Supporting Information

Palladium-catalyzed enantioselective domino ring-opening/Hiyama coupling of cyclobutanones: Development and application to the synthesis of (+)-herbertene-1,14-diol

Wan-Er Gan, ${ }^{1}$ Jian Cao ${ }^{* 1}$ and Li-Wen $\mathrm{Xu}^{* 1,2}$
${ }^{1}$ Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
${ }^{2}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China

E-mail: caojian@hznu.edu.cn; liwenxu@hznu.edu.cn

Table of Contents	
General information	S2
Table S1 Optimization of reaction conditions	S3
Synthesis of $\mathbf{3}$	S4-S28
Synthesis of (+)-herbertene-1,14-diol	S29-S36
References	S37
NMR spectra	S38-S63

General information

Unless otherwise noted, all reactions were carried out under N_{2} atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (300-400 meshes) using petroleum ether (bp. $60 \sim 90^{\circ} \mathrm{C}$) and ethyl acetate as eluent. ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on a Bruker Avance (400 MHz) spectrometer, using CDCl_{3} as the solvent and TMS as internal standard; chemical shifts were quoted in parts per million and J values were given in hertz. The following abbreviations were used to describe peak splitting patterns when appropriate: $s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ double triplet, $\mathrm{q}=$ quatriplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. High resolution mass spectrometry (HRMS) was performed on a Waters Micromass. HPLC was carried out on an Agilent 1260 infinity instrument. Cyclobutanones ${ }^{1}$ and alkenyl[2(hydroxymethyl)phenyl] dimethylsilanes ${ }^{2}$ were prepared according to the reported methods.

Table S1: Optimization of reaction conditions. ${ }^{a}$

Entry	Catalyst	Ligand	Base	Temp (${ }^{\circ} \mathrm{C}$)	Solvent	X	Yield	er
1	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	35	59.5:40.5
2	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	48	94.5:5.5
3	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L3	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	77	95:5
4	$\mathrm{PdCl}_{2} / \mathbf{C u I}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	92	96.5:3.5
5	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	I	82	96.5:3.5
6	PdCl_{2}	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	70	91.5:8.5
7	CuI	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	trace	-
8	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	80	THF	Br	trace	-
9	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	80	THF	Br	14	95.5:4.5
10	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{3} \mathrm{PO}_{4}$	80	THF	Br	69	95.5:4.5
11	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	1,4-dioxane	Br	80	93.5:6.5
12	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	toluene	Br	62	95.5:4.5
13	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	DCE	Br	80	96:4
14	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	40	THF	Br	49	96:4
15	$\mathrm{PdCl}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	60	THF	Br	80	95.5:4.5
16	$\mathrm{PdBr}_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	59	94.5:5.5
17	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{CuI}$	L4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	THF	Br	32	94:6

${ }^{a}$ Reaction conditions: $1(0.2 \mathrm{mmol}), \mathbf{2 a}(0.24 \mathrm{mmol})$, Pd catalyst $(0.01 \mathrm{mmol}), \mathrm{CuI}(0.02 \mathrm{mmol})$, ligand (0.04 mmol), base (0.5 mmol), solvent $(2 \mathrm{~mL})$ for 24 h , isolated yield.

Typical procedure for the synthesis of 3a.

A vial was charged with $\mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L 4}(25.0$ $\mathrm{mg}, 0.04 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($69.1 \mathrm{mg}, 0.5 \mathrm{mmol}$), and evacuated under high vacuum and backfilled with N_{2}. THF (1 mL) was added via syringe and the mixture was stirred at room temperature for 20 min . A solution of $\mathbf{1 a}(47.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(64.3 \mathrm{mg}$, $0.24 \mathrm{mmol})$ in THF (1 mL) was added via syringe and the mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath for 24 h , and then cooled to room temperature. The mixture was filtered over a plug of silica gel (washed with 50 mLEtOAc), and the filtrate was concentrated under reduced pressure and then purified by silica column to get the product 3a.

