Supporting Information

Catalytic C(sp)-Si Cross-coupling Silylation of Alkynyl bromides with Hydrosilanes by Palladium Catalysis

Xiao-Hua Zhou^{a†}, Xiao-Jun Fang^{a†}, Zheng Xu^{*a}, Fang-Ying Ling^a, Li-Quan Hong^{*a}, Fei Ye^a, and Li-Wen Xu^{*a,b}

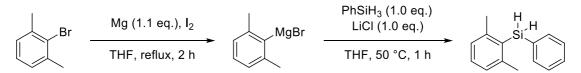
^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China ^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China

Email: liwenxu@hznu.edu.cn

Table of Contents

1. General information	S1
2. Substrates synthesis	S1
3. Synthesis of chiral ligands L36	S2
4. General procedure for Pd-catalyzed of Si-C coupling of alkynyl bromides with hydrosilan	es. S2
5. Spectral Data of Products	S3
Scheme S1	S17
Table S1	S19
Table S2	S19
Table S3	S20
Table S4	S21
Table S5	S21
Table S6	S22
Table S7	S23
Table S8	S23
Table S9	S24
Table S10	S25
Table S11	S25
Table S12	S26
Scheme S2	S27
Table S13	S28
6. Gram-scale synthesis and synthetic applications of alkynylsilane 3a	S31
6.1. Gram-scale synthesis	S31
6.2. Synthetic applications	S31
7. Reference	S33
8. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	S34
9. HPLC Spectra	S71

1. General information


Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. Dichloromethane (DCM), toluene, were freshly distilled from CaH₂, Ether (Et₂O), tetrahydrofuran (THF) and 1, 4-dioxane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). ¹H, ¹³C ,¹⁹F, NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃ or CD₂Cl₂. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet) or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. HPLC was carried out with a Agilent 1260 infinity using a chiralcel phenomenex column.

2. Substrates synthesis

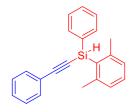
2.1 Synthesis of alkynyl bromides

General procedure for the synthesis of alkynyl bromides (**1a-1aa, 1ac-1ae**): AgNO₃ (0.17 g, 5 mol%) was added to a solution of phenylacetylene (2.58 mL, 20 mmol, 1.0 equiv.) in acetone (50 mL). Then NBS (4.27 g, 24 mmol, 1.2 equiv.) was added in portion. The mixture was stirred for 3 h at room temperature, and then concentrated in vacuo. The residue was dissolved in PE or DCM and filtered through a short column of silica gel. Solvent was removed in vacuo to afford bromoalkyne (3.58 g, 99% yield). Bromoalkynes (**1a-1aa, 1ac-1ae**) were also obtained as above procedures. Substrates (**1ab**) was prepared using the literature procedure.^[1]

2.2 Synthesis of (2,6-dimethylphenyl)(phenyl)silane

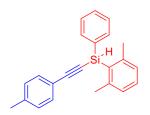
The preparation of (2,6-dimethylphenyl)(phenyl)silane was according to literature procedure.^[2]To a dried 2-neck round bottom flask equipped with a water-cooled condenser was added magnesium turnings (534.8 mg, 22.0 mmol, 1.1 equiv.), and three pieces of iodine partials, and THF (20 mL) under argon. 2-bromo-1,3-dimethylbenzene (3.7 g, 20.0 mmol, 1.0 equiv.) was added slowly over the course of 15 min to the refluxing mixture of THF and magnesium turnings. Following that, the mixture was refluxed for an additional hour. The resulting Grignard reagent was cooled to 25 °C for the following procedure. To a suspension of LiCl (847.8 mg, 20.0 mmol, 1.0 equiv.) in 20.0 mL of THF was added the Grignard reagent, followed by the addition of phenylsilane (2.2 g, 20.0 mmol, 1.0 equiv.), at room temperature under argon. After the reaction mixture was stirred in an oil bath maintained at 50 °C for 6 h, the reaction was quenched by the addition of an aqueous solution of NH₄Cl (10.0 mL) at room temperature. The resulting mixture was filtered through Celite and washed with Et₂O (20 mL x 3). The organic phase was dried over Na₂SO₄ and concentrated in vacuum to give the crude product, which was purified by chromatography on silica gel eluting with hexane to afford the title compound (3.4 g, 80 %) as colorless oil. Other hydrosilanes were also obtained as above procedures or obtained from commercial suppliers and used without further purification.

3. Synthesis of chiral ligands L36

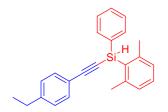

Chiral ligands L36 was according to literature procedure.^[3-4]

4. General procedure for Pd-catalyzed of Si-C coupling of alkynyl bromides with hydrosilanes.

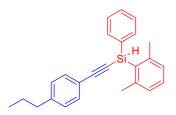
A vial was charged with LiBr (34.74 mg, 0.4 mmol, 2.0 equiv.), PdBr₂ (1.33 mg, 2.5 mol%), Xantphos (5.78 mg, 5 mol%) and evacuated under high vacuum and backfilled with N₂. Alkynyl bromide (36.4 mg, 0.2 mmol, 1.0 equiv.), hydrosilane (127 mg, 0.6 mmol, 3.0 equiv.), Et₃N (60 mg, 0.6 mmol, 3.0 equiv.), 1,4-dioxane (2


mL) was next added. The mixture was stirred at 60 °C for 48 hours. The crude product was purified by silica gel chromatography (petroleum et) to provide the desired product.

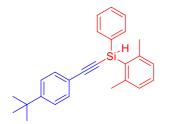
5. Spectral Data of Products


(2,6-dimethylphenyl)(phenyl)(phenylethynyl)silane(3a):

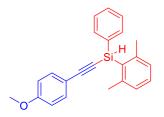
Yellow oil (48 mg, 78% yield), purified by column chromatography (SiO2, PE). 1H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2 H), 7.46 – 7.41 (m, 2 H), 7.31 – 7.20 (m, 6 H), 7.13 – 7.17 (m, 1 H), 6.95 (d, J = 8 Hz, 2 H), 5.56 (s, 1 H), 2.45 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.49, 134.89, 132.68, 132.17, 130.54, 129.93, 129.33, 129.13, 128.43, 128.26, 127.94, 122.86, 109.02, 88.26, 24.39. HRMS (APCI) m/z: [M+H]+ calculated for C₂₂H₂₁Si:313.1407 , found: 313.1398.


(2,6-dimethylphenyl)(phenyl)(p-tolylethynyl)silane(3b):

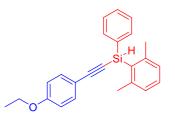
Yellow oil (40 mg, 61% yield), purified by column chromatography (SiO2, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2 H), 7.36 – 7.25 (m, 5 H), 7.13 – 7.17 (m, 1H), 7.03 (d, J = 8 Hz, 2 H), 6.95 (d, J = 8 Hz, 2 H), 5.56 (s, 1 H), 2.45 (s, 6 H), 2.25 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.48, 139.37, 134.89, 132.84, 132.08, 130.47, 129.87, 129.49, 129.18, 128.22, 127.92, 119.82, 109.34, 87.38, 24.38, 21.68. HRMS (APCI) m/z: [M+H]+ calculated for C₂₃H₂₃Si: 327.1564, found: 327.1505.


(2,6-dimethylphenyl)((4-ethylphenyl)ethynyl)(phenyl)silane(3c):

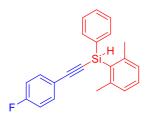
Yellow oil (43 mg, 63% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.58 7.61 – 7.56 (m, 2 H), 7.38 – 7.34 (m, 2 H), 7.30 – 7.24 (m, 3 H), 7.14 (t, *J* = 8 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 2 H), 6.94 (d, *J* = 4 Hz, 2 H), 5.56 (s, 1 H), 2.54 (q, *J* = 8 Hz, 2 H), 2.45 (s, 6 H), 1.12 (t, *J* = 8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.67, 145.50, 134.90, 132.87, 132.19, 130.48, 129.87, 139.51, 128.23, 128.01, 127.92, 120.07, 109.38, 87.38, 29.01, 24.39, 15.46. HRMS (APCI) m/z: [M+H]+ calculated for C₂₄H₂₅Si: 341.172, found: 341.1719.


(2,6-dimethylphenyl)(phenyl)((4-propylphenyl)ethynyl)silane(3d):

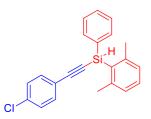
Yellow oil (46 mg, 66% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) 7.68 – 7.49 (m, 2 H), 7.40 – 7.33 (m, 2 H), 7.34 – 7.22 (m, 3 H), 7.18 – 7.13 (m, 1 H), 7.04 (d, J = 8 Hz, 2 H), 6.95 (d, J = 8 Hz, 2 H), 5.56 (s, 1 H), 2.50 (t, J = 8 Hz, 2 H), 2.46 (s, 6 H), 1.59 – 1.48 (m, 2 H), 0.84 (t, J = 8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.51, 144.16, 134.90, 132.85, 132.10, 130.47, 129.88, 129.50, 128.62, 128.23, 127.91, 120.07, 109.37, 87.36, 38.12, 24.48, 24.42, 13.89. HRMS (APCI) m/z: [M+H]+ calculated for C₂₅H₂₇Si: 355.1877, found: 355.1889.


((4-(tert-butyl)phenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3e):

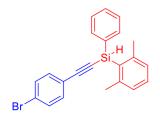
Yellow oil (39 mg, 53% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2 H), 7.41 – 7.37 (m, 2 H), 7.32 – 7.25 (m, 5 H), 7.19 – 7.14 (m, 1 H), 6.96 (d, *J* = 8 Hz, 2 H), 5.56 (s, 1 H), 2.46 (s, 6 H), 1.23 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 152.48, 145.51, 134.90, 132.84, 131.94, 130.48, 129.87, 129.50, 128.22, 127.91, 125.46, 119.86, 109.31, 87.39, 34.98, 31.25, 24.41. HRMS (APCI) m/z: [M+H]+ calculated for C₂₆H₂₉Si: 369.2033, found: 369.1993.


(2,6-dimethylphenyl)((4-methoxyphenyl)ethynyl)(phenyl)silane(3f):

Yellow oil (45 mg, 66% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2 H), 7.41 – 7.37 (m, 2 H), 7.33 – 7.26 (m, 3 H), 7.18 – 7.14 (m, 1 H), 6.96 (d, *J* = 8 Hz, 2 H), 6.76 (d, *J* = 8 Hz, 2 H), 5.56 (s, 1 H), 3.72 (s, 3 H), 2.46 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 160.25, 145.47, 134.88, 133.73, 132.96, 130.45, 129.84, 129.60, 128.21, 127.91, 114.99, 114.04, 109.24, 86.54, 55.39, 24.38. HRMS (APCI) m/z: [M+H]+ calculated for C₂₃H₂₃O_{si}: 343.1513, found: 343.1592.

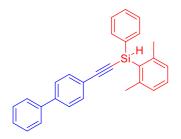

(2,6-dimethylphenyl)((4-ethoxyphenyl)ethynyl)(phenyl)silane(3g):

Yellow oil (38 mg, 53% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2 H), 7.39 – 7.35 (m, 2 H), 7.31 – 7.25 (m, 3 H), 7.17 – 7.13 (m, 1 H), 6.95 (d, *J* = 8 Hz, 2 H), 6.74 (d, *J* = 8 Hz, 2 H), 5.55 (s, 1 H), 3.94 (q, *J* = 8 Hz, 2 H), 2.45 (s, 6 H), 1.32 (t, *J* = 8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3) δ 158.48, 144.31, 133.72, 132.56, 131.81, 129.27, 128.66, 128.45, 127.04, 126.73, 113.60, 113.34, 108.16, 85.24, 62.46, 23.22, 13.67. HRMS (APCI) m/z: [M+H]+ calculated for C24H25OSi: 357.1669, found: 357.1600.

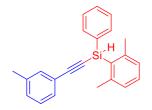

(2,6-dimethylphenyl)((4-fluorophenyl)ethynyl)(phenyl)silane(3h):

Yellow oil (33 mg, 50% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2 H), 7.46 – 7.40 (m, 2 H), 7.34 – 7.26 (m, 3 H), 7.19 – 7.15 (m, 1 H), 6.99 – 6.91 (m, 4 H), 5.55 (s, 1 H), 2.45 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.00 (d, J = 249 Hz), 145.48, 134.87, 134.22, 134.14, 132.54, 130.29 (d, J = 61 Hz), 129.21, 128.29, 127.97, 119.00 (d, J = 4 Hz), 115.78 (d, J = 22 Hz), 107.83, 88.10, 24.39. ¹⁹F NMR (500 MHz, CDCl₃) δ -109.17. HRMS (APCI) m/z: [M+H]+ calculated for C₂₂H₂₀FSi: 331.1313, found: 331.1311.

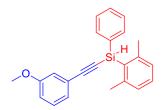
((4-chlorophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3i):


Yellow oil (46 mg, 67% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.59 (m, 2 H), 7.36 (d, *J* = 8 Hz, 2 H), 7.33 – 7.26 (m, 3 H), 7.23 – 7.12 (m, 3 H), 6.96 (d, *J* = 8 Hz, 2 H), 5.55 (s, 1 H), 2.45 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.48, 135.21, 134.86, 133.39, 132.35, 130.62, 130.01, 129.05, 128.80, 128.30, 128.23, 127.97, 121.30, 107.62, 89.53, 24.41. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₀ClSi: 347.1017, found: 347.0992.

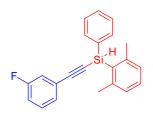
((4-bromophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3j):


Yellow oil (62 mg, 79% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.49 (m, 2 H), 7.40 – 7.21 (m, 7 H), 7.10 – 7.17 (m,

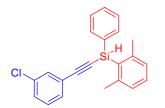
1 H), 6.95 (d, J = 8 Hz, 2 H), 5.54 (s, 1 H), 2.44 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.44, 134.83, 133.53, 132.30, 131.70, 130.61, 130.00, 129.00, 128.28, 128.25, 127.95, 123.49, 121.73, 107.64, 89.77, 24.38. HRMS (APCI) m/z: [M+H]⁺calculated for C₂₂H₂₀BrSi: 391.0512, found: 391.0499.


