Supporting information

Rhodium-Catalysed Regioselective [4+2]-type Annulation of 1-H-Indazoles with Propargyl Alcohols: A direct entry to 6alkenylindazolo[3,2-a]isoquinolines

Xiang Zhao,^a Xuelin Yue,^a Zeng Han,^a Yadong Feng,^b Ting Gao,^a Sanshu Li^a and Xiuling Cui*,^a

^a Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China.

^b College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024. China

*E-mail: cuixl@hqu.edu.cn

Table of Contents

1. General information	S2
2. General procedure for the synthesis of 3	S2
3. Mechanism Exploration	S2
4. X-ray Crystallographic data of 3aa and 4aa	S6
5. Characterization of products	S8
6. References	S21
7. Copies of NMR Spectra.	S22
8. Agarose gel electrophoresis	S60
9. UV and fluorescence spectra	S61
10. Fluorescence labeling	S67

1. General Information

Unless otherwise stated, all commercial materials and solvents were used directly without further purification. NMR spectra were measured on a 400 MHz Bruker spectrometer (¹H 400MHz, ¹³C 100MHz, ¹⁹F NMR 376 MHz) using CDCl₃ (spectra were referenced to the solvent peaks ¹H: residual CDCl₃ = 7.26 ppm, ¹³C: CDCl₃ = 77.00 ppm) as the solvent. High-resolution mass spectra (HRMS) were measured on ESI-TOF. Melting points were measured on a microscopic apparatus and were uncorrected. Column chromatography was performed on silica gel (70-230 mesh ASTM) using the reported eluents. Thin-layer chromatography (TLC) was carried out on 4×5 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254). Starting materials 1*H*-indazoles 1¹ and propargyl alcohols 2² were prepared according to the reported procedures.

2. General catalytic procedure

A reaction tube (25 mL) equipped with a magnetic stirrer bar was charged with 3-aryl-1*H*-indazoles **1** (0.1 mmol), propargyl alcohols **2** (0.1 mmol), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5 mmol%), NaOAc (0.1 mmol, 1 eq.) and toluene (1.5 mL). The reaction mixture was sealed and stirred at 120 °C (metal module heating) for 12 h under air. After cooled to room temperature, the solvent was removed under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 80:1 to 60:1) as eluent to give the corresponding compounds **3**.

3. Mechanism Exploration

(1) H/D exchange experiment

To a tube equipped with magnetic stir bar, 3-phenyl-1*H*-indazole **1a** (38.4 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), NaOAc (16.4 mg, 0.2 mmol), CD₃COOD (10 equiv) were added in toluene (2.0 mL). The mixture was sealed and stirred at 120 °C in a heating mantle for 12 h. After the mixture was cooled to room temperature, the solvent was removed under reduced pressure, purification was performed by flash column chromatography on silica gel to give the corresponding product **[D]-1a**. The deuterium incorporation was calculated based on ¹H NMR spectrum of **[D]-1a**.

8.08 8.06 8.04 8.04 7.57 7.57 7.57 7.57 7.57 7.57 7.46 7.46 7.46 7.43 7.36 7.36 7.36 7.28 7.28 7.28

To a tube equipped with magnetic stir bar, 3-phenyl-1*H*-indazole **1a** (38.4 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), CD_3COOD (10 equiv) were added in toluene (2.0 mL). The mixture was sealed and stirred at 120 °C in a heating mantle for 12 h. After the mixture was cooled to room temperature, the solvent was removed under reduced pressure, purification was performed by flash column chromatography on silica gel to give the corresponding product **[D]-1a**. No deuteration of **1a** was observed in the absence of NaOAc.

Kinetic Isotope Effect (KIE) Study³

A reaction tube (25 mL) equipped with a magnetic stirrer bar was charged with [D]-1a

(0.2 mmol), propargyl alcohol **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mmol%), NaOAc (0.2 mmol, 1 eq.) and toluene (2 mL). The reaction mixture was sealed and stirred at 120 °C (metal module heating) for 12 h under air. When the reaction was completed, the solvent was removed under reduced pressure and residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 60:1 to 30:1) as eluent to afford the product **[D]-3aa**. The KIE value was determined to be $k_H/k_D = 80\%/77\% = 1.03$.

A sealed tube was charged with 1*H*-indazole (**1e**, 26.2 mg, 0.10 mmol), (**1g**, 22.4 mg, 0.10 mmol) [Cp*RhCl₂]₂ (0.005 mmol, 3.1 mg, 2.5 mmol %), NaOAc (0.2 mmol, 16.4

mg), propargyl alcohol **2a** (32.0 mg, 0.20 mmol) and toluene (2.0 mL). The reaction mixture was sealed and stirred at 120 °C (metal module heating) for 12 h under air atmosphere. After cooling to room temperature, the solvent was removed under reduced pressure. The resulted mixture was purified by silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 60:1 to 30:1) as eluent to give **3ea** (30.3 mg, 38% yield) and **3ga** (13.3 mg, 18% yield).

(3) Reaction of the Intermediate

To a tube equipped with magnetic stir bar, **1a** (38.4 mg, 0.2 mmol), **2a** (32.0 mg, 0.20 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) and NaOAc (0.2 mmol, 1 eq.) were added in toluene (2.0 mL). The mixture was sealed and stirred at 120 °C in a heating mantle for 20 min. Then, the reaction was cooled to room temperature. The reaction mixture was detected by HRMS-ESI.

4. X-ray Crystallographic data of 3aa and 4aa

Figure S1. X-ray molecular structure of 3aa with the probability at 50% level.

Figure S2. X-ray molecular structure of 4aa with the probability at 50% level.

The single crystal of compound **3aa**, **4aa** was prepared by the slow evaporation from the solution of DCM and pentane with the compounds (**3aa**, **4aa**) at room temperature. The structures of **3aa**, **4aa** were determined by the X-ray diffraction. Further information can be found in the CIF file. These crystals were deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **2163815**, **2163816**. ORTEP view of complex Ellipsoids are represented at the 50% probability level.