3a

3-cinnamyl-3-methyl-2,3-dihydro-1 H -inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil $(48.4 \mathrm{mg}, 92 \%) .[\alpha]_{\mathrm{D}}^{25}=+49.3\left(\mathrm{c}=0.067, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H})$, 7.28-7.17 (m, 5H), 6.39 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (dt, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (d, J $=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 205.6,162.2,137.3,136.3,135.0,134.1,128.6,127.8,127.5$, 126.3, 125.7, 124.1, 123.6, 50.0, 45.9, 42.5, 28.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}, 285.1250$; found 285.1241. Enantiomeric excess was determined by HPLC with double Chiralpak OD-H column (hexane: 2 -propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, 96.5: 3.5 \mathrm{er}$); major enantiomer $\mathrm{t}_{\mathrm{r}}=21.1 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=22.9 \mathrm{~min}$.

3b
(E)-3-(3-(4-methoxyphenyl)allyl)-3-methyl-2,3-dihydro-1H-inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$. Colorless oil. (31.0 mg, 53\%). $[\alpha]_{\mathrm{D}}^{25}=+29.2\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.80(\mathrm{td}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8$, 162.3, 159.1, 136.2, 135.0, 133.4, 130.1, 127.7, 127.4, 124.1, 123.5, 123.4, 114.0, 55.4, 50.0, 45.9, 42.6, 28.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}_{2}$, 315.1356; found 315.1349. Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexanes: 2-propanol = 90:10, $0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, 95: 5 \mathrm{er}$); major enantiomer $\operatorname{tr}=13.7 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=15.0 \mathrm{~min}$.

3c

(()-3-(3-(4-chlorophenyl)allyl)-3-methyl-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil. $(38.0 \mathrm{mg}, 65 \%) .[\alpha]_{\mathrm{D}}^{25}=+27.6\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{td}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47$ $(\mathrm{d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,162.0,136.2$, 135.6, 135.1, 133.0, 132.8, 128.7, 127.8, 127.4, 126.3, 124.0, 123.6, 50.0, 45.9, 42.5, 28.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClNaO}, 319.0860$; found 319.0851. Enantiomeric excess was determined by HPLC with double Chiralpak OXH column(hexanes:2-propanol $=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, 95.5:4.5 er); major enantiomer $\mathrm{tr}=21.9 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=24.5 \mathrm{~min}$.

3d
(S, E)-3-methyl-3-(3-(4-(trifluoromethyl)phenyl)allyl)-2,3-dihydro-1 \boldsymbol{H}-inden-1one

The mobile phase for flash chromatography: hexane/ethyl acetate $=50: 1$. Yellow oil $(50 \mathrm{mg}, 75 \%) .[\alpha]_{\mathrm{D}}^{25}=+12.3\left(\mathrm{c}=2.83, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,161.8,140.6,136.2,135.1,132.8,129.3$ ($\mathrm{q}, J=$ $32.2 \mathrm{~Hz}), 128.5,127.9,126.4,125.6(\mathrm{q}, J=2.9 \mathrm{~Hz}), 124.3(\mathrm{q}, J=250.5 \mathrm{~Hz}), 124.0$, 123.6, 50.0, 45.9, 42.5, 28.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$, 331.1304; found 331.1328. Enantiomeric excess was determined by HPLC with a chiralcel OD column (hexanes: 2-propanol $=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, 94.5: 5.5 \mathrm{er}$); major enantiomer $\operatorname{tr}=9.8 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=11.9 \mathrm{~min}$.

	Time $/ \mathrm{min}$	Area	Height	Area\%
1	9.834	609.6	44.9	49.9
2	11.934	612.9	36.5	50.1

	Time $/ \mathrm{min}$	Area	Height	Area $\%$
1	9.882	222.2	16.2	94.5
2	11.993	13.6	$6.8 \mathrm{E}-1$	5.5

(E)-3-methyl-3-(non-2-en-1-yl)-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil $(41.3 \mathrm{mg}, 77 \%) \cdot[\alpha]_{\mathrm{D}}^{25}=-9.1\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.43-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 8 \mathrm{H})$, $0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0,162.5,136.3,135.4$, 134.9, 127.5, 125.1, 124.0, 123.4, 49.8, 45.5, 42.3, 32.6, 31.8, 29.4, 28.8, 28.2, 22.7, 14.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}, 293.1876$; found 293.1869. Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexane: 2-propanol $=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 94: 6 \mathrm{er}$); major enantiomer $\operatorname{tr}=12.3 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=11.8 \mathrm{~min}$.