([1,1'-biphenyl]-4-ylethynyl)(2,6-dimethylphenyl)(phenyl)silane(3k):

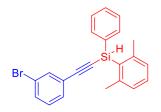
Yellow solid (60.5 mg, 78% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2 H), 7.50 – 7.43 (m, 7 H), 7.34 – 7.21 (m, 7 H), 7.16 – 7.12 (m, 1 H), 6.95 (d, J = 8 Hz, 2 H), 5.58 (s, 1 H), 2.46 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.51, 141.84, 140.28, 134.91, 132.68, 132.62, 130.55, 129.94, 129.34, 129.00, 128.28, 127.96, 127.89, 127.16, 127.10, 121.71, 108.93, 89.00, 24.42. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₈H₂₅Si: 389.1720, found: 389.1782.


(2,6-dimethylphenyl)(phenyl)(m-tolylethynyl)silane(3l):

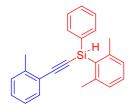
Yellow oil (37 mg, 59% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2 H), 7.32 – 7.25 (m, 5 H), 7.18 – 7.06 (m, 3 H), 6.96 (d, *J* = 8 Hz, 2 H), 5.56 (s, 1 H), 2.46 (s, 6 H), 2.24 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.50, 138.15, 134.90, 132.78, 132.71, 130.50, 130.04, 129.90, 129.42, 129.27, 128.34, 128.24, 127.93, 122.68, 109.28, 87.79, 24.40, 21.32. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₃H₂₃Si: 327.1564, found: 327.1583.


(2,6-dimethylphenyl)((3-methoxyphenyl)ethynyl)(phenyl)silane(3m):

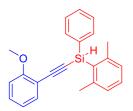
Yellow oil (49mg, 72% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2 H), 7.33 – 7.25 (m, 1 H), 7.18 – 7.12 (m, 2 H), 7.06 – 7.04 (m, 1 H), 6.97 – 6.95 (m, 3 H), 6.83 – 6.80 (m, 1 H), 5.56 (s, 1 H), 3.70 (s, 3 H), 2.46 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 159.38, 145.49, 134.89, 132.61, 130.55, 129.94, 129.54, 129.29, 128.26, 127.95, 124.73, 123.82, 116.82, 115.83, 108.88, 88.08, 55.38, 24.39. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₃H₂₃OSi: 343.1513, found: 343.1524.


(2,6-dimethylphenyl)((3-fluorophenyl)ethynyl)(phenyl)silane(3n):

Yellow oil (37 mg, 56% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8 Hz, 2 H), 7.32 – 7.26 (m, 3 H), 7.18 – 7.12 (m, 2 H), 7.06 – 7.04 (m, 1 H), 6.97 – 6.95 (m, 3 H), 6.83 – 6.80 (m, 1 H), 5.56 (s, 1 H), 3.70 (s, 3 H), 2.46 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 162.41 (d, J = 244.4 Hz), 145.53, 134.91, 132.34, 130.68, 130.15, 130.07, 129.03, 128.35, 128.10 (d, J = 3 Hz), 128.02, 124.70 (d, J = 9.4 Hz), 118.96 (d, J = 22.8 Hz), 116.58 (d, J = 20.5 Hz), 107.38, 89.68, 24.42. ¹⁹F NMR (500 MHz, CDCl₃) δ -112.62. HRMS (APCI) m/z: [M+H]⁺calculated for C₂₂H₂₀FSi: 331.1313, found: 331.1339.


((3-chlorophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3o):

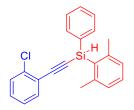
Yellow oil (32 mg, 46% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.57 (m, 2 H), 7.44 – 7.43 (m, 1 H), 7.33 – 7.23 (m, 5 H), 7.19 – 7.15 (m, 2 H), 6.97 (d, *J* = 8 Hz, 2 H), 5.55 (s, 1 H), 2.45 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.52, 134.88, 134.31, 132.29, 132.00, 130.66, 130.29, 130.05, 129.71, 129.44, 128.98, 128.33, 127.99, 124.56, 107.17, 89.98, 24.41. HRMS (APCI) m/z: [M+H]⁺calculated for C₂₂H₂₀ClSi: 347.1017, found: 347.0997.


((3-bromophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3p):

Yellow oil (47 mg, 60% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 2 H), 7.33 (m, 5 H), 7.22 – 7.07 (m, 3 H), 6.96 (d, *J* = 8 Hz, 2 H), 5.55 (s, 1 H), 2.44 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.50, 134.87, 132.30, 130.71, 130.66, 130.05, 129.91, 128.95, 128.32, 127.98, 127.94, 124.82, 122.25, 107.02, 90.10, 24.41. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₀BrSi: 391.0508, found: 391.0512.

(2,6-dimethylphenyl)(phenyl)(o-tolylethynyl)silane(3q):

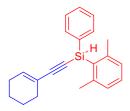
Yellow oil (44 mg, 67% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.59 (m, 2 H), 7.42 – 7.40 (m, 1H), 7.32 – 7.25 (m, 3 H), 7.17 – 7.09 (m, 3 H), 7.06-7.02 (m, 1 H), 6.95 (d, *J* = 8 Hz, 2 H), 5.59 (s, 1 H), 2.46 (s, 6 H), 2.40 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.46, 141.02, 134.88, 132.90, 132.62, 130.50, 129.88, 129.61, 129.47, 129.11, 128.25, 127.93, 125.67, 122.71, 108.08, 92.04, 24.41, 20.97. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₃H₂₃Si: 327.1564, found: 327.1508.


(2,6-dimethylphenyl)((2-methoxyphenyl)ethynyl)(phenyl)silane(3r):

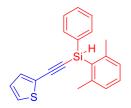
Yellow oil (53 mg, 78% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.58 (m, 2 H), 7.40 – 7.38 (m, 1 H), 7.30 – 7.19 (m, 4 H), 7.16 – 7.11 (m, 1 H), 6.94 (d, *J* = 8 Hz, 2 H), 6.82 – 6.75 (m, 2 H), 5.59 (s, 1 H), 3.77 (s, 3 H), 2.47 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 159.84, 144.38, 133.83, 132.89, 131.83, 129.43, 129.24, 128.62, 128.45, 127.00, 126.70, 119.28, 111.01, 109.62, 104.39, 91.23, 54.66, 23.20. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₃H₂₃OSi: 343.1513, found: 343.1567.

(2,6-dimethylphenyl)((2-fluorophenyl)ethynyl)(phenyl)silane(3s):

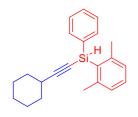
Yellow oil (31 mg, 47% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2 H), 7.44 – 7.40 (m, 1 H), 7.32 – 7.22 (m, 4 H), 7.18 – 7.14 (m, 1 H), 7.03 – 6.95 (m, 4 H), 5.58 (s, 1 H), 2.47 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.44 (d, J = 250.4 Hz), 145.58, 134.93, 134.00, 132.35, 130.88 (d, J = 8 Hz), 130.61, 129.99, 129.05, 128.29, 127.95, 124.06 (d, J = 3.8 Hz), 115.72 (d, J = 20.6 Hz), 111.60 (d, J = 15.4 Hz), 101.96, 94.25 (d, J = 3 Hz), 24.38. ¹⁹F NMR (500 MHz, CDCl₃) δ -108.89. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₀FSi: 331.1313, found: 331.1337.


((2-chlorophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3t):

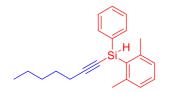
Yellow oil (36 mg, 52% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.62 (m, 2 H), 7.48 – 7.45 (m, 1 H), 7.33 – 7.28 (m, 4 H), 7.18 – 7.12 (m, 3 H), 6.96 (d, *J* = 8 Hz, 2 H), 5.59 (s, 1 H), 2.48 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.58, 136.59, 134.97, 134.00, 132.39, 130.61, 130.08, 129.97, 129.46, 129.07, 128.28, 127.93, 126.55, 122.87, 105.12, 94.10, 24.43. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₀ClSi: 347.1017, found: 347.1053.


((2-bromophenyl)ethynyl)(2,6-dimethylphenyl)(phenyl)silane(3u):

Yellow oil (48.5 mg, 62% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.63 (m, 2 H), 7.51 – 7.45 (m, 2 H), 7.32 – 7.26 (m, 3 H), 7.19 – 7.13 (m, 2 H), 7.12 – 7.07 (m, 1 H), 6.96 (d, *J* = 7.6 Hz, 2 H), 5.59 (s, 1 H), 2.48 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.56, 134.98, 134.13, 132.60, 132.36, 130.61, 130.20, 129.97, 129.04, 128.26, 127.91, 127.11, 125.91, 125.06, 106.73, 93.42, 24.47. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₀BrSi: 391.0512, found: 391.0506.

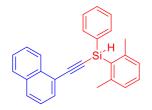

(cyclohex-1-en-1-ylethynyl)(2,6-dimethylphenyl)(phenyl)silane(3v):

Yellow oil (27 mg, 43% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.53 (m, 2 H), 7.31 – 7.23 (m, 3 H), 7.17 – 7.11 (m, 1 H), 6.94 (d, *J* = 7.6 Hz, 2 H), 6.21-6.19 (m, 1 H), 5.48 (s, 1 H), 2.41 (s, 6 H), 2.14 – 1.97 (m, 4 H), 1.59 – 1.47 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.43, 137.43, 134.84, 133.17, 130.35, 129.79, 129.74, 128.15, 127.85, 120.87, 111.35, 84.81, 28.88, 25.82, 24.35, 22.26, 21.49. HRMS (APCI) m/z: [M+H]⁺ calculated for C_{22H25}Si:317.1720, found: 317.1723.

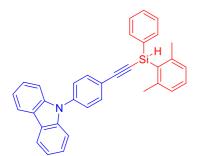

(2,6-dimethylphenyl)(phenyl)(thiophen-2-ylethynyl)silane(3w):

Yellow oil (46 mg, 72% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2 H), 7.33 – 7.28 (m, 3 H), 7.24 – 7.22 (m, 1 H), 7.20 – 7.15 (m, 2 H), 6.97 (d, *J* = 8 Hz, 2 H), 6.90-6.88 (m, 1 H), 5.56 (s, 1 H), 2.45 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.35, 133.74, 132.24, 131.20, 129.43, 128.83, 127.92, 127.12, 126.96, 126.79, 125.94, 121.74, 100.35, 91.73, 23.24. HRMS (APCI) m/z: [M+H]+ calculated for C₂₀H₁₉SSi: 319.0971, found: 319.0941.

(cyclohexylethynyl)(2,6-dimethylphenyl)(phenyl)silane(3x):

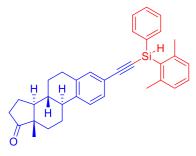

Yellow oil (19 mg, 30% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2 H), 7.30-7.24 (m, 3 H), 7.16 – 7.12 (m, 1 H), 6.94 (d, *J* = 7.6 Hz, 2 H), 5.41 (s, 1 H), 2.41 (s, 6 H), 1.80 – 1.61 (m, 4 H), 1.49 – 1.41 (m, 4 H), 1.26-1.22 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.41, 134.81, 133.52, 130.27, 130.08, 129.65, 128.11, 127.83, 116.21, 77.88, 32.44, 32.42, 30.42, 25.96, 24.90, 24.32. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₇Si: 319.1877, found: 319.1895.

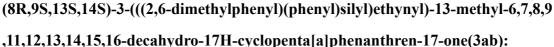
(2,6-dimethylphenyl)(hept-1-yn-1-yl)(phenyl)silane(3y):


Yellow oil (20 mg, 32% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.53 (m, 2 H), 7.31 – 7.25 (m, 3 H), 7.17 – 7.13 (m,

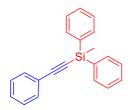
1 H), 6.94 (d, J = 8 Hz, 2 H), 5.41 (s, 1 H), 2.41 (s, 6 H), 2.27 – 2.23 (m, 2 H), 1.51 – 1.48 (m, 2 H), 1.34 – 1.25 (m, 4 H), 0.83 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.40, 134.81, 133.41, 130.31, 129.96, 129.69, 128.12, 127.85, 112.27, 78.29, 31.21, 28.22, 24.31, 22.30, 20.29, 14.11. HRMS (APCI) m/z: [M+H]+ calculated for C₂₁H₂₇Si: 307.1877, found: 307.1860.

(2,6-dimethylphenyl)(naphthalen-1-ylethynyl)(phenyl)silane(3z):


Yellow oil (53 mg, 73% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 12 Hz, 2 H), 7.95 (d, J = 8 Hz, 2 H), 7.92 – 7.89 (m, 3 H), 7.71 – 7.60 (m, 3 H), 7.55 – 7.51 (m, 3 H), 7.41 – 7.38 (m, 1 H), 7.20 (d, J = 7.7 Hz, 2 H), 5.93 (s, 1 H), 2.75 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.51, 134.94, 133.57, 133.16, 132.74, 131.49, 130.59, 129.98, 129.63, 129.34, 128.45, 128.33, 127.99, 127.19, 126.64, 126.24, 120.47, 107.19, 93.34, 24.51. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₇Si: 363.1564, found: 363.1556.

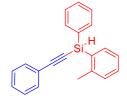


(4-(((2,6-dimethylphenyl)(phenyl)silyl)ethynyl)phenyl)-9H-carbazole(3aa):


Yellow oil (48 mg, 50% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2 H), 7.67 – 7.61 (m, 4 H), 7.46 – 7.44 (m, 2 H), 7.34 – 7.30 (m, 7 H), 7.22 – 7.16 (m, 3 H), 6.98 (d, *J* = 8 Hz, 2 H), 5.61 (s, 1 H), 2.49 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.36, 139.35, 137.20, 133.74, 132.56, 131.32, 129.46, 128.85, 127.99, 127.15, 126.82, 125.68, 125.62, 125.04, 122.53, 120.53, 119.33, 119.25, 108.63, 106.93, 88.34, 23.28. HRMS (APCI) m/z:

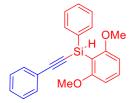
[M+H]⁺ calculated for C₃₄H₂₈NSi: 478.1986, found: 478.2001.

