbimidate (1g). Colorless oil ($0.34 \mathrm{~g}, \mathbf{2 7 \%}$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.99-5.89 (m, 1H), 5.23-5.11 (m, 2H), 4.35 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.59 (dd, $J=6.4 \mathrm{~Hz}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 167.5,143.7,140.1,134.7,131.5$, 128.9, 127.9,127.2, 127.2, 127.1, 117.0, 65.2, 33.2. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}, 252.1383$; found, 252.1383.

1m, 29\%
but-3-en-1-yl 3,5-dimethoxybenzimidate (1m). Colorless oil ($0.34 \mathrm{~g}, \mathbf{2 9 \%}$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $6 \mathrm{H}), 2.57(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 160.8, 135.1, 134.8, 117.1, 105.0, 103.0, 65.3, 55.6, 33.2. HRMS (ESI-TLQ) m/z: [M $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}$, 236.1281; found, 236.1280 .

1n, 12\%
but-3-en-1-yl 3,5-difluorobenzimidate (1n). Colorless oil ($0.13 \mathrm{~g}, 12 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 6.94-6.89 (m, 1H), 5.95-5.85 (m, 1H), 5.22-5.12 (m, 2H), $4.30(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.57(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $164.3(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 161.8(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 136.3,134.4,117.4,110.2(\mathrm{dd}, J=7.4$ $\mathrm{Hz}, J=11.8 \mathrm{~Hz}$), $106.4(\mathrm{t}, J=25.2 \mathrm{~Hz}), 65.5,33.1 .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 564 \mathrm{MHz}\right): \delta-$ 108.5. HRMS (ESI-TLQ) m/z: [M + H] ${ }^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}, 212.0881$; found, 212.0881.

10, 35\%
but-3-en-1-yl 3-fluoro-4-methoxybenzimidate (10). Colorless oil ($0.39 \mathrm{~g}, 35 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.50(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.2,151.9(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 150.0(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 134.7$, 125.7 (d, $J=6.1 \mathrm{~Hz}$), 123.3, 117.2, 114.9 (d, $J=19.9 \mathrm{~Hz}$), 112.7, 65.2, 56.3, 33.2. ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$): $\delta-134.4$. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FNO}_{2}$, 224.1081; found, 224.1080.

but-3-en-1-yl benzo[d][1,3]dioxole-5-carbimidate (1p). Colorless oil ($0.33 \mathrm{~g}, \mathbf{2 9 \%}$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.29(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}$, $2 \mathrm{H}), 4.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.9,149.8,147.8,134.7,127.0,121.5,117.0,108.0,107.2$, 101.7, 65.1, 33.2. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}, 220.0968$; found, 220.0967.

but-3-en-1-yl 5-bromothiophene-2-carbimidate (1s). Yellow oil ($0.53 \mathrm{~g}, 21 \%$), (EtOAc/ Petroleum ether, $1 / 20-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.22(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 161.4,137.4,134.3,130.6,128.3,117.4,116.9,65.3,33.1$. HRMS (ESI-TLQ) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{11} B r N O S, ~ 259.9739$; found, 259.9739.

1u, 21\%
2-methylbut-3-en-1-yl benzimidate (1u). Yellow oil (0.20 g , 21\%), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v})$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta 7.74$ (d, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta 167.9,140.7$, 133.0, 131.0, 128.6, 126.8, 114.8, 70.2, 37.2, 16.8. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}, 190.1226$; found, 190.1227.

2-(cyclopropylmethyl)but-3-en-1-yl benzimidate (1v). Colorless oil (0.43 g, 37\%), (EtOAc/ Petroleum ether, 1/10-1/5, v/v). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.73$ (d, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.21(\mathrm{~m}$, $2 H), 2.75-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.72(\mathrm{~m}, 1 \mathrm{H})$, $0.50-0.42(\mathrm{~m}, 2 \mathrm{H}), 0.11-0.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.9$, 139.9, 132.9, 131.0, 128.6, 126.8, 115.8, 68.7, 43.8, 36.8, 8.8, 4.9, 4.8. HRMS (ESITLQ) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}$, 230.1539; found, 230.1540.

2-benzylbut-3-en-1-yl benzimidate (1w). Colorless oil ($0.64 \mathrm{~g}, 48 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v})$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta 7.72$ (d, $J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.87-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta$ 167.9, 139.7, 138.9, 132.9, 131.0, 129.4, 128.6, 128.4, 126.8, 126.2, 116.4, 68.1, 44.6, 38.1. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}$, 266.1539; found, 266.1539.

1x, 27\%
2-vinylcyclopentyl benzimidate (1x). Colorless oil (0.29 g, 27\%), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.93-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}$, $2 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 3 \mathrm{H})$, 1.58-1.49 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.4,140.0,133.3,130.9$, $128.5,126.9,114.7,81.7,49.6,31.6,30.0,22.8$. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}, 216.1383$; found, 216.1385.