	N								
		4	-	8	10	12	14	16	min
		Time/min		Area		Height		Area\%	
1		11.819		1223		99.8		6.116	
2		12.389		18773.5		1308.3		93.884	

(E)-3-(6-chlorohex-2-en-1-yl)-3-methyl-2,3-dihydro-1H-inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil ($43.8 \mathrm{mg}, 84 \%$). $[\alpha]_{\mathrm{D}}^{25}=+19.3\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}$, 2 H), $1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.9,162.3,136.3,135.0,133.1$, 127.7, 126.9, 124.0, 123.4, 49.8, 45.5, 44.3, 42.2, 32.1, 29.7, 28.2. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNaO}$, 285.1017; found 285.1008. Enantiomeric excess was determined by HPLC with double Chiralpak OX-H column (hexane:2propanol 95:5, $0.8 \mathrm{~mL} / \mathrm{min}, 290 \mathrm{~nm}, 96: 4 \mathrm{er}$); major enantiomer $\mathrm{tr}=21.0 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=22.0 \mathrm{~min}$.

	Time/min	Area	Height	Area\%
1	21.024	395.5	23.3	49.5
2	22.011	402.9	22.3	50.5

	Time/min	Area	Height	Area\%
1	21.009	602	34.9	96.0
2	21.988	24	1.4	4.0

3-methyl-3-(3-methylbut-2-en-1-yl)-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil. $(22.0 \mathrm{mg}, 51 \%) .[\alpha]_{\mathrm{D}}^{25}=+39.2\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,162.7,136.2,135.2$, $134.9,127.5,124.0,123.4,119.8,50.1,42.7,40.5,28.2,26.0,18.0$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}, 237.1250$; found 237.1237. Enantiomeric excess was determined by HPLC with double Chiralpak OX-H column (hexanes:2-propanol $=$ 95:5, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, 94.5: 5.5 \mathrm{er}$; major enantiomer $\mathrm{tr}=34.8 \mathrm{~min}$, minor enantiomer $\operatorname{tr}=33.1 \mathrm{~min}$.

3h

3-methyl-3-(2-methylallyl)-2,3-dihydro-1 H -inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil. $(31.9 \mathrm{mg}, 80 \%) .[\alpha]_{\mathrm{D}}^{25}=+20.8\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.44$ (s, 3H), $1.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 206.1,162.7,142.4,136.1,134.8$, 127.7, 124.2, 123.5, 115.9, 50.0, 42.0, 29.5, 24.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}, 223.1093$; found 223.1086. Enantiomeric excess was determined
by HPLC with double Chiralpak OX-H column (hexanes: 2-propanol $=90: 10,0.8$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 96.5: 3.5 \mathrm{er}$); major enantiomer $\mathrm{tr}=34.0 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=$ 35.0 min .

(E)-3-methyl-3-(4-methylpenta-2,4-dien-1-yl)-2,3-dihydro-1H-inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil $(37.9 \mathrm{mg}, 84 \%) .[\alpha]_{\mathrm{D}}^{25}=+39.4\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ (d, $J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8,162.3,141.7,137.0,136.3,135.0$, 127.7, 125.3, 124.0, 123.5, 115.8, 50.0, 45.7, 42.5, 28.1, 18.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}, 249.1250$; found 249.1265. Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexane:2-propanol 90:10, 0.8 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 94.5: 5.5 \mathrm{er}$); major enantiomer $\operatorname{tr}=24.8 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=$ 23.5 min .

3j

(E)-3-(4-hydroxybut-2-en-1-yl)-3-methyl-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$ to $5: 1$. Colorless oil. ($34.0 \mathrm{mg}, 79 \%$). $[\alpha]_{\mathrm{D}}^{25}=+24.4\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{td}, J=15.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{td}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.0,162.1,136.3,135.1,133.7,127.8,127.5,123.9,123.5$, 63.3, 49.8, 45.1, 42.1, 28.2. HRMS (ESI-TOF) m/z: [M + Na] $]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}$, 239.1043; found 239.1037. Enantiomeric excess was determined by HPLC with Chiralpak OX-H column (hexanes:2-propanol = 80:20, $0.9 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, 95: 5 \mathrm{er}$); major enantiomer $\operatorname{tr}=11.4 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=12.3 \mathrm{~min}$.