Yellow oil (68 mg, 70% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2 H), 7.29 – 7.27 (m, 3 H), 7.23 – 7.17 (m, 2 H), 7.15 – 7.11 (m, 2 H), 6.94 (d, *J* = 8 Hz, 2 H), 5.54 (s, 1 H), 2.79 – 2.75 (m, 2 H), 2.44 (s, 6 H), 2.40 – 2.35 (m, 1 H), 2.31 – 2.14 (m, 2 H), 2.05 – 1.84 (m, 4 H), 1.50 – 1.26 (m, 6 H), 0.79 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.25, 140.07, 135.58, 133.68, 131.59, 131.42, 129.31, 128.70, 128.28, 128.25, 127.04, 126.74, 124.34, 118.95, 108.12, 86.24, 49.31, 46.80, 43.35, 36.76, 34.74, 30.42, 27.98, 25.18, 24.46, 23.22, 20.48, 12.73. HRMS (APCI) m/z: [M+H]+ calculated for C34H37OSi: 489.2608, found: 489.2636.

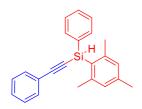


methyldiphenyl(phenylethynyl)silane(3ac):

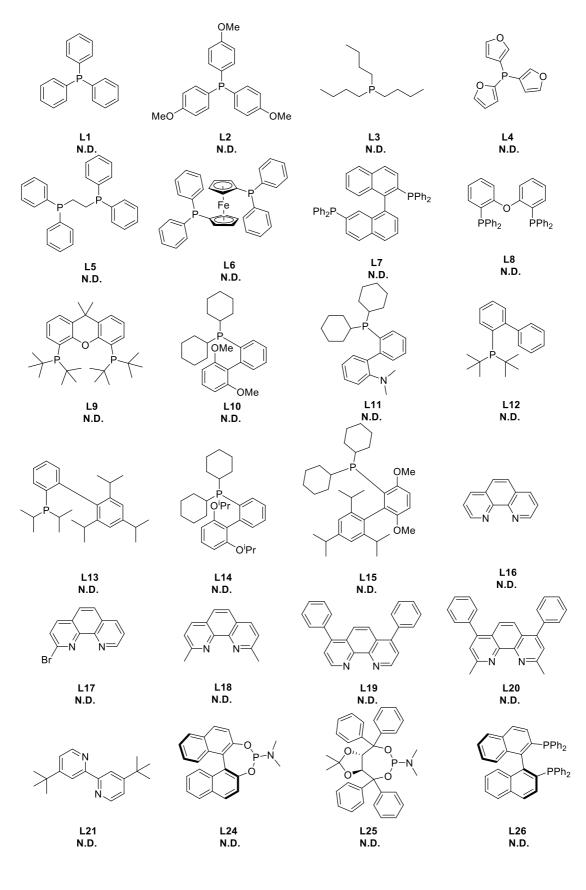
Yellow oil (49 mg, 77% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 4 H), 7.45 – 7.42 (m, 2 H), 7.29 – 7.25 (m, 6 H), 7.21 – 7.18 (m, 3 H), 0.66 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 135.43, 134.69, 132.28, 129.83, 129.03, 128.39, 128.10, 122.91, 108.46, 90.44, -1.82. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₁H₁₉Si: 299.1251, found: 299.1240.


dimethyl(phenyl)(phenylethynyl)silane(3ad):

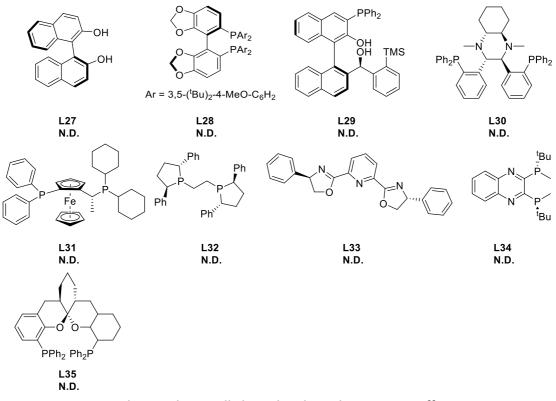
Yellow oil (43 mg, 42% yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.59 (m, 2 H), 7.41 – 7.39 (m, 2 H), 7.30 – 7.28 (m, 3 H), 7.21 – 7.18 (m, 3 H), 0.40 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.13, 133.88, 132.18, 129.58, 128.83, 128.36, 128.05, 123.06, 106.93, 92.14, -0.66. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₆H₁₇Si : 237.1094, found: 237.1005.


phenyl(phenylethynyl)(o-tolyl)silane(3ae):

Yellow oil (15 mg, 25 % yield), purified by column chromatography (SiO₂, PE). 1H NMR (400 MHz, CDCl₃) δ 7.73 – 7.69 (m, 3 H), 7.55 – 7.53 (m, 2 H), 7.43 – 7.30 (m, 7 H), 7.24 – 7.19 (m, 2 H), 5.37 (s, 1 H), 2.47 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.68, 136.79, 135.33, 132.28, 131.01, 130.78, 130.14, 129.86, 129.22, 128.44, 128.28, 125.44, 122.74, 109.64, 87.60, 22.75. HRMS (APCI) m/z: [M+H]+ calculated for C₂₁H₁₉Si: 299.1251, found: 299.1249.


(2,6-dimethoxyphenyl)(phenyl)(phenylethynyl)silane(3af):

Yellow oil (60.2 mg, 88 % yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.67 (m, 2 H), 7.42 – 7.39 (m, 2 H), 7.25 – 7.23 (m, 4 H), 7.19 – 7.16 (m, 3 H), 6.41 (d, *J* = 8 Hz, 2 H), 5.36 (s, 1 H), 3.64 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.45, 133.92, 132.70, 132.07, 131.01, 128.29, 127.52, 127.13 , 126.60, 122.26, 106.81, 105.48, 102.99, 88.28, 54.66. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₂H₂₁Si: 345.1305, found: 345.1314.

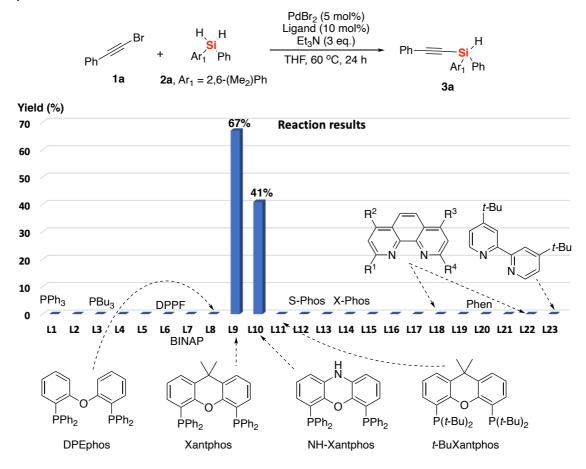


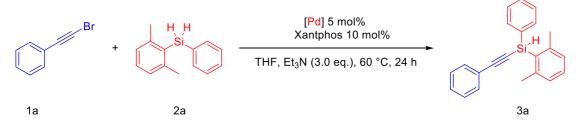
mesityl(phenyl)(phenylethynyl)silane(3ag):

Yellow oil (43 mg, 66 % yield), purified by column chromatography (SiO₂, PE). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.82 (m, 2 H), 7.67 – 7.65 (m, 2 H), 7.54 – 7.48 (m, 3 H), 7.47 – 7.43 (m, 3 H), 7.03 (s, 2 H), 5.79 (s, 1 H), 2.66 (s, 6 H), 2.43 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.54, 140.50, 134.88, 132.98, 132.15, 129.84, 129.06, 128.91, 128.41, 128.22, 125.71, 122.95, 108.87, 88.50, 24.24, 21.36. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₃H₂₃Si: 327.1564, found: 327.1535.

Scheme S1. The ligands evaluated in Pd-catalyzed of Si-C coupling of bromoalkynes (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Note: Except Ligand **L9** and **L10**, all the other ligands were not effective to promote the Pd-catalyzed C(sp)-Si cross couping reaction of alkynyl bromide **1a** with hydrosilane **2a**.




Table S1. Screening of transition metal catalyst for Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

6

Br +	H, H Si	[M] 5 mol% Xantphos 10 mol% THF, Et ₃ N (3.0 eq.), 60 °C, 24 h	→ Si ⁺ H
1a	2a		За За
Entry		Cat.	Yield of 3a (%) ^a
1		Cu(CH ₃ CN) ₄ PF ₆	N.D.
2		CuI	N.D.
3		Ni(OAc) _{2'} 4H ₂ O	N.D.
4		Ni(acac) ₂	N.D.
5		Co(acac) ₂	N.D.
6		CoBr ₂	N.D.
7		Fe(OTf) ₂	N.D.
8		Fe(acac) ₂	N.D.
9		Pd ₂ (dba) ₃	51
10		$PdCl_2[P(cy)_3]_2$	N.D.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Catalyst (5 mol%), Xantphos (10 mol%), Et₃N (0.6 mmol) and THF (2.0 mL) under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S2. Screening of palladium sources for Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Entry	Pd cat.	Yield of 3a (%) ^a
1	Pd(TFA) ₂	41
2	Pd(cod)Cl ₂	41
3	$Pd(OAc)_2$	11
4	Pd(CH ₃ CN) ₂ Cl ₂	28
5	PdCl ₂	55
6	$PdBr_2$	67
7	PdI ₂	19
8	PdCl ₂ (dppb)	43
9	Pd(acac) ₂	60
10	$PdCl_2[P(cy)_3]_2$	N.D.
11	PdCl ₂ (dppf)	54
12	Pd(CH ₃ CN) ₄ (BF ₄) ₂	N.D.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), [Pd]Catalyst (5 mol%), Xantphos (10 mol%), Et₃N (0.6 mol%) and THF (2.0 mL) under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S3. Screening of ligands for Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Br +	Si Si	PdBr ₂ 5 mol% [L] 10 mol% THF, Et ₃ N (3.0 eq.), 60 °C, 24 h	→ SI ^H
1a	2a		3a
Entry		Ligand	Yield of 3a (%) ^a
1		Xantphos	67
2		NiXantphos	41
3		Other ligands	<5
		S20	

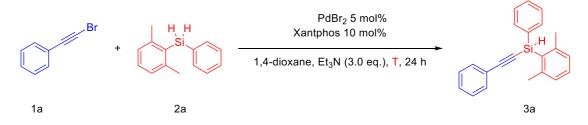

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (5 mol%), L (10 mol%), Et₃N (0.6 mmol) and THF (2.0 mL) under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S4. Screening of Solvent for Pd-catalyzed of Si-C coupling ofbromoalkynes (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a) .

β Br H H	PdBr ₂ 5 mol% Xantphos 10 mol%	Н
+ C	Solvent, Et ₃ N (3.0 eq.), 60 °C, 24 h	
1a 2a		За
Entry	Solvent	Yield of 3a (%) ^a
1	THF	55
2	Toluene	27
3	DCM	17
4	DCE	12.5
5	CH ₃ CN	N.D.
6	1,4-Dioxane	59
7	Et ₂ O	37
8	DMSO	N.D.
9	DMF	N.D.
10	NMP	N.D.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (5 mol%), Xantphos (10 mol%), Et₃N (0.6 mmol), Solvent 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S5. The effect of temperature on the catalytic efficiency of Pd-catalyzed ofSi-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane(2a) .

Entry	Temp (°C)	Yield of 3a (%) ^a
1	r.t.	43
2	60	56
3	80	43
4	100	42

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (5 mol%), Xantphos (10 mol%), Et₃N (0.6 mmol), 1,4-dioxane 2 mL under N₂ for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S6. Screening of inorganic or organic bases for Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Br + H H Si	PdBr ₂ 5 mol% Xantphos 10 mol% 1,4-dioxane, Base (3.0 eq.), 60 °C, 24 h	Si ^H
1a 2a		3a
Entry	Base	Yield of 3a (%) ^a
1	Et ₃ N	51
2	NaOAc	N.D.
3	LiO'Bu	N.D.
4	NaO'Bu	N.D.
5	Cs_2CO_3	N.D.
6	K ₃ PO ₄	N.D.
7	K_2CO_3	N.D.
8	DBU	N.D.
9	DIPA	N.D.

10	Pyridine	20
11	2,3-Lutidine	34
12	DABCO	N.D.
13	Cyclohexylamine	N.D.

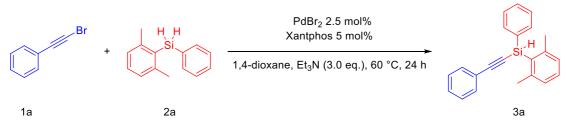
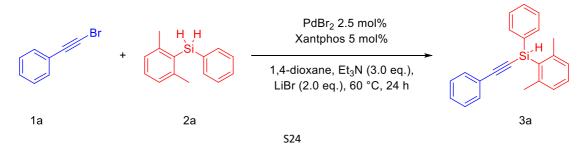

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (5 mol%), Xantphos (10 mol%), Base (0.6 mmol), 1,4-dioxane 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S7. Screening of the loading of catalyst and ligand for Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Br		PdBr ₂ x mol% Xantphos 2x mol%	Si ^{-H}
		▲ 1,4-dioxane, Et ₃ N (3.0 eq.), 60 °C, 24 h	S
1a	2a		За
Entry	PdBr ₂	XantPhos	Yield of 3a (%) ^a
	(x mol %	b) (2 x mol %)	
1	1.0	2.0	10
2	2.5	5.0	58
3	5.0	10.0	55
4	10.0	20.0	50

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (x mol%), Xantphos (2x mol%), Et₃N (0.6 mmol), 1,4-dioxane 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.


Table S8. The effect of additives on Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a) .