1y, 43\%
2-vinylcyclohexyl benzimidate (1y). Colorless oil (0.49 g , 43\%), (EtOAc/ Petroleum ether, $1 / 10-1 / 5, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-$ $7.36(\mathrm{~m}, 3 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.26(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.4,140.7$, 133.6, 130.7, 128.4, 126.8, 114.8, 76.5, $47.5,31.3,31.1,25.1,24.5$. HRMS (ESI-TLQ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}$, 230.1539; found, 230.1541.

Characterization Data of 2a-2y, 2aa, 3, 4, 5, 6 and 7

2a, 86\%
4-methylene-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2a). Pale Yellow oil (44.7 mg, 86%), ($\mathrm{EtOAc} /$ Petroleum ether, $1 / 50-1 / 10, ~ v / v) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.00$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H})$, $4.61(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 156.1,143.4,133.0,131.1,128.2,127.7,106.4,65.5,27.2$. HRMS (ESITLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}, 347.1754$; found, 347.1753.

2b, 82%
4-methylene-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2b). Colorless oil (46.1 mg, 82%), (EtOAc/ Petroleum ether, 1/50-1/10, v/v). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.89$
(d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=5.6$ Hz, , 2 H), $2.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 156.3, 143.5, 141.4, 130.2, 129.0, 127.7, 106.0, 65.5, 27.3, 21.6. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}, 375.2067$; found, 375.2066.

2c. 81%
2-(4-methoxyphenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2c). Colorless oil ($49.5 \mathrm{mg}, 81 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.96$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H})$, $4.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 162.0,156.1,143.6,129.4,125.4,113.5,105.5,65.4,55.4,27.3$. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}, 407.1965$; found, 407.1963.

2d, 59\%
2-(4-fluorophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2d). Yellow oil (36.9 $\mathrm{mg}, 59 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $8.01(\mathrm{dd}, J=5.6 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}$, $1 \mathrm{H}), 4.41(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 164.8$ (d, $J=249.7 \mathrm{~Hz}$), 155.3, 143.2, 129.9 (d, $J=8.7 \mathrm{~Hz}$), 129.2 (d, $J=2.8$ $\mathrm{Hz}), 115.3$ (d, $J=21.6 \mathrm{~Hz}), 106.5,65.6,27.2 .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 564 \mathrm{MHz}\right): \delta-109.4$. HRMS (ESI-TLQ) m/z: [2M + H] calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, 383.1566$; found, 383.1565.

2e, 75\%
2-(4-chlorophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2e). Yellow solid ($46.4 \mathrm{mg}, 75 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). mp $79-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 155.2,143.1,137.3,131.5,129.1,128.5,106.8,65.6,27.2$. HRMS (ESITLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, 415.0975$; found, 415.0973.

2f, 30\%

2-(4-iodophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2f). White solid (26.6 $\mathrm{mg}, 30 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). mp 104-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.73(\mathrm{~s}, 4 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.5,143.1,137.4$, 132.5, 129.3, 107.0, 98.2, 65.6, 27.1. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{INO}$, 299.9880; found, 299.9879.

2g, 72\%
2-([1,1'-biphenyl]-4-yl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2g). Yellow solid ($53.5 \mathrm{mg}, 72 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). mp $104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.0,143.7$, 143.5, 140.5, 131.9, 129.0, 128.2, 127.9, 127.3, 126.9, 106.4, 65.6, 27.3. HRMS (ESITLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}, 250.1226$; found, 250.1226.

2h, 93\%
4-methylene-2-(m-tolyl)-5,6-dihydro-4H-1,3-oxazine (2h). Yellow oil (54.5 mg, 93\%), (EtOAc/ Petroleum ether, 1/50-1/10, v/v). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.85$ (s, 1H), 7.79 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.41-$ $4.37(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 156.3,143.4,137.9,132.9,131.9,128.2,128.1,124.8,106.3,65.5,27.3$, 21.5. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}, 375.2067$; found, 375.2066

2i, 71\%
2-(3-methoxyphenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2i). Colorless oil ($43.1 \mathrm{mg}, 71 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.60$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (s, 1H), 7.29 (dd, $J=8.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.5$, 156.0, 143.3, 134.4, 129.2, 120.2, 117.8, 112.1, 106.5, 65.5, 55.5, 27.2. HRMS (ESITLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}, 407.1965$; found, 407.1963.

2j, 83\%
2-(3-chlorophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2j). Colorless oil $(51.6 \mathrm{mg}, 83 \%)$, (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.8,143.0,134.8,134.4,131.1,129.5$, 127.8, 125.8, 107.2, 65.7, 27.1. HRMS (ESI-TLQ) $m / z: ~[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, 415.0975$; found, 415.0973.

2k, 77\%
2-(3-bromophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2k). Colorless oil ($58.5 \mathrm{mg}, 77 \%$), ($\mathrm{EtOAc} /$ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.7,143.0,135.0,134.0,130.7,129.8$, 126.3, 122.4, 107.2, 65.7, 27.1. HRMS (ESI-TLQ) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNO}, 252.0019$; found, 252.0017.