(()-3-(4-hydroxy-4-methylpent-2-en-1-yl)-3-methyl-2,3-dihydro-1 H -inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=5: 1$. Colorless oil $(30.5 \mathrm{mg}, 63 \%) .[\alpha]_{\mathrm{D}}^{25}=+106.6\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H})$, $5.55(\mathrm{dt}, J=15.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=18.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42$ (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.44 (s, 3H), 1.18 (s, 3H), $1.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.9,162.0,142.8,136.4,135.0,127.7$, 124.0, 123.4, 122.0, 70.6, 50.0, 45.2, 42.4, 29.8, 29.7, 27.9. HRMS (ESI-TOF) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{2}, 267.1356$; found 267.1339. Enantiomeric excess was determined by HPLC with double Chiralpak OX-H column (hexane:2-propanol 80:20, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 96: 4 \mathrm{er}$); major enantiomer $\mathrm{tr}=28.1 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=$ 27.0 min .

(E)-2-(4-(1-methyl-3-oxo-2,3-dihydro-1 H -inden-1-yl)but-2-en-1-yl)isoindoline-

1,3-dione

The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$. Colorless oil. ($40.8 \mathrm{mg}, 59 \%$). $[\alpha]_{\mathrm{D}}^{25}=+18.3\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-$ 7.81 (m, 2H), 7.74-7.68 (m, 2H), 7.63 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.49(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.65$ $(\mathrm{d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $205.4,167.9,161.8,136.2,134.9,134.0,132.2,130.5,127.73,127.68,124.1,123.5$, 123.4, 50.0, 45.0, 42.1, 39.4, 27.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{3}, 368.1257$; found 368.1231. Enantiomeric excess was determined by HPLC with double Chiralpak AS-H column (hexanes:2-propanol $=90: 10,1 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}, 95: 5 \mathrm{er}$); major enantiomer $\mathrm{tr}=64.1 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=74.3 \mathrm{~min}$.

	Time/min	Area	Height	Area\%
1	65.069	14213.7	91.2	51.5
2	74.218	13281.6	47.9	48.5

3-cinnamyl-3-isobutyl-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil ($41.3 \mathrm{mg}, 65 \%$). $[\alpha]_{\mathrm{D}}^{25}=+26.1\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.567 .52(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.27(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.71(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.47(\mathrm{~m}$, $4 \mathrm{H}), 1.78(\mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.0$, $161.1,137.2,137.1,134.7,134.1,128.6,127.8,127.4,126.2,125.4,124.7,123.5,49.1$, 47.5, 46.2, 45.6, 25.3, 25.2, 24.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}, 327.1719$; found 327.1699. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexane:2-propanol $=95: 5,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 90: 10$ er); major enantiomer $\operatorname{tr}=11.1 \mathrm{~min}$, minor enantiomer $\operatorname{tr}=12.3 \mathrm{~min}$.

(E)-3-(4-hydroxy-4-methylpent-2-en-1-yl)-3-phenethyl-2,3-dihydro-1 \boldsymbol{H}-inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$ to $5: 1$. Colorless oil ($30.6 \mathrm{mg}, 46 \%$). $[\alpha]_{\mathrm{D}}^{25}=+31.9$ ($\mathrm{c}=1.01, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ 7.37 (m, 1H), 7.27-7.21 (m, 2H), 7.19-7.13 (m, 1H), 7.07 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~d}$,
$J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.26$ $(\mathrm{td}, J=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,160.2,143.0,141.8,137.3,135.0,128.6,128.3,127.9,126.1$, 124.3, 123.5, 121.5, 70.6, 47.1, 46.1, 43.9, 42.3, 31.2, 29.8, 29.7. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{2}, 357.1825$; found 357.1817. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol 90:10, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 95: 5 \mathrm{er}$); major enantiomer $\mathrm{tr}=15.6 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=$ 19.8 min .

3-cinnamyl-3-phenyl-2,3-dihydro-1 H -inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=30: 1$. Light yellow oil ($47.4 \mathrm{mg}, 73 \%$). $[\alpha]_{\mathrm{D}}^{25}=-25.7\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.05$ $(\mathrm{m}, 10 \mathrm{H}), 6.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 3 \mathrm{H})$, $2.85(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,160.1,146.4,137.1$, $137.0,135.1,134.6,128.8,128.6,128.2,127.5,126.7,126.4,126.2,125.1,123.6,52.6$, 50.2, 43.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NaO}, 347.1406$; found 347.1399. Enantiomeric excess was determined by HPLC with Chiralpak OD-H column (hexanes: 2-propanol $=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 270 \mathrm{~nm}, 91: 9 \mathrm{er}$); major enantiomer $\operatorname{tr}=22.9 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=36.5 \mathrm{~min}$.