Entry	Additives (2.0 eq.)	Yield of 3a (%) ^a
1	CuF ₂	N.D.
2	CuBr ₂	N.D.
3	Cu(OAc) ₂	N.D.
4	LiCl	48
5	LiBr	65
6	AgOAc	34
7	CsF_2	N.D.
8	KF	N.D.
9	NaI	16
10	NaBHEt ₃	N.D.
11	AgF	N.D.
12	AgOTf	N.D.
13	TEMPO	Trace
14	TABA	N.D.
15	TBAI	54

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), 1,4-dioxane 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S9. The effect of the amount of alkynyl bromide on Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Entry	1a (x eq.)	Yield of 3a (%) ^a
1	1.0	35
2	2.0	35
3	3.0	25
4	4.0	13

Reaction conditions: **1a** (0.2x mmol), **2a** (0.2 mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S10. The effect of the amount of hydrosilane on Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

 \wedge

Br +	H H Si	PdBr ₂ 2.5 mol% Xantphos 5 mol%	→ Si,H
		1,4-dioxane, Et ₃ N (3.0 eq.), LiBr (2.0 eq.), 60 °C, 24 h	
1a	2a		За
Entry		2a (x eq.)	Yield of 3a (%) ^a
1		1.5	44
2		2.0	66
3		3.0	70
4		4.0	61

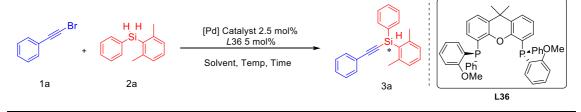
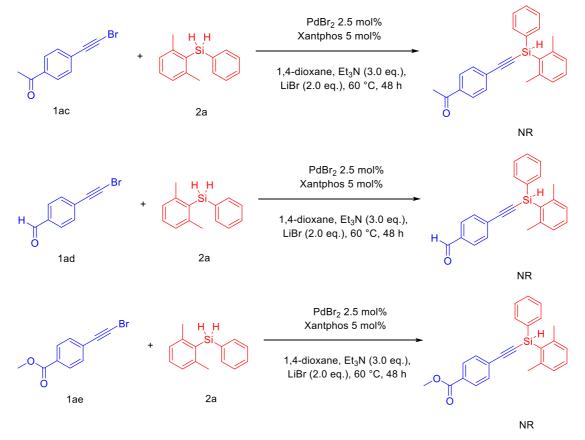

Reaction conditions: **1a** (0.2 mmol), **2a** (0.2x mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C for 24 h. ^{*a*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S11. The effect of reaction time on Pd-catalyzed of Si-C coupling of alkynyl bromide (1a) with (2,6-dimethylphenyl)(phenyl)silane (2a).

Br + 1a	H H Si Za	PdBr ₂ 2.5 mol% Xantphos 5 mol% 1,4-dioxane, Et ₃ N (3.0 eq.), LiBr (2.0 eq.), 60 °C, t	Si H 3a
Entry		Time	Yield of 3a (%) ^a
1		12 h	67
2		24 h	68
3		48 h	78

Reaction conditions: **1a** (0.2 mmol), **2a** (0.2x mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C. *^a*Yield by silica gel column chromatography.

Table S12. The optimization of reaction conditions for asymmetricPd/L36-catalyzed of Si-C coupling of alkynyl bromide (1a) with(2,6-dimethylphenyl)(phenyl)silane (2a).



Entry	Variation from	\mathbf{X}' 11 C2 (0/)	<i>ee</i> of 3a (%) ^c
	"standard conditions" ^a	Y 1610 OF 38 (%) ⁵	
1	none	37	58
2	With THF as solvent	14	27
3	at 25 °C	5	55
4	Reaction for 12 h	5	55
5	Without LiBr	23	55

6	With Pd(acac) ₂ as Pd source	20	52
7	With Pd ₂ (dba) ₃ as Pd source	30	51
8	With PdCl ₂ as Pd source	25	51

^aStandrad condition :**1a** (0.2 mmol), **2a** (0.6 mmol), PdBr₂ (2.5 mol%), **L36** (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol), 1,4-dioxane 2 mL under N₂ at 60 °C for 48 h. ^{*b*}Yield by silica gel column chromatography. ^{*c*}Determined by chiral HPLC.

Scheme S2. Unreactive substrates on Pd-catalyzed of Si-C coupling of alkynyl bromides with (2,6-dimethylphenyl)(phenyl)silane.

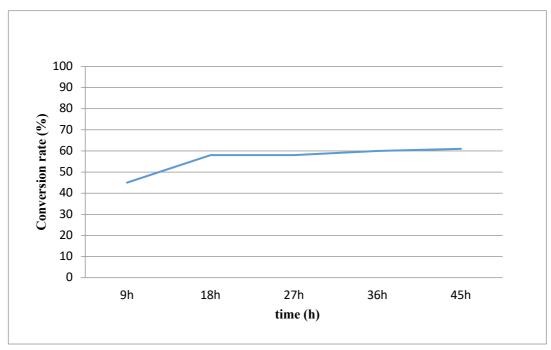
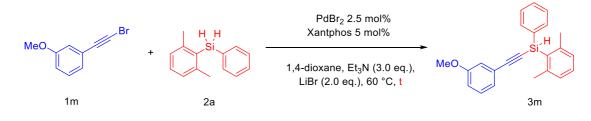
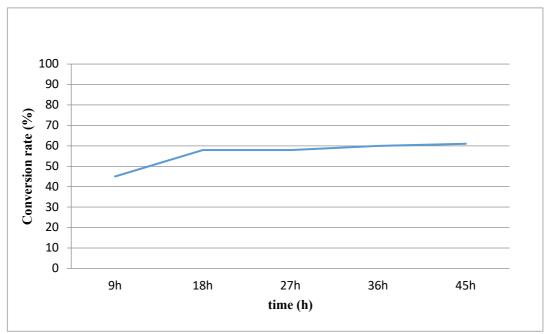

Reaction conditions: Alkynyl bromides (0.2 mmol), **2a** (0.2x mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C for 48 h.

Table S13. GC-MS monitoring of the effect of substituents on aryl groups in brominated alkynes on reaction time.

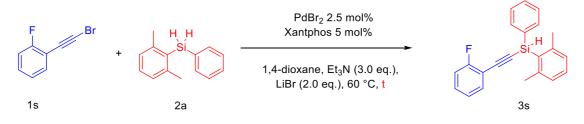

Example 1.

Br	, H, H	PdBr ₂ 2.5 mol% Xantphos 5 mol%
EtO 1g	+	1,4-dioxane, Et ₃ N (3.0 eq.), LiBr (2.0 eq.), 60 °C, t EtO 3g
Entry	Time (h)	Conversion (%)
1	9	45
2	18	58
3	27	58
4	36	60
5	45	61

Reaction conditions: **1g** (0.2 mmol), **2a** (0.6 mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C. The reaction was monitored by GC-MS every 9 h, and the yield of **3g** was determined by GC-MS.

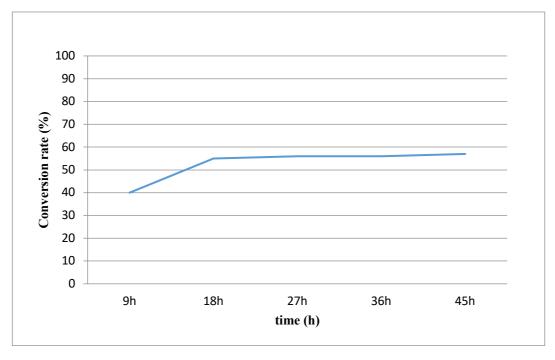


Example 2.

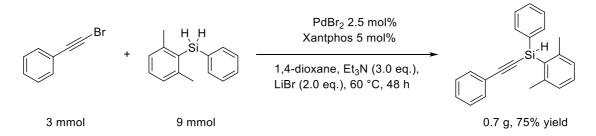


Entry	Time(h)	Conversion (%)
1	9	38
2	18	55
3	27	58
4	36	59
5	45	60

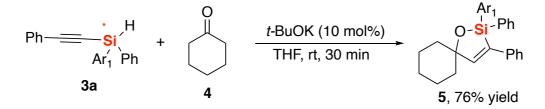
Reaction conditions: **1m** (0.2 mmol), **2a** (0.6 mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C. The reaction was monitored by GC-MS every 9 h, and the yield of **3m** was determined by GC-MS.



Example3.


Entry	Time(h)	Conversion (%)
1	9	40
2	18	55
3	27	56
4	36	56
5	45	57

Reaction conditions: **1s** (0.2 mmol), **2a** (0.6 mmol), PdBr₂ (2.5 mol%), Xantphos (5 mol%), Et₃N (0.6 mmol), LiBr (0.4 mmol) 1,4-dioxane 2 mL under N₂ at 60 °C. The reaction was monitored by GC-MS every 9 h, and the yield of **3s** was determined by GC-MS.


6. Gram-scale synthesis and synthetic applications of alkynylsilane 3a

6.1 Gram-scale synthesis

A vial was charged with LiBr (0.52 g, 6.0 mmol, 2.0 equiv.), PdBr₂ (20 mg, 2.5 mol%), Xantphos (87 mg, 5 mol%) and evacuated under high vacuum and backfilled with N₂. Bromoalkynes (0.54g, 3 mmol), (2,6-dimethylphenyl)(phenyl)silane (9 mmol, 1.9 g, 3.0 equiv.), Et₃N (0.91 g, 9 mmol, 3.0 eq.), 1,4-dioxane (30 mL) was next added. The mixture was stirred at 60 °C for 48 hours. The crude product was purified by silica gel chromatography (petroleum et) to provide the desired product **3a** (0.7 g, 75% yield).

6.2 Synthetic applications

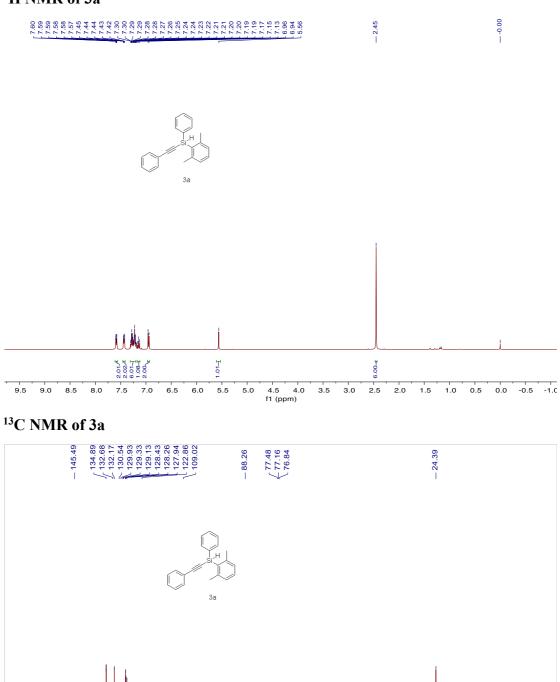
Prepared according to a previous reported method.^[5] In a glove box, to a stirred solution of cyclohexanone (41 mg, 0.42 mmol, 1.0 equiv.) in 3 mL THF was added **3a** (142 mg, 0.50 mmol, 1.2 equiv.) followed by 'BuOK (5 mg, 0.042 mmol, 0.1 equiv.). After stirring for 20 minutes, the reaction was quenched with an aqueous solution of saturated NH₄Cl and extracted twice with ether. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated to orange oil. The resulting residue was purified by column chromatography on silica gel (Hexane/CH₂Cl₂ = 5/1, v/v) to provide the desired product **5** as oil (130 mg, 76 % yield). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.58 – 7.53 (m, 2 H), 7.48 – 7.33 (m, 3 H), 7.23 – 7.08 (m, 7 H), 6.98 (s, 1 H), 6.96 (s, 1H), 2.25 (s, 6 H), 1.86 (m, 3 H), 1.73 – 1.50 (m, 6 H), 1.42 – 1.33 (m,

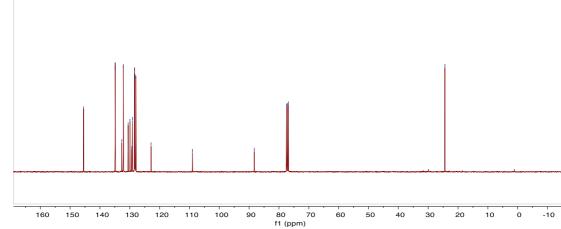
1H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 156.25, 145.23, 140.84, 139.75, 138.54, 134.99, 134.27, 130.63, 130.37, 128.88, 128.74, 127.99, 127.75, 127.07, 85.03, 39.08, 26.12, 25.28, 23.50, 22.99. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₈H₃₁OSi: 411.2139, found: 411.2112.

7. Reference

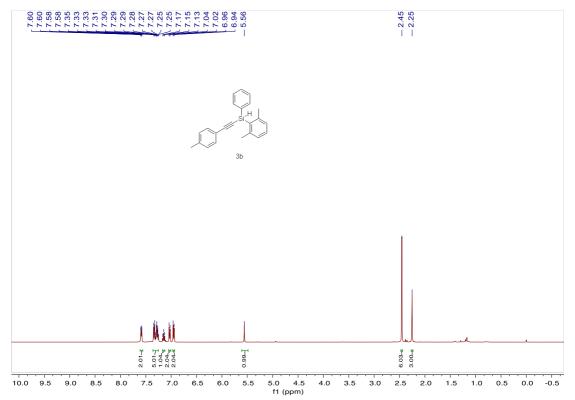
[1]. Xu, W.; Zhao, J.; Li, X.; Liu, Y., Selective [5 + 1] and [5 + 2] Cycloaddition of Ynamides or Propargyl Esters with Benzo[d]isoxazoles via Gold Catalysis. *J. Org. Chem.* **2018**, *83*, 15470-15485.

[2]. Hirone, N.; Sanjiki, H.; Tanaka, R.; Hata, T.; Urabe, H., Acceleration of the substitution of silanes with Grignard reagents by using either LiCl or YCl₃/MeLi. *Angew. Chem. Int. Ed.* **2010**, *49*, 7762-4.