21, 82\%
2-(3,5-dimethylphenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (21). Yellow oil (49.6 mg, 82\%), (EtOAc/ Petroleum ether, 1/50-1/10, v/v). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}): \delta 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.5$, $143.4,137.8,132.9,132.8,125.4,106.1,65.5,27.3,21.3$. HRMS (ESI-TLQ) $m / z:$ $[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}, 403.2380$; found, 403.2378.

2-(3,5-dimethoxyphenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2m). Yellow oil (40.2 mg, 58\%), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$

MHz): $\delta 7.18$ (s, 2H), 6.56 ($\mathrm{s}, 1 \mathrm{H}$), 5.11 ($\mathrm{s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.41$ (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 6 \mathrm{H}), 2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 160.6$, 155.9, 143.3, 135.0, 106.7, 105.4, 104.2, 65.6, 55.6, 27.2. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}:$ $[2 \mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6}, 489.1996$; found, 489.1995.

2n, 62\%
2-(3,5-difluorophenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2n). Colorless oil ($26.0 \mathrm{mg}, 62 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.8(\mathrm{dd}$, $J=12.3 \mathrm{~Hz}, J=234.2 \mathrm{~Hz}), 153.9,142.8,136.5(\mathrm{t}, J=9.7 \mathrm{~Hz}), 110.7(\mathrm{dd}, J=7.4 \mathrm{~Hz}$, $J=12.2 \mathrm{~Hz}), 107.9,106.3(\mathrm{t}, J=25.4 \mathrm{~Hz}), 65.8,27.0 .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 564 \mathrm{MHz}\right): \delta$ -109.8. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{2}$, 441.1196; found, 441.1189.

20, 75\%
2-(3-fluoro-4-methoxyphenyl)-4-methylene-5,6-dihydro-4H-1,3-oxazine
(20). Colorless oil ($49.4 \mathrm{mg}, 75 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.74(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 151.9(\mathrm{~d}, J=243.8$ $\mathrm{Hz}), 150.2(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 143.3,126.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 124.2,115.5(\mathrm{~d}, J=20.2 \mathrm{~Hz})$, 112.4, 106.2, 65.6, 56.3, 27.3. ${ }^{19}$ F NMR ($\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$): δ-135.4. HRMS (ESITLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FNO}_{2}$, 222.0925; found, 222.0926.

2-(benzo[d][1,3]dioxol-5-yl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2p). Yellow oil ($47.7 \mathrm{mg}, 73 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.57$ (dd, $J=1.6 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.7,150.2,147.7,143.4,127.2,122.7$, 108.0, 107.9, 105.8, 101.6, 65.5, 27.3. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for
$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}, 435.1551$; found, 435.1548 .

2q, 72\%
4-methylene-2-(naphthalen-2-yl)-5,6-dihydro-4H-1,3-oxazine (2q). White solid ($48.5 \mathrm{mg}, 72 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). mp $85-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.2,143.5$, 134.8, 132.9, 130.4, 129.1, 128.1, 127.9, 127.8, 127.4, 126.4, 124.5, 106.6, 65.6, 27.4. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}, 224.1070$; found, 224.1070.

2r, 81\%
4-methylene-2-(thiophen-2-yl)-5,6-dihydro-4H-1,3-oxazine (2r). Colorless oil (43.5 $\mathrm{mg}, 81 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.60(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 152.9,142.9,137.4,129.7,129.2,127.6,106.4,65.7,27.3$. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}, ~ 359.0882$; found, 359.0877.

2-(5-bromothiophen-2-yl)-4-methylene-5,6-dihydro-4H-1,3-oxazine (2s). Colorless oil ($28.5 \mathrm{mg}, 63 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta 151.8,142.6,138.7,129.3,117.2,106.9,65.8,27.3$. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, 514.9092; found, 514.9091.

6-methyl-4-methylene-2-phenyl-5,6-dihydro-4H-1,3-oxazine (2t). Colorless oil ($47.5 \mathrm{mg}, 85 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 8.03$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=3.6 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.3,143.8,133.1,131.0,128.2,127.7,106.6,71.9,34.1,20.8$. HRMS (ESI-TLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$, 375.2067; found, 375.2066.

2u, 81\%
5-methyl-4-methylene-2-phenyl-5,6-dihydro-4H-1,3-oxazine (2u). Yellow oil (45.6 $\mathrm{mg}, 81 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 8.02 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.08$ (s, 1H), $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=4.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.62$ $(\mathrm{m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.5,148.9$, 132.9, 131.1, 128.2, 127.7, 104.2, 70.4, 30.4, 14.8. HRMS (ESI-TLQ) m/z: [2M + H] calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}, 375.2067$; found, 375.2066.