(E)-5-methoxy-3-methyl-3-(4-methylpenta-2,4-dien-1-yl)-2,3-dihydro-1H-inden-

1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=30: 1$. Colorless oil (31.1 mg, 61\%). $[\alpha]_{\mathrm{D}}^{25}=+17.8\left(\mathrm{c}=0.28, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=15.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.37$ $(\mathrm{m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,165.5,165.2$, 141.7, 136.9, 129.6, 125.4, 125.3, 115.8, 115.2, 107.6, 55.8, 50.2, 45.6, 42.2, 28.0, 18.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{2}$, 279.1356; found 279.1369. Enantiomeric excess was determined by HPLC with double Chiralpak OX-H column (hexane:2-propanol 95:5, $0.8 \mathrm{~mL} / \mathrm{min}, 270 \mathrm{~nm}, 94.5: 5.5 \mathrm{er}$); major enantiomer $\mathrm{tr}=31.9$ min , minor enantiomer $\operatorname{tr}=33.5 \mathrm{~min}$.

	Time/min	Area	Height	Area\%
1	31.914	14072.2	494.9	94.5
2	33.463	827.4	26	5.5

3-cinnamyl-5,6-dimethoxy-3-methyl-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$ to 6:1. Colorless oil ($53.9 \mathrm{mg}, 84 \%$). $[\alpha]_{\mathrm{D}}^{25}=+6.3\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-$ $5.85(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.38(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,157.3$, 155.6, 149.6, 137.1, 133.9, 129.1, 128.6, 127.4, 126.2, 125.7, 105.0, 104.0, 56.3, 56.2, 50.1, 45.8, 42.1, 28.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{3}$, 345.1461; found 345.1457. Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexane:2-propanol $=60: 40,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 92: 8 \mathrm{er}$); major enantiomer $\operatorname{tr}=7.0 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=7.5 \mathrm{~min}$.

(E)-5-chloro-3-(4-hydroxy-4-methylpent-2-en-1-yl)-3-methyl-2,3-dihydro-1 H -inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$. Colorless oil. $(35.0 \mathrm{mg}, 63 \%) .[\alpha]_{\mathrm{D}}^{25}=+8.7\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{td}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=$
$18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.2,160.0,143.2,137.9,135.0,134.2,125.4,123.2,121.6,70.7$, 50.2, 45.0, 42.2, 29.9, 29.8, 27.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNaO}_{2}, 301.0966$; found 301.0958. Enantiomeric excess was determined by HPLC with double Chiralpak AS-H column (hexanes:2-propanol $=90: 10,0.6 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}, 93.5: 6.5 \mathrm{er}$); major enantiomer $\mathrm{tr}=39.8 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=38.5 \mathrm{~min}$.

$3 s$
(E)-5-fluoro-3-(4-hydroxy-4-methylpent-2-en-1-yl)-3-methyl-2,3-dihydro-1H-inden-1-one
The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$ to $5: 1$. Colorless oil (36.2 mg, 69\%). [$\alpha]_{\mathrm{D}}^{25}=+6.9\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=$ $8.8,8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}$, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.19$ $(\mathrm{s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,167.4(\mathrm{~d}, J=255.5 \mathrm{~Hz})$, $165.0(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 143.2,132.8(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 121.5,116.0$ (d, $J=23.7 \mathrm{~Hz}$), $110.8(\mathrm{~d}, ~ J=22.0 \mathrm{~Hz}), 70.6,50.1,45.0,42.3(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 29.9$, 29.8, 27.8. HRMS (ESI-TOF) m/z: [M + Na] $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNaO}_{2}, 285.1261$; found 285.1248. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol 90:10, $06 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, 92.5:7.5 er); major enantiomer $\operatorname{tr}=12.4 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=15.2 \mathrm{~min}$.

3-cinnamyl-3,6-dimethyl-2,3-dihydro-1H-inden-1-one

The mobile phase for flash chromatography: hexane/ethyl acetate $=60: 1$. Colorless oil $(40.3 \mathrm{mg}, 73 \%) .[\alpha]_{\mathrm{D}}^{25}=+20.2\left(\mathrm{c}=0.077, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ (s, 1H), 7.38-7.31 (m, 2H), 7.23-7.09 (m, 5H), 6.30 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dt, $J=$ $15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~d}, J=18.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8,159.7,137.8$, 137.3, 136.4, 136.3, 133.9, 128.6, 127.4, 126.3, 125.8, 123.8, 123.5, 50.4, 46.0, 42.2, 28.3, 21.2. HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}$, 299.1406; found 299.1401. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexane:2-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 94: 6 \mathrm{er}$); major enantiomer tr $=7.9 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=10.3 \mathrm{~min}$.