Table S1 Crystal data and structure refinement for 3aa.

Identification code	CCDC 2163815	
Empirical formula	$C_{24}H_{18}N_2$	
Formula weight	334.40	
Temperature/K	293(2)	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.2335(11)	
b/Å	10.0272(9)	
c/Å	10.7951(9)	
α/°	88.861(7)	
β/°	77.287(9)	
$\gamma/^{\circ}$	65.410(10)	
Volume/Å ³	883.65(17)	
Ζ	2	
$\rho_{calc}g/cm^3$	1.257	
μ/mm^{-1}	0.569	
F(000)	352.0	
Crystal size/mm ³	$0.19 \times 0.13 \times 0.11$	
Radiation	$CuK\alpha (\lambda = 1.54184)$	
20 range for data collection/° 8.424 to 134.142		
Index ranges	$\text{-}11 \le h \le 10, \text{-}10 \le k \le 11, \text{-}12 \le l \le 12$	
Reflections collected	6224	
Independent reflections	3147 [$R_{int} = 0.0282, R_{sigma} = 0.0420$]	
Data/restraints/parameters	3147/0/237	
Goodness-of-fit on F ²	1.045	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0495, wR_2 = 0.1289$	
Final R indexes [all data]	$R_1 = 0.0694, wR_2 = 0.1483$	
Largest diff. peak/hole / e Å ⁻³	0.17/-0.17	

Table S2 Crystal data and structure refinement for 4aa.

Identification code	CCDC 2163816
Empirical formula	$C_{24}H_{20}N_2$
Formula weight	336.42
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	20.5537(10)
b/Å	8.6676(3)
c/Å	20.5338(8)
$\alpha/^{\circ}$	90

β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3658.1(3)
Z	8
$\rho_{calc}g/cm^3$	1.222
μ/mm^{-1}	0.550
F(000)	1424.0
Crystal size/mm ³	$0.18 \times 0.13 \times 0.1$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/c	⁹ 8.604 to 134.154
Index ranges	-24 \leq h \leq 24, -6 \leq k \leq 10, -24 \leq l \leq 18
Reflections collected	9387
Independent reflections	3273 [$R_{int} = 0.0300, R_{sigma} = 0.0304$]
Data/restraints/parameters	3273/0/238
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0417, wR_2 = 0.1089$
Final R indexes [all data]	$R_1 = 0.0575, wR_2 = 0.1216$
Largest diff. peak/hole / e Å-3	0.17/-0.12

5. Characterization of products

5-Phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3aa)

Yellow solid. 26.7 mg, Yield: 80%, mp 202-203 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.47 (q, J = 9.3, 8.1 Hz, 5H), 7.36 (t, J = 5.9 Hz, 3H), 5.43 (s, 1H), 5.11 (s, 1H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 138.1, 138.1, 136.6, 130.7, 130.3, 129.4, 128.2, 127.9, 127.7, 127.3, 127.1, 126.9, 126.5, 125.4, 122.7, 121.5, 121.4, 121.2, 117.7, 116.6, 22.4. HRMS (ESI) m/z calcd for C₂₄H₁₉N₂ [M+H]⁺ 335.1543, found 335.1541. **1-Methyl-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ba)**

Yellow solid. 9.7 mg, Yield: 28%, mp 190-191 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.43 (d, J = 8.8 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.60 – 7.47 (m, 5H), 7.42 (t, J = 7.7 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.31 – 7.27 (m, 2H), 5.42 (s, 1H), 5.09 (s, 1H), 3.19 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.3, 138.4, 137.5, 137.1, 133.1, 131.2, 131.1, 130.7, 128.2, 127.6, 126.7, 126.6, 125.2, 124.9, 123.8, 121.2, 120.3, 117.8, 117.4, 24.8, 22.4. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2$ [M+H]⁺ 349.1699, found 349.1699

4-Methyl-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ca)

Yellow solid. 21.9 mg, Yield: 63%, mp 202-203 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H** NMR (400 MHz, CDCl₃, ppm) δ 8.62 – 8.51 (m, 2H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.55 – 7.46 (m, 3H), 7.46 – 7.30 (m, 5H), 5.45 (s, 1H), 5.13 (s, 1H), 2.67 (s, 3H), 2.26 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃, ppm) δ 149.1, 138.2, 138.1, 137.2, 136.8, 130.7, 130.1, 128.7, 128.2, 127.7, 127.3, 127.2, 127.0, 126.4, 125.5, 122.4, 121.5, 121.3, 121.2, 117.6, 116.5, 22.4, 22.0. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂ [M+H]⁺ 349.1699, found 349.1702

3-Methyl-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3da)

Yellow solid. 14.2 mg, Yield: 41%, mp 213-214 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.66 (d, J = 8.2 Hz, 1H), 8.49 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.59 – 7.44 (m, 5H), 7.40 – 7.30 (m, 3H), 7.22 (s, 1H), 5.43 (s, 1H), 5.10 (s, 1H), 2.43 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 138.3, 138.1, 137.1, 136.8, 130.7, 130.4, 129.6, 128.2, 127.7, 127.1, 126.8, 126.2, 123.2, 122.6, 121.5, 121.2, 121.0, 117.5, 116.3, 22.4, 21.9. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂ [M+H]⁺ 349.1699, found 349.1702

3-Methoxy-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ea)