2v, 72%
5-(cyclopropylmethyl)-4-methylene-2-phenyl-5,6-dihydro-4H-1,3-oxazine (2v). Yellow oil ($48.8 \mathrm{mg}, 72 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=4.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.84-0.74$ $(\mathrm{m}, 1 \mathrm{H}), 0.56-0.44(\mathrm{~m}, 2 \mathrm{H}), 0.13-0.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 155.4, 147.6, 132.9, 131.1, 128.2, 127.7, 105.4, 68.8, 37.0, 35.2, 8.8, 5.3, 4.3. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}, 228.1383$; found, 228.1386.

2w, 83\%
5-benzyl-4-methylene-2-phenyl-5,6-dihydro-4H-1,3-oxazine (2w). Yellow oil (43.8 $\mathrm{mg}, 83 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $8.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=4.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.6,147.2,139.0$, 132.8, 131.2, 129.3, 128.7, 128.3, 127.8, 126.6, 106.0, 67.6, 38.3, 36.8. HRMS (ESITLQ) $m / z:[2 \mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}, 527.2693$; found, 527.2696.

2x, 83%
4-methylene-2-phenyl-4,4a,5,6,7,7a-hexahydrocyclopenta $[e][1,3]$ oxazine (2x). Coloeless oil ($53.4 \mathrm{mg}, 83 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.15-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ 156.7, 149.7, 133.0, 131.1, 128.2, 128.1, 102.7, 80.4, 42.5, 28.6, 22.8, 19.0. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$, 214.1226; found, 214.1228.

2y, 76\%
4-methylene-2-phenyl-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,3]oxazine (2y). Yellow oil ($51.6 \mathrm{mg}, 76 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15-2.08 (m, 1H), 1.91-1.84 (m, 2H), 1.59-1.49 (m, 1H), 1.45-1.33 (m, 2H), 1.31$1.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.6,148.6,133.1,131.0,128.2$, $127.8,102.8,78.3,39.9,32.0,26.5,25.4,24.0$. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}$, 228.1383; found, 228.1383.

2aa, 8\%
4-(4-methoxybenzylidene)-2-phenyl-5,6-dihydro-4H-1,3-oxazine (2aa). Yellow oil ($6.4 \mathrm{mg}, 8 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.3,155.5,134.6,133.4,131.2,131.0$, 130.0, 128.3, 127.9, 118.9, 113.8, 66.1, 55.4, 28.8. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}, 280.1332$; found, 280.1332.

3a, 46\%
1-(4-(iodomethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-yl)pyrrolidine-2,5-dione (3a). Yellow oil ($36.7 \mathrm{mg}, 46 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 3$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 4 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 177.0,157.6,133.0,131.4,128.3,128.0,71.5,62.3,29.1,28.6,15.9$. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN}_{2} \mathrm{O}_{3}$, 399.0200; found, 399.0201.

3b, 56\%
1-(4-(bromomethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-yl)pyrrolidine-2,5-
dione (3b). Yellow oil ($39.2 \mathrm{mg}, 56 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 3$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.97$ (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45$ (t, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43-4.30(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.69$ $(\mathrm{s}, 4 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.1,157.6,133.0$, 131.4, 128.2, 128.0, 72.3, 62.2, 38.2, 28.6, 28.4. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}, 351.0339$; found, 351.0335.

3c, 57%
1-(4-(chloromethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-yl)pyrrolidine-2,5dione (3c). Colorless oil ($35.2 \mathrm{mg}, 57 \%$), (EtOAc/ Petroleum ether, $1 / 10-1 / 3$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.97$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.35(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.69$ (s, 4H), 2.44-2.37 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.1,157.7,133.1$, 131.4, 128.3, 128.0, 72.9, 62.2, 48.5, 28.6, 27.7. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}, 307.0844$; found, 307.0845.

4a, 89\%
4-(iodomethyl)-4-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine (4a). Colorless oil ($59.0 \mathrm{mg}, 89 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
$\mathrm{MHz}): \delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.44-4.38 (m, 1H), 4.30-4.25 (m, 1H), 3.69 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.0$, 133.2, 131.2, 128.2, 127.8, 80.2, 62.6, 48.8, 31.1, 12.9. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{INO}_{2}, 332.0142$; found, 332.0144.

4b, 70\%
4-(bromomethyl)-4-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine (4b). Yellow oil ($39.6 \mathrm{mg}, 70 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.46-4.40 (m, 1H), 4.35-4.29 (m, 1H), $3.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.4$, 133.2, 131.3, 128.2, 127.8, 80.8, 62.6, 49.0, 36.6, 29.9. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}_{2}$, 284.0281; found, 284.0282.

4c, 72\%
4-(chloromethyl)-4-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine (4c). Colorless oil ($34.6 \mathrm{mg}, 72 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.46-4.40 (m, 1H), 4.36-4.31 (m, 1H), $3.98(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.5$, 133.2, 131.3, 128.2, 127.8, 81.3, 62.5, 49.1, 47.2, 29.1. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClNO}_{2}, 240.0786$; found, 240.0788.