(120]				$\stackrel{\text { gid }}{\sim}$			
	2.4	\bigcirc	-	10	12	14	m
	Time/min	Area		Height		Area\%	
1	7.85	17194.9		1207.6		94.051	
2	10.262	1087.7		61.3		5.949	

Synthesis of (+)-herbertene-1,14-diol

3-(2-bromo-5-methylphenyl)-3-methylcyclobutan-1-one 6

A vial was charged with $\mathrm{Ph}_{3} \mathrm{PMeBr}(18.32 \mathrm{~g}, 51.31 \mathrm{mmol}, 2.0 \mathrm{eq}), \mathrm{KO} \mathrm{Bu}^{t}(7.20 \mathrm{~g}$, $64.16 \mathrm{mmol}, 2.5 \mathrm{eq}$) and evacuated under high vacuum and backfilled with N_{2}. THF $(100 \mathrm{~mL})$ was added via syringe and the mixture was stirred at room temperature for 1 h. A solution of 1-(2-bromo-5-methylphenyl)ethan-1-one 4 ($5.40 \mathrm{~g}, 25.66 \mathrm{mmol}$) in THF (20 mL) was added dropwise and the mixture was stirred at room temperature. After complete consumption of starting material ($12 \mathrm{~h}, \mathrm{TLC}$, eluent: hexane), the mixture was extracted with ethyl acetate and water. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and then purified by silica column (eluent: hexane) to get the product $\mathbf{5}(4.80 \mathrm{~g}, 89 \%$ yield) as the colorless oil. Triflic anhydride ($9.03 \mathrm{~g}, 32 \mathrm{mmol}, 1.4$ equiv) was added dropwise to a solution of N, N dimethylacetamide ($2.39 \mathrm{~g}, 27.4 \mathrm{mmol}, 1.2$ equiv) in 30 mL of 1,2-dichloroethane under stirring at $5{ }^{\circ} \mathrm{C}$. The mixture was stirred at $5{ }^{\circ} \mathrm{C}$ for 30 min , and then a mixture of $5(4.8$ $\mathrm{g}, 22.86 \mathrm{mmol}, 1.0$ equiv) and 2,4,6-collidine ($4.59 \mathrm{~g}, 32 \mathrm{mmol}, 1.4$ equiv) in 5 mL of 1,2-dichloroethane was added dropwise. After the reaction mixture was refluxed for 18 $\mathrm{h}, 1,2$-dichloromethane was removed in vacuum and the residue was treated with 8 mL $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CCl}_{4}(1: 1)$. The obtained mixture was refluxed for 18 h , and 30 mL of water was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic layers was washed with 200 mL of saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Concentration of the solution by rotary evaporation under reduced pressure gave a residue, which was purified by silica gel (petroleum ether: $\mathrm{EtOAc}=25: 1$) to afford 6 as yellow oil ($2.78 \mathrm{~g}, 48 \%$ yield). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.45$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H})$, 3.23-3.17 (m, 2H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.9$, 145.6, 137.7, 134.2, 129.3, 129.1, 118.9, 59.3, 36.2, 27.9, 21.1. HRMS (ESI-TOF) m/z:
$[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNaO}$, 275.0042; found 275.0057.

3-allyl-3,5-dimethyl-2,3-dihydro-1 \mathbf{H}-inden-1-one 3u

A vial was charged with $\mathrm{PdCl}_{2}(88.0 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{CuI}(190.4 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{L 4}$ ($1.25 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.45 \mathrm{~g}, 25.0 \mathrm{mmol})$, and evacuated under high vacuum and backfilled with N_{2}. THF (25 mL) was added via syringe and the mixture was stirred at room temperature for 20 min . A solution of $\mathbf{6}(2.5 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathbf{2 l}(2.30 \mathrm{~g}, 12.0$ $\mathrm{mmol})$ in THF (25 mL) was added via syringe and the mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath for 24 h , and then cooled to room temperature. The mixture was filtered over a plug of silica gel (washed with 100 mLEtOAc), and the filtrate was concentrated under reduced pressure and then purified by silica column to get the product $\mathbf{3 u}$.