Yellow solid. 17.8 mg, Yield: 49%, mp 219-220 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.70 (d, J = 8.9 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.57 – 7.43 (m, 4H), 7.39 – 7.28 (m, 4H), 6.82 (d, J = 2.6 Hz, 1H), 5.42 (s, 1H), 5.09 (s, 1H), 3.74 (s, 3H), 2.22 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 158.4, 149.3, 138.4, 138.2, 136.7, 131.3, 130.6, 130.6, 128.3, 127.8, 127.2, 125.9, 124.3, 121.4, 121.2, 120.8, 119.8, 117.6, 117.4, 115.8, 108.7, 55.3, 22.4. HRMS (ESI) m/z calcd for C₂₅H₂₁N₂O [M+H]⁺ 365.1648, found 365.1650

5-Phenyl-6-(prop-1-en-2-yl)-3-(trifluoromethyl)indazolo[3,2-a]isoquinoline (3fa)

Yellow solid. 28.5 mg, Yield: 71%, mp 213-214 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.84 (d, J = 8.2 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.73 (s, 1H), 7.58 (t, J = 8.3 Hz, 1H), 7.56 – 7.50 (m, 3H), 7.44 – 7.34 (m, 3H), 5.46 (s, 1H), 5.12 (s, 1H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 139.4, 137.8, 135.6, 130.6, 129.5, 129.0, 128.5, 128.5 (q, J = 32.7 Hz), 128.3, 127.5, 127.2, 126.4, 125.4, 124.4 (q, J = 4.3 Hz), 124.0 (q, J = 272.2 Hz), 124.0 (q, J = 3.2 Hz), 123.3, 122.4, 121.9, 120.8, 118.0, 116.9, 22.2. ¹⁹**F NMR** (376 MHz, CDCl₃, ppm) δ -62.14. HRMS (ESI) *m/z* calcd for C₂₅H₁₈F₃N₂ [M+H]⁺ 403.1417, found 403.1418

3-Nitro-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ga)

Yellow solid. 30.7 mg, Yield: 81%, mp 252-253 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H** NMR (400 MHz, CDCl₃, ppm) δ 8.84 (d, J = 9.0 Hz, 1H), 8.54 – 8.47 (m, 2H), 8.34 (d, J = 2.3 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.57 – 7.51 (m, 3H), 7.46 (t, J = 7.5 Hz, 1H), 7.40 – 7.33 (m, 2H), 5.46 (s, 1H), 5.12 (s, 1H), 2.23 (s, 3H). ¹³**C** NMR (400 MHz, CDCl₃, ppm) δ 149.3, 145.6, 140.1, 137.5, 135.1, 130.6, 129.2, 129.2, 128.8, 128.7, 128.6, 127.8, 126.6, 123.5, 123.2, 123.1, 122.1, 122.1, 120.7, 118.4, 117.4, 22.2. HRMS (ESI) m/z calcd for $C_{24}H_{18}N_3O_2$ [M+H]⁺ 380.1394, found 380.1392

2-Methoxy-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ha) / 4-Methoxy-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ha')

Yellow solid., 28.4 mg, Yield: 78% (**3ha**:**3ha**'=1:0.82), column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.54 – 8.46 (m, 1H), 8.46 – 8.41 (m, 0.57H), 8.14 (d, J = 2.5 Hz, 0.45H), 8.11 – 8.06 (m, 1H), 7.69 (t, J = 8.1 Hz, 0.56H), 7.62 – 7.56 (m, 1H), 7.54 – 7.46 (m, 1.51H), 7.42 – 7.34 (m, 4H), 7.30 (s, 1H), 7.13 (dd, J = 9.1, 2.6 Hz, 047H), 6.94 (d, J = 7.5 Hz, 0.55H), 5.45 (s, 1H), 5.12 (s, 0.45H), 5.08 (s, 0.54H), 4.08 (s, 1.34H), 3.41 (s, 1.66H), 2.25 (s, 1.34H), 2.14 (s, 1.65H). ¹³C NMR (400 MHz, CDCl₃, ppm) δ 159.3, 157.2, 149.3, 149.1, 140.7, 138.2, 138.1, 138.1, 136.8, 136.0, 130.7, 130.0, 129.8, 129.0, 128.9, 128.2, 127.7, 127.1, 127.1, 127.0, 126.7, 126.6, 126.4, 126.2, 124.7, 123.8, 121.5, 121.5, 121.3, 121.3, 121.2, 120.9, 119.4, 117.6, 117.6, 116.7, 116.6, 115.6, 109.1, 104.0, 55.8, 55.6, 22.4. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂O [M+H]⁺ 365.1648, found 365.1651

4-Fluoro-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ia)

Yellow solid. 30.2 mg, Yield: 86%, mp 182-183 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.58 (d, J = 8.2 Hz, 1H), 8.47 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.68 (td, J = 8.0, 4.9 Hz, 1H), 7.60 – 7.55 (m, 1H), 7.45 – 7.32 (m, 6H), 7.15 (dd, J = 12.4, 7.9 Hz, 1H), 5.44 (s, 1H), 5.07 (s, 1H), 2.15 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 159.3 (d, J = 256.4 Hz), 149.3, 139.3, 138.5, 138.5, 137.5, 129.5 (d, J = 2.8 Hz), 128.9 (d, J = 9.3 Hz), 127.4 (d, J = 21.15 Hz), 127.4, 127.2 (d, J = 3.3 Hz), 122.5 (d, J = 2.4 Hz), 122.0, 121.8, 121.0, 118.9 (d, J = 4.5 Hz), 118.1 (d, J = 9.1 Hz), 117.9, 116.6, 113.7 (d, J = 22.8 Hz), 22.4. ¹⁹**F NMR** (376 MHz, CDCl₃, ppm) δ -105.46. HRMS (ESI) m/z calcd for C₂₄H₁₇FN₂Na [M+Na]⁺ 375.1268, found 375.1264

3-Chloro-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ja)

Yellow solid. 22.1 mg, Yield: 60%, mp 219-220 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.70 (d, J = 8.7 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.69 (dd, J = 8.7, 2.1 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.56 – 7.50 (m, 3H), 7.43 (d, J = 2.1 Hz, 1H), 7.42 – 7.34 (m, 3H), 5.46 (s, 1H), 5.12 (s, 1H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 139.1, 137.9, 135.9, 132.9, 130.7, 130.6, 129.8, 128.5, 128.4, 128.1, 127.4, 126.5, 125.6, 124.1, 123.6, 121.8, 120.9, 117.8, 116.4, 22.3. HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClN₂ [M+H]⁺ 369.1153, found 369.1154

1-Chloro-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ka)

Yellow solid. 20.2 mg, Yield: 55%, mp 182-183 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.91 (d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 6.8 Hz, 1H), 7.61 – 7.47 (m, 4H), 7.45 – 7.25 (m, 5H), 5.44 (s, 1H), 5.10 (s, 1H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.5, 138.7, 138.1, 136.4, 132.4, 130.7, 130.0, 129.4, 128.6, 128.4, 127.9, 127.0, 126.9, 126.0, 125.9, 124.1, 121.4, 120.5, 117.6, 117.4, 22.3. HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClN₂ [M+H]⁺ 369.1153, found 369.1153

7-Phenyl-8-(prop-1-en-2-yl)benzo[h]indazolo[3,2-a]isoquinoline (3la)

Yellow solid. 16.5 mg, Yield: 43%, mp 219-220 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 9.33 (d, J = 8.2 Hz, 1H), 8.68 (d, J = 8.6 Hz, 1H), 8.12 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.85 – 7.71 (m, 3H), 7.61 (t, 1H), 7.57 – 7.49 (m, 3H), 7.45 – 7.37 (m, 3H), 7.31 – 7.25 (m, 1H), 5.49 (s, 1H), 5.16 (s, 1H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.7, 138.5, 138.3, 136.7, 132.7, 131.4, 130.8, 128.4, 128.3, 128.2, 127.8, 127.7, 127.5, 127.5, 127.1, 126.7, 125.9, 124.2, 122.8, 122.6, 121.4, 119.6, 117.6, 117.2, 22.2. HRMS (ESI) m/z calcd for $\rm C_{28}H_{21}N_2$ [M+H]+ 385.1699, found 385.1698

4-Phenyl-5-(prop-1-en-2-yl)thieno[2',3':3,4]pyrido[1,2-b]indazole (3ma)

Yellow solid. 26.8 mg, Yield: 79%, mp 202-203 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.21 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.51 – 7.38 (m, 5H), 7.32 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 5.0 Hz, 1H), 5.47 (s, 1H), 5.11 (s, 1H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.4, 137.7, 137.3, 136.6, 135.5, 130.0, 129.8, 128.3, 127.9, 127.8, 127.6, 126.2, 124.6, 124.3, 121.9, 120.4, 120.4, 116.6, 114.6, 22.2. HRMS (ESI) *m/z* calcd for C₂₂H₁₇N₂S [M+H]⁺ 341,1107, found 341,1109

6-Phenyl-5-(prop-1-en-2-yl)pyrazolo[5,1-a]isoquinoline (3na)

Yellow solid. 11.1 mg, Yield: 39%, mp 194-195 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.19 (d, J = 7.8 Hz, 1H), 8.06 (s, 1H), 7.56 (t, J = 6.9 Hz, 1H), 7.53 – 7.40 (m, 4H), 7.38 – 7.29 (m, 3H), 7.11 (s, 1H), 5.36 (s, 1H), 5.07 (s, 1H), 2.15 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 141.0, 138.2, 137.9, 137.9, 136.6, 130.9, 130.1, 128.2, 127.7, 127.5, 127.1, 126.8, 123.7, 123.5, 122.2, 121.1, 97.4, 22.5. HRMS (ESI) *m/z* calcd for C₂₀H₁₇N₂ [M+H]⁺ 285.1386, found 285.1385

10-Fluoro-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3oa)

Yellow solid. 25.7 mg, Yield: 73%, mp 189-190 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.69 (d, J = 8.2 Hz, 1H), 8.45 (dd, J = 9.1, 5.2 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.61 (dd, J = 10.2, 2.2 Hz, 1H), 7.49 (td, J = 7.9, 3.7 Hz, 5H), 7.35 (dd, J = 7.1, 2.0 Hz, 2H), 7.12 (td, J = 9.1, 2.2 Hz, 1H), 5.43 (s, 1H), 5.10 (s, 1H), 2.21 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 162.3 (d, J = 244.6 Hz), 149.5 (d, J = 13.3 Hz), 138.0, 136.4, 130.7, 129.7, 128.3, 128.0, 127.8, 127.4 (d, J = 3.8 Hz), 126.4, 124.8, 122.8 (d, J = 10.9 Hz), 122.6, 121.6, 113.7, 112.3 (d, J = 27.7 Hz), 101.0

(d, J = 23.7 Hz), 22.4. ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -112.46. HRMS (ESI) *m/z* calcd for C₂₄H₁₇FN₂Na [M+Na]⁺ 375.1268, found 375.1269 6-(Prop-1-en-2-yl)-5-(p-tolyl)indazolo[3,2-a]isoquinoline (3ab)

Yellow solid. 26.4 mg, Yield: 76%, mp 210-211 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.1 Hz, 1H), 8.54 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.77 – 7.69 (m, 1H), 7.59 (t, 1H), 7.54 – 7.49 (m, 2H), 7.38 (t, 1H), 7.35 – 7.25 (m, 4H), 5.49 (s, 1H), 5.15 (s, 1H), 2.51 (s, 3H), 2.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.1, 138.2, 138.1, 137.4, 133.6, 130.6, 130.3, 129.6, 129.0, 127.8, 127.3, 127.1, 126.9, 126.5, 125.4, 122.7, 121.4, 121.3, 121.2, 117.6, 116.6, 22.4, 21.4. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂ [M+H]⁺ 349.1699, found 349.1701

5-(4-(Tert-butyl)phenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ac)

Yellow solid. 26.9 mg, Yield: 69%, mp 233-234 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.77 (d, *J* = 7.6 Hz, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 7.75 – 7.67 (m, 1H), 7.61 – 7.54 (m, 1H), 7.50 (s, 4H), 7.41 – 7.33 (m, 1H), 7.30 (d, *J* = 7.4 Hz, 2H), 5.47 (s, 1H), 5.14 (s, 1H), 2.26 (s, 3H), 1.46 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 150.6, 149.1, 138.1, 133.4, 130.3, 130.2, 129.7, 127.8, 127.4, 127.1, 126.9, 126.6, 125.3, 125.1, 122.6, 121.5, 121.3, 121.2, 117.6, 116.6, 34.7, 31.5, 22.4. HRMS (ESI) *m/z* calcd for C₂₈H₂₇N₂ [M+H]⁺ 391.2169, found 391.2168

4-(6-(Prop-1-en-2-yl)indazolo[3,2-a]isoquinolin-5-yl)benzonitrile (3ad)

Yellow solid. 26.9 mg, Yield: 75%, mp 250-251 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, *J* = 7.7 Hz, 1H), 8.50 (d, *J* = 8.3 Hz, 1H),

8.04 (d, J = 8.7 Hz, 1H), 7.84 – 7.72 (m, 3H), 7.60 – 7.46 (m, 4H), 7.37 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 5.43 (s, 1H), 5.06 (s, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.3, 141.9, 138.2, 137.8, 132.1, 131.6, 130.4, 128.4, 128.3, 127.5, 127.3, 126.6, 125.4, 124.5, 122.9, 122.2, 121.8, 121.2, 118.7, 117.7, 116.5, 112.0, 22.3. HRMS (ESI) *m/z* calcd for C₂₅H₁₈N₃ [M+H]⁺ 360.1495, found 360.1493 **5-(4-Methoxyphenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ae)**

Yellow solid. 29.8 mg, Yield: 82%, mp 241-242 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.1 Hz, 1H), 8.53 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.38 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.7 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 5.49 (s, 1H), 5.14 (s, 1H), 3.93 (s, 3H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 159.1, 149.1, 138.3, 138.3, 131.8, 130.2, 129.8, 128.7, 127.9, 127.3, 127.1, 126.9, 126.2, 125.3, 122.7, 121.4, 121.3, 121.2, 117.6, 116.6, 113.7, 55.3, 22.4. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂O [M+H]⁺ 365.1648, found 365.1649

5-(4-Fluorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3af)

Yellow solid. 27.4 mg, Yield: 78%, mp 237-238 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H** NMR (400 MHz, CDCl₃, ppm) δ 8.76 (d, J = 8.1 Hz, 1H), 8.50 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.50 (t, J =7.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.39 – 7.29 (m, 3H), 7.24 – 7.16 (m, 2H), 5.46 (s, 1H), 5.10 (s, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.4 (d, J = 247.1Hz), 149.2, 138.4, 138.1, 132.5 (d, J = 3.6 Hz), 132.3, 130.3, 129.3, 128.0, 127.2, 127.0 (d, J = 1.5 Hz), 125.4, 122.8, 121.7, 121.5, 121.2, 117.7, 116.5, 115.4 (d, J = 21.4 Hz), 22.4. ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -114.10. HRMS (ESI) *m/z* calcd for C₂₄H₁₈FN₂ [M+H]⁺ 353.1449, found 353.1451

5-(4-Chlorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ag)

Yellow solid. 28.7 mg, Yield: 78%, mp 241-242 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.75 (d, J = 8.2 Hz, 1H), 8.49 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.7, 2.5 Hz, 1H), 7.72 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 3H), 7.41 (d, J = 8.5 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 5.46 (s, 1H), 5.10 (s, 1H), 2.22 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 138.2, 138.0, 135.1, 133.9, 130.3, 129.1, 128.6, 128.1, 127.3, 127.1, 127.0, 125.4, 125.2, 122.8, 121.8, 121.5, 121.2, 117.7, 116.5, 22.4. HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClN₂ [M+H]⁺ 369.1153, found 369.1151

5-(4-Bromophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ah)

Yellow solid. 30.0 mg, Yield: 73%, mp 253-254 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.77 (d, *J* = 7.9 Hz, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.74 (t, *J* = 6.7 Hz, 1H), 7.65 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 7.0 Hz, 1H), 7.52 (t, *J* = 7.0 Hz, 1H), 7.44 (d, 1H), 7.38 (t, *J* = 7.0 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 2H), 5.48 (s, 1H), 5.12 (s, 1H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 138.2, 137.9, 135.6, 132.4, 131.5, 130.3, 129.0, 128.1, 127.3, 127.1, 127.0, 125.4, 125.2, 122.8, 122.1, 121.9, 121.5, 121.2, 117.7, 116.5, 22.4. HRMS (ESI) *m/z* calcd for C₂₄H₁₈BrN₂ [M+H]⁺ 413.0648, found 413.0649

Methyl 4-(6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinolin-5-yl)benzoate (3ai)

Yellow solid. 28.4 mg, Yield: 70%, mp 244-245 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 7.4 Hz, 1H), 8.51 (d, J = 7.9 Hz, 1H), 8.20 (d, J = 7.7 Hz, 2H), 8.07 (d, J = 8.6 Hz, 1H), 7.79 – 7.71 (m, 1H), 7.58 (t, 1H), 7.54 – 7.43 (m, 3H), 7.42 – 7.34 (m, 2H), 5.43 (s, 1H), 5.10 (s, 1H), 4.01 (s, 3H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 166.9, 149.2, 141.7, 138.0, 137.9, 130.9, 130.4, 129.7, 129.5, 128.8, 128.1, 127.3, 127.1, 126.9, 125.4, 125.4, 122.8, 122.0, 121.6, 121.2, 117.7, 116.5, 52.3, 22.3. HRMS (ESI) *m/z* calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1598, found 393.1597

6-(Prop-1-en-2-yl)-5-(4-(trifluoromethyl)phenyl)indazolo[3,2-a]isoquinoline (3aj)

Yellow solid. 29.3 mg, Yield: 73%, mp 244-245 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.0 Hz, 1H), 8.51 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.80 – 7.72 (m, J = 6.9 Hz, 3H), 7.57 (t, J = 7.7 Hz, 1H), 7.54 – 7.45 (m, J = 7.6 Hz, 3H), 7.40 – 7.33 (m, J = 8.6 Hz, 2H), 5.44 (s, 1H), 5.09 (s, 1H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.3, 140.6, 138.3, 137.8, 131.2, 130.4, 130.1 (q, J = 31.9 Hz), 128.8, 128.2, 127.4, 127.2, 126.8, 125.4, 125.3 (q, J =3.7 Hz), 125.0, 124.2 (q, J = 272.52 Hz), 122.8, 122.1, 121.6, 121.2, 117.7, 116.5, 22.3. ¹⁹**F NMR** (376 MHz, CDCl₃, ppm) δ -62.39 (s). HRMS (ESI) *m/z* calcd for C₂₅H₁₈F₃N₂ [M+H]⁺ 403.1417, found 403.1419.

4-Methyl-5-phenyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ak)

Yellow solid. 26.1 mg, Yield: 75%, mp 171-172 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.79 (d, J = 8.1 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.6 Hz, 1H), 7.74 (t, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.46 – 7.36 (m, 2H), 7.35 – 7.29 (m, 1H), 7.24 – 7.16 (m, 2H), 5.48 (s, 1H), 5.16 (s, 1H), 2.48 (s, 3H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.1, 138.2, 138.0, 137.8, 136.5, 131.4, 130.3, 129.5, 128.5, 128.1, 127.9, 127.4, 127.1, 126.9, 126.6, 125.3, 122.7, 121.5, 121.4, 121.2, 117.6, 116.6, 22.4, 21.6. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂ [M+H]⁺ 349.1699, found 349.1700

5-(3-Methoxyphenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3al)

Yellow solid. 29.4 mg, Yield: 81%, mp 185-186 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.76 (d, *J* = 8.0 Hz, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.6 Hz, 1H), 7.76 – 7.67 (m, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.45 – 7.32 (m, 2H), 7.05 – 6.91 (m, 3H), 5.47 (s, 1H), 5.15 (s, 1H), 3.86 (s, 3H), 2.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 159.4, 149.2, 138.1, 138.0, 137.9, 130.3, 129.3, 129.3, 127.9, 127.3, 127.2, 127.0, 126.3, 125.3, 123.3, 122.7, 121.5, 121.4, 121.2, 117.6, 116.5, 113.1, 55.3, 22.4. HRMS (ESI) m/z calcd for C₂₅H₂₁N₂O [M+H]⁺ 365.1648, found 365.1649

5-(3-Chlorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3am)

Yellow solid. 28.2 mg, Yield: 81%, mp 159-160 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.75 (d, J = 8.0 Hz, 1H), 8.49 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.72 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.53 – 7.32 (m, 6H), 7.28 – 7.22 (m, 1H), 5.47 (s, 1H), 5.12 (s, 1H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.2, 138.5, 138.3, 137.9, 134.2, 130.7, 130.4, 129.6, 129.0, 128.9, 128.1, 128.1, 127.3, 127.1, 127.0, 125.3, 125.0, 122.8, 121.9, 121.6, 121.2, 117.7, 116.5, 22.4. HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClN₂ [M+H]⁺ 369.1153, found 369.1152

5-(3-Fluorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3an)

Yellow solid. 24.6 mg, Yield: 70%, mp 162-163 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.77 (d, J = 8.1 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (dt, J = 20.9, 7.4 Hz, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.22 – 7.13 (m, 2H), 7.10 (d, J = 9.3 Hz, 1H), 5.46 (s, 1H), 5.12 (s, 1H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 162.6 (d, J = 247.1 Hz), 149.2, 138.8 (d, J = 8.0 Hz), 138.2, 137.9, 130.4, 129.8 (d, J = 8.4 Hz), 129.0, 128.1, 127.2 (d, J = 20.3 Hz), 127.0, 126.6, 125.4, 125.1 (d, J = 1.9 Hz), 122.8, 121.8, 121.5, 121.2, 118.0, 117.7, 116.5, 114.9 (d, J = 20.9 Hz), 22.3. ¹⁹**F NMR** (376 MHz, CDCl₃, ppm) δ -112.98. HRMS (ESI) *m/z* calcd for C₂₄H₁₈FN₂ [M+H]⁺ 353.1449, found 353.1448

5-(2-Methoxyphenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ao)

Yellow solid. 30.5 mg, Yield: 84%, mp 159-160 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.80 (d, J = 8.1 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.6 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.45 – 7.34 (m, 2H), 7.27 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 8.3 Hz, 1H), 5.40 (s, 1H), 5.23 (s, 1H), 3.73 (s, 3H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 157.8, 149.1, 138.6, 138.3, 132.0, 130.5, 129.7, 129.4, 127.8, 127.1, 127.0, 126.9, 125.5, 125.4, 123.3, 122.7, 121.2, 120.5, 119.9, 117.6, 116.6, 110.7, 55.3, 21.8. HRMS (ESI) *m/z* calcd for C₂₅H₂₁N₂O [M+H]⁺ 365.1648, found 365.1647

5-(2-Chlorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ap)

Yellow solid. 30.1 mg, Yield: 82%, mp 196-197 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.79 (d, J = 8.2 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.51 (t, J = 7.7 Hz, 1H), 7.48 – 7.33 (m, 4H), 7.30 (d, J = 8.2 Hz, 1H), 5.39 (s, 1H), 5.30 (s, 1H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.3, 138.4, 138.2, 135.7, 135.2, 132.3, 130.6, 129.7, 129.6, 128.4, 128.1, 127.3, 127.2, 126.8, 126.5, 125.3, 123.9, 122.9, 121.5, 121.2, 120.3, 117.7, 116.6, 21.9. HRMS (ESI) *m/z* calcd for C₂₄H₁₈ClN₂ [M+H]⁺ 369.1153, found 369.1152

5-(2-Fluorophenyl)-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3aq)

Yellow solid. 28.5 mg, Yield: 81%, mp 209-210 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.79 (d, J = 8.1 Hz, 1H), 8.53 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.34 (dtd, J = 32.3, 17.0, 16.1, 8.5 Hz, 5H), 5.45 (s, 1H), 5.25 (s, 1H), 2.31 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 160.7 (d, J = 245.9 Hz), 149.2, 139.0, 138.3, 132.7, 130.6, 130.3 (d, J = 8.0 Hz), 128.9, 128.1, 127.3 (d, J = 11.1 Hz), 126.5, 125.4, 124.3, 124.1 (d, J = 4.0 Hz), 122.8, 121.5, 121.2, 120.7, 120.2, 117.7, 116.6, 115.8 (d, J = 21.9 Hz), 21.8. ¹⁹**F NMR** (376 MHz, CDCl₃, ppm) δ -112.52. HRMS (ESI) m/z calcd for C₂₄H₁₈FN₂ [M+H]⁺ 353.1449, found 353.1448

5-Butyl-6-(prop-1-en-2-yl)indazolo[3,2-a]isoquinoline (3ar)

Yellow solid. 20.4 mg, Yield: 65%, mp 189-190 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H** NMR (400 MHz, CDCl₃, ppm) δ 8.73 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.72 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 5.76 (s, 1H), 5.37 (s, 1H), 3.26 – 3.15 (m, 1H), 3.09 – 2.94 (m, 1H), 2.36 (s, 3H), 1.85 – 1.50 (m, 4H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 148.9, 139.0, 137.5, 129.7, 128.3, 127.6, 127.0, 126.8, 125.8, 124.9, 123.9, 123.3, 121.1, 121.1, 119.6, 117.5, 116.5, 33.7, 28.8, 23.4, 22.2, 14.0. HRMS (ESI) *m/z* calcd for C₂₂H₂₃N₂ [M+H]⁺ 315.1856, found 315.1855

6-(Prop-1-en-2-yl)-5-(thiophen-2-yl)indazolo[3,2-a]isoquinoline (3as)

Yellow solid. 27.5 mg, Yield: 81%, mp 168-169 °C. column chromatography eluent, EtOAc/PE = $1:80 \rightarrow 1:60$

¹**H** NMR (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.62 – 7.48 (m, 4H), 7.38 (t, J = 7.5 Hz, 1H), 7.32 (s, 1H), 7.16 (d, J = 4.7 Hz, 1H), 5.50 (s, 1H), 5.16 (s, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.2, 138.6, 138.2, 136.0, 130.3, 130.3, 129.5, 128.0, 127.2, 127.0, 127.0, 125.3, 125.3, 125.1, 122.7, 121.5, 121.4, 121.2, 121.0, 117.7, 116.5, 22.3. HRMS (ESI) *m/z* calcd for C₂₂H₁₇N₂S [M+H]⁺ 341.1107, found 341.1107

6-(Cyclopent-1-en-1-yl)-5-phenylindazolo[3,2-a]isoquinoline (3at)

Yellow solid. 30.6 mg, Yield: 85%, mp 174-175 °C. column chromatography eluent, $EtOAc/PE = 1:80 \rightarrow 1:60$

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.76 (d, J = 8.1 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.71 (t, J = 7.3 Hz, 1H), 7.59 – 7.42 (m, 6H), 7.39 – 7.32 (m, 3H), 5.73 (s, 1H), 2.95 – 2.77 (m, 2H), 2.44 – 2.30 (m, 2H), 2.02 (p, J = 7.3 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 149.1, 137.1, 136.6, 136.2, 134.9, 130.7, 130.3, 129.2, 128.1, 127.8, 127.6, 127.5, 127.2, 127.0, 126.8, 125.4, 122.7, 121.3, 121.2, 117.7, 116.5, 35.6, 33.2, 23.6. HRMS (ESI) *m/z* calcd for C₂₆H₂₁N₂ [M+H]⁺ 361.1699, found 369.1700

6. References

(1) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Synthesis of 3-Substituted Indazoles from Arynes and N-Tosylhydrazones. *Org. Lett.* **2011**, *13*, 3340–3343.

(2) (a) Panyam, P. K. R.; Gandhi, T. Palladium(II)/N-Heterocyclic Carbene-Catalyzed Regioselective Heteroannulation of Tertiary Propargyl Alcohols and o-Haloanilines to form 2-Alkenylindoles. *Adv. Synth. Catal.* **2017**, *359*, 1144-1151.

(b) Hashmi, A. S. K.; Wang, T.; Shi, S.; Rudolph, M. Regioselectivity Switch: Gold(I)-Catalyzed Oxidative Rearrangement of Propargyl Alcohols to 1,3-Diketones. *J. Org. Chem.* **2012**, *77*, 7761–7767.

(3) Song, Z.; Yang, Z.; Wang, P.; Shi, Z.; Li, T.; Cui, X. Ruthenium(II)-Catalyzed Regioselective [3 + 2] Spiroannulation of 2H-Imidazoles with 2-Alkynoates. *Org. Lett.* **2020**, *22*, 6272–6276

(4) Huang, L.; Yao, Z.; Huang, G.; Ao, Y.; Zhu, B.; Li, S.; Cui, X. One-Pot Synthesis of Fused Indolin-3-Ones via a [3+3] Cycloaddition Reaction. *Adv. Synth. Catal.* **2021**, *359*, 5092–5098.

7. Copies of NMR Spectra.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (CDCl₃) spectrum of **3ba**

¹H NMR (CDCl₃) spectrum of **3ca**

¹H NMR (CDCl₃) spectrum of **3da**

S25

¹H NMR (CDCl₃) spectrum of **3ea**

¹H NMR (CDCl₃) spectrum of **3fa**

- 2.24

11.5

10.5

¹³C NMR (CDCl₃) spectrum of **3ga**

¹H NMR (CDCl₃) spectrum of **3ha/3ha'**

 8.53

 8.45

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.845

 8.846

 8.846

 8.847

 8.847

 8.847

 8.847

 8.848

 8.959

 8.950

 8.960

 8.980

 8.980

 8.980

 8.980

 8.990

 8.990

 8.990

 8.990

 8.990

 8.990

 8.990

 8.990

 8.990

 8.990

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910

 8.910</td

¹³C NMR (CDCl₃) spectrum of **3ha/3ha'**

$\begin{array}{c} 159.3\\ 157.2\\ 149.3\\ 149.3\\ 149.3\\ 149.3\\ 138.2\\ 138.2\\ 138.2\\ 138.2\\ 138.2\\ 138.2\\ 138.2\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1128.5\\ 1118.6\\ 1118$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 2.15

0 ~ 8 9 8 9 6 8 ~	ພາດຫຈ∕ດ, ບ ∕ ບ N ທ ອ ອ ອ ອ ອ	2
		0.0
		40

¹³C NMR (CDCl₃) spectrum of **3ia**

S32

S33

¹H NMR (CDCl₃) spectrum of **3la**

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

¹H NMR (CDCl₃) spectrum of **3ma**

¹³C NMR (CDCl₃) spectrum of **3na**

¹H NMR (CDCl₃) spectrum of **30a**

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (CDCl₃) spectrum of **3ab**

8.79 8.77 8.555 8.555 8.557 8.657 7.77 7.77 7.77 7.77 7.77 7.77 7.77	5.15	2.51 2.27
		1.1

¹³C NMR (CDCl₃) spectrum of **3ab**

¹³C NMR (CDCl₃) spectrum of **3ac**

¹³C NMR (CDCl₃) spectrum of **3ae**

¹³C NMR (CDCl₃) spectrum of **3af**

¹H NMR (CDCl₃) spectrum of **3ag**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (CDCl₃) spectrum of **3ah**

¹³C NMR (CDCl₃) spectrum of **3ah**

¹H NMR (CDCl₃) spectrum of **3ai**

Ò.

¹H NMR (CDCl₃) spectrum of **3aj**

¹³C NMR (CDCl₃) spectrum of **3ak**

¹³C NMR (CDCl₃) spectrum of **3am**

- 2.27

¹³C NMR (CDCl₃) spectrum of **3an**

¹⁹F NMR (CDCl₃) spectrum of **3an**

¹H NMR (CDCl₃) spectrum of **3ao**

¹³C NMR (CDCl₃) spectrum of **3ao**

f1 (ppm)

¹H NMR (CDCl₃) spectrum of **3ap**

¹³C NMR (CDCl₃) spectrum of **3ap**

¹³C NMR (CDCl₃) spectrum of **3aq** $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & &$

¹H NMR (CDCl₃) spectrum of **3ar**

$\begin{array}{c} 8.73\\ 8.72\\ 8.74\\ 8.75\\ 8.77\\ 8.75\\ 8.75\\ 8.75\\ 7.75\\$

¹³C NMR (CDCl₃) spectrum of **3ar**

¹³C NMR (CDCl₃) spectrum of **3as**

8. Agarose gel electrophoresis⁴

The neat and clear strips of nucleic acids (DNA strands) were observed by using agarose gel electrophoresis, applying **3fa** as nucleic acid dye.

4S Red Plus 3fa

9. UV and fluorescence spectra

Compound	$\lambda_{\rm em} ({\rm nm})^a { m in} \ { m CH}_2 { m Cl}_2$	$\lambda_{ex} (nm)^b$ in CH_2Cl_2	$(\Phi^{f})^{c}$ in $CH_{2}Cl_{2}$	Stokes shift ^d /nm
	442	302	8.03	140
3ba	441	307	5.82	134
3da	439	304	5.22	135
3ea	445	295	10.37	150
3fa	442	303	18.12	139
3ia	436	304	3.83	132
3ja	442	305	6.73	137
3ab	441	302	7.85	139
3af	436	302	11.22	134
3ag	439	303	10.69	136
3aj	442	303	10.19	139

Table S3 Excitation maxima, emission maxima of 6-alkenylindazolo[3,2-a]isoquinolines in DCM

^{*a*} Excitation maxima in CH₂Cl₂ (10⁻⁵M). ^{*b*} emission maxima in CH₂Cl₂ (10⁻³M). ^{*C*} Relative quantum yield determined in CH₂Cl₂ with an integrating sphere system. ^{*d*} Stokes shift = $\lambda_{em} - \lambda_{ex}$

S65

10. Fluorescence labeling

The fluorescence labeling performance of **3aa** in zebrafish embryos was assayed in a 6-well plate. And zebrafish embryos were exposed to **3aa** from a 1 g/L DMSO stock to final concentrations ranging from 1×10^{-2} g/L to 1×10^{-3} g/L. After treating for each 24 h, the supernatant was removed and a solution of the same concentration was added to each well. The fluorescence labeling performance was observed using stereo fluorescence microscope under 405 nm UV light for visualization after incubating for 72 h at 28 °C. Compared with blank control which cultured zebrafish in water, the product **3aa** accumulated at the yolk of the zebrafish larvae.