5a, 79\%
4-ethoxy-4-(iodomethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazine (5a). Yellow oil (Methods A, $54.7 \mathrm{mg}, 79 \%$), (EtOAc/ Petroleum ether, 1/50-1/20, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.7,133.2$ 131.2, 128.2, 127.7, 80.0, 62.6, 56.5, 31.6, 15.8, 14.0. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{INO}_{2}, 346.0298$; found, 346.0300.

5b, 86\%

4-(iodomethyl)-2-phenyl-4-(2,2,2-trifluoroethoxy)-5,6-dihydro-4H-1,3-oxazine

(5b). Yellow oil (Methods A, $68.5 \mathrm{mg}, 86 \%$), (EtOAc/ Petroleum ether, 1/50-1/20, $\mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.53(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.2,132.6,131.7,128.3,127.9,124.2(\mathrm{~d}, J=276.1 \mathrm{~Hz})$, $81.0,62.5,59.3(\mathrm{q}, J=34.6 \mathrm{~Hz}), 31.1,12.2 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 564 \mathrm{MHz}\right): \delta-73.9$. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{INO}_{2}, 400.0016$; found, 400.0018 .

5c, 76\%
4-(iodomethyl)-2-phenyl-4-propoxy-5,6-dihydro-4H-1,3-oxazine (5c). Yellow oil (Methods B, $54.5 \mathrm{mg}, 76 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 156.8,133.3$ 131.1, 128.2, 127.8, 79.9, 62.7, 31.6, 23.5, 14.0, 11.0. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{INO}_{2}, 360.0455$; found, 360.0453.

5d, 89\%
4-(iodomethyl)-4-phenethoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine
(5d).
Colorless oil (Methods B, $72.8 \mathrm{mg}, 89 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 2 \mathrm{H})$, $4.06(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.0,139.2,133.2,131.2,129.1,128.3,128.2,127.8$, 126.2, 80.2, 62.6, 61.9, 36.8, 31.5, 13.9. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{INO}_{2}$, 422.0611; found, 422.0608.

5e, 69\%
4-(iodomethyl)-4-isobutoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine (5e). Colorless oil (Methods B, $51.4 \mathrm{mg}, 69 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.98-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.46-$ $4.40(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8,133.4$ 131.1, 128.2, 127.7, 79.7, 67.5, 62.7, 31.7, 28.9, 19.7, 14.1. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{INO}_{2}, 374.0611$; found, 374.0610.

5f, 71\%

4-(iodomethyl)-4-(neopentyloxy)-2-phenyl-5,6-dihydro-4H-1,3-oxazine (5f).

 Yellow oil (Methods B, $55.1 \mathrm{mg}, 71 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.19(\mathrm{~m}$, $1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8$, 133.5 131.1, 128.2, 127.8, 79.4, 70.7, 62.8, 31.9, 31.7, 27.0, 14.2. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{INO}_{2}$, 388.0768; found, 388.0765.

5g, 58\%
4-(iodomethyl)-4-isopropoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazine (5g). Yellow oil (Methods B, $41.6 \mathrm{mg}, 58 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8,133.3$ 131.1, 128.2, 127.7, 80.4, 64.4, 62.6, 32.2, 24.8, 24.7, 15.5. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{INO}_{2}$, 360.0455; found, 360.0453.

5h, 60\%
4-(cyclohexyloxy)-4-(iodomethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazine
(5h). Yellow oil (Methods B, $49.9 \mathrm{mg}, 60 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.59(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.27-$ $1.20(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8,133.4$ 131.1, 128.2, 127.7, 80.3, 70.2, 62.7, 35.0, 34.9, 32.2, 25.7, 24.9, 24.6, 15.8. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{INO}_{2}, 400.0768$; found, 400.0766.

5i, 26\%
2-(4-(iodomethyl)-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-yl)isoindoline-1,3-dione
(5i). Yellow oil (Methods C, $23.5 \mathrm{mg}, 26 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70$ (m, 2H), $7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.40-$ $4.34(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H})$, 2.53-2.46 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ 168.3, 157.5, 134.3, 133.1 131.7, 131.4, 128.3, 128.1, 123.3, 71.3, 62.4, 29.6, 16.6. HRMS (ESI-TLQ) m/z: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{IN}_{2} \mathrm{O}_{3}$, 447.0200; found, 447.0197.

6, 45\%
3-bromo-7-phenyl-1,8-dioxa-2,6-diazaspiro[4.5]deca-2,6-diene (6). Colorless oil ($26.6 \mathrm{mg}, 45 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 10$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.98$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.58-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 158.5, 136.9, 132.6, 131.7, 128.3, 128.0, 92.7, 62.6, 53.7, 30.8. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}_{2}$, 295.0077; found, 295.0076.