The mobile phase for flash chromatography: hexane/ethyl acetate $=50: 1$. Colorless oil $(1.06 \mathrm{~g}, 52 \%) \cdot[\alpha]_{\mathrm{D}}^{25}=+26.6\left(\mathrm{c}=0.28, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}$, 2 H), $2.64(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.4,162.8,146.2,134.1,134.0,129.0,124.3,123.3,118.9,49.9,46.6,41.7$, 28.3, 22.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}$, 223.1093; found 223.1086. Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexanes: 2-propanol $=95: 5,1.2 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 96: 4 \mathrm{er}$); major enantiomer $\mathrm{tr}_{\mathrm{r}}=27.1 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=29.1 \mathrm{~min}$.

	Time/min	Area	Height	Area\%
1	28.119	1912.7	49.7	50.014
2	30.423	1911.7	45.2	49.986

3-(3-bromopropyl)-3,5-dimethyl-2,3-dihydro-1 \boldsymbol{H}-inden-1-one 7

A vigorously stirred solution of compound $\mathbf{3 u}(211.4 \mathrm{mg}, 1.05 \mathrm{mmol})$ and dibenzoylperoxide ($9.6 \mathrm{mg}, 0.042 \mathrm{mmol}$) in dry n-hexane (10 mL) was treated with dry HBr gas for 2 h , produced by the addition of bromine (0.5 mL) to tetraline (15 mL), and the mixture was stirred overnight. Petroleum ether (10 mL), ethyl acetate (10 mL), and brine (10 mL) were added and separated. The aqueous layer was extracted by ethyl acetate $(20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the filtrate was concentrated under reduced pressure and then purified by silica column to get the product 7 .

The mobile phase for flash chromatography: hexane/ethyl acetate $=50: 1$. Colorless oil $(150.4 \mathrm{mg}, 51 \%) .[\alpha]_{\mathrm{D}}^{25}=+6.7\left(\mathrm{c}=3.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.54-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,162.6,146.4,133.9$,
129.1, 124.2, 123.4, 50.3, 41.5, 40.6, 33.9, 28.63, 28.57, 22.4. HRMS (ESI-TOF) m/z:
$[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNaO}, 303.0355$; found 303.0363. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexanes: 2-propanol = 80:20, $1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, 96.5: 3.5 \mathrm{er}$); major enantiomer $\mathrm{tr}=10.6 \mathrm{~min}$, minor enantiomer tr $=13.2 \mathrm{~min}$.

4-(3-bromopropyl)-4,6-dimethylchroman-2-one 8

To a solution of $7(60.0 \mathrm{mg}, 0.214 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TfOH (3.2 mg , $0.0214 \mathrm{mmol}, 0.1$ equiv) and m - $\mathrm{CPBA}\left(73.8 \mathrm{mg}, 0.428 \mathrm{mmol}, 2.0\right.$ equiv) at $0^{\circ} \mathrm{C}$. Then
the mixture was stirred at room temperature for 58 h . Water (5.0 mL) was then added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was then purified by flash column chromatography to give product 8 .

The mobile phase for flash chromatography: hexane/ethyl acetate $=50: 1$. Colorless oil $(52.2 \mathrm{~g}, 82 \%$ yield $) .[\alpha]_{\mathrm{D}}^{25}=+30.0\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,148.9,134.4,129.4,129.1,125.7$, 117.1, 42.0, 38.8, 36.1, 33.5, 27.7, 25.3, 21.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNaO}_{2}, 319.0304$; found 319.0315 . Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexanes: 2-propanol $=80: 20,1 \mathrm{~mL} / \mathrm{min}, 260$ nm, 95.0:5.0 er); major enantiomer $\operatorname{tr}=10.8 \mathrm{~min}$, minor enantiomer $\operatorname{tr}=12.2 \mathrm{~min}$.

	$\sqrt{0}=$							
	${ }_{2}{ }^{2}$	${ }_{7}{ }^{15}$	10	${ }_{125}$	15		${ }_{17,5}$	Trin
	Time/min	Area		Height			Area\%	
1	10.617	377		19.8			49.0	
2	13.177	391.2		15.5			51.0	
	5	10		15		${ }^{20}$		${ }^{25}$ min
	Time/min	Area		Height			Area\%	
1	10.811	753.7		38.2			94.743	
2	12.274	41.8		1.4			5.257	

(3aR,9bR)-3a,8,9b-trimethyl-2,3,3a,9b-tetrahydrocyclopenta[c]chromen-4(1H)one 9

LDA ($0.11 \mathrm{~mL}, 0.211 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) was added dropwise to a solution of compound $8(52.2 \mathrm{mg}, 0.176 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ under N_{2} at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. Then LDA ($0.14 \mathrm{~mL}, 0.282 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) and MeI ($21.7 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) were added, and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 5 h and at room temperature for 30 min . Water (5.0 mL) was added to the reaction mixture, and the organic layer was separated and aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was then purified by flash column chromatography to give product $\mathbf{9}$ as an inseparable diastereomers (5:1).

The mobile phase for flash chromatography: hexane/ethyl acetate $=50: 1$. Colorless oil ($30.0 \mathrm{~g}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.13-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,147.6,134.2,128.7,128.6,127.0,116.6,51.1,47.8,39.0,35.8,21.8,21.2,20.7$, 18.1; data matched that from the literature. ${ }^{3-4}$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2}, 253.1199$; found 253.1194.

2-((1S,2R)-2-(hydroxymethyl)-1,2-dimethylcyclopentyl)-4-methylphenol 10
To a solution of $9(19.1 \mathrm{mg}, 0.083 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{LiAlH}_{4}(10.7 \mathrm{mg}, 0.282 \mathrm{mmol})$. The reaction mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$ and 3 h at room temperature. Then isopropanol (5 mL) was added to quench
the reaction. Water (5.0 mL) was added, and the organic layer was separated and aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give the crude compound. Purification of crude compound by flash chromatography afforded 10.

The mobile phase for flash chromatography: hexane/ethyl acetate $=20: 1$. White solid, m.p. $106-108{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. $(13.0 \mathrm{mg}, 70 \%$ yield $)$. $[\alpha]_{\mathrm{D}}^{25}=+11.0\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.25(\mathrm{~m}$, $1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,133.0,130.0,129.3,128.1$, $117.9,70.8,51.0,49.1,42.5,36.1,24.1,21.3,21.1,20.6$; data matched that from the literature. ${ }^{3}$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2}$, 257.1512; found 257.1508. Enantiomeric excess was determined by HPLC with a Chiralpak As-H column (hexanes: 2-propanol $=70.0: 30.0,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, 3.5: 96.5 \mathrm{er}$); major enantiomer $\mathrm{tr}=18.8 \mathrm{~min}$, minor enantiomer $\mathrm{tr}=15.1 \mathrm{~min}$.

	Time/min	Area	Height	Area\%
1	15.139	60.1	1.8	3.5
2	18.841	1732.6	33.6	96.5

References

1 (a) J. Cao, L. Chen, F.-N. Sun, Y.-L. Sun, K.-Z. Jiang, K.-F. Yang, Z. Xu and L.-W. Xu, Angew. Chem., Int. Ed., 2019, 58, 897-901; (b) Y.-L. Sun, X.-B. Wang, F.-N. Sun, Q.-Q. Chen, J. Cao, Z. Xu and L.-W. Xu, Angew. Chem., Int. Ed., 2019, 58, 6747-6751.

2 (a) Y. Nakao, H. Imanaka, A. K. Sahoo, A. Yada and T. Hiyama, J. Am. Chem. Soc., 2005, 127, 6952-6953; (b) Y. Nakao, J. Chen, H. Imanaka, T. Hiyama, Y. Ichikawa, W.-L. Duan, R. Shintani and T. Hayashi, J. Am. Chem. Soc., 2007, 129, 9137-9143; (c) Y. Nakao, H. Imanaka, J. Chen, A. Yada and T. Hiyama, J. Organomet. Chem., 2007, 692, 585-603.

3 S. Acherar, G. Audran, F. Fotiadu and H. Monti, Eur. J. Org. Chem., 2004, 5092-5099.
4 T. Eicher, F. Servet and A. Speicher, Synthesis, 1996, 863-870.

(
-205.48

-

 Bing ming on in ir
 $\underbrace{n i n n n g n}$

$$
100 \mathrm{MHz}, \mathrm{CDCl}_{3}
$$