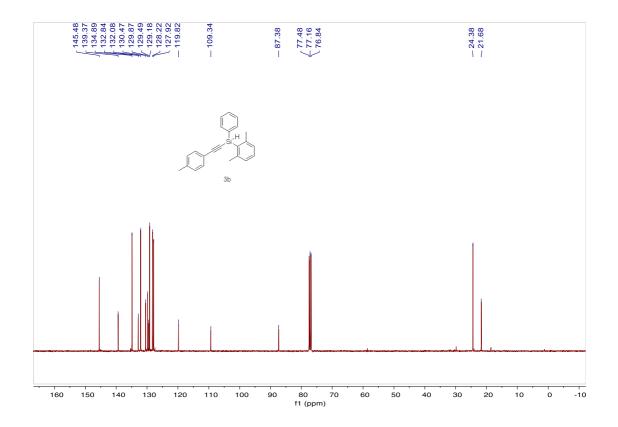

[3]. Zijlstra, H.; Leon, T.; de Cozar, A.; Fonseca Guerra, C.; Byrom, D.; Riera, A.; Verdaguer, X.; Bickelhaupt, F. M., Stereodivergent SN2@P Reactions of Borane Oxazaphospholidines: Experimental and Theoretical Studies, *J. Am. Chem. Soc* **2013**, *135*, 4483–4491.

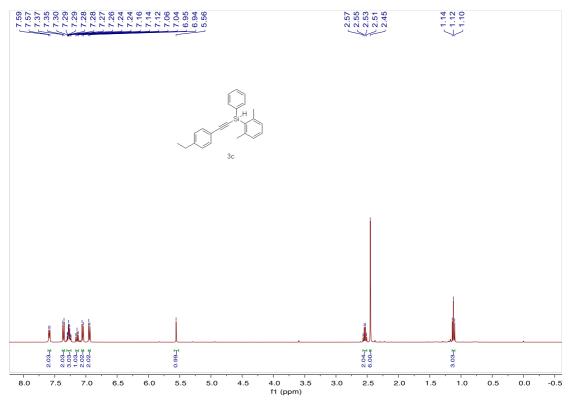

[4]. Holz, J.; Rumpel, K.; Spannenberg, A.; Paciello, R.; Jiao, H.; Börner, A., P-Chirogenic Xantphos Ligands and Related Ether Diphosphines: Synthesis and Application in Rhodium-Catalyzed Asymmetric Hydrogenation. *ACS Catal.* **2017**, *7*, 6162-6169.

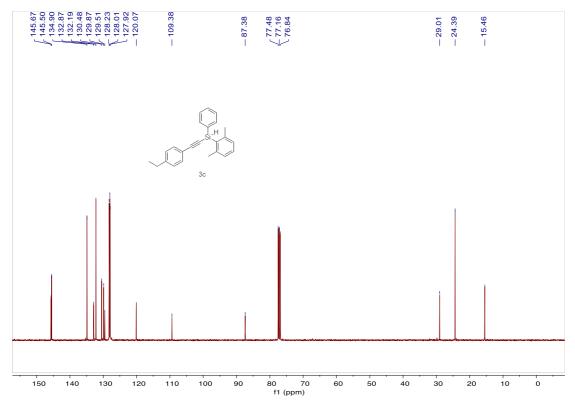
[5]. Maifeld, S. V.; Lee, D., Unusual Tandem Alkynylation and trans-Hydrosilylation to form Oxasilacyclopentenes. *Org. Lett.* **2005**, *7*, 4995-4998.

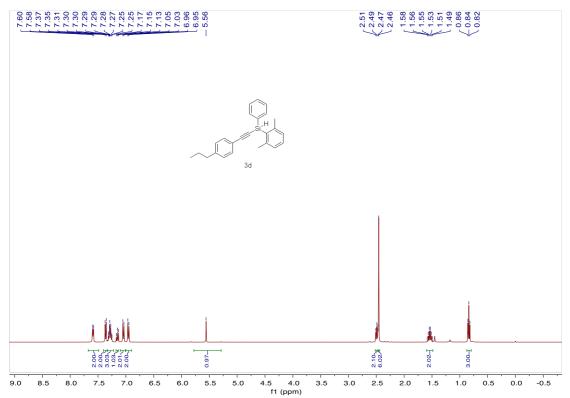

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

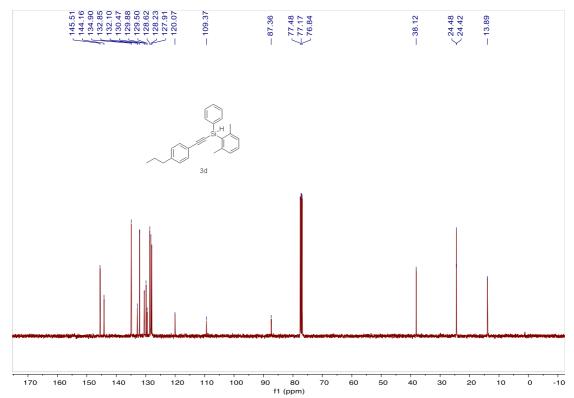
¹H NMR of 3a

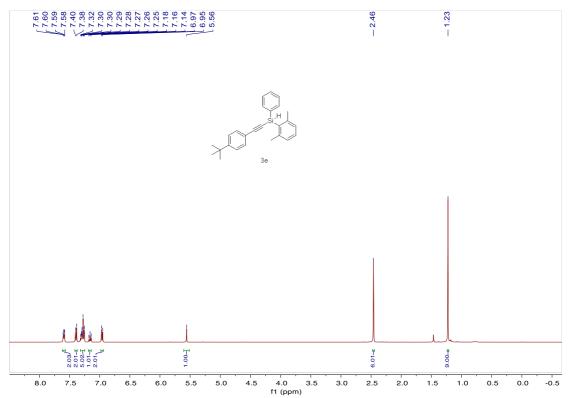


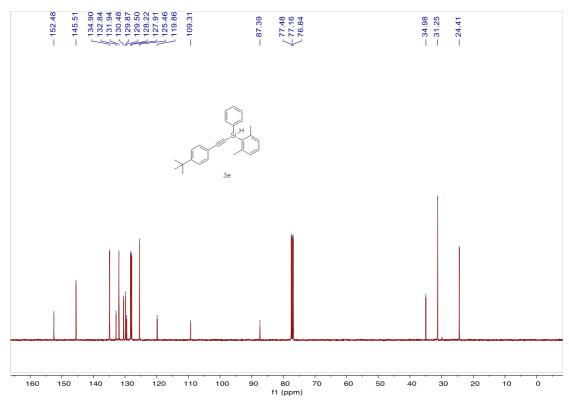

¹H NMR of 3b


¹³C NMR of 3b

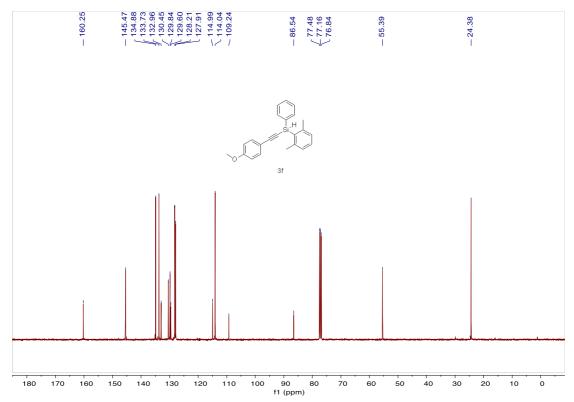

¹H NMR of 3c

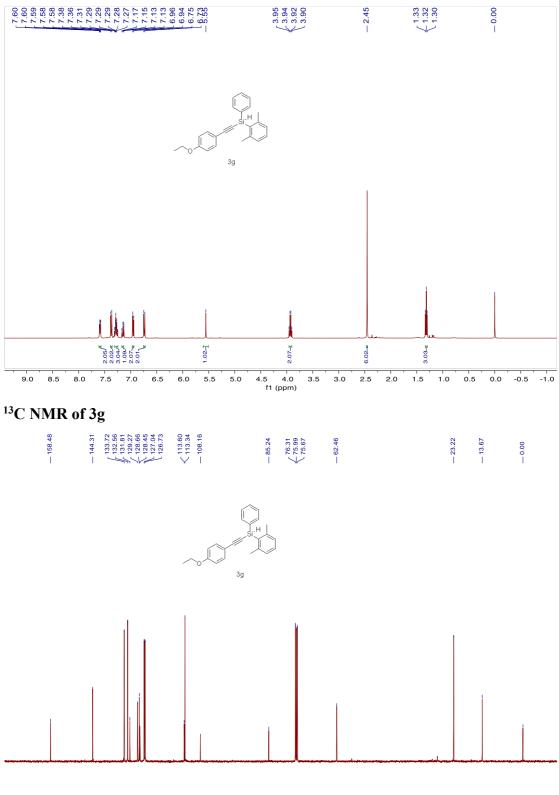

¹³C NMR of 3c


¹H NMR of 3d

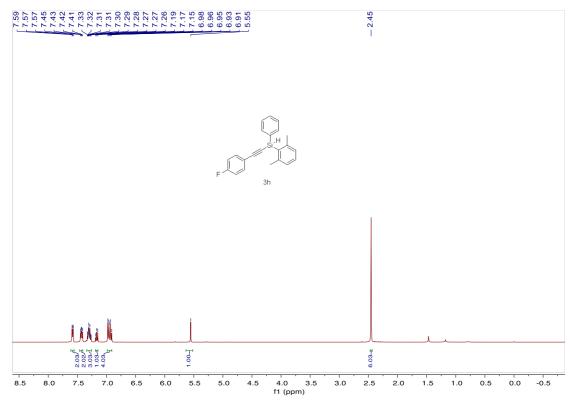

¹³C NMR of 3d

¹H NMR of 3e

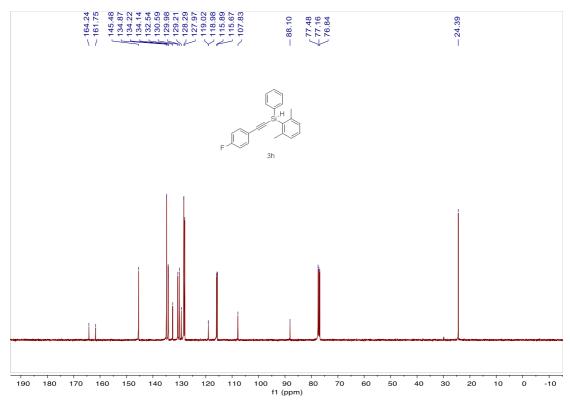

¹³C NMR of 3e


¹H NMR of 3f

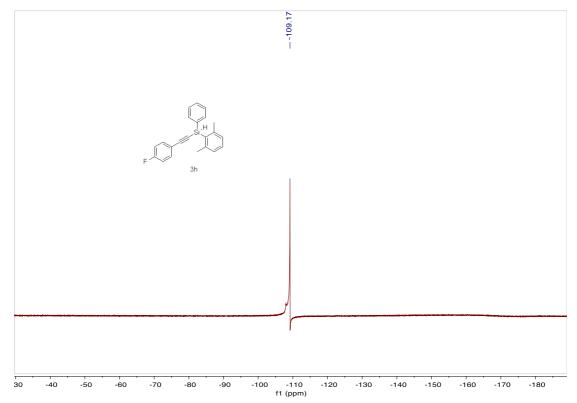
¹³C NMR of 3f

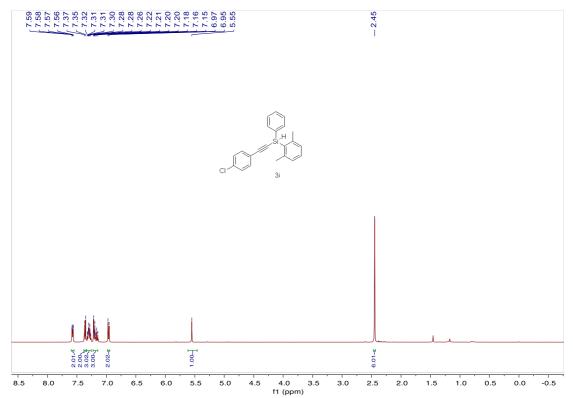


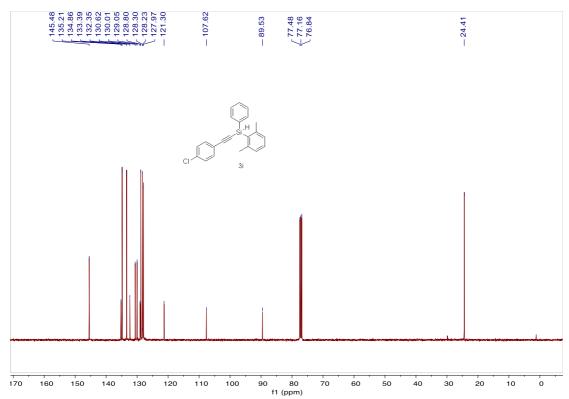
¹H NMR of 3g

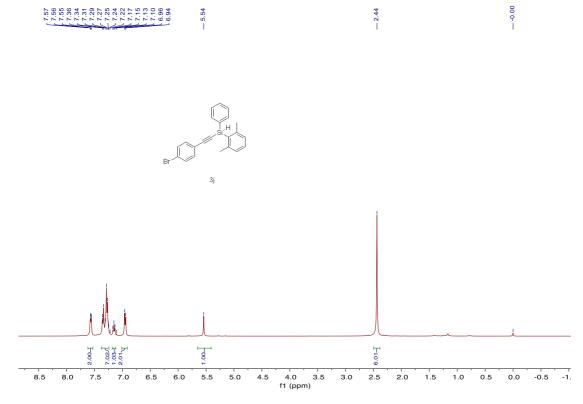


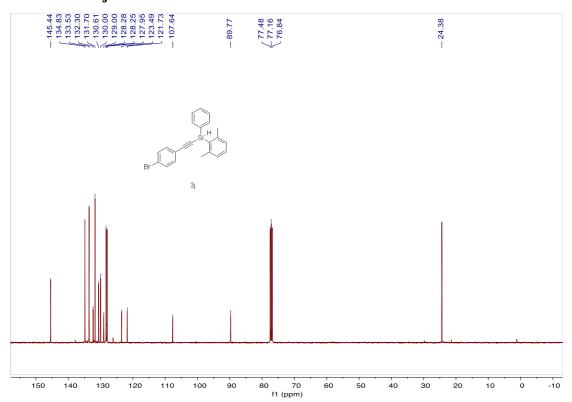
90 80 f1 (ppm) -1(

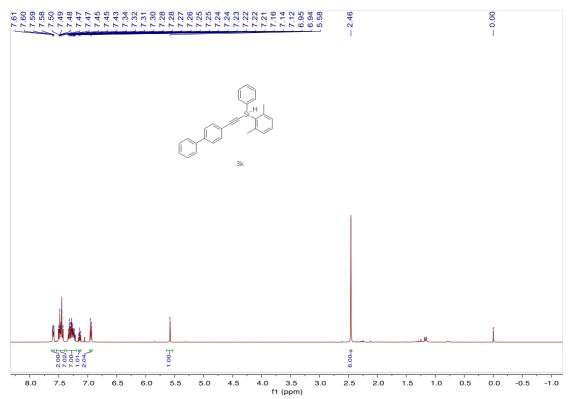

¹H NMR of 3h

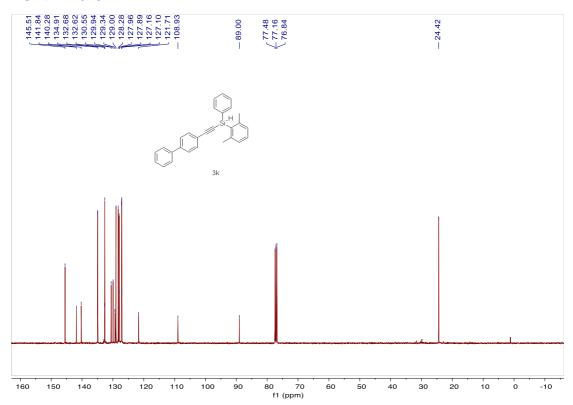

¹³C NMR of 3h

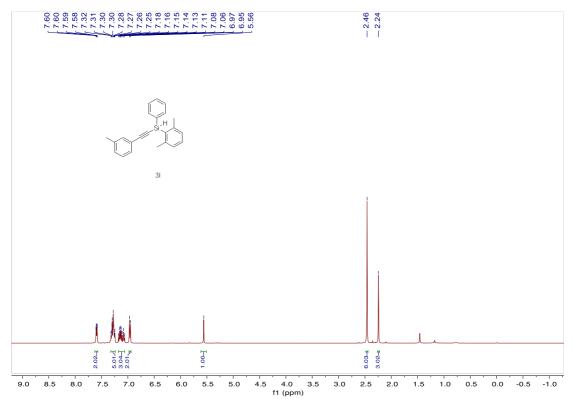

¹⁹F NMR of 3h

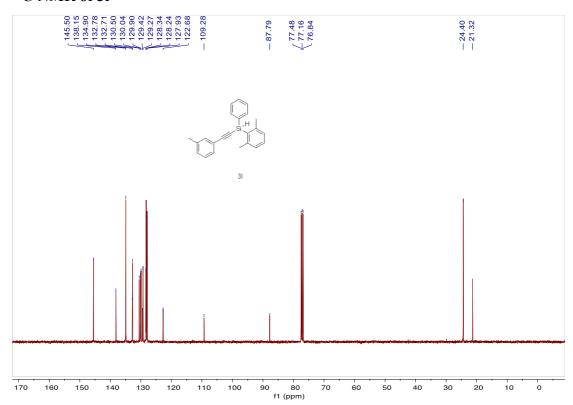

¹H NMR of 3i

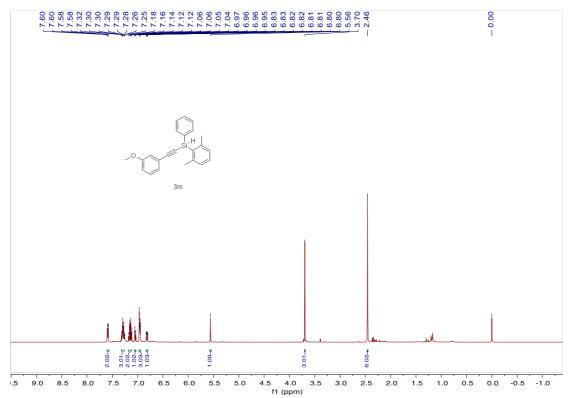

¹³C NMR of 3i

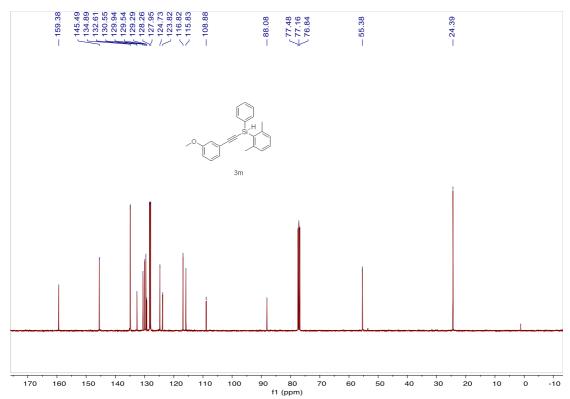

¹H NMR of 3j

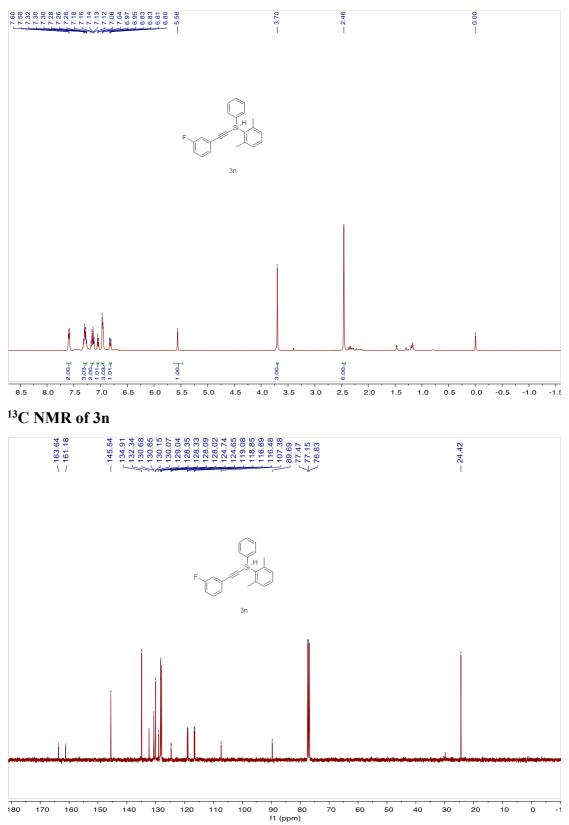


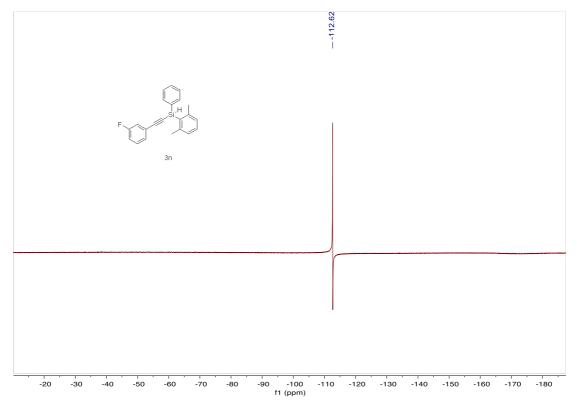

¹H NMR of 3k

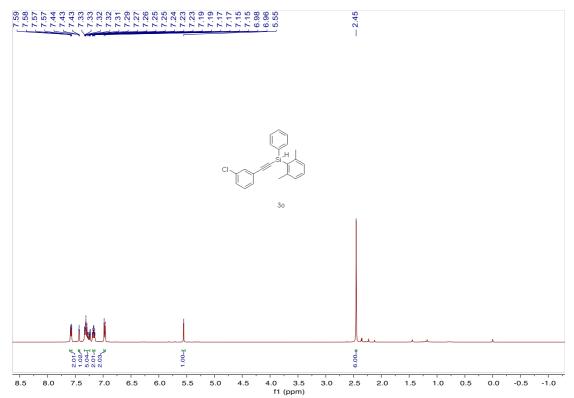

¹³C NMR of 3k

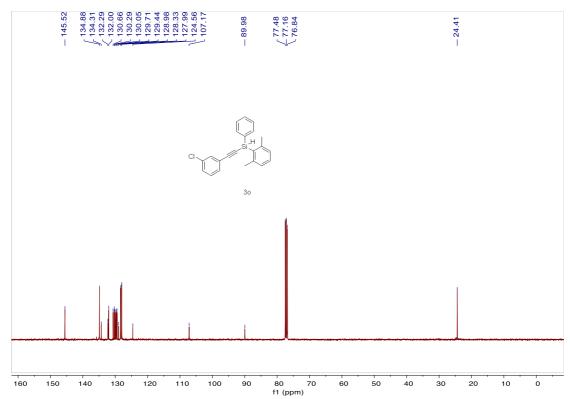

¹H NMR of 3l

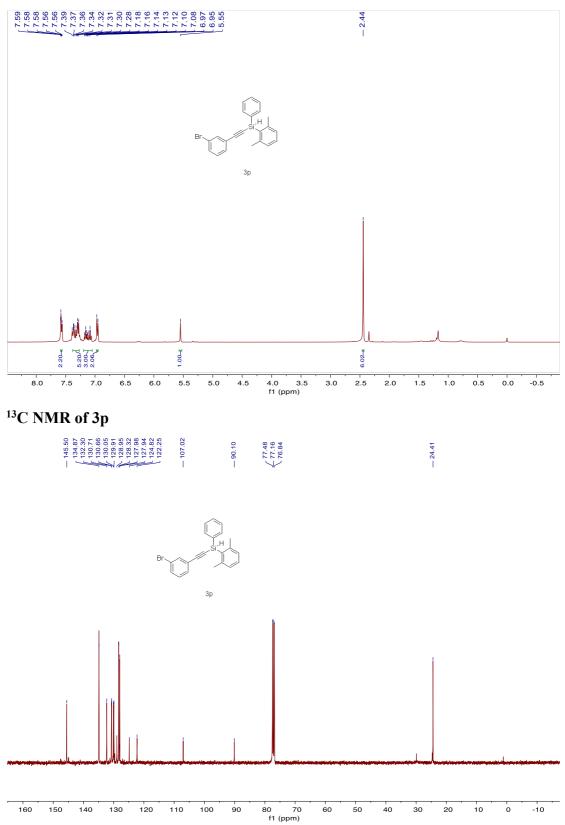

¹³C NMR of 3l

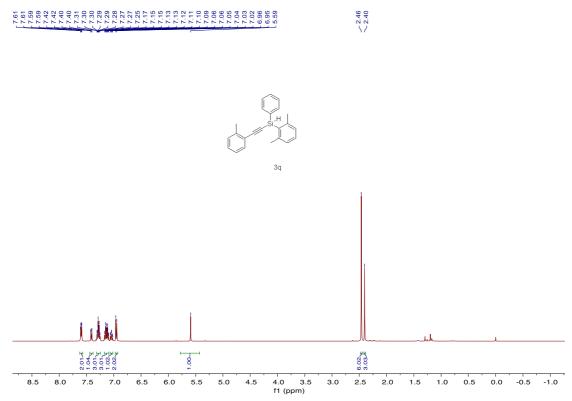

¹H NMR of 3m

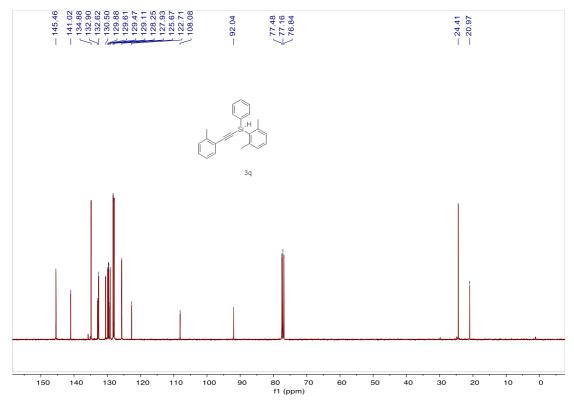

¹³C NMR of 3m

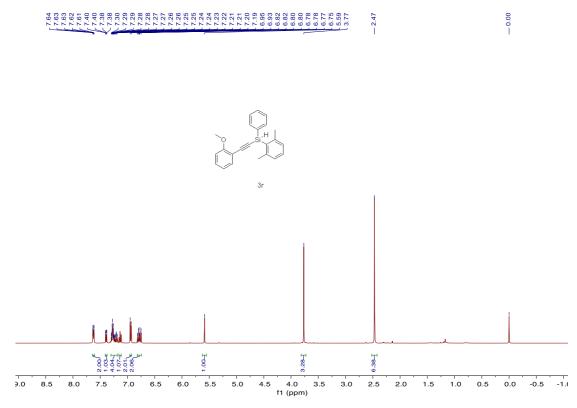

¹H NMR of 3n

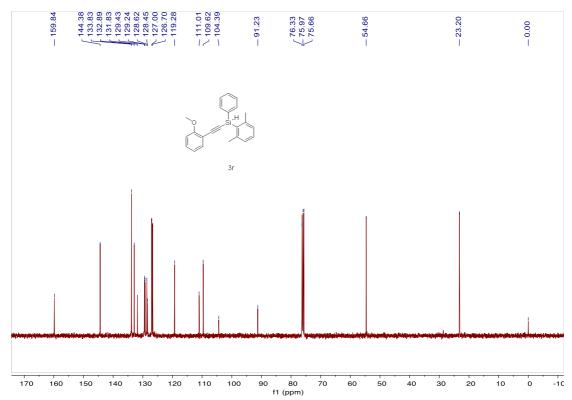

¹⁹F NMR of 3n


¹H NMR of 30

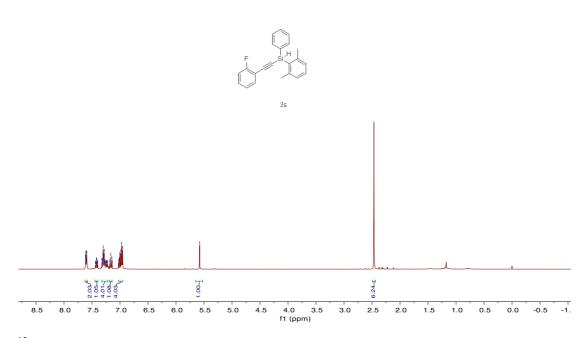

¹³C NMR of 30


¹H NMR of 3p

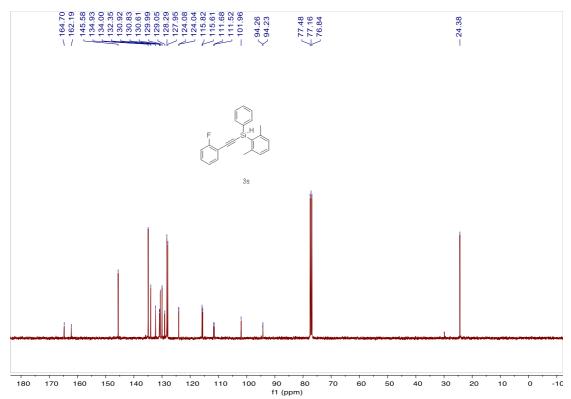

¹H NMR of 3q


¹³C NMR of 3q

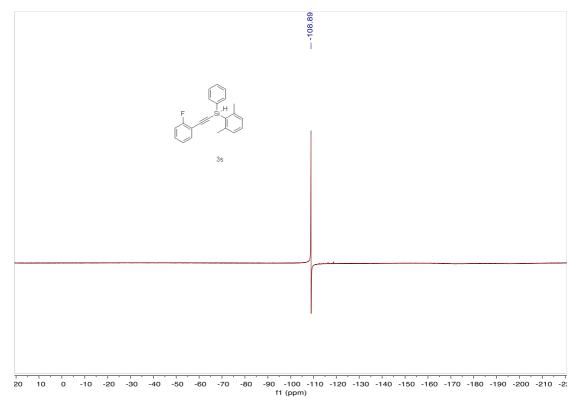
¹H NMR of 3r

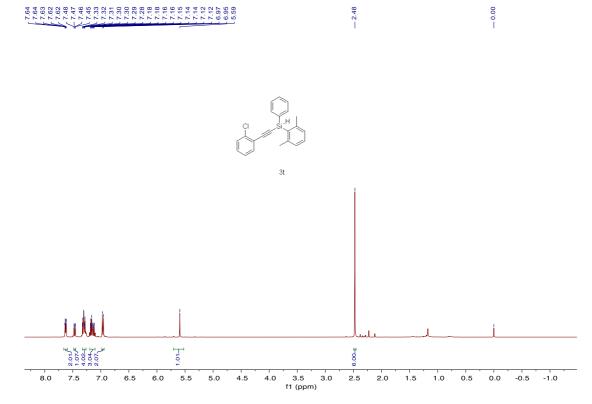


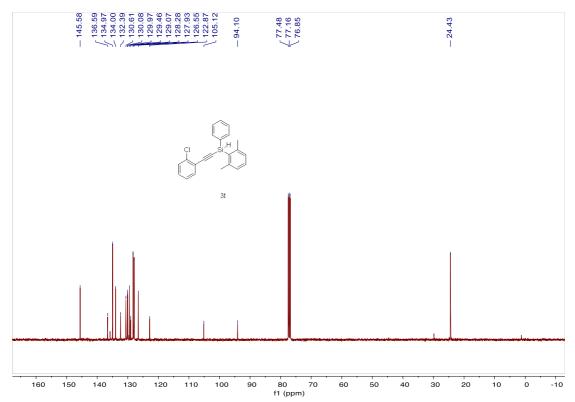
¹³C NMR of 3r

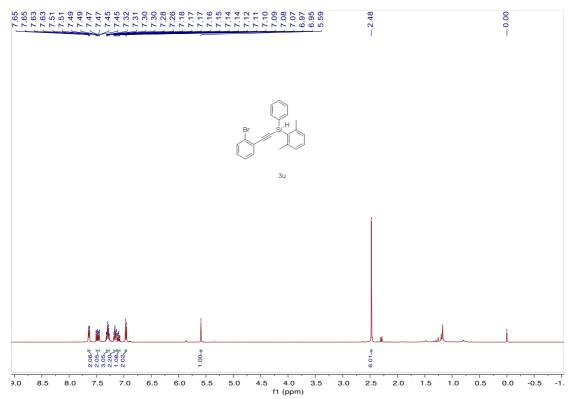


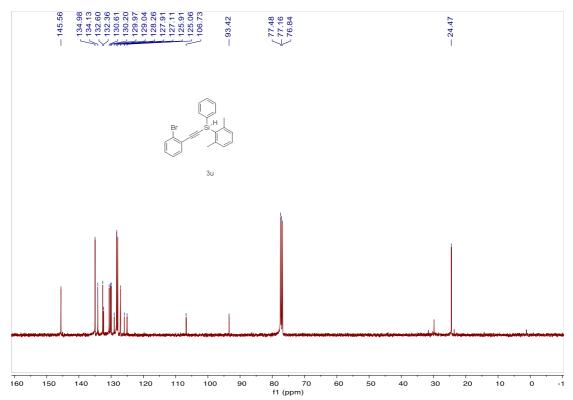
¹H NMR of 3s




¹³C NMR of 3s


¹⁹F NMR of 3s

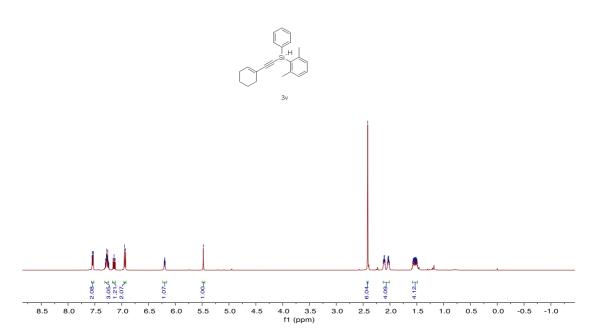

¹H NMR of 3t


¹³C NMR of 3t

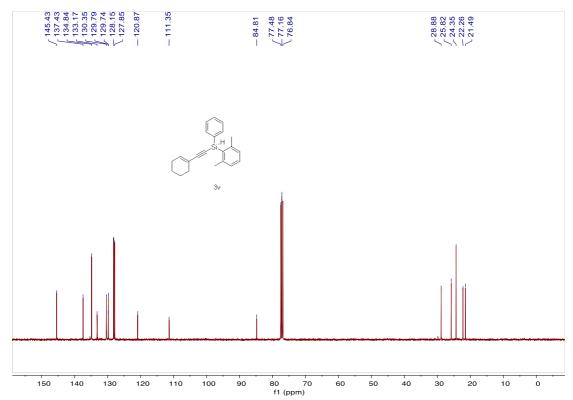
¹H NMR of 3u

¹³C NMR of 3u

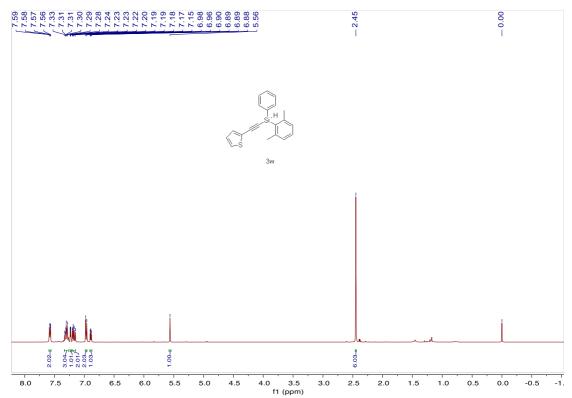
¹H NMR of 3v

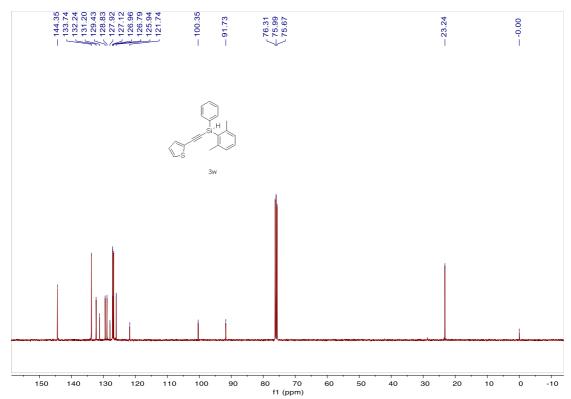

 1
 5
 4
 5
 5

 1
 5
 5
 5
 5
 5

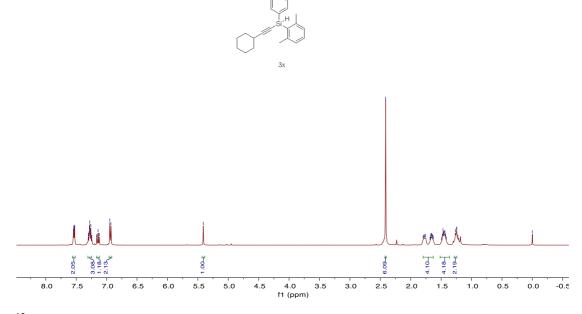

 1
 5
 5
 5
 5
 5

 1
 5
 5
 5
 5
 5
 5

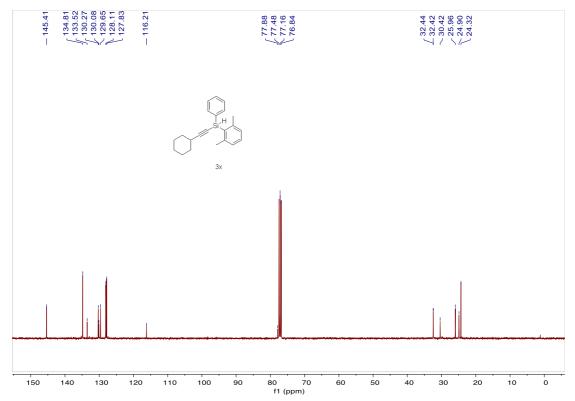

 1
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5


¹³C NMR of 3v

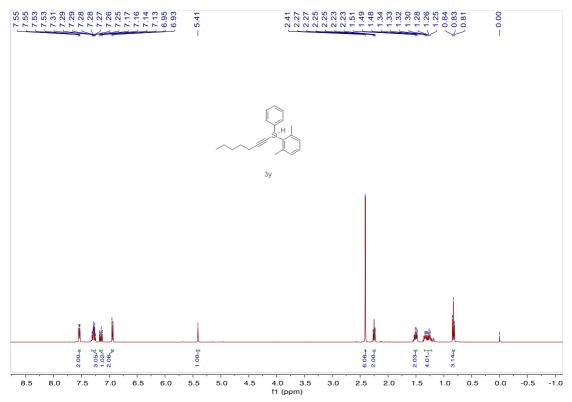
¹H NMR of 3w

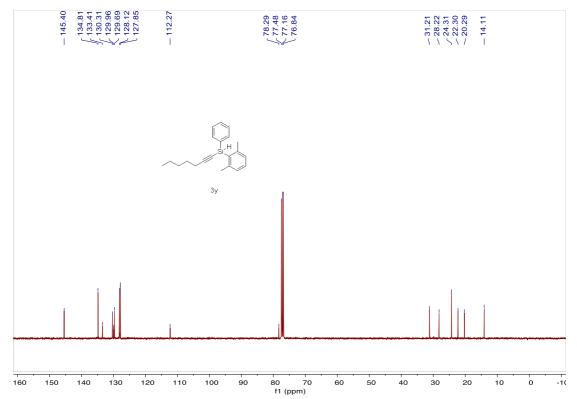


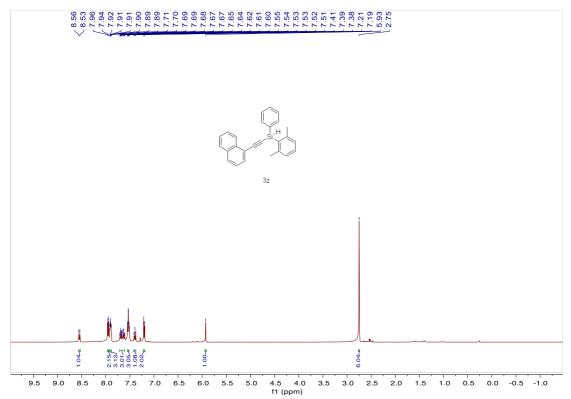
¹³C NMR of 3w

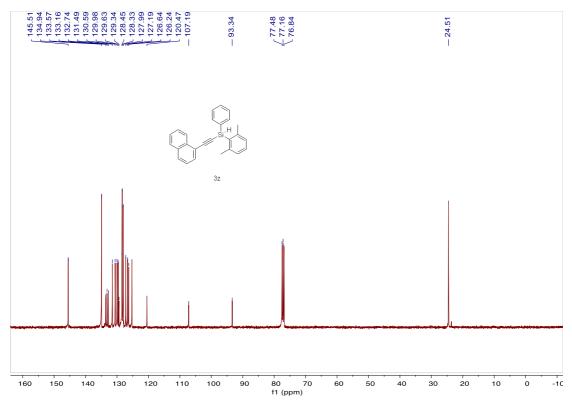


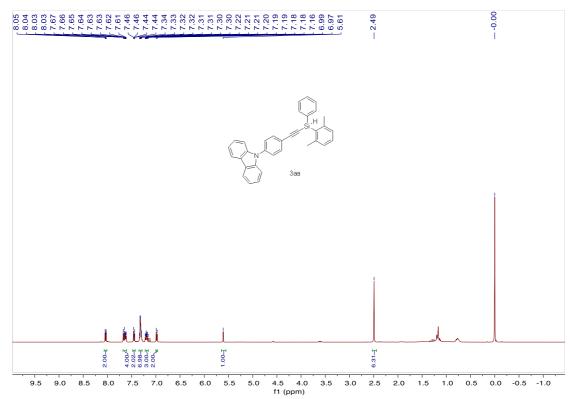
¹H NMR of 3x

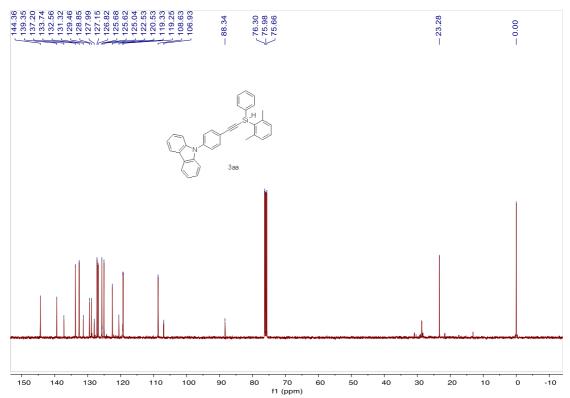


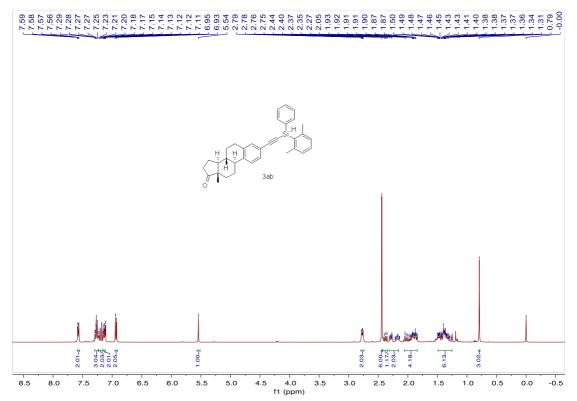

¹³C NMR of 3x

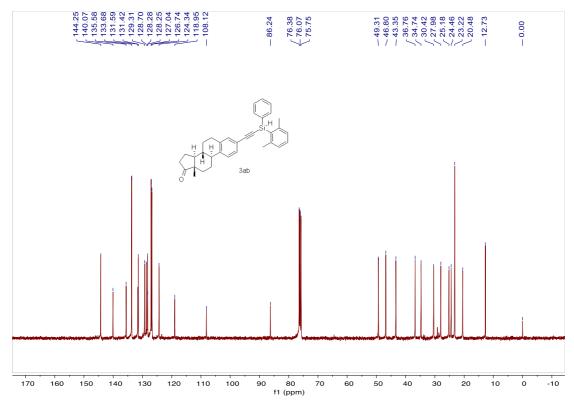

¹H NMR of 3y

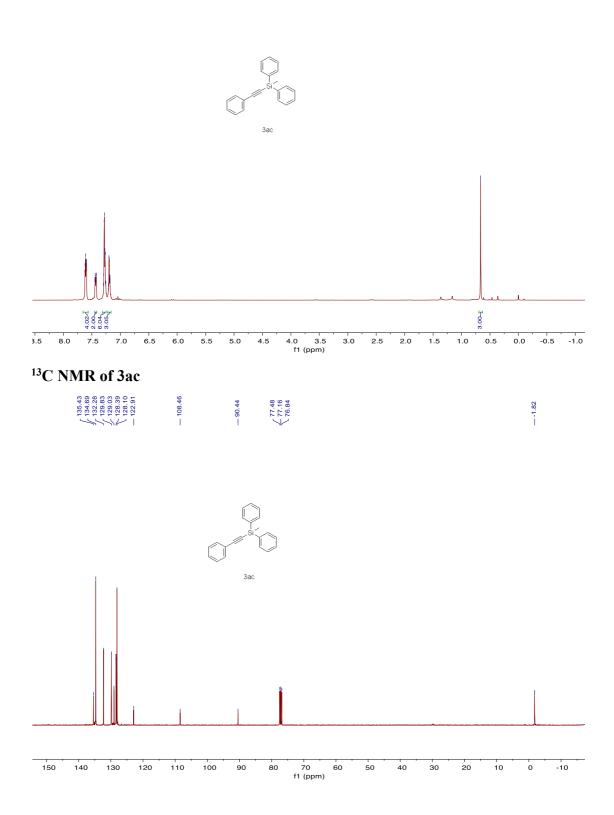

¹³C NMR of 3y


¹H NMR of 3z

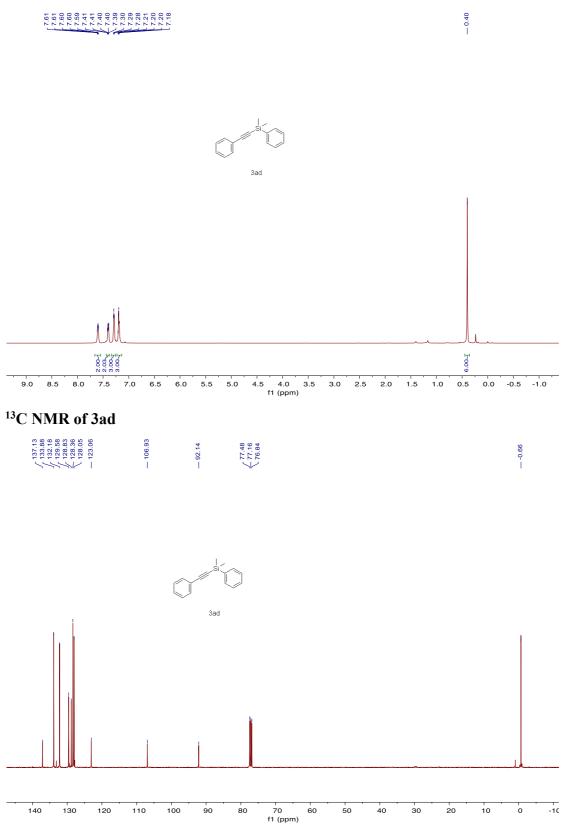

¹³C NMR of 3z


¹H NMR of 3aa


¹³C NMR of 3aa

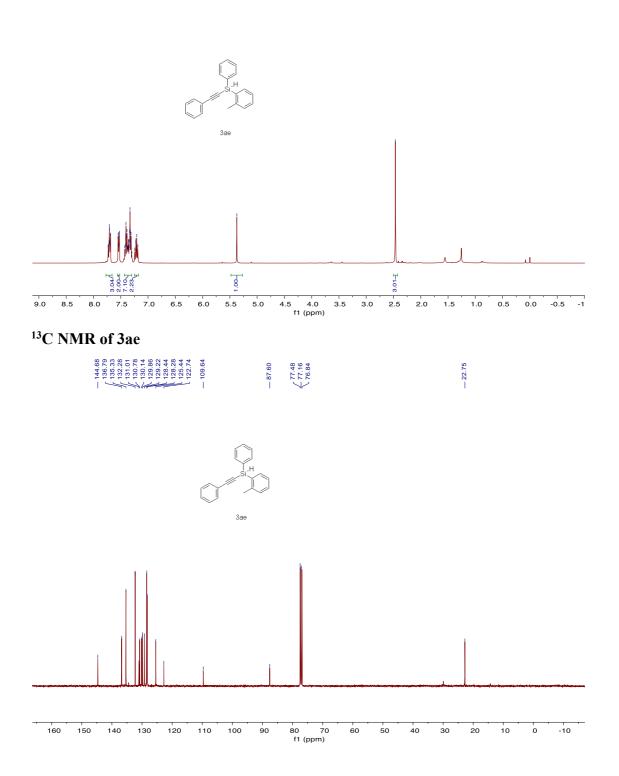

¹H NMR of 3ab

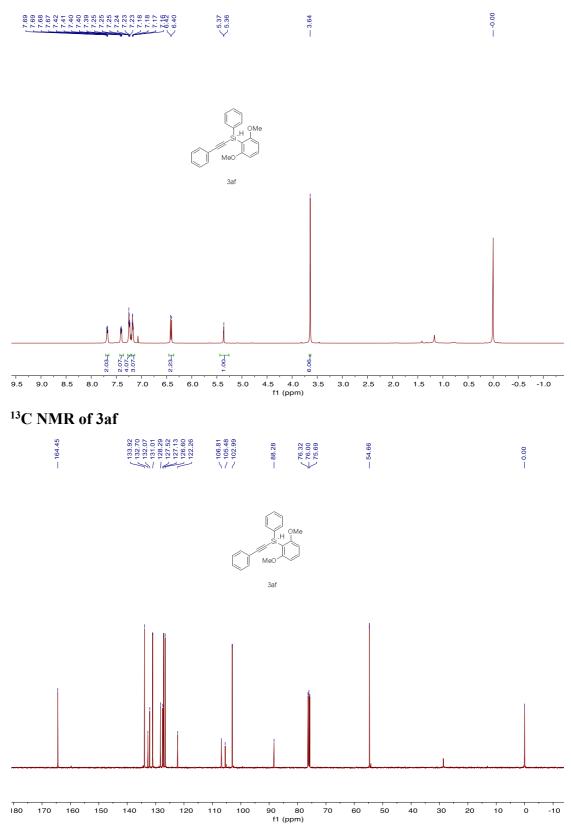
¹³C NMR of 3ab



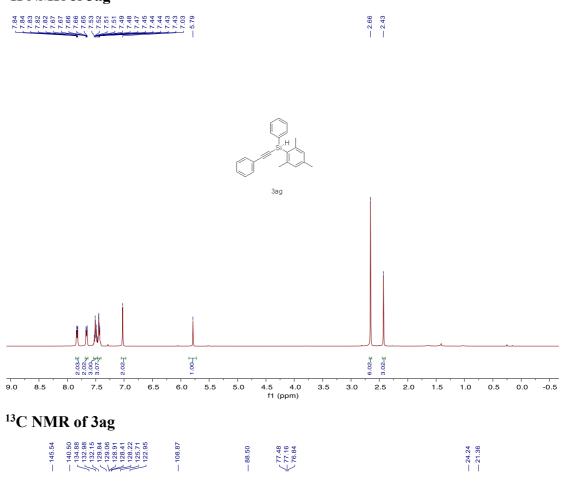
¹H NMR of 3ac

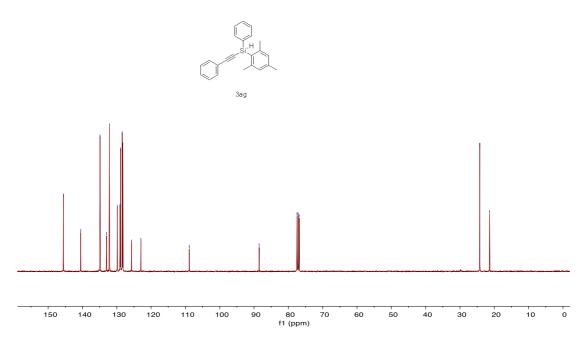
--- 0.66

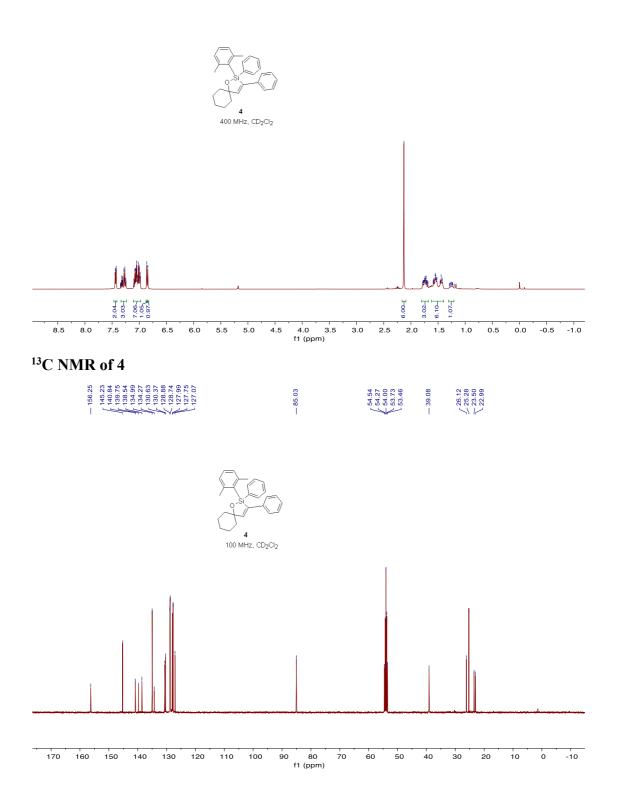

¹H NMR of 3ad

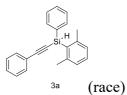


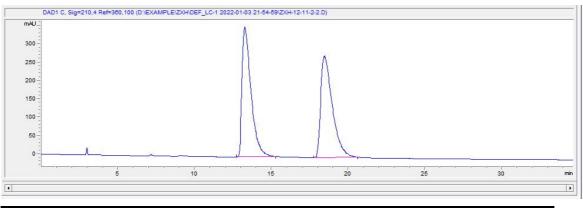
S66


¹H NMR of 3ae

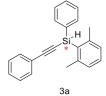


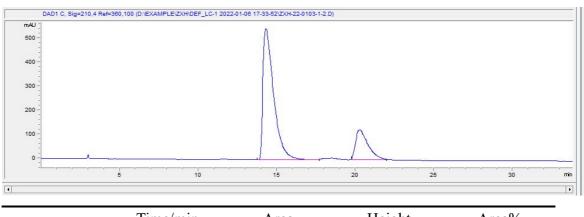

¹H NMR of 3ag




¹H NMR of 4

-2.13 -2.13 -2.13 -2.13 -2.13 -1.77 -1.77 -1.75 -1.75 -1.75 -1.75 -1.75 -1.58


9. HPLC Spectra



	Time/min	Area	Height	Area%
1	13.261	14548.6	354.2	50.023
2	18.459	14535.4	277.4	49.977

HPLC: optical purity = 0% ee; column: Chiralcel Pheromone, hexane/i-PrOH 100/0, 1.00 ml/min, $t_1 = 13.261$ min and $t_2 = 18.459$ min.

	Time/min	Area	Height	Area%
1	14.304	26497.3	549.1	78.866
2	20.262	7100.2	126.7	21.134

HPLC: optical purity = 57% ee; column: Chiralcel Pheromone, hexane/i-PrOH 100/0, 1.00 ml/min, $t_1 = 14.304$ min and $t_2 = 20.262$ min.