7b, 75\%
4-(iodomethyl)-4-methoxy-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (7b). Yellow oil ($51.9 \mathrm{mg}, 75 \%$), ($\mathrm{EtOAc} /$ Petroleum ether, $1 / 50-1 / 20, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.28-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.1,141.5,130.4$, $128.9,127.7,80.2,62.6,48.8,31.1,21.6,13.0$. HRMS (ESI-TLQ) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{INO}_{2}, 346.0298$; found, 346.0297.

7e, 90%
2-(4-chlorophenyl)-4-(iodomethyl)-4-methoxy-5,6-dihydro-4H-1,3-oxazine (7e). Yellow oil ($65.5 \mathrm{mg}, 90 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.43-4.37(\mathrm{~m}$, $1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.0,137.4,131.5$, 129.1, 128.4, 80.1, 62.7, 48.8, 31.0, 12.6. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{CIINO}_{2}, 365.9752$; found, 365.9752 .

71, 41\%
2-(3,5-dimethylphenyl)-4-(iodomethyl)-4-methoxy-5,6-dihydro-4H-1,3-oxazine (7i). Yellow oil (29.4 mg, 41\%), (EtOAc/ Petroleum ether, 1/50-1/20, v/v). ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.23(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.24$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (s, 6H), 2.20$2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.4,137.8,133.1,133.0,125.5$, 80.2, 62.6, 48.9, 31.1, 21.4, 13.0. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{INO}_{2}, 360.0455$; found, 360.0453 .

7q, 91\%
4-(iodomethyl)-4-methoxy-2-(naphthalen-2-yl)-5,6-dihydro-4H-1,3-oxazine (7q). Yellow oil ($69.6 \mathrm{mg}, 91 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.84 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55-7.48 (m, 2H), 4.50-4.45 (m, 1H), 4.36-4.31 (m, 1H), 3.74 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (s, 3H), 3.30 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.0,134.9,132.8,130.5,129.1,128.2,127.9$, $127.8,127.5,126.5,124.6,80.4,62.8,48.9,31.2,12.9$. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{INO}_{2}$, 382.0298; found, 382.0297.

7r, 56\%
4-(iodomethyl)-4-methoxy-2-(thiophen-2-yl)-5,6-dihydro-4H-1,3-oxazine (7r). Yellow oil ($38.0 \mathrm{mg}, 56 \%$), (EtOAc/ Petroleum ether, $1 / 50-1 / 20$, v/v). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.57(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=3.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}$, $1 \mathrm{H}), 3.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.07(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.7,137.4,129.7,129.3,127.5,80.1$, 62.9, 48.9, 31.4, 12.7. HRMS (ESI-TLQ) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{INO}_{2} \mathrm{~S}$, 337.9706; found, 337.9706.

$7 \mathrm{t}, 79 \%, \mathrm{dr}=5: 1$
4-(iodomethyl)-4-methoxy-6-methyl-2-phenyl-5,6-dihydro-4H-1,3-oxazine (7t). Yellow oil (pure mainly product $23.7 \mathrm{mg}, 34 \%$), ($\mathrm{EtOAc} /$ Petroleum ether, $1 / 50-1 / 20$, $\mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.1,133.3$, 131.2, 128.2, 127.9, 81.0, 69.1, 49.4, 39.7, 20.8, 14.0. HRMS (ESI-TLQ) m/z: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{INO}_{2}, 346.0298$; found, 346.0297.

References

1. (a) Mou, X.-Q.; Rong, F.-M.; Zhang, H.; Chen, G.; He, G. Copper(I)-Catalyzed Enantioselective Intramolecular Aminotrifluoromethylation of O-Homoallyl Benzimidates. Org. Let., 2019, 21, 4657-4661; (b) Dong, W.; Fang, Z.-Y.; Cao, T.-Y.; Cao, J.-H.; Zhao, Z.-Q.; Zhang, L.-L.; Li, W.; Qi, L.; Wang, L.-J. CopperCatalyzed Aminosulfonylation of O-Homoallyl Benzimidates with Sodium Sulfinates to Access Sulfonylated 1,3Oxazines. Org. Lett. 2021, 23, 15, 5809-5814; (c) Zhang L.-L.; Qi L.; Chen J M.; Dong, W.; Fang, Z.-Y.; Cao, T.Y.; Li, W.; Wang, L.-J. Preparation of selenyl 1, 3-oxazines via $\mathrm{PhICl}_{2} / \mathrm{Cu}_{2} \mathrm{O}$-promoted aminoselenation of O homoallyl benzimidates with diselenides. Chem. Commun., 2021, 57, 12655-12658; (d) Mou, X. Q.; Ren, L. C.; Zhang, M.; Wang, M.; Jin, Y. F.; Guan, Q. X.; Cai, A.; Zhang, S. M.; Ren, H.; Zhang, Y.; Chen, Y. Z. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N Alkenyl Amidines with Sodium Sulfinates. Org. Lett. 2022, 24, 1405-1411.
2. Fricke P.-J.; Stasko J.-L.; Robbins D.-T.; Gardner A.-C.; Stash J.; Ferraro M.-J.; Fennie M.-W. Coppercatalyzed hydroamination of propargyl imidates. Tetrahedron Letters, 2017, 58, 4510-4513.

