Supplementary information

Cobalt-catalyzed Highly Selective Hydroxylation of Organohydrosilanes and Hydrosiloxanes

Peng Guo, Ling-Chao Cheng, Xinglei He and Ke-Yin Ye*

Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.

* E-mail: kyye@fzu.edu.cn

	Table of Contents	
1.	General Information	3
2.	Optimizations of Reaction Conditions	5
3.	General Procedures	8
	GP1 – <i>Co-catalyzed the synthesis of silanols</i>	
	GP2 – Co-catalyzed the synthesis of disiloxanes	
	GP3 – Co-catalyzed the synthesis of alkyloxylsilanes	
4.	Characterization of Products	10
5.	X-ray Diffraction Analyses of Cobalt Complexes K1 and K2	26
6.	The Synthesis and Characterization of Silicon Polymer	35
7.	Mechanistic Studies	37-44
	7.1 Exploration of the origin of the oxygen atom	
	7.2 Analysis of H_2 gas by gas chromatography	
	7.3 Radical inhibition experiment	
	7.4 Proof of a stereo-retentive oxidation	
	7.5 Investigation on the selectivity of silanol and disiloxane	
8.	References	45
9.	NMR Spectra	46

1. General Information

All reactions were performed under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise indicated. All commercial reagents were used without further purification unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) analysis. TLC plates were viewed under UV light and stained with potassium permanganate. Yields refer to products isolated after purification by column chromatography unless otherwise stated. Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra, and fluorine nuclear magnetic resonance (¹⁹F NMR) were recorded on Bruker AV-400 (400 MHz) and JEOL-500 (500 MHz) spectrometers. NMR samples were dissolved in CDCl₃ (unless specified otherwise) and chemical shifts are reported in ppm referenced to residual non-deuterated solvent. IR spectra were obtained from Thermo Scientific NICOLET 380 FT-IR (KCl card). HRMS were obtained on an Exactive Plus LC-MS (ESI) mass spectrometer with the use of a quadrupole analyzer or Agilent 7820A GC-MS with EI mode.

The number-average molecular weight (M_n), weight-average molecular weight (M_w) and the Polydispersity index (PDI = M_w/M_n) of the obtained polymers were determined by a Waters 1515 series gel permeation chromatograph (GPC) equipped with a Waters 2414 refractive index detector, using a Styragel HR3THF (7.8×300 mm) Column, and a Styragel HR4THF (7.8×300 mm) Column with measurable molecular weights ranging from 102 to 106 g mol⁻¹.

Unsuccessful substrates:

Scheme S1. Substrate scope of disiloxanes.

^{*a*} Reaction conditions B: **1** (5 mmol, 1.0 equiv.), H₂O (10 mmol, 2.0 equiv.), Co(acac)₂ (0.25 mmol, 5 mol%), and **L4** (0.5 mmol, 10 mol%) were added THF (*c* 2.5 M) under air at 60 °C for 24 h; ^{*b*} Reaction temperature at -20 °C for 3 h; ^{*c*} Reaction temperature at -20 °C for 1 h.

^{*a*} Reaction conditions: 1 (5 mmol, 1.0 equiv.), $Co(OAc)_2$ (0.025 mmol, 0.5 mol%), and L3 (0.05 mmol, 1 mol%) were added to alcohols (*c* 2.5 M) under air at 60 °C for 10 h; ^{*b*} CH₃OH (4.0 mL), dichloromethane (1.0 mL) and 1,4-dioxane (1.0 mL) as the co-solvent; ^{*c*} 5 mol% Co(OAc)₂.

2. Optimization of Reaction Conditions

^{*a*} Reaction conditions: **1** (0.2 mmol, 1.0 equiv.), H_2O (0.4 mmol, 2.0 equiv.), $Co(acac)_2$ (0.02 mmol, 10 mol%) and Ligand (0.04 mmol, 20 mol%) were added to THF (*c* 0.2 M) under nitrogen atmosphere for 10 h. ^{*b*} The yield was given with CH₂Br₂ as the internal standard.

2.1 Optimization of the hydroxylation of silanes

2.1.1 Screening of the cobalt catalysts

Me Si-H + H ₂ O — Ph	Co Cat. (10 mol%) L3 (20 mol%) THF (c 0.2 M), 60 °C under N₂, 10 h 2	$H \xrightarrow{Ph}_{N} \xrightarrow{Ph}_{N-CH_3}$
Entry ^a	Co cat.	Yield ^b
1	Co(OAc) ₂ ·4H ₂ O	80%
2	CoCl ₂ 6H ₂ O	trace
3	CoF ₂	27%
4	CoCl ₂	trace
5	CoBr ₂	trace
6	6 CoF ₂ ·4H ₂ O	
7	Co(BF ₄) ₂ ·6H ₂ O	trace
8	Co(OAc) ₂	87%
9	Co(acac) ₂	81%

^{*a*} Reaction conditions: **1** (0.2 mmol, 1.0 equiv.), H₂O (0.4 mmol, 2.0 equiv.), Co Cat. (0.02 mmol, 10 mol%) and **L3** (0.04 mmol, 20 mol%) were added to THF (c 0.2 M) under nitrogen atmosphere for 10 h. ^{*b*} The yield was given with CH₂Br₂ as the internal standard.

2.1.2 Screening of the solvents and reaction time

$Me + H_2O$	Co(OAc) ₂ (10 mol%) L3 (20 mol%) Solvent (c 0.2 M), 60 °C under N ₂ , 10 h	$ \begin{array}{c} $	
Entry ^a	Slovent	Yield ^b	
1	Et ₂ O	11%	
2	DCM	trace	
3	EA	trace	
4	1,4-dioxane	100%(94%)	
5	DCE	trace	
6	CH ₃ CN	67%	
7	THF	87%	
8 ^c	1,4-dioxane	73%	

^{*a*} Reaction conditions: **1** (0.2 mmol, 1.0 equiv.), H_2O (0.4 mmol, 2.0 equiv.), $Co(OAc)_2$ (0.02 mmol, 10 mol%) and **L3** (0.04 mmol, 20 mol%) were added to solvent (*c* 0.2 M) under nitrogen atmosphere for 10 h. ^{*b*} The yield was given with

 CH_2Br_2 as the internal standard and the isolated yield was given in the parentheses. ^{*c*} Reaction time = 5 h.

Me Si H Ph	+ H ₂ O	Co(OAc) ₂ (X mol%) L3 (Y mol%) 1,4-dioxane (c 2.5 M), 6 under N ₂ , 10 h		Me Si-OH Ph 2	$Ph \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{H_3C} \xrightarrow{L_3} \xrightarrow{Ph} \xrightarrow{H_3C} H_$
	Entry ^a	Х	Y	Yiel	d ^b
	1	0.5	1	629	%
	2	1	2	749	%
	3	10	20	779	%
	4 ^c	10	20	589	%
	5 ^{c,d}	0.5	1	100% (97%)
	6 ^{<i>c,d</i>}	-	1	N.F	R.
	7 ^{c,d}	0.5	-	N.F	र.

2.1.3 Optimization of gram-scaled hydroxylation reaction

^{*a*} Reaction conditions: **1** (5 mmol, 1.0 equiv.), H₂O (10.0 mmol, 2.0 equiv.), Co(OAc)₂ and **L3** were added to 1,4-dioxane (*c* 2.5 M) under nitrogen atmosphere for 10 h. ^{*b*} The yield was given with CH₂Br₂ as the internal standard and the isolated yield was given in the parentheses. ^{*c*} Under air. ^{*d*} 80 °C.

2.2 Optimization for the preparation of disiloxane

2.2.1 The ratio of Co(acac)2 and ligand L4

Me Ph <mark>-Si-</mark> H +	$H_2O \qquad \frac{Co(acac)_2 / L4 (1)}{$	0 mol%) Me ───≻ Ph <mark>-Si-</mark> OH +	Me Me + Ph <mark>-Si-O-Si-</mark> Ph
Ph	THF (c 0.2 M),	60 °C Ի՛h	Ph Ph
1a 0.2 mmol	(2.0 equiv.) N ₂ , 10 h	2a	3a
entry	Co(acac) ₂ / L4	yield (2a)	yield (3a)
1	1.0 : 1.0	30%	trace
2	1.0 : 1.5	19%	55%
3	1.0 : 2.0	trace	89%

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), H_2O (0.4 mmol, 2.0 equiv.), $Co(acac)_2$ and **L4** were added to THF (*c* 0.2 M) under N₂ for 10 h. ^{*b*} The yield was given with CH₂Br₂ as the internal standard.

2.2.2 Optimization of gram-scale preparation

$Me + H_2O$ Ph 2.0 equiv	Co(acac) ₂ (X mol%) <u>L4 (Y mol%)</u> THF (<i>c</i> 2.5 M), 60 °C Under air, 10 h	Me Si-O Ph	Ph Ph Ph L4
Entry ^a	x	Υ	3 ^b
1	0.5	1	58%
2	1	2	70%
3	5	10	86%
4	10	20	88%
5 ^c	5	10	100% (93%)
6 ^c	-	10	N.P.
7 ^c	5	-	N.P.

^{*a*} Reaction conditions: **1** (5 mmol, 1.0 equiv.), H_2O (10.0 mmol, 2.0 equiv.), $Co(acac)_2$ and **L4** were added to THF (*c* 2.5 M) under air for 10 h. ^{*b*} The yield was given with CH_2Br_2 as the internal standard and the isolated yield was given in the parentheses. ^{*c*} Reaction time = 24 h.

2.3 Screening of Mn or Fe as the precatalyst

		meta	l Cat. (5 mol%)		
Me		L4 (10 mol%)		Me	Me Me
Ph <mark>-Si-</mark> H +	H ₂ O –		►	Ph-Si-OH +	Ph <mark>-Si-O-Si-</mark> Ph
Ρh	(2.0	THF	(c 0.2 M), 60 ^o C	Ρ'n	Ph Ph
1a	(2.0 equiv.)		air, 24 h	22	39
(0.2 mmol)				24	54
Entry ^a	metal ca	nt.	starting material ^b	yield (2a) ^b	yield (3a) ^b
1	Fe(acac) ₂		86%	0%	0%
2	Fe(acac) ₃		84%	0%	0%
3	Mn(acac) ₂ •2H ₂ O		78%	10%	3%
4	Mn(acac) ₃		94%	0%	0%
5	Fe(OAc) ₂	100%	0%	0%
6	6 Mn(OAc) ₂ • 2H ₂ O		94%	0%	0%

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), H_2O (0.4 mmol, 2.0 equiv.), Metal catalyst and **L4** were added to THF (*c* 0.2 M) under air for 24 h. ^{*b*} The yield was given with CH_2Br_2 as the internal standard.

3. General Procedures

General Procedure 1 (GP 1) - Co-catalyzed the synthesis of silanols

To a 10 mL flame-dried Schlenk tube with a stir bar was added silanes (5 mmol), $Co(OAc)_2$ (0.5 mol%), and L3 (1 mol%). H₂O (175 µL) and 1,4-dioxane (2.5 M) were added *via* syringe at 80 °C (oil bath) under air for 10 h. After that, the reaction mixture was directly concentrated by rotary evaporation. The hydroxylated products were isolated by silica column chromatography (typically 10% of ethyl acetate in petroleum ether).

General Procedure 2 (GP 2) - Co-catalyzed the synthesis of disiloxanes

To a 10 mL flame-dried Schlenk tube with a stirring bar was added silane (5 mmol), Co(acac)₂ (5 mol%), L4 (10 mol%), H₂O (10 mmol) and THF (2.5 M) at 60 °C (oil bath) under air for 24 h. After that, the reaction mixture was directly concentrated by rotary evaporation. The disiloxane products were isolated by silica column chromatography (typically 10% of ethyl acetate in petroleum ether).

General Procedure 3 (GP 3) - Co-catalyzed the synthesis of alkyloxylsilanes

To a 10 mL flame-dried Schlenk tube with a stirring bar was added silane (5 mmol), $Co(OAc)_2$ (0.5 mol%), L3 (1 mol%), and related alcohols (2.5 M) as solvent at 60 °C (oil bath) under air for 10 h. After that, the reaction mixture was directly concentrated by rotary evaporation. The alkoxylate products were isolated by silica column chromatography (typically 10% of ethyl acetate in petroleum ether).

4. Characterization of Products

2a, Methyldiphenylsilanol^[1]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.04 g (97% yield) of the desired product as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.65 – 7.61 (m, 4H), 7.48 – 7.44 (m, 2H), 7.43 – 7.38 (m, 4H), 2.99 (br s, 1H), 0.67 (s, 3H).

2b, Triphenylsilanol^[1]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.30 g (94% yield) of the desired product as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.66 – 7.62 (m, 6H), 7.48 – 7.42 (m, 3H), 7.41 – 7.37 (m, 6H), 2.50 (br s, 1H).

2c, (4-(tert-butyl)phenyl)diphenylsilanol^[2]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.30 g (78% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.1 Hz, 4H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.48 – 7.35 (m, 8H), 2.63 (br s, 1H), 1.34 (s, 9H).

2d, diphenyl(p-tolyl)silanol^[2]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.26 g (87% yield) of the desired product as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 4H), 7.52 – 7.44 (m, 2H), 7.43 – 7.33 (m, 2H), 7.35 – 7.27 (m, 4H), 7.17 – 7.11 (m, 2H), 2.99 (br s, 1H), 2.33 (s, 3H).

2e, (4-methoxyphenyl)diphenylsilanol^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.50 g (98% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 7.4 Hz, 4H), 7.55 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.34 (m, 6H), 6.94 (d, *J* = 7.8 Hz, 2H), 3.83 (s, 3H), 2.39 (br s, 1H).

2f, diphenyl(4-(trifluoromethyl)phenyl)silanol^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.50 g (88% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.59 (dd, *J* = 8.2, 4.1 Hz, 6H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 4H), 3.54 (br s, 1H).

2g, ethyl 4-(hydroxydiphenylsilyl)benzoate^[2]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.60 g (92% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.63 (dd, *J* = 8.0, 1.4 Hz, 4H), 7.49 – 7.42 (m, 2H), 7.41 – 7.33 (m, 4H), 4.38 (br s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H).

2h, 4-(hydroxydiphenylsilyl)benzonitrile^[2]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.37 g (91% yield) of the desired product as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 – 7.69 (m, 2H), 7.59 (dd, *J* = 8.1, 1.4 Hz, 4H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.42 – 7.35 (m, 4H), 4.13 (br s, 1H).

2i, diphenyl(2-(trifluoromethyl)phenyl)silanol

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.90 g (99% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.62 – 7.54 (m, 5H), 7.53 – 7.44 (m, 3H), 7.41 (t, J = 7.2 Hz, 4H), 2.93 (br s, 1H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 138.1, 135.3 (q, J = 31.1 Hz), 135.1, 134.9, 133.5, 130.8, 130.2, 130.1, 127.9, 126.3 (q, J = 5.2 Hz), 124.9 (q, J = 274.3 Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -57.4. **IR** (neat, cm⁻¹): 3061 (br), 1112 (s), 699 (s), 500 (s), 822 (m); **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₁₉H₁₅F₃NaOSi: 367.0736; Found: 367.0733.

2j, dibenzo[b,d]furan-4-yldiphenylsilanol^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.57 g (86% yield) of the desired product as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.10 (dd, *J* = 7.7, 1.4 Hz, 1H), 8.03 – 7.98 (m, 1H), 7.83 – 7.77 (m, 4H), 7.59 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.54 – 7.49 (m, 3H), 7.48 – 7.43 (m, 5H), 7.42 – 7.36 (m, 2H), 3.66 (br s, 1H).

2k, dibenzo[b,d]thiophen-4-yldiphenylsilanol^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.81 g (95% yield) of the desired product as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.26 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.17 (dd, *J* = 7.0, 1.9 Hz, 1H), 7.76 (dd, *J* = 6.9, 1.6 Hz, 1H), 7.71 (dd, *J* = 8.0, 1.3 Hz, 4H), 7.65 – 7.61 (m, 1H), 7.52 – 7.38 (m, 9H), 2.88 (br s, 1H).

21, furan-3-yldiphenylsilanol

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.31 g (98% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 – 7.62 (m, 4H), 7.56 (t, *J* = 1.6 Hz, 1H), 7.51 – 7.36 (m, 7H), 6.51 (dd, *J* = 1.8, 0.8 Hz, 1H), 3.08 (br s, 1H).¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.3 , 143.2 , 135.2 , 134.5 , 130.1 , 127.9 , 114.7 , 113.6 . **IR** (neat, cm⁻¹): 3291 (br), 1121 (s), 827 (m), 704 (s), 499 (s). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₁₆H₁₄NaO₂Si: 289.0655; Found: 289.0652.

2m, diphenyl(thiophen-2-yl)silanol^[3]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.40 g (99% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 – 7.67 (m, 5H), 7.54 – 7.47 (m, 2H), 7.47 – 7.39 (m, 5H), 7.27 (dd, *J* = 4.6, 3.3 Hz, 1H), 2.90 (br s, 1H).

2n, dimethyl(phenyl)silanol^[1]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.58 g (76% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 7.3 Hz, 2H), 7.44 – 7.35 (m, 3H), 2.25 (br s, 1H), 0.41 (s, 6H).

20, dimethyl(naphthalen-1-yl)silanol^[1]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.71 g (70% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.43 – 8.35 (m, 1H), 7.96 (dd, *J* = 8.8, 3.2 Hz, 2H), 7.85 (d, *J* = 6.8 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.56 – 7.48 (m, 1H), 3.93 (br s, 1H), 0.63 (s, 6H).

2p, dimethyl(naphthalen-2-yl)silanol^[1]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.79 g (78% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.90 – 7.81 (m, 3H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.47 (m, 2H), 2.78 (br s, 1H), 0.49 (s, 6H).

2q, Benzyldimethylsilanol^[1]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.76 g (91% yield) of the desired product as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.20 (m, 2H), 7.13 – 7.02 (m, 3H), 2.18 (s, 2H), 1.67 (br s, 1H), 0.14 (s, 6H).

2r, Tribenzylsilanol

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.42 g (89% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.28 – 7.20 (m, 6H), 7.14 (d, J = 7.3 Hz, 3H), 7.01 (d, J = 7.4 Hz, 6H), 2.19 (s, 6H), 1.75 (br s, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 137.9, 128.50, 128.47, 124.6, 24.0. **IR** (neat, cm⁻¹): 3613 (br), 776 (m), 733 (s), 698 (s), 477 (m); **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₁H₂₂NaO: 341.1332; Found: 341.1327.

2s, 1,4-phenylenebis(diphenylsilanol)^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.35 g (57% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 – 7.56 (m, 12H), 7.48 – 7.33 (m, 12H), 2.51 (br s, 2H).¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 138.1, 136.3, 134.5, 133.7, 129.7, 127.8.

2t, (4-(dimethylsilyl)phenyl)dimethylsilanol

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.50 g (48% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.56 (m, 4H), 4.48 (p, *J* = 3.7 Hz, 1H), 2.76 (br s, 1H), 0.42 (s, 6H), 0.40 (d, *J* = 3.7 Hz, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 140.0 , 139.0 , 133.4 , 132.4 , -0.1 , -3.9 . **IR** (neat, cm⁻¹): 3269 (br), 2121 (m), 868 (s), 826 (s), 772 (s); RMS (EI-QTOF) m/z: [M]⁺ Calcd. for C₁₀H₁₈OSi₂: 210.0896; Found: 210.0899.

from (-)-bornel

2u, (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(hydroxydiphenylsilyl)benzoate^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 2.00 g (88% yield, dr > 20:1) of the desired product as white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.9 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.62 (d, *J* = 7.1 Hz, 4H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 4H), 5.16 – 5.06 (m, 1H), 3.26 (br s, 1H), 2.54 – 2.40 (m, 1H), 2.20 – 2.05 (m, 1H), 1.87 – 1.76 (m, 1H), 1.74 (t, *J* = 4.4 Hz, 1H), 1.49 – 1.35 (m, 1H), 1.35 – 1.24 (m, 1H), 1.11 (dd, *J* = 13.8, 3.3 Hz, 1H), 0.97 (s, 3H), 0.92 (d, *J* = 4.5 Hz, 6H).

from L-menthol

2v, (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-(hydroxydiphenylsilyl)benzoate^[2]

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 2.02 g (88% yield, dr > 20:1) of the desired product as white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.66 – 7.58 (m, 4H), 7.46 (t, *J* = 7.3 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 4H), 4.95 (td, *J* = 10.8, 4.3 Hz, 1H), 3.38 (br s, 1H), 2.21 – 2.06 (m, 1H), 1.97 (pd, *J* = 6.9, 2.5 Hz, 1H), 1.80 – 1.69 (m, 2H), 1.21 – 1.05 (m, 2H), 0.90 – 0.97 (m, 2H), 0.94 (m, 7H), 0.80 (d, *J* = 6.9 Hz, 3H).

2w, 4-(hydroxydiphenylsilyl)phenyl 2-(4-isobutylphenyl)propanoate^[2]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.79 g (74% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.56 (m, 6H), 7.48 – 7.41 (m, 2H), 7.38 (t, *J* = 7.2 Hz, 4H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 3.95 (q, *J* = 7.1 Hz, 1H), 2.64 (br s, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.95 – 1.79 (m, 1H), 1.61 (d, *J* = 7.1 Hz, 3H), 0.92 (d, *J* = 6.6 Hz, 6H).

3a, 1,3-dimethyl-1,1,3,3-tetraphenyldisiloxane^[4]

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.95 g (93% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 – 7.54 (m, 8H), 7.40 (d, J = 6.9 Hz, 12H), 0.67 (s, 6H).

3b, 1,3-dimethyl-1,1,3,3-tetra-p-tolyldisiloxane^[5]

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.00 g (87% yield) of the desired product as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.95 – 7.78 (m, 8H), 7.58 – 7.42 (m, 8H), 2.69 (s, 12H), 0.99 (s, 6H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 139.2, 134.4, 134.1, 128.5, 21.5, -0.3.

3c, 1,1,3,3-tetrakis(4-methoxyphenyl)-1,3-dimethyldisiloxane

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.58 g (44% yield) of the desired product as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 8.4 Hz, 8H), 6.92 (d, *J* = 8.4 Hz, 8H), 3.85 (s, 12H), 0.58 (s, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 160.7, 135.5, 129.1, 113.4, 54.9, -0.2. **IR** (neat, cm⁻¹): 1590 (s), 1029 (s), 799 (s), 520 (m); **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₃₀H₃₄NaO₅Si₂: 553.1837; Found: 553.1836.

3d, tetraethyl 4,4',4",4"'-(1,3-dimethyldisiloxane-1,1,3,3-tetrayl)tetrabenzoate

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.43 g (82% yield) of the desired product as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 8.2 Hz, 8H), 7.57 (d, *J* = 8.2 Hz, 8H), 4.33 (q, *J* = 7.1 Hz, 8H), 1.33 (t, *J* = 7.2 Hz, 12H), 0.64 (s, 6H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.0, 141.8, 133.6, 131.6, 128.5, 60.7, 14.0, -1.2. **IR** (neat, cm⁻¹): 2980 (br), 1715 (s), 1267 (s), 1085 (s), 739 (s); **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₃₈H₄₂O₉Si₂: 699.2440; Found: 699.2437.

3e, 4,4',4",4"'-(1,3-dimethyldisiloxane-1,1,3,3-tetrayl)tetrabenzonitrile

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 3:1) afforded 0.90 g (70% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 7.8 Hz, 8H), 7.53 (d, *J* = 7.8 Hz, 8H), 0.66 (s, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 141.4, 134.1, 131.5, 118.2, 114.2, -1.2. **IR** (neat, cm⁻¹): 2228 (m), 1386 (m), 1060 (s), 794 (s), 557 (s). **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₃₀H₂₂N₄NaOSi₂: 533.1224; Found: 533.1228.

3f, 1,1,3,3-tetramethyl-1,3-diphenyldisiloxane^[4]

Synthesized according to **GP 2**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.23 g (32% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.69 (m, 4H), 7.57 – 7.47 (m, 6H), 0.52 (s, 12H).

3g, 1,3-dimethyl-1,3-diphenyl-1,3-bis(4-(trifluoromethyl)phenyl)disiloxane

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 7.8 Hz, 4H), 7.56 (d, J = 7.9 Hz, 4H), 7.53 – 7.47 (m, 4H), 7.47 – 7.40 (m, 2H), 7.39 – 7.32 (m, 4H), 0.64 (s, 6H). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.98. ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 142.04, 136.15, 134.17, 133.85, 131.57 (q, J = 32.2 Hz), 130.12, 128.00, 124.35 (q, J = 3.8 Hz), 124.09 (q, J = 272.3 Hz), - 0.80. **IR** (neat, cm⁻¹): 1322 (s), 1163 (m), 1117 (s), 1053 (s), 790 (m); RMS (EI-QTOF) m/z: [M]⁺ Calcd. for C₂₈H₂₄OF₆Si₂: 546.1270; Found: 546.1270.

4a, Methoxytriphenylsilane^[2]

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.38 g (95% yield) of the desired product as a colorless oil. The gram-scale reaction was run on a 20.0 mmol scale and the desired product **4a** was obtained in 83% yield (3.80 g).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.73 (m, 6H), 7.59 – 7.45 (m, 9H), 3.77 (s, 3H).

4b, Dimethoxydiphenylsilane^[6]

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.66 g (54% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.83 – 7.77 (m, 4H), 7.22 – 7.16 (m, 6H), 3.45 (s, 6H).

4c, dimethoxydi(naphthalen-1-yl)silane^[7]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.48 g (86% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 7.7 Hz, 2H), 8.06 (d, *J* = 6.7 Hz, 2H), 7.94 (d, *J* = 8.2 Hz, 2H), 7.87 – 7.80 (m, 2H), 7.54 – 7.47 (m, 2H), 7.47 – 7.38 (m, 4H), 3.65 (s, 6H).

4d, 1,4-bis(methoxydiphenylsilyl)benzene

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.00 g (40% yield) of the desired product as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.59 (m, 12H), 7.50 – 7.34 (m, 12H), 3.64 (s, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 135.9, 135.4, 134.6, 133.7, 130.1, 127.9, 51.9.**IR** (neat, cm⁻¹): 3054 (br), 1082 (s), 696 (s), 531 (s). **HRMS** (ESI) m/z: [M+H]⁺ Calcd. for C₃₂H₃₁O₂Si₂: 503.1857; Found: 503.1859.

4e, (pentyloxy)triphenylsilane

Synthesized according to **GP1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.85 g (49% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.57 (m, 6H), 7.56 – 7.33 (m, 9H), 3.94 – 3.67 (m, 2H), 1.76 – 1.55 (m, 2H), 1.46 – 1.15 (m, 4H), 1.02 – 0.78 (m, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 135.4 , 134.5 , 129.9 , 127.8 , 64.0 , 32.2 , 27.9 , 22.4 , 14.1 . **IR** (neat, cm⁻¹): 2933 (br), 1429 (m), 1099 (s), 701 (s), 505 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₃H₂₇OSi: 347.1826; Found: 347.1824.

4f, ((3,7-dimethyloct-6-en-1-yl)oxy)triphenylsilane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.20 g (58% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 6.8 Hz, 6H), 7.49 – 7.33 (m, 9H), 5.08 (t, *J* = 6.8 Hz, 1H), 3.97 – 3.66 (m, 2H), 2.06 – 1.82 (m, 2H), 1.68 (s, 3H), 1.67 – 1.60 (m, 2H), 1.59 (s, 3H), 1.46 – 1.35 (m, 1H), 1.35 – 1.23 (m, 1H), 1.18 – 1.05 (m, 1H), 0.82 (d, *J* = 6.4 Hz, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 135.4 , 134.4 , 131.0 , 129.9 , 127.8 , 124.9 , 62.1 , 39.5 , 37.1 , 29.0 , 25.7 , 25.4 , 19.5 , 17.6 . **IR** (neat, cm⁻¹): 2919 (br), 1431 (s), 1101 (s), 704 (s), 509 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₈H₃₅OSi: 415.2452; Found: 415.2453.

4g, (4-(((triphenylsilyl)oxy)methyl)phenyl)methanol

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.38 g (67% yield) of the desired product as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 6.3 Hz, 6H), 7.54 – 7.30 (m, 13H), 4.95 (s, 2H), 4.69 (s, 2H), 1.87 (br s, 1H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 134.0, 139.7, 135.4, 133.9, 130.1, 127.9, 126.9, 126.6, 65.3, 65.1. **IR** (neat, cm⁻¹): 3348 (br), 3056 (s), 1104 (s), 817 (m), 699 (s), 502 (s). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₆H₂₄NaO₂Si: 419.1438; Found: 419.1436.

4h, 1,1,1,6,6,6-hexaphenyl-2,5-dioxa-1,6-disilahexane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.94 g (67% yield) of the desired product as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 6.9 Hz, 12H), 7.54 (t, *J* = 7.3 Hz, 6H), 7.46 (t, *J* = 7.3 Hz, 12H), 4.12 (s, 4H).¹³**C** NMR (126 MHz, Chloroform-*d*) δ 135.4 , 134.1 , 129.9 , 127.8 , 65.1 . **IR** (neat, cm⁻¹): 3058 (br), 1103 (s), 705 (s), 507 (s) **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₃₈H₃₄NaO₂Si₂: 601.1990; Found: 601.1985.

4i, 3-((triphenylsilyl)oxy)propan-1-ol

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.00 g (60% yield) of the desired product as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 7.2 Hz, 6H), 7.53 – 7.37 (m, 9H), 4.02 (t, J = 5.7 Hz, 2H), 3.84 (t, J = 5.8 Hz, 2H), 2.30 (br s, 1H), 1.87 (p, J = 5.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.3 , 133.7 , 130.1 , 127.9 , 62.4 , 61.1 , 34.4 . **IR** (neat, cm⁻¹): 3058 (br), 1425 (s), 1079 (s), 706 (s), 506 (m). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₁H₂₂NaO₂Si: 357.1281; Found: 357.1278.

4i', 1,1,1,7,7,7-hexaphenyl-2,6-dioxa-1,7-disilaheptane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.42 g (28% yield) of the desired product as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 8.0, 1.4 Hz, 12H), 7.42 (s, 6H), 7.38 – 7.32 (m, 12H), 3.96 (t, *J* = 6.2 Hz, 4H), 1.88 (p, *J* = 6.2 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.4, 134.3, 129.9, 127.8, 60.6, 35.3. **IR** (neat, cm⁻¹): 3058 (br), 1426 (s), 1104 (s), 989 (m), 704 (s), 507 (m). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₃₉H₃₇O₂Si₂: 593.2327; Found: 593.2331.

4j, 2,3-bis((triphenylsilyl)oxy)propan-1-ol

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.31 g (20% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 6.8 Hz, 6H), 7.51 (d, *J* = 6.7 Hz, 6H), 7.47 – 7.39 (m, 6H), 7.37 – 7.30 (m, 12H), 4.14 – 4.04 (m, 1H), 3.87 – 3.79 (m, 2H), 3.76 – 3.69 (m, 2H), 1.88 (t, *J* = 6.1 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.4 , 135.3 , 134.0 , 133.6 , 130.1 , 127.9 , 127.9 , 73.9 , 64.8 , 64.4 . **IR** (neat, cm⁻¹): 3057 (br), 1427 (m), 1111 (s), 704 (s), 510 (s). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₃₉H₃₆NaO₃Si₂: 631.2095; Found: 631.2094.

4k, (4-(tert-butyl)phenyl)(methoxy)diphenylsilane

Synthesized according to GP 3. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded

0.94 g (54% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 – 7.63 (m, 4H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.50 – 7.36 (m, 8H), 3.66 (s, 3H), 1.35 (s, 9H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 153.0 , 135.4 , 135.3 , 134.2 , 130.2 , 129.9 , 127.8 , 124.9 , 51.8 , 34.8 , 31.2 . **IR** (neat, cm⁻¹): 2958 (br), 1084 (s), 700 (s), 570 (m), 499 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₃H₂₇OSi: 347.1826; Found: 347.1825.

4l, methoxydiphenyl(p-tolyl)silane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.85 g (56% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 – 7.64 (m, 4H), 7.59 (d, *J* = 6.8 Hz, 2H), 7.54 – 7.38 (m, 6H), 7.28 (d, *J* = 7.6 Hz, 2H), 3.69 (s, 3H), 2.43 (s, 3H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.1, 135.5, 135.3, 134.1, 130.2, 130.0, 128.7, 127.8, 51.8, 21.6. **IR** (neat, cm⁻¹): 2938 (br), 1088 (s), 697 (s), 501 (s). **HRMS** (**ESI**) m/z: [M+H]⁺ Calcd. for C₂₀H₂₁OSi: 305.1356; Found: 305.1357.

4m, methoxy(4-methoxyphenyl)diphenylsilane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.10 g (69% yield) of the desired product as a colorless oil.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.67 (dt, *J* = 7.9, 1.3 Hz, 4H), 7.62 – 7.56 (m, 2H), 7.50 – 7.38 (m, 6H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H), 3.67 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 161.2, 137.0, 135.3, 134.2, 129.9, 127.8, 124.6, 113.7, 55.0, 51.7 . **IR** (neat, cm⁻¹): 2944 (br), 1253 (m), 1104 (s), 809 (m), 701 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₀H₂₁O₂Si: 321.1305; Found: 321.1305.

4n, methoxydiphenyl(4-(trifluoromethyl)phenyl)silane

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.75 g (98% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 8.1 Hz, 2H), 7.68 – 7.57 (m, 6H), 7.52 – 7.37 (m, 6H), 3.66 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.12, 135.58, 135.32, 132.92, 131.87 (q, J = 32.2 Hz), 130.42, 128.09, 124.43 (q, J = 11.4 Hz), 124.14 (q, J = 3.8 Hz), 51.90. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.7 . **IR** (neat, cm⁻¹): 2938 (br), 1088 (s), 697 (s), 501 (s). **HRMS** (EI-QTOF) m/z: [M]⁺ Calcd. for C₂₀H₁₇OF₃Si: 358.1001; Found: 358.1006.

40, ethyl 4-(methoxydiphenylsilyl)benzoate

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.46 g (81% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 7.4 Hz, 4H), 7.51 – 7.43 (m, 2H), 7.40 (t, *J* = 7.4 Hz, 4H), 4.39 (q, *J* = 7.1 Hz, 2H), 3.65 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.6, 140.0, 135.3, 135.2, 133.1, 131.7, 130.3, 128.6, 128.0, 61.0, 51.9, 14.3. **IR** (neat, cm⁻¹): 2980 (br), 1717 (s), 1086 (s), 709 (s), 511 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₂H₂₃O₃Si: 363.1411; Found: 363.1408.

4p, 4-(methoxydiphenylsilyl)benzonitrile

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.87 g (55% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 2H), 7.72 – 7.62 (m, 6H), 7.55 – 7.41 (m, 6H), 3.71 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.8 , 135.5 , 135.1 , 132.3 , 131.0 , 130.4 , 128.0 , 118.6 , 113.4 , 51.8 . **IR** (neat, cm⁻¹): 3054 (br), 1087 (s), 697 (s), 567 (m), 489 (s). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₀H₁₇NNaOSi: 338.0972; Found: 338.0974.

4q, methoxydiphenyl(2-(trifluoromethyl)phenyl)silane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.22 g (68% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 – 7.93 (m, 1H), 7.81 – 7.74 (m, 1H), 7.68 – 7.61 (m, 4H), 7.61 – 7.55 (m, 2H), 7.52 – 7.46 (m, 2H), 7.46 – 7.39 (m, 4H), 3.64 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 137.9, 136.0 (q, J = 31.5 Hz), 135.4, 133.6, 132.4 (q, J = 2.1 Hz), 130.7, 130.2, 130.0, 127.8, 126.4 (q, J = 5.0 Hz), 124.6 (q, J = 274.4 Hz), 51.9 .¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -57.8. **IR** (neat, cm⁻¹): 3060 (br), 1311 (s), 1104 (s), 771 (s), 702 (m). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₀H₁₈OF₃Si: 359.1074; Found: 359.1071.

4r, dibenzo[b,d]furan-4-yl(methoxy)diphenylsilane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.72 g (90% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.76 – 7.66 (m, 4H), 7.60 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.43 – 7.31 (m, 7H), 3.78 (s, 3H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 160.8, 156.0, 135.3, 134.8, 133.6, 130.1, 127.8, 126.9, 123.9, 123.2, 122.9, 122.6, 122.5, 120.5, 117.1, 111.7, 52.2. **IR** (neat, cm⁻¹): 3054 (br), 1181 (m), 1087 (s), 744 (s), 701 (s). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₂₅H₂₀O₂Si: 381.1305; Found: 381.1303.

4s, dibenzo[b,d]thiophen-4-yl(methoxy)diphenylsilane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.40 g (71% yield) of the desired product as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 7.3 Hz, 1H), 7.79 (d, *J* = 7.0 Hz, 1H), 7.72 (d, *J* = 6.9 Hz, 4H), 7.68 (d, *J* = 7.1 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.42 (t, *J* = 7.3 Hz, 6H), 3.76 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 146.2 , 140.1 , 135.6 , 135.2 , 135.0 , 134.9 , 132.8 , 130.4 , 128.4 , 128.0 , 126.6 , 124.1 , 123.8 , 123.5 , 122.5 , 121.3 , 51.9 . **IR** (neat, cm⁻¹): 3055 (br), 1085 (m), 728 (s), 503 (m), 423 (m). **HRMS (ESI)** m/z: [M+Na]⁺ Calcd. for C₂₅H₂₀NaOSSi: 419.0896; Found: 419.0893.

4t, methoxydiphenyl(thiophen-2-yl)silane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 1.13 g (76% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 – 7.68 (m, 5H), 7.61 – 7.42 (m, 7H), 7.38 – 7.27 (m, 1H), 3.84 – 3.66 (m, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 138.0, 135.1, 133.7, 133.0, 132.6, 130.3, 128.2, 127.9, 51.8. **IR** (neat, cm⁻¹): 3060 (br), 1081 (s), 698 (s), 502 (s). **HRMS** (**ESI**) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₆NaOSSi: 319.0583; Found: 319.0583.

4u, methoxy(methyl)diphenylsilane^[8]

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.61 g (54% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.71 (m, 4H), 7.60 – 7.47 (m, 6H), 3.70 (s, 3H), 0.81 (s, 3H).

4v, methoxydimethyl(naphthalen-2-yl)silane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.31 g (29% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.98 – 7.84 (m, 3H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.59 – 7.47 (m, 2H), 3.55 (s, 3H), 0.53 (s, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 134.8, 134.4, 134.0, 132.9, 129.5, 128.2, 127.7, 127.14, 126.5, 125.9, 50.7, -2.2. IR (neat, cm⁻¹): 2954 (br), 1252 (s), 1081 (s), 794 (s), 657 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₇OSi: 217.1043; Found: 217.1048.

Me Si-OCH₃ Ph Me

4w, benzyl(methoxy)dimethylsilane

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.24 g (27% yield) of the desired product as a colorless oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.20 (m, 2H), 7.15 – 7.05 (m, 3H), 3.45 (s, 3H), 2.22 (s, 2H), 0.13 (s, 6H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 138.9, 128.2, 128.24, 124.23, 50.5, 26.1, -3.0. **IR** (neat, cm⁻¹): 2953 (br), 1085 (s), 827 (s), 752 (m), 697 (m). **HRMS (ESI)** m/z: [M+H]⁺ Calcd. for C₁₀H₁₇OSi: 181.1043; Found: 181.1043.

Me OCH₃

4x, methoxydimethyl(phenyl)silane^[8]

Synthesized according to **GP 3**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.12 g (15% yield) of the desired product as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 – 7.55 (m, 2H), 7.48 – 7.37 (m, 3H), 3.47 (s, 3H), 0.42 (s, 6H).

HO-Si-O-Si-O-Si-

5a, 1,1,3,3,5,5,5-heptamethyltrisiloxan-1-ol^[9]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.98 g (82% yield) of the desired product as a colorless oil. **¹H NMR** (500 MHz, Chloroform-*d*) δ 2.43 (s, 1H), 0.11 (s, 18H), 0.08 (s, 3H).

5b, 1,1,1,3,5,5,5-heptamethyltrisiloxan-3-ol^[10]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.73 g (61% yield) of the desired product as a colorless oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 2.39 (s, 1H), 0.11 (s, 18H), 0.08 (s, 3H).

5c, tris(trimethylsilyl) hydrogen silicate^[10]

Synthesized according to **GP 1**. Purification via column chromatography (petroleum ether/ethyl acetate = 10:1) afforded 0.68 g (43% yield) of the desired product as a colorless oil. **¹H NMR** (500 MHz, Chloroform-*d*) δ 2.14 (s, 1H), 0.12 (s, 27H).

5. X-ray Diffraction Analyses of Cobalt Complexes K1 and K2

Complex K1

Co(OAc)₂ (3.0 mmol) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (3.0 mmol) were dissolved in anhydrous 1,4dioxane (20 mL) under air for 10 h at 80 °C. The precipitate formed was remained about 5 mL solvent by rotary evaporation and collected by filtration with cold 1,4-dioxane as eluent to give a dark orange solid (1.4 g, 80%).

The single crystals of this complex were obtained from the solution of dichloromethane and toluene. Note both the oxygen atoms of the coordinated carboxylate and toluene were partially disordered, which can be easily modified according to the standard operations. The full crystallographic data for **K1** (CCDC: 2173145) can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/solutions/csd-core/components/csd/</u>

Table 1-1 Crystal data and structure refinement for K1.					
	Name	K1			
	Formula	C37H34CoN2O4			
	formula weight, fw	629.59			
	Temperature, T [K]	296(2)			
	crystal system	monoclinic			
	space group	P 21/n			
	a [Å]	14.962(2)			
	b [Å]	8.3869(9)			
	c [Å]	25.544(3)			
	α [°]	90			
	β [°]	94.204(4)			
	γ [°]	90			
	V [Å ³]	3196.8(7)			
	Ζ	4			
	$\rho [g \text{ cm}^{-3}]$	1.308			
	$\mu [mm^{-1}]$	0.579			
	θ range	2.557-25.037			
	F(000)	1316			
	goodness-of-fit, GOF	1.046			
	$R_1^a [I > 2\sigma (I)]$	0.0618			
	wR_2^b (all data)	0.1951			
$^{a}\mathbf{R}_{1}=\left \left \right.\right $	$F_{\rm o} - F_{\rm c} / F_{\rm o} \cdot {}^{\rm b}wR_2$	$= [w(F_o^2 - F_c^2)^2 / w F_o^2 ^2]^{1/2}.$			

Complex K2

 $Co(acac)_2$ (3.0 mmol) and 4,7-diphenyl-1,10-phenanthroline (3.0 mmol) were dissolved in anhydrous THF (20 mL) under air for 10 h at 60 °C. The precipitate formed was remained about 5 mL solvent by rotary evaporation and collected by filtration with cold THF as eluent to give a dark orange solid (1.4 g, 80%).

The single crystals of this complex were obtained from the solution of dichloromethane and toluene. Note the coordinated dichloromethane molecules are disordered. The full crystallographic data for **K2** (CCDC:2131308) can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/solutions/csd-core/components/csd/</u>

Table 2-1 Crystal data and structure refinement for K2.				
Identification code	p-1-2_sq			
Empirical formula	$C_{69}H_{62}Cl_2Co_2N_4O_8$			
Formula weight	1263.98			
Temperature/K	296.15			
Crystal system	monoclinic			
Space group	I2/a			
a/Å	16.2739(18)			
b/Å	19.5624(17)			
c/Å	22.3063(16)			
α/°	90			
β/°	110.570(6)			
γ/°	90			
Volume/Å ³	6648.6(11)			
Z	4			
$ ho_{calc}g/cm^3$	1.263			
µ/mm ⁻¹	0.635			
F(000)	2624.0			

Crystal size/mm ³	? ×? ×?			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/	°3.9 to 58.544			
Index ranges	$-22 \le h \le 20, \ -26 \le k \le 26, \ -30 \le l \le 28$			
Reflections collected	36271			
Independent reflections	8229 [$R_{int} = 0.1728$, $R_{sigma} = 0.2522$]			
Data/restraints/parameters	8229/0/392			
Goodness-of-fit on F ²	0.949			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0692, wR_2 = 0.1405$			
Final R indexes [all data]	$R_1 = 0.2251, \ wR_2 = 0.1856$			
Largest diff. peak/hole / e Å ⁻³ 0.37/-0.42				

Table 2-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for						
K2. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.						
Atom	Х	у	Z	U(eq)		
Co01	-8876.5(4)	1635.9(3)	-3712.5(3)	28.8(2)		
O005	-8937.9(18)	1518.4(14)	-2808.5(13)	33.3(8)		
O009	-8651.2(19)	2653.5(15)	-3579.9(15)	37.4(8)		
O00A	-8831.5(19)	1716.3(15)	-4620.2(14)	34.4(8)		
O00C	-10217.7(18)	1720.0(15)	-4050.5(14)	34.8(8)		
N00D	-7534(2)	1380.4(18)	-3244.6(17)	28.7(9)		
N00F	-8848(2)	561.2(18)	-3835.4(16)	27.2(9)		
C00H	-7115(3)	-721(2)	-3100(2)	29.0(11)		
C00I	-6514(3)	427(2)	-2856(2)	29.2(11)		
C00J	-7971(3)	-459(2)	-3477(2)	25.9(10)		
C00O	-9470(3)	-541(2)	-4168(2)	30.1(11)		
C00P	-8705(3)	-874(2)	-3815(2)	26.0(10)		
C00Q	-7353(3)	702(2)	-3195(2)	26.9(10)		
C00R	-6428(3)	-301(2)	-2808(2)	30.9(11)		
C00S	-4877(3)	712(2)	-2235(2)	34.0(11)		
C00U	-8682(3)	-1636(2)	-3806(2)	28.1(10)		
C00X	-9519(3)	168(2)	-4162(2)	30.0(11)		
C015	-8968(3)	-1987(2)	-4388(2)	31.8(11)		
C017	-4452(3)	211(2)	-2457(2)	32.0(11)		
C018	-8431(3)	-2000(2)	-3239(2)	35.1(12)		
C01A	-10684(3)	1894(2)	-3726(2)	33.2(11)		
C01B	-9418(3)	1631(2)	-1935(2)	40.5(12)		
C01E	-10398(3)	1904(2)	-3055(2)	32.2(11)		
C01F	-5811(3)	904(2)	-2580(2)	32.0(11)		
C01G	-9576(3)	1684(2)	-2641(2)	31.2(11)		
C01H	-6025(3)	1593(2)	-2644(2)	35.4(11)		
C01J	-8079(3)	251(2)	-3509.7(19)	24.3(10)		
C01K	-4389(3)	1075(2)	-1693(3)	47.1(14)		

C01L	-8710(3)	2261(3)	-4882(2)	38.2(12)
C01M	-6884(3)	1810(2)	-2963(2)	34.1(12)
C01P	-8516(3)	3068(2)	-3973(3)	41.1(13)
C01V	-8976(3)	-2695(2)	-4390(3)	40.0(13)
C01X	-3564(3)	82(2)	-2143(2)	41.7(13)
C01Z	-11619(3)	2088(2)	-4106(2)	45.7(13)
C023	-8547(3)	2911(3)	-4592(2)	44.5(13)
C024	-8440(3)	-2704(3)	-3254(3)	44.8(13)
C026	-8741(3)	2190(3)	-5565(2)	51.0(15)
C027	-3089(3)	448(3)	-1609(3)	50.5(14)
C028	-8713(3)	-3056(3)	-3830(3)	44.4(13)
C02A	-8293(4)	3800(3)	-3735(3)	63.1(17)
C02C	-3500(3)	949(3)	-1380(3)	59.1(16)
C103	-18292.3(9)	59.8(8)	-5554.3(7)	68.1(5)
C01W	-17490(30)	569(4)	-4970(20)	41(3)

Table 2-3 Anisotropic Displacement Parameters (Å2×103) for k2. The Anisotropic displacement factor exponenttakes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.Atom U11U22U33U23U13U12

U11	U22	U33	U23	U13	U12
28.4(4)	29.8(4)	29.4(4)	2.2(3)	11.8(3)	3.5(3)
30.6(18)	38(2)	32.5(19)	0.4(15)	12.4(16)	3.8(15)
45(2)	28.1(19)	43(2)	2.8(16)	19.4(18)	5.0(15)
36.6(19)	37.6(19)	33.0(18)	10.4(16)	17.3(16)	6.4(15)
29.8(17)	43(2)	30.9(18)	2.1(16)	10.4(15)	5.2(15)
27(2)	23(2)	37(2)	1.3(18)	12.3(19)	2.5(18)
23(2)	36(2)	25(2)	3.8(18)	10.9(18)	2.2(18)
27(3)	27(3)	31(3)	5(2)	8(2)	1(2)
27(3)	34(3)	27(3)	1(2)	10(2)	-1(2)
29(3)	24(3)	27(3)	3(2)	12(2)	-3(2)
25(3)	30(3)	31(3)	-4(2)	5(2)	-2(2)
23(2)	35(3)	21(2)	-2(2)	9(2)	-5(2)
26(3)	28(3)	29(3)	3(2)	13(2)	2(2)
29(3)	29(3)	33(3)	6(2)	10(2)	2(2)
30(3)	27(3)	39(3)	-1(2)	4(2)	-4(2)
20(2)	32(3)	33(3)	-3(2)	10(2)	-4(2)
23(2)	35(3)	28(3)	3(2)	5(2)	0(2)
26(3)	34(3)	31(3)	1(2)	6(2)	0(2)
32(3)	34(3)	31(3)	0(2)	12(2)	-1(2)
30(3)	37(3)	37(3)	6(2)	11(2)	-4(2)
29(3)	32(3)	44(3)	3(2)	19(3)	-1(2)
42(3)	48(3)	33(3)	-6(3)	15(2)	-5(3)
27(3)	38(3)	37(3)	-8(2)	18(2)	-2(2)
31(3)	32(3)	34(3)	-2(2)	12(2)	4(2)
39(3)	23(3)	34(3)	-8(2)	15(2)	-8(2)
30(3)	31(3)	43(3)	-3(2)	10(2)	-1(2)
	U11 28.4(4) 30.6(18) 45(2) 36.6(19) 29.8(17) 27(2) 23(2) 27(3) 27(3) 27(3) 29(3) 25(3) 23(2) 26(3) 29(3) 30(3) 20(2) 23(2) 26(3) 30(3) 29(3) 30(3) 29(3) 31(3) 39(3) 30(3)	U11U22 $28.4(4)$ $29.8(4)$ $30.6(18)$ $38(2)$ $45(2)$ $28.1(19)$ $36.6(19)$ $37.6(19)$ $29.8(17)$ $43(2)$ $27(2)$ $23(2)$ $23(2)$ $36(2)$ $27(3)$ $27(3)$ $27(3)$ $27(3)$ $27(3)$ $24(3)$ $29(3)$ $24(3)$ $25(3)$ $30(3)$ $23(2)$ $35(3)$ $26(3)$ $28(3)$ $29(3)$ $29(3)$ $30(3)$ $27(3)$ $20(2)$ $32(3)$ $30(3)$ $27(3)$ $26(3)$ $34(3)$ $30(3)$ $37(3)$ $29(3)$ $32(3)$ $42(3)$ $48(3)$ $27(3)$ $38(3)$ $31(3)$ $32(3)$ $39(3)$ $23(3)$ $30(3)$ $31(3)$	U11U22U33 $28.4(4)$ $29.8(4)$ $29.4(4)$ $30.6(18)$ $38(2)$ $32.5(19)$ $45(2)$ $28.1(19)$ $43(2)$ $36.6(19)$ $37.6(19)$ $33.0(18)$ $29.8(17)$ $43(2)$ $30.9(18)$ $27(2)$ $23(2)$ $37(2)$ $23(2)$ $36(2)$ $25(2)$ $27(3)$ $27(3)$ $31(3)$ $27(3)$ $27(3)$ $21(2)$ $26(3)$ $24(3)$ $27(3)$ $29(3)$ $24(3)$ $27(3)$ $29(3)$ $24(3)$ $27(3)$ $29(3)$ $29(3)$ $21(2)$ $26(3)$ $28(3)$ $29(3)$ $29(3)$ $27(3)$ $39(3)$ $20(2)$ $32(3)$ $33(3)$ $20(2)$ $32(3)$ $31(3)$ $26(3)$ $34(3)$ $31(3)$ $30(3)$ $37(3)$ $37(3)$ $30(3)$ $37(3)$ $37(3)$ $30(3)$ $32(3)$ $44(3)$ $42(3)$ $48(3)$ $33(3)$ $27(3)$ $38(3)$ $37(3)$ $31(3)$ $32(3)$ $34(3)$	U11U22U33U23 $28.4(4)$ $29.8(4)$ $29.4(4)$ $2.2(3)$ $30.6(18)$ $38(2)$ $32.5(19)$ $0.4(15)$ $45(2)$ $28.1(19)$ $43(2)$ $2.8(16)$ $36.6(19)$ $37.6(19)$ $33.0(18)$ $10.4(16)$ $29.8(17)$ $43(2)$ $30.9(18)$ $2.1(16)$ $27(2)$ $23(2)$ $37(2)$ $1.3(18)$ $23(2)$ $36(2)$ $25(2)$ $3.8(18)$ $27(3)$ $27(3)$ $31(3)$ $5(2)$ $27(3)$ $27(3)$ $31(3)$ $5(2)$ $27(3)$ $24(3)$ $27(3)$ $3(2)$ $29(3)$ $24(3)$ $27(3)$ $3(2)$ $29(3)$ $24(3)$ $27(3)$ $3(2)$ $29(3)$ $24(3)$ $27(3)$ $3(2)$ $29(3)$ $29(3)$ $31(3)$ $-4(2)$ $23(2)$ $35(3)$ $21(2)$ $-2(2)$ $26(3)$ $28(3)$ $29(3)$ $3(2)$ $29(3)$ $27(3)$ $39(3)$ $-1(2)$ $20(2)$ $32(3)$ $31(3)$ $-1(2)$ $20(2)$ $32(3)$ $31(3)$ $-1(2)$ $20(2)$ $32(3)$ $31(3)$ $0(2)$ $30(3)$ $37(3)$ $37(3)$ $6(2)$ $29(3)$ $32(3)$ $44(3)$ $3(2)$ $42(3)$ $48(3)$ $33(3)$ $-6(3)$ $27(3)$ $38(3)$ $37(3)$ $-8(2)$ $31(3)$ $32(3)$ $34(3)$ $-2(2)$ $39(3)$ $23(3)$ $34(3)$ $-3(2)$	U11U22U33U23U13 $28.4(4)$ $29.8(4)$ $29.4(4)$ $2.2(3)$ $11.8(3)$ $30.6(18)$ $38(2)$ $32.5(19)$ $0.4(15)$ $12.4(16)$ $45(2)$ $28.1(19)$ $43(2)$ $2.8(16)$ $19.4(18)$ $36.6(19)$ $37.6(19)$ $33.0(18)$ $10.4(16)$ $17.3(16)$ $29.8(17)$ $43(2)$ $30.9(18)$ $2.1(16)$ $10.4(15)$ $27(2)$ $23(2)$ $37(2)$ $1.3(18)$ $12.3(19)$ $23(2)$ $36(2)$ $25(2)$ $3.8(18)$ $10.9(18)$ $27(3)$ $27(3)$ $31(3)$ $5(2)$ $8(2)$ $27(3)$ $24(3)$ $27(3)$ $3(2)$ $12(2)$ $29(3)$ $24(3)$ $27(3)$ $3(2)$ $12(2)$ $25(3)$ $30(3)$ $31(3)$ $-4(2)$ $9(2)$ $26(3)$ $28(3)$ $29(3)$ $3(2)$ $13(2)$ $29(3)$ $29(3)$ $33(3)$ $-6(2)$ $10(2)$ $30(3)$ $27(3)$ $39(3)$ $-1(2)$ $4(2)$ $20(2)$ $32(3)$ $33(3)$ $-3(2)$ $10(2)$ $30(3)$ $27(3)$ $38(3)$ $31(3)$ $0(2)$ $12(2)$ $30(3)$ $37(3)$ $31(3)$ $6(2)$ $11(2)$ $29(3)$ $32(3)$ $44(3)$ $3(2)$ $19(3)$ $42(3)$ $48(3)$ $31(3)$ $-6(3)$ $15(2)$ $27(3)$ $38(3)$ $37(3)$ $-8(2)$ $18(2)$ $31(3)$ $32(3)$ $44(3)$ $-2(2)$ $12(2)$ $30(3)$ $31(3$

C01J	24(2)	28(3)	22(2)	0(2)	9(2)	2(2)
C01K	36(3)	36(3)	63(4)	-9(3)	9(3)	1(2)
C01L	26(3)	51(3)	39(3)	13(3)	13(2)	11(2)
C01M	34(3)	28(3)	39(3)	-4(2)	12(2)	4(2)
C01P	29(3)	33(3)	58(4)	-2(3)	12(3)	2(2)
C01V	32(3)	37(3)	50(3)	-12(3)	14(3)	-5(2)
C01X	38(3)	39(3)	57(4)	6(3)	27(3)	6(3)
C01Z	33(3)	55(3)	51(3)	1(3)	17(3)	9(3)
C023	47(3)	39(3)	52(4)	10(3)	22(3)	-7(3)
C024	36(3)	50(4)	48(4)	19(3)	15(3)	-4(3)
C026	52(3)	69(4)	34(3)	18(3)	19(3)	5(3)
C027	31(3)	44(3)	65(4)	-10(3)	2(3)	-2(3)
C028	35(3)	34(3)	63(4)	5(3)	16(3)	-4(2)
C02A	68(4)	48(4)	80(4)	1(3)	34(4)	-5(3)
C02C	43(3)	49(4)	67(4)	-22(3)	-4(3)	1(3)
C103	43.4(8)	102.9(13	8) 60.1(10)	-24.9(9)	20.9(8)	-20.5(8)
C01W	43(6)	45(5)	40(7)	21(15)	20(6)	10(20)

Table 2-4 Bond I	Lengths for K2		
Atom Atom	Length/Å	Atom Atom	Length/Å
Co01 O005	2.067(3)	C00S C017	1.386(6)
Co01 O009	2.027(3)	C00S C01F	1.490(6)
Co01 O00A	2.058(3)	C00S C01K	1.387(6)
Co01 O00C	2.050(3)	C00U C015	1.396(6)
Co01 N00D	2.124(3)	C00U C018	1.385(6)
Co01 N00F	2.123(4)	C015 C01V	1.386(6)
O005 C01G	1.263(5)	C017 C01X	1.390(6)
O009 C01P	1.269(5)	C018 C024	1.377(6)
O00A C01L	1.264(5)	C01A C01E	1.402(6)
O00C C01A	1.265(5)	C01A C01Z	1.508(6)
N00D C00Q	1.355(5)	C01B C01G	1.507(6)
N00D C01M	1.324(5)	C01E C01G	1.401(6)
N00F C00X	1.324(5)	C01F C01H	1.388(6)
N00F C01J	1.350(5)	C01H C01M	1.394(6)
C00H C00J	1.444(5)	C01K C02C	1.390(6)
C00H C00R	1.356(5)	C01L C023	1.408(6)
C00I C00Q	1.414(6)	C01L C026	1.514(6)
COOI COOR	1.431(6)	C01P C023	1.399(7)
C00I C01F	1.435(6)	C01P C02A	1.526(6)
COOJ COOP	1.423(5)	C01V C028	1.367(6)
C00J C01J	1.399(5)	C01X C027	1.373(6)
C000 C00P	1.381(5)	C024 C028	1.386(7)
C000 C00X	1.391(5)	C027 C02C	1.382(6)

C00P C00U	1.490(6)	C103	C01W	1.79(4)
C00Q C01J	1.444(6)			

Table 2-5 Bond Ang	les for K2.			
Atom Atom Atom	Angle/°	Atom Atom A	tom Angle/°	
O005 Co01 N00D	83.59(12)	C017 C005 C	01F 122.7(4)	
O005 Co01 N00F	91.52(12)	C017 C00S C	01K 117.9(4)	
O009 Co01 O005	92.02(12)	C01K C00S C	01F 119.2(4)	
O009 Co01 O00A	90.08(12)	C015 C00U C	200P 118.8(4)	
O009 Co01 O00C	95.14(12)	C018 C00U C	200P 121.6(4)	
O009 Co01 N00D	93.29(13)	C018 C00U C	2015 119.5(4)	
O009 Co01 N00F	168.67(12)	N00F C00X C	000 123.1(4)	
O00A Co01 O005	177.88(12)	C01V C015 C	00U 119.6(4)	
O00A Co01 N00D	96.63(12)	C00S C017 C	01X 120.7(4)	
O00A Co01 N00F	86.49(12)	C024 C018 C	00U 119.7(5)	
O00C Co01 O005	87.56(11)	O00C C01A C	01E 125.0(4)	
O00C Co01 O00A	91.92(11)	O00C C01A C	01Z 115.9(4)	
O00C Co01 N00D	167.99(12)	C01E C01A C	01Z 119.1(4)	
O00C Co01 N00F	95.77(12)	C01G C01E C	01A 125.5(4)	
N00F Co01 N00D	76.41(13)	COOI CO1F C	200S 124.9(4)	
C01G O005 Co01	125.9(3)	C01H C01F C	C00I 117.0(4)	
C01P O009 Co01	126.4(3)	C01H C01F C	200S 118.1(4)	
C01LO00A Co01	125.8(3)	O005 C01G C	01B 115.8(4)	
C01A O00C Co01	125.9(3)	O005 C01G C	01E 125.3(4)	
C00Q N00D Co01	115.3(3)	C01E C01G C	01B 118.9(4)	
C01M N00D Co01	126.6(3)	C01F C01H C0	01M 121.2(4)	
C01M N00D C00Q	117.9(4)	N00F C01J C	COOJ 123.4(4)	
C00X N00F Co01	126.5(3)	N00F C01J C	00Q 115.6(4)	
C00X N00F C01J	117.7(4)	COOJ CO1J CO	00Q 120.9(4)	
C01J N00F Co01	115.7(3)	COOS CO1K C	02C 121.6(5)	
COOR COOH COOJ	121.9(4)	O00A C01L C	125.7(4)	
C00Q C00I C00R	118.0(4)	O00A C01L C	115.6(4)	
C00Q C00I C01F	117.1(4)	C023 C01L C	118.6(4)	
COOR COOI CO1F	124.9(4)	N00D C01M C	01H 122.7(4)	
СООР СООЈ СООН	124.3(4)	O009 C01P C	125.9(4)	
С01Ј С00Ј С00Н	117.5(4)	O009 C01P C	02A 116.0(5)	
C01J C00J C00P	118.2(4)	C023 C01P C0	02A 118.1(5)	
C00P C00O C00X	120.6(4)	C028 C01V C	2015 121.0(5)	
C00J C00P C00U	123.5(4)	C027 C01X C	2017 120.8(4)	
C000 C00P C00J	117.0(4)	C01P C023 C	01L 126.0(4)	

C000 C00P C00U	119.5(4) C018 C024 C028	121.1(5)
N00D C00Q C00I	123.9(4) C01X C027 C02C	119.5(5)
N00D C00Q C01J	116.2(4) C01V C028 C024	119.1(5)
C00I C00Q C01J	119.9(4) C027 C02C C01K	119.5(5)
C00H C00R C00I	121.7(4)	

Table 2-6 Torsion Angles	for K2.						
A B C D	Angle/°	А	В	C	D	Angle/°	
Co01 O005 C01G C01B	-172.5(3)	C00R	C00I	C00Q	N00D	176.1(4)	
Co01 O005 C01G C01E	7.9(6)	C00R	C00I	C00Q	C01J	-3.5(6)	
Co01 O009 C01P C023	4.0(7)	C00R	C00I	C01F	COOS	3.9(7)	
Co01 O009 C01P C02A	-175.4(3)	C00R	C00I	C01F	C01H	-176.5(4)	
Co01 O00A C01L C023	2.8(6)	COOS	C017	C01X	C027	-0.3(7)	
Co01 O00A C01L C026	-177.7(3)	COOS	C01F	C01H	C01M	179.7(4)	
Co01 O00C C01A C01E	-15.9(6)	C00S	C01K	C02C	C027	-0.3(8)	
Co01 O00C C01A C01Z	165.4(3)	C00U	C015	C01V	C028	0.5(6)	
Co01 N00D C00Q C00I	-174.8(3)	C00U	C018	C024	C028	-1.3(7)	
Co01 N00D C00Q C01J	4.8(4)	C00X	N00F	C01J	C00J	-3.1(6)	
Co01 N00D C01M C01H	177.4(3)	C00X	N00F	C01J	C00Q	176.2(3)	
Co01 N00F C00X C00O	-173.3(3)	C00X	C000	C00P	C00J	-3.1(6)	
Co01 N00F C01J C00J	172.6(3)	C00X	C000	C00P	C00U	177.3(4)	
Co01 N00F C01J C00Q	-8.1(4)	C015	C00U	C018	C024	2.1(6)	
O009 C01P C023 C01L	-1.8(8)	C015	C01V	C028	C024	0.2(7)	
O00A C01L C023 C01P	-2.0(8)	C017	C00S	C01F	C00I	43.7(7)	
O00C C01A C01E C01G	-4.3(7)	C017	C00S	C01F	C01H	-135.9(5)	
N00D C00Q C01J N00F	2.1(5)	C017	C00S	C01K	C02C	0.3(7)	
N00D C00Q C01J C00J	-178.6(4)	C017	C01X	C027	C02C	0.3(8)	
C00H C00J C00P C00O	-178.1(4)	C018	C00U	C015	C01V	-1.7(6)	
COOH COOJ COOP COOU	1.5(6)	C018	C024	C028	C01V	0.2(7)	
COOH COOJ CO1J NOOF	-178.8(3)	C01A	C01E	C01G	O005	8.6(7)	
COOH COOJ CO1J COOQ	1.9(6)	C01A	C01E	C01G	C01B	-171.0(4)	
C00I C00Q C01J N00F	-178.2(3)	C01F	C00I	C00Q	N00D	-3.2(6)	
COOLCOOQ CO1J COOJ	1.1(6)	C01F	C00I	C00Q	C01J	177.1(4)	
C00I C01F C01H C01M	0.0(6)	C01F	C00I	C00R	C00H	-177.8(4)	
C00J C00H C00R C00I	0.1(6)	C01F	C00S	C017	C01X	175.6(4)	
C00J C00P C00U C015	-128.1(4)	C01F	C00S	C01K	C02C	-175.5(5)	
C00J C00P C00U C018	55.5(6)	C01F	C01H	C01M	N00D	-3.0(7)	
C000 C00P C00U C015	51.4(5)	C01J	N00F	C00X	C000	1.9(6)	
C000 C00P C00U C018	-124.9(4)	C01J	C00J	C00P	C000	1.9(6)	
COOP COOJ CO1J NOOF	1.2(6)	C01J	C00J	C00P	C00U	-178.5(4)	

COOP COOJ CO1J COOQ	-178.0(4)	C01K C00S C017 C01X	0.0(7)	
C00P C00O C00X N00F	1.3(6)	C01K C00S C01F C00I	-140.7(5)	
C00P C00U C015 C01V	-178.1(4)	C01K C00S C01F C01H	39.7(6)	
C00P C00U C018 C024	178.4(4)	C01M N00D C00Q C00I	0.5(6)	
C00Q N00D C01M C01H	2.7(6)	C01MN00D C00Q C01J	-179.9(4)	
C00Q C00I C00R C00H	2.9(6)	C01X C027 C02C C01K	0.0(8)	
COOQ COOI CO1F COOS	-176.8(4)	C01Z C01A C01E C01G	174.4(4)	
C00Q C00I C01F C01H	2.8(6)	C026 C01L C023 C01P	178.5(4)	
COOR COOH COOJ COOP	177.4(4)	C02A C01P C023 C01L	177.6(4)	
COOR COOH COOJ CO1J	-2.6(6)			

Table 2-	Table 2-7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for K2.					
Atom	Х	у	Z	U(eq)		
H00H	-7032.9	-1191.13	-3056.9	35		
H00O	-9957.02	-793.78	-4412.36	36		
H00R	-5887.07	-490.34	-2571.11	37		
H00X	-10046.98	376.91	-4398.58	36		
H015	-9153.23	-1746.43	-4772.65	38		
H017	-4764.26	-39.9	-2819.53	38		
H018	-8258.01	-1771	-2848.62	42		
H01A	-9867.53	1876.13	-1839.89	61		
H01B	-8854.91	1823.05	-1695.83	61		
H01C	-9429.49	1158.78	-1820.42	61		
H01E	-10787.71	2071.67	-2869.73	39		
H01H	-5586.74	1916.79	-2471.32	43		
H01K	-4662.87	1411.52	-1536.04	56		
H01M	-7006.35	2275.62	-2978.51	41		
H01V	-9162.08	-2928.36	-4778.18	48		
H01X	-3289.33	-256.98	-2296.64	50		
H01D	-11624.72	2447.05	-4400.26	69		
H01F	-11903.45	2243.26	-3819.22	69		
H01G	-11925.66	1697.14	-4339.02	69		
H023	-8450.82	3268.02	-4834.79	53		
H024	-8259.09	-2947.02	-2871	54		
H02A	-9340.69	2197.02	-5851.15	76		
H02B	-8474.12	1765.38	-5612.38	76		
H02C	-8427.79	2562.45	-5666.03	76		
H027	-2494.39	359.69	-1402.7	61		
H028	-8717.63	-3531.68	-3834.51	53		
H02D	-8806.14	4017.45	-3704.53	95		
H02E	-8096.04	4049.04	-4030.34	95		
H02F	-7837.56	3795.17	-3321.29	95		
H02G	-3183.47	1200.39	-1018.3	71		
H01W	-17204.67	861.58	-5188.06	49		

Table 2-8. Atomic Occupancy for K2								
Atom Occupancy Ato		Ato	n Occupancy Atom Occupancy					
C01W 0.5								
Table 2-9 Solvent masks information for K-2								
Number X	Y Z	Volume	Electron count Content					
1 -0.017	0.000	0.000	430 109					
2 -0.009	0.500	0.500	430 109					

6. The Synthesis and Characterization of Silicon Polymer

Followed the GP1, this transformation was complete within 15 min, which proceeded via a purple reaction solution and vigorously released H_2 gas. To our delight, the olive color of the crude reaction materials could be removed with dichloromethane as the eluent to finally afford the pale green solid.

The IR spectrum of **5d** showed the characteristic absorption band of Si-H at 2163 cm⁻¹ of the poly(methylhydrosiloxane) **5e** completely disappeared while a broad absorption peak at 3475 cm^{-1} appeared.

IR spectrum of silane polymer

Thermogravimetry (TG) measurement revealed it exhibits a decomposition temperature of 763 K, which is comparable to those values of polytetrafluoroethylene (782 K) and Nylon 66 (703-746 K).

Thermogravimetry (TG) experiment
Structure	Polymer	Decomposed temperature (K)
	This work	763
$\frac{H_2 H_2}{C C C}$	Polyethylene	687
$-\left(-\overset{F}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}{\overset{H_2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	Polyvinylenedifluoride	738-758
← c − c − , ← c − c − , F F n	Poly(tetrafluoroethylene)	782
H - (-N-(CH) ₆ -NHCO-(CH) ₄ -C-) n	Nylon 66	703-746

See the reference: *Morgan J. Hurley*; SFPE Handbook of Fire Protection Engineering (DOI 10.1007/978-1-4939-2565-0)

7. Mechanistic Studies

7.1 Exploration of the origin of the oxygen atom

Ph
Ph
Ph-Si-H +
$$H_2^{18}O$$
 $L3 (1 \text{ mol}\%)$
Ph
5 mmol 2.0 eq. under air, 10 h
Co(OAc)_2 (0.5 mol%)
L3 (1 mol%)
1,4-dioxane (c 0.25 M), 80 °C
under air, 10 h
Isolated vield: 94%

To a mixture of silane (5 mmol), $Co(OAc)_2$ (0.5 mol%), L3 (1 mol%) in 1,4-dioxane (*c* 2.5 M) with $H_2^{18}O$ under air at 80 °C for 10 h. After purification via column chromatography, the product was analyzed by ¹H NMR and HRMS. HRMS (ESI) m/z calcd. for $C_{18}H_{15}^{18}OSi$ [M-H]⁻ 277.0940, found 277.0951; HRMS (ESI) m/z calcd for $C_{18}H_{15}^{16}OSi$ [M-H]⁻ 275.0898, found 275.0910. It suggests the oxygen atom originated from water.

Control experiment showed there was a 9% yield of silanol without water and a 88% yield under the deoxygenated water under the nitrogen atmospher.

Ph 5	Ph I-Si-H + Ph 5 mmol	$H_2^{18}O$ Co(OAc or L3 $H_2^{16}O$ under a	:) ₂ (0.5 mol%) (<u>1 mol%)</u> ∋ (0.25 M), 80 °C air / N ₂ , 10 h	Ph Ph-Si—OH Ph
	Under air/ H ₂ ¹⁸ C	0 Under air/H ₂ ¹⁶ O	Under air	N ₂ /H ₂ ¹⁶ O (Deoxygenated)
Yield	94%	94%	9%	88%

7.2 Analysis of H₂ gas by gas chromatography

To a 10 mL flame-dried Schlenk tube with a stirring bar was added silane, $Co(OAc)_2$ (0.5 mol%), and L3 (1 mol%). H₂O and 1,4-dioxane (*c* 0.2 M) were added *via* syringe at 80 °C (oil bath) under N₂ atmosphere for 10 h. Gas chromatography showed the interval time after injection time with 2.5 min and 10.0 min for H₂ and N₂ gases, respectively. The amount of H₂ was measured based on the area with the linear equation [H₂ (µmol)=area/90/91*29]. The yield of silanol was given with CH₂Br₂ as the internal standard.

Ph		Co(OAc) ₂ (0 L3 (1 mo	.5 mol%) ol%)	Ph I	
Pn-SI-H Ph 1	+ H ₂ O — 2.0 equiv.	1,4-dioxane N ₂ , 80 °C	(c 0.2 M) ≎,10 h	Ph-Si-OH Ph 3	+ H-H
Entry	1	3	Calcd.(H ₂ /mmol)	Meat	ured (H ₂ /mmol)
1	0.1 mol	26%	0.026		0.040
2	0.2 mol	52%	0.104		0.0991

5.5 8.0 7.5 5.0 4.5 f1 (ppm) 0.0 9.0 8.5 7.0 6.5 6.0 3.5 2.5 2.0 1.5 1.0 0.5 4.0 3.0

Crude ¹H NMR Spectrum of reaction with 1 (0.2 mmol) (CH₂Br₂ as the internal atandard)

7.3 Radical inhibition experiment

TEMPO was added to the solution of silane under standard conditions. The solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the product in an 87% yield. This result ruled out the involvement of a radical intermediacy.

$$\begin{array}{ccc} Ph & Co(OAc)_2 (0.5 \text{ mol}\%) \\ Ph-Si-H & + & H_2O & \underline{L3 (1 \text{ mol}\%), \text{TEMPO} (2.0 \text{ equiv.})} \\ Ph & 1,4-\text{dioxane} (c \ 0.25 \text{ M}), 80 \ ^\circ\text{C}, 10 \text{ h} & Ph \\ 5 \text{ mmol} & \text{under air} & \text{Isolated yield: 87\%} \end{array}$$

7.4 Proof of a stereo-retentive oxidation

Ph_ Me−Si−H a-Np

(*R*)-methyl(naphthalen-1-yl)(phenyl)silane^[1], white solid, 20% *ee*. The *ee* value was determined by HPLC [CHIRALPAK[®] OD-H, eluent: *n*-hexane, 0.5 mL/min, 254 nm; $t_R = 28 \text{ min}$, $t_S = 33 \text{ min}$].

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.15 – 8.08 (m, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.91 (dd, *J* = 7.2, 2.2 Hz, 1H), 7.80 (dd, *J* = 6.8, 1.2 Hz, 1H), 7.63 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.56 – 7.46 (m, 3H), 7.46 – 7.35 (m, 3H), 5.42 (q, *J* = 3.9 Hz, 1H), 0.82 (d, *J* = 3.9 Hz, 3H).

Processed	Channel	Descr.:	2998 Ch1	254nm@1	.2nm

Processed Channel Descr.		RT	Area	Height	% Area
1	2998 Ch1 254nm@1.2nm	28.535	755897	20919	59.93
2	2998 Ch1 254nm@1.2nm	33.861	505357	12605	40.07

Ph, Me−Si−OH a-Np When an enantio-enriched (R)-methyl(naphthalen-1-yl)(phenyl)silane (20% ee) was tested, the same ee of the obtained silanol was maintained, suggesting the current transformation is a stereo-retentive oxidation process.

(*R*)-methyl(naphthalen-1-yl)(phenyl)silanol, colorless liquid, 20% *ee*. The obtained enantioenriched silanol was analyzed by HPLC [CHIRALPAK[®] AD-H, eluent: *n*-hexane/*i*-PrOH (97/3), 0.5 mL/min, 254 nm; $t_R = 42 \text{ min}$, $t_S = 44 \text{ min}$].

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 6.7 Hz, 1H), 7.71 - 7.58 (m, 2H), 7.53 - 7.45 (m, 2H), 7.44 - 7.33 (m, 4H), 2.39 (br s, 1H), 0.83 (s, 3H).

7.5 Investigation on the selectivity of silanol and disiloxane

Notably, the cobalt complexes (**K1** and **K2**), derived from their corresponding catalytic systems, both exhibited a 1:1 ratio of cobalt and the supporting ligand, as confirmed by X-ray diffraction analyses (A). Surprisingly, both complexes exhibited only catalytic activity on the hydroxylation of hydrosilane, in contrast to the current established ligand-controlled product selectivity (B). Interestingly, the presence of extra bathophenanthroline L4 was capable to trigger the catalytic activity of complex **K2** in the formation of disiloxane (C). Further investigations of various organic and inorganic bases revealed bathophenanthroline L4 most likely acted as a base to facilitate the formation of disiloxane, which was different from the function of ligand L3 for preventing decomposition of cobalt complex K1 during catalysis.

(A) Structures of cobalt phenanthroline complexes K1 and K2

(B) Cobalt complexes K1 and K2 catalyzed hydroxylation of hydrosilane (1a)

Me		K1 (0.5 mol%) or K2 (5 mol%)	Me	2a
Ph	+ H_2O (2.0 equiv.)	► THF (c 0.25 M), 60 °C	Ph-SI-OH Ph	49% (with K1) 74% (with K2)
1a	(2.0 equiv.)	air, 10 h		. ,

(C) Base-facilitated, cobalt complex K2 catalyzed synthesis of disiloxane (3a)

Me Ph-Si-H	ЦО	K2 (5 mol%) base (5 mol%)	Me	
Ph	(2.0 amint)	THF (c 0.25 M), 60 °C	Ph	Ph-Si-O-Si-Ph Ph Ph
1a	(2.0 equiv.)	air, 10 h	2a	3a
entry		base	yield (2a)	yield (3a)
1		L4	< 5%	88%
2		DMAP	75%	21%
3		Et ₃ N	76%	<5%
4		Na ₂ CO ₃	17%	83%
5		Cs ₂ CO ₃	<5%	94%

(D) Ligand-coordinated, cobalt complex K1 catalyzed synthesis of silanol (2a)

Me Ph <mark>-Si-</mark> H	+ H₂O	Co cat. ─────►	Me Ph-Si-OH
Ph	(2.0 equiv.)	THF (<i>c</i> 0.25 M), 60 °C	Ph
1a 0.2 mmol	(2.0 04010.)	air, 10 h	2a
entry	Colo	cat.	yield (2a)
1	K1 (0.5 mol%)		49%
2	Co(OAc) ₂ (0.5 mol%) + L3 (1.0 mol%)		97%
3	K1 (0.5 mol%) + L3 (0.5 mol%)		96%

8. References

- (1) Wang, K.; Zhou, J.; Jiang, Y.; Zhang, M.; Wang, C.; Xue, D.; Tang, W.; Sun, H.; Xiao, J.; Li, C. *Angew. Chem. Int. Ed.* **2019**, *58*, 6380.
- (2) Liang, H.; Wang, L.-J.; Ji, Y.-X.; Wang, H.; Zhang, B. Angew. Chem. Int. Ed. 2021, 60, 1839.
- (3) Lee, Y.; Seomoon, D.; Kim, S.; Han, H.; Chang, S.; Lee, P. H. J. Org. Chem. 2004, 69, 1741.
- (4) Shimada, T.; Jorapur, Y. Synlett 2012, 23, 1633.
- (5) Milenin, S. A.; Ardabevskaia, S. N.; Novikov, R. A.; Solyev, P. N.; Tkachev, Y. V.; Volodin, A. D.; Korlyukov, A. A.; Muzafarov, A. M. *J. Organomet. Chem.* **2020**, *926*, 121497.
- (6) Patnaik, S.; Kanbur, U.; Ellern, A.; Sadow, A. D. Chemistry A European Journal 2021, 27, 10428.
- (7) Schafer, A. G.; Wieting, J. M.; Mattson, A. E. Org. Lett. 2011, 13, 5228.
- (8) Luo, N.; Liao, J.; Ouyang, L.; Wen, H.; Zhong, Y.; Liu, J.; Tang, W.; Luo, R. Organometallics 2020, 39, 165.
- (9) Van Genabeek, B.; de Waal, B. F. M.; Gosens, M. M. J.; Pitet, L. M.; Palmans, A. R. A.; Meijer, E. W., *J. Am. Chem. Soc.* **2016**, *138*, 4210-4218.
- (10) Arzumanyan, A. V.; Goncharova, I. K.; Novikov, R. A.; Milenin, S. A.; Boldyrev, K. L.; Solyev, P. N.; Tkachev, Y. V.; Volodin, A. D.; Smol'yakov, A. F.; Korlyukov, A. A.; Muzafarov, A. M., *Green Chem.* **2018**, *20*, 1467-1471.

9. NMR spectra

100 9 f1 (ppm) -1

810 811 812 813 813 814 814 815</li

-1 100 90 f1 (ppm)

-10 100 90 f1 (ppm)

f1 (ppm) -20 -10

100 90 f1 (ppm) -10

-210

100 90 f1 (ppm) -1

-1. 9.0 7.5 4.0 f1 (ppm) 2.5 1.5 8.5 7.0 6.5 6.0 5.5 3.5 3.0 2.0 1.0 0.5 0.0 -0.5 8.0 5.0 4.5

4k ¹³C NMR (101 MHz, CDCl₃)

10 0 -100 f1 (ppm) -30 -50 -60 -10 -20 -40 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

100 90 f1 (ppm) -10

-10 f1 (ppm)