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 g}, 27 \%$
$\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{~m}, 29 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $1 \mathrm{~m}, 29 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 n}, 12 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 n}, 12 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{19}$ F NMR of $1 \mathrm{n}, 12 \%$ $\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $10,35 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0}, 35 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{19}$ F NMR of 10, 35% $\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$

${ }^{1}$ H NMR of $\mathbf{1 p}, 29 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 u}, 21 \%$
$\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 u}, 21 \%$ $\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 v}, 37 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 v}, 37 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $1 \mathbf{w}, 48 \%$
$\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $1 \mathrm{w}, 48 \%$ $\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 x}, 27 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 x}, 27 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $1 \mathbf{y}, 43 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

[^0]
${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 y}, 43 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\int_{\int}^{133.568} 130.714$
-128.416
${ }^{2} 126.754$
-114.791

$\left[\begin{array}{l}77.478 \\ 77.160 \\ 76.842 \\ 76.531\end{array}\right.$
-47.465
$\left\{_{31.075}^{31.277}\right.$
$\mathcal{V}_{24.487}^{25.063}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 a}, 86 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 a}, \mathbf{8 6 \%}$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 b}, 82 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of 2b, 82% $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-156.266
-143.516
$\sim_{141.410}$
$\int_{130.242}^{128.953}$
127.680
-105.917
$\overbrace{7}^{77.4642} \begin{aligned} & 77.48 \\ & 76.80\end{aligned}$
-65.453
-27.326
-21.605

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 c}$, 81%
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of 2c, 81% $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of 2d, 59%
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 d}, 59 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{19}$ F NMR of $\mathbf{2 d}, 59 \%$ $\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 e}, 75 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 e}, 75 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-155.203
-143.140
$\int^{137.254}$
$\int_{131.495}$
129.060
-128.477
-106.842
$\overbrace{76.842}^{77.478}$
-65.611

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 f}, \mathbf{3 0 \%}$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 f}, 30 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 g}, \mathbf{7 2 \%}$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 h}$, 93% $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of $\mathbf{2 h}, 93 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 i}, 71 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 i}, 71 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 j}$, 83\% $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\left\{\begin{array}{l}8.004 \\ 7.898 \\ 7.879\end{array}\right.$
$\left\{\begin{array}{l}7.417 \\ 7.397 \\ 7.332 \\ 7.312 \\ 7.293\end{array}\right.$
-5.118
$\int_{4.649}$
$]_{4.421}^{4.406}$
4.391
${\underset{T}{2.631}}_{2.645}^{2.616} 4$
-0.000

${ }^{13}$ C NMR of $\mathbf{2 j}$, 83\%
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 k}, 77 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 k}, 77 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 I}, 82 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of 2I, 82%
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 m}, 58 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 m}, 58 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1}$ H NMR of $\mathbf{2 n}, 62 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of $\mathbf{2 n}, 62 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\left\{\begin{array}{l}164.143 \\ 164.020 \\ 161.678 \\ 161.555 \\ 153.898\end{array}\right.$
$\int_{142.751}^{136.631}$
$\begin{aligned} & 136.534 \\ & 136.436\end{aligned}$
$\left[\begin{array}{l}110.813 \\ 110.739 \\ 110.617 \\ 110.545 \\ 107.887 \\ 106.595 \\ 106.341 \\ 106.088\end{array}\right.$
${\underset{7}{76.842}}_{77.478}^{77.160}$

${ }^{19}$ F NMR of $\mathbf{2 n}, 62 \%$
$\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0}, \mathbf{7 5 \%}$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 0}, \mathbf{7 5 \%}$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{19}$ F NMR of 20, $\mathbf{7 5 \%}$
$\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$

${ }^{1}$ H NMR of $\mathbf{2 p}, 73 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 p}, 73 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 q}, \mathbf{7 2 \%}$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$=\left[\begin{array}{l}8.506 \\ 8.138 \\ 8.116 \\ 7.914 \\ 7.896\end{array}\right.$
7.844
7.823
7.528
7.514
7.496
7.482
7.465
-5.160
$\int_{4.650}^{4.471}$
$\int_{4.442}^{4.457}$
${\underset{\sim}{f}}_{2.680}^{2.666} \begin{aligned} & 2.651\end{aligned}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 q}, 72 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 r}, 81 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 r}, 81 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-152.912
-142.886
-137.372
129.725
$\mathcal{L}_{129.234}$
127.649
-106.374

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 s}, 63 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\left\{\begin{array}{l}7.322 \\ 7.312\end{array}\right.$
$\left\{\begin{array}{l}7.006 \\ 6.997\end{array}\right.$
-5.049
$\int_{4.606}^{4.378}$
$\int_{4.364}^{4.349}$
${\underset{Z}{2.605}}_{2.634}^{2.620}$

${ }^{13}$ C NMR of 2s, 63%
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-151.83
-142.637
-138.719
$\checkmark 130.730$
${ }^{2} 129.268$
-117.210
-106.859
$\mathcal{L}_{77.160}^{77.478}$
-65.842

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 t}, 85 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 t}$, 85% $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 u}, \mathbf{8 1 \%}$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 u}, 81 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 v}, 72 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 v}, 72 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1}$ H NMR of $\mathbf{2 w}$, 83%
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 w}$, 83\% $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 x}$, 83% $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

[^1]
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 x}, 83 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 y}, \mathbf{7 6 \%}$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of $\mathbf{2 y}, 76 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-S101 -

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 a a}, 8 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}, 46 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}, 46 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}, 56 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

- S106 -

${ }^{13}$ C NMR of $\mathbf{3 b}, 56 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}, 57 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{c}, 57 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{a}, 89 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $4 \mathrm{a}, 89 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

- S111 -

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}, 70 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}, 70 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-157.371
$\int_{-131.306}^{133.180}$
$\complement_{127.767}^{128.208}$
$\int_{80.758}^{77.478}$
$=\begin{aligned} & 77.160 \\ & 76.842\end{aligned}$
-62.559
-48.963
-36.577
-29.882

${ }^{1}$ H NMR of $4 \mathrm{c}, 72 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 c}, 72 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}, 79 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\int_{-7.962}^{7.981}$
7.464
7.446
-7.428
-7.394
-7.374
-7.356
[4.453
-4.442
4.430
4.425
4.420
-4.415
-4.403
-4.392
4.308
[4.296
[4.282
H 4.268
$\sim_{4.254}$
$\int^{3.886}$
3.864
3.846
-3.713
-3.685
3.638
3.620
3.598
3.285
-3.257
-2.197
2.182
2.173
2.162
2.148
2.131
2.119
2.108
2.097
1.220
1.202
1.185

- S116 -

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}, 79 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

- S117 -

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}, 86 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

- S118 -

${ }^{13}$ C NMR of $\mathbf{5 b}, 86 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{19}$ F NMR of $\mathbf{5 b}, 86 \%$ $\mathrm{CDCl}_{3}, 564 \mathrm{MHz}$
of

${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{c}, 76 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

- S121 -

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 c}, 76 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{~d}, 70 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of $5 \mathrm{~d}, 70 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 e}, 69 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{e}, 69 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 f}, \mathbf{7 1 \%}$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{~g}, 58 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 g}, 58 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

-156.789
$\int_{\int}^{133.329} 1.138$
$\int_{-}^{80.359}$
$\sim_{7}^{77.478}$
$\sim_{7.160}$
76.842
-32.187
$L_{24.741}^{24.782}$
-15.489

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 h}, 60 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

[^2]- S131 -

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 h}, 60 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

ת 80.282
-77.478
$\left\{\begin{array}{l}77.160 \\ 76.842\end{array}\right.$
70.192
$\mathcal{V}_{62.658}$
$\left[\begin{array}{r}34.985 \\ 34.878\end{array}\right.$
-32.169
$\int^{25.715}$
-24.879
-15.790

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 i}, 26 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $6,45 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $6,45 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $7 \mathrm{~b}, 75 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{7 e}, 90 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $7 \mathrm{II}, 41 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $7 \mathrm{II}, 41 \%$ $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 q}, 91 \%$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of $7 \mathbf{q}, 91 \%$
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $7 \mathrm{r}, 56 \%$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13}$ C NMR of 7r, 56\%
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of $7 \mathbf{t}$ (mixture), 79%,
$d r=5: 1 \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR of 7 t (pure mainly product), 79%, $d r=5: 1 \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of 7 t (pure mainly product), 79%,
$d r=5: 1 \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

[^0]: $=\left[\begin{array}{l}7.717 \\ 7.699 \\ 7.443 \\ 7.425\end{array}\right.$
 $\begin{aligned} & 7.408 \\ & 7.397 \\ & 7.379 \\ & 7.362\end{aligned}$
 $\left[\begin{array}{l}5.875 \\ 5.856 \\ 5.849 \\ 5.831 \\ 5.812 \\ 5.806 \\ 5.787\end{array}\right.$
 $\left[\begin{array}{l}5.130 \\ 5.087 \\ 4.999 \\ 4.972 \\ 4.856\end{array}\right.$
 $\left[\begin{array}{l}2.387 \\ -2.379 \\ 2.360 \\ 2.353 \\ 2.335 \\ -2.304 \\ 2.292 \\ 2.279 \\ 1.872 \\ 1.857 \\ 1.843 \\ 1.807 \\ 1.780 \\ 1.736 \\ 1.728 \\ 1.496 \\ 1.489 \\ 1.458 \\ 1.427 \\ 1.400 \\ 1.369 \\ 1.338 \\ 1.313 \\ 1.284 \\ 1.276 \\ 1.257 \\ 0.000\end{array}\right.$

[^1]:

[^2]:

