Palladium-catalyzed stereoselective decarboxylative allylation of

azlactones: access to (Z)-trisubstituted allylic amino acid

derivatives

Jian-Qiang Zhao,^{a,*} Han-Wen Rao^a, Hui-Ling Qian^a, Xue-Man Zhang^a, Shun Zhou,^{a,b} Yan-Ping Zhang,^a Yong You,^a Zhen-Hua Wang^a and Wei-Cheng Yuan^{a,*}

^aInnovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.

^bNational Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.

> *E-mail:* zhaojianqiang@cdu.edu.cn; yuanwc@cioc.ac.cn

Supporting Information

Table of Contents

1.	General experimental information	S1
2.	General experimental procedures for synthesis of compounds 3	S1
3.	Scale-up experiment	S10
4.	Synthesis of compound 5	S10
5.	Synthesis of compound 6	S11
6.	Synthesis of compound 7	S11
7.	The preliminary attempt to the asymmetric decarboxylative allylation	S12
8.	X-Ray crystal data for compound 3ja	S12
9.	¹ H and ¹³ C NMR, spectra for compounds 3 and 5-7	S14

1. General experimental information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and DMSO- d_6 . ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO- d_6 at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.16 ppm, DMSO- d_6 at 39.52 ppm). Melting points were recorded on a Büchi Melting Point B-545. The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

2. General experimental procedures for synthesis of compounds 3

Method A: To a flame dried reaction tube were added Pd(PPh₃)₂Cl₂ (3.5 mg, 5 mol%) and ligand **L4** (5.8 mg, 10 mol%), followed by addition distilled chlorobenzene (1.0 mL). Then vinyl methylene cyclic carbonates **1** (0.1 mmol) and azlatones **2** (0.1 mmol) were added at 0 °C under an argon atmosphere. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = $10:1 \sim 15:1$) to give the corresponding product **3**.

Method B: To a flame dried reaction tube were added $Pd(PPh_3)_2Cl_2$ (3.5 mg, 5 mol%) and ligand L4 (5.8 mg, 10 mol%), followed by addition distilled CH_2Cl_2 (1.0 mL). Then vinyl methylene cyclic carbonates 1 (0.1 mmol), *N*-acyl amino acids 4 (0.12 mmol, 1.2 equiv) and DCC (0.12 mmol, 1.2 equiv) were added at 0 °C under an argon atmosphere. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1~15:1) to give the corresponding product **3**.

(Z)-4-benzyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3aa)

Colourless oil, method A: 36.4 mg, 89% yield; method B: 28.0 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.57 – 7.50 (m, 1H), 7.47 – 7.40 (m, 2H), 7.32 – 7.27 (m, 3H), 7.22 – 7.09 (m, 7H), 5.81 (t, *J* = 7.8 Hz, 1H), 3.29 (d, *J* = 13.5 Hz, 1H), 3.22 (d, *J* = 13.4 Hz, 1H), 3.13 – 3.00 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 179.1, 160.3, 147.8, 137.4, 134.2, 132.8, 130.3, 128.9, 128.4, 128.3, 127.9, 127.4, 127.3, 126.8, 125.6, 74.6, 43.3, 36.7, 30.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₄NO₃410.1751; Found: 410.1753.

(Z)-4-benzyl-4-(3-(4-fluorophenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ba) Colourless oil, method A: 34.8 mg, 81% yield; method B: 21.8 mg, 51% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.93 – 7.84 (m, 2H), 7.57 – 7.52 (m, 1H), 7.47 – 7.41 (m, 2H), 7.21 – 7.13 (m, 5H), 7.12 – 7.05 (m, 2H), 7.02 – 6.95 (m, 2H), 5.76 (t, *J* = 7.7 Hz, 1H), 3.27 (d, *J* = 13.5 Hz, 1H), 3.21 (d, J = 13.5 Hz, 1H), 3.10 – 3.00 (m, 2H), 2.18 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.3, 179.0, 162.8 (d, J = 249.2 Hz), 160.3, 146.7, 134.1, 133.5 (d, J = 3.4 Hz), 132.9, 130.3, 129.1 (d, J = 8.2 Hz), 128.9, 128.3, 127.9, 127.5, 127.0, 125.5, 115.9 (d, J = 21.5 Hz), 74.6, 43.3, 36.7, 30.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃FNO₃ 428.1656; Found: 428.1660.

(Z)-4-benzyl-4-(3-(4-chlorophenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ca) Colourless oil, method B: 31.9 mg, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.50 – 7.44 (m, 1H), 7.40 – 7.33 (m, 2H), 7.21 – 7.17 (m, 2H), 7.13 – 7.03 (m, 5H), 6.99 – 6.93 (m, 2H), 5.71 (t, *J* = 7.7 Hz, 1H), 3.19 (d, *J* = 13.4 Hz, 1H), 3.12 (d, *J* = 13.4 Hz, 1H), 3.03 – 2.89 (m, 2H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 179.0, 160.3, 146.6, 135.8, 134.5, 134.1, 132.9, 130.3, 129.1, 128.9, 128.6, 128.3, 127.9, 127.5, 127.4, 125.5, 74.5, 43.3, 36.7, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃ClNO₃ 444.1361; Found: 444.1366.

(Z)-4-benzyl-4-(3-(4-bromophenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3da) White solid, method A, 43.2 mg, 89% yield; method B: 36.6 mg, 75% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 7.86 – 7.79 (m, 2H), 7.63 – 7.56 (m, 1H), 7.53 – 7.46 (m, 3H), 7.33 – 7.25 (m, 2H), 7.20 – 7.10 (m, 6H), 5.92 (t, *J* = 7.7 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.19 (d, *J* = 13.5 Hz, 1H), 3.02 – 2.91 (m, 2H), 2.17 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 201.9, 178.3, 159.2, 145.1, 139.1, 134.1, 132.8, 130.9, 130.6, 129.9, 129.4, 128.9, 127.8, 127.3, 127.0, 125.8, 124.9, 122.0, 73.6, 41.9, 35.9, 30.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃BrNO₃ 488.0856; Found: 488.0861.

(*Z*)-4-benzyl-4-(3-(3-bromophenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ea) White solid, method A, 23.0 mg, 47% yield; method B: 39.0 mg, 80% yield, m.p. 114.3-114.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 – 7.77(m, 2H), 7.64 – 7.57 (m, 1H), 7.55 – 7.47 (m, 3H), 7.35 – 7.27 (m, 2H), 7.23 – 7.07 (m, 6H), 5.94 (t, *J* = 7.7 Hz, 1H), 3.29 (d, *J* = 13.4 Hz, 1H), 3.20 (d, *J* = 13.5 Hz, 1H), 3.03 – 2.92 (m, 2H), 2.17 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 202.4, 178.5, 159.3, 145.1, 139.2, 134.4, 133.1, 131.1, 130.9, 130.1, 129.4, 129.1, 128.0, 127.9, 127.5, 127.2, 126.0, 125.0, 122.1, 73.7, 41.9, 35.9, 30.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃BrNO₃ 488.0856; Found: 488.0856.

(Z)-4-benzyl-4-(3-(4-methoxyphenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3fa) Colourless oil, method A, 25.8 mg, 59% yield; method B: 24.7 mg, 56% yield; ¹H NMR (400 MHz, DMSO- d_6) δ 7.88 – 7.78 (m, 2H), 7.66 – 7.59 (m, 1H), 7.56 – 7.48 (m, 2H), 7.22 – 7.12 (m, 5H), 7.11 – 7.05 (m, 2H), 6.93 – 6.86 (m, 2H), 5.73 (t, J = 7.8 Hz, 1H), 3.73 (s, 3H), 3.28 (d, J = 13.5 Hz, 1H), 3.20 (d, J = 13.5 Hz, 1H), 2.93 (dd, J = 7.9, 2.6 Hz, 2H), 2.15 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 203.5, 178.6, 159.3, 159.2, 146.5, 134.4, 133.0, 130.0, 129.1, 128.8, 128.0, 127.9, 127.4, 127.1, 125.0, 123.3, 114.3, 73.9, 55.2, 42.0, 40.2, 30.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₄ 440.1856; Found: 440.1863.

(Z)-4-benzyl-4-(4-oxo-3-(p-tolyl)pent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ga) Colourless oil, method A, 34.5 mg, 82% yield; method B: 32.1 mg, 76% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.87 (dd, J = 8.1, 1.4 Hz, 2H), 7.57 – 7.50 (m, 1H), 7.47 – 7.41 (m, 2H), 7.19 – 7.13 (m, 5H), 7.10 (d, J = 7.9 Hz, 2H), 7.04 – 6.98 (m, 2H), 5.76 (t, J = 7.7 Hz, 1H), 3.28 (d, J = 13.5 Hz, 1H), 3.21 (d, J = 13.5 Hz, 1H), 3.09 – 3.00 (m, 2H), 2.32 (s, 3H), 2.19 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.0, 179.1, 160.3, 147.7, 138.3, 134.5, 134.2, 132.8, 130.3, 129.5, 128.9, 128.3, 127.9, 127.4, 127.2, 125.8, 125.6, 74.7, 43.3, 36.7, 30.9, 21.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₃ 424.1907; Found: 424.1911.

(Z)-4-benzyl-4-(3-(4-isopropylphenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ha) Colourless oil, method A, 34.8 mg, 77% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 7.88 – 7.80 (m, 2H), 7.68 – 7.59 (m, 1H), 7.56 – 7.49 (m, 2H), 7.24 – 7.18 (m, 4H), 7.17 – 7.12 (m, 3H), 7.10 – 7.06 (m, 2H), 5.80 (t, *J* = 7.8 Hz, 1H), 3.29 (d, *J* = 13.6 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 3.00 – 2.91 (m, 2H), 2.85 (p, *J* = 6.9 Hz, 1H), 2.17 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 203.5, 178.6, 159.2, 148.6, 146.8, 134.4, 134.1, 133.1, 130.1, 129.2, 128.0, 127.5, 127.2, 126.9, 126.6, 125.0, 124.5, 73.9, 42.0, 35.8, 33.1, 30.8, 23.7, 23.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₃₀NO₃ 452.2220; Found: 452.2225.

Colourless oil, method A, 40.6 mg, 87% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 7.86 – 7.80 (m, 2H), 7.66 – 7.59 (m, 1H), 7.54 – 7.50 (m, 2H), 7.38 – 7.34 (m, 2H), 7.21 – 7.17 (m, 2H), 7.16 – 7.11 (m, 3H), 7.11 – 7.07 (m, 2H), 5.80 (t, J = 7.8 Hz, 1H), 3.28 (d, J = 13.6 Hz, 1H), 3.20 (d, J = 13.6 Hz, 1H), 2.99 – 2.90 (m, 2H), 2.17 (s, 3H), 1.24 (s, 9H); ¹³C NMR (151 MHz, DMSO- d_6) δ 203.5, 178.6, 159.2, 150.9, 146.7, 134.4, 133.7, 133.1, 130.0, 129.2, 128.0, 127.5, 127.2, 126.3, 125.7, 125.0, 124.5, 73.9, 42.0, 35.8, 34.3, 31.0, 30.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₃₂NO₃ 466.2377; Found: 466.2383.

(Z)-4-benzyl-4-(3-(3,4-dimethylphenyl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ja) White solid, method A, 27.2 mg, 62% yield; method B: 32.8 mg, 75% yield; m.p. 137.1-137.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.83 (d, J = 7.7 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.45 (m, 2H), 7.19 – 7.08 (m, 5H), 7.04 (d, J = 7.7 Hz, 1H), 6.81 (d, J = 8.3 Hz, 2H), 5.70 (t, J = 7.9 Hz, 1H), 3.26 (d, J = 13.5 Hz, 1H), 3.17 (d, J = 13.5 Hz, 1H), 2.96 – 2.87 (m, 2H), 2.17 (s, 3H), 2.12 (s, 6H); ¹³C NMR (101 MHz, DMSO- d_6) δ 203.4, 178.8, 159.7, 147.5, 137.0, 136.9, 134.7, 133.3, 130.4, 130.2, 129.3, 128.3, 128.2, 127.8, 127.5, 125.5, 124.8, 124.4, 74.4, 42.5, 36.4, 30.9, 19.7, 19.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₈NO₃ 438.2064; Found: 438.2070.

(Z)-4-benzyl-4-(3-(naphthalen-2-yl)-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ka) Colourless oil, method A, 40.2 mg, 88% yield; method B: 22.5 mg, 49% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 7.91 – 7.81 (m, 5H), 7.66 – 7.60 (m, 2H), 7.55 – 7.47 (m, 4H), 7.36 (dd, J = 8.6, 1.9 Hz, 1H), 7.22 – 7.13 (m, 5H), 6.02 (t, J = 7.8 Hz, 1H), 3.33 (d, J = 13.5 Hz, 1H), 3.24 (d, J = 13.6 Hz, 1H), 3.07 – 2.98 (m, 2H), 2.23 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 203.3, 178.6, 159.3, 146.8, 134.4, 134.0, 133.1, 132.8, 132.5, 130.1, 129.2, 128.5, 128.1, 128.0, 127.6, 127.5, 127.2, 126.7, 126.6, 125.9, 125.8, 125.0, 124.5, 74.0, 42.0, 36.0, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₂₆NO₃ 460.1907; Found: 460.1912.

(Z)-4-benzyl-4-(3-cyclohexyl-4-oxopent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3la)

Colourless oil, method A, 15.9 mg, 38% yield; method B: 36.3 mg, 87% yield; ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 – 7.73 (m, 2H), 7.67 – 7.59 (m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.24 – 7.01 (m, 5H), 5.22 (t, J = 7.8 Hz, 1H), 3.21 (d, J = 13.5 Hz, 1H), 3.13 (d, J = 13.4 Hz, 1H), 2.77 (d, J = 7.8 Hz, 2H), 2.21 (s, 3H), 2.21 - 2.13 (m, 1H), 1.67 – 1.45 (m, 5H), 1.26 – 1.13 (m, 2H), 1.08 – 0.90 (m, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 204.9, 178.6, 159.0, 152.1, 134.4, 133.0, 130.0,

129.1, 128.0, 127.4, 127.1, 125.0, 120.0, 74.1, 42.0, 38.9, 35.6, 31.8, 31.6, 30.4, 25.8, 25.8, 25.4. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{27}H_{29}NaNO_3$ 438.2040; Found: 438.2042.

(Z)-4-methyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ab)

Colourless oil, method A, 27.3 mg, 82% yield; method B: 18.2 mg, 55% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.61 – 7.57 (m, 1H), 7.53 – 7.47 (m, 2H), 7.29 (dd, J = 5.1, 1.9 Hz, 3H), 7.15 – 7.10 (m, 2H), 5.77 (t, J = 7.7 Hz, 1H), 2.97 – 2.86 (m, 2H), 2.18 (s, 3H), 1.58 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.6, 180.2, 160.3, 147.7, 137.4, 133.0, 129.0, 128.9, 128.4, 128.1, 127.3, 126.9, 125.8, 69.5, 37.5, 30.9, 23.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₀NO₃ 334.1438; Found: 334.1443.

(Z)-4-ethyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ac)

Colourless oil, method A, 16.8 mg, 48% yield; method B: 24.5 mg, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.98 (m, 2H), 7.62 – 7.56 (m, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.26 (m, 3H), 7.11 (dd, *J* = 6.7, 2.9 Hz, 2H), 5.76 (t, *J* = 7.8 Hz, 1H), 3.03 – 2.85 (m, 2H), 2.17 (s, 3H), 2.06 – 1.97 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 179.8, 160.5, 147.6, 137.5, 133.0, 129.0, 128.9, 128.3, 128.1, 127.3, 126.9, 125.8, 74.0, 36.6, 30.9, 30.3, 8.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₂NO₃ 348.1594; Found: 348.1598.

(Z)-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyl-4-propyloxazol-5(4H)-one (3ad)

Colourless oil, method A, 19.1 mg, 53% yield; method B: 25.0 mg, 69% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.09 – 7.92 (m, 2H), 7.64 – 7.55 (m, 1H), 7.54 – 7.45 (m, 2H), 7.31 – 7.22 (m, 3H), 7.11 (dt, *J* = 5.8, 3.0 Hz, 2H), 5.81 – 5.68 (m, 1H), 2.97 (ddd, *J* = 14.8, 7.6, 3.7 Hz, 1H), 2.89 (ddd, *J* = 14.9, 7.9, 3.7 Hz, 1H), 2.17 (d, *J* = 3.8 Hz, 3H), 1.99 – 1.87 (m, 2H), 1.31 (dqt, *J* = 16.4, 7.8, 4.6 Hz, 1H), 1.25 – 1.16 (m, 1H), 0.95 – 0.85 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.7, 179.9, 160.4, 147.6, 137.4, 133.0, 129.0, 128.8, 128.3, 128.1, 127.3, 126.9, 125.7, 73.5, 39.2, 36.9, 30.9, 17.4, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄NO₃ 362.1751; Found: 362.1755.

(Z)-4-isopropyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3ae)

Colourless oil, method A, 28.9 mg, 80% yield; method B: 25.3 mg, 70% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 7.94 (m, 2H), 7.63 – 7.54 (m, 1H), 7.50 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.27 (dd, *J* = 5.6, 2.4 Hz, 3H), 7.14 – 7.00 (m, 2H), 5.69 (t, *J* = 7.8 Hz, 1H), 3.03 (dd, *J* = 14.8, 7.3 Hz, 1H), 2.93 (dd, *J* = 14.8, 8.1 Hz, 1H), 2.24 (q, *J* = 7.0 Hz, 1H), 2.16 (d, *J* = 1.4 Hz, 3H), 1.09 (d,

J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, cdcl₃) δ 203.8, 179.8, 160.4, 147.7, 137.5, 132.9, 129.0, 128.8, 128.3, 128.1, 127.3, 127.2, 125.8, 76.7, 34.8, 34.5, 30.8, 17.2, 16.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄NO₃ 362.1751; Found: 362.1755.

(Z)-4-isobutyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-phenyloxazol-5(4H)-one (3af)

Colourless oil, method A, 17.6 mg, 47% yield; method B: 21.5 mg, 57% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 7.98 (m, 2H), 7.63 – 7.55 (m, 1H), 7.55 – 7.47 (m, 2H), 7.32 – 7.23 (m, 3H), 7.15 – 7.04 (m, 2H), 5.71 (t, *J* = 7.8 Hz, 1H), 2.99 – 2.82 (m, 2H), 2.15 (q, *J* = 1.1 Hz, 3H), 2.06 – 1.97 (m, 1H), 1.91 – 1.81 (m, 1H), 1.71 – 1.62 (m, 1H), 0.91 (d, *J* = 6.7 Hz, 3H), 0.86 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 180.4, 160.1, 147.9, 137.4, 133.0, 129.0, 128.8, 128.3, 128.1, 127.3, 126.6, 125.8, 73.1, 45.8, 38.0, 30.8, 25.1, 24.2, 23.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₆NO₃ 376.1907; Found: 376.1910.

(Z)-4-benzyl-2-(4-fluorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ag) Colourless oil, method A, 37.9 mg, 89% yield; method B: 23.2 mg, 54% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.30 (t, *J* = 3.3 Hz, 3H), 7.19 – 7.08 (m, 9H), 5.80 (t, *J* = 7.8 Hz, 1H), 3.27 (d, *J* = 13.5 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 3.12 – 2.98 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 178.8, 165.6 (d, *J* = 255.8 Hz), 159.4, 147.7, 137.4, 134.1, 130.4, 130.3, 128.9, 128.4, 128.3, 127.4, 127.3, 126.8, 121.8 (d, *J* = 3.1 Hz), 116.2 (d, *J* = 22.4 Hz), 74.6, 43.3, 36.7, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃NO₃428.1656; Found: 428.1667.

(Z)-4-benzyl-2-(3-fluorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ah) Colourless oil, method B, 19.1 mg, 45% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 1H), 7.61 – 7.54 (m, 1H), 7.45 – 7.38 (m, 1H), 7.31 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.25 – 7.17 (m, 2H), 7.16 (dd, *J* = 6.6, 2.4 Hz, 4H), 7.12 (dd, *J* = 6.7, 3.0 Hz, 2H), 5.79 (t, *J* = 7.7 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.21 (d, *J* = 13.4 Hz, 1H), 3.12 – 2.99 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 178.6, 162.7 (d, *J* = 249.0 Hz), 159.3 (d, *J* = 3.3 Hz), 147.8, 137.4, 134.0, 130.7 (d, *J* = 8.0 Hz), 130.3, 128.9, 128.4, 128.3, 127.6 (d, *J* = 8.3 Hz), 127.5, 127.3, 126.7, 123.7 (d, *J* = 3.2 Hz), 120.0 (d, *J* = 21.4 Hz), 114.9 (d, *J* = 23.9 Hz), 74.8, 43.2, 36.6, 30.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₂NaNO₃ 450.1476; Found: 450.1481.

(Z)-4-benzyl-2-(3-chlorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ai)

Colourless oil, method A, 36.3 mg, 82% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.90 – 7.85 (m, 1H), 7.77 – 7.71 (m, 1H), 7.52 – 7.48 (m, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.31 (dd, *J* = 5.1, 2.0 Hz, 3H), 7.22 – 7.11 (m, 7H), 5.79 (t, *J* = 7.7 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.22 (d, *J* = 13.5 Hz, 1H), 3.10 – 3.01 (m, 2H), 2.19 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.6, 178.5, 159.2, 147.8, 137.4, 135.1, 134.0, 132.9, 130.3, 130.2, 128.9, 128.4, 128.3, 127.9, 127.5, 127.4, 127.3, 126.7, 126.0, 74.7, 43.2, 36.7, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃ClNO₃ 444.1361; Found: 444.1362.

(Z)-4-benzyl-2-(4-chlorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3aj) Colourless oil, method B, 35.1 mg, 79% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.22 – 7.03 (m, 7H), 5.79 (t, *J* = 7.7 Hz, 1H), 3.27 (d, *J* = 13.4 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 3.12 – 3.00 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 178.7, 159.5, 147.8, 139.3, 137.4, 134.1, 130.2, 129.3, 129.2, 128.9, 128.4, 128.3, 127.5, 127.3, 126.7, 124.0, 77.5, 43.2, 36.6, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃ClNO₃ 444.1361; Found: 444.1360.

(Z)-4-benzyl-2-(2-chlorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ak) Colourless oil, method B, 22.9 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.36 (m, 3H), 7.32 (dd, *J* = 5.3, 2.0 Hz, 3H), 7.29 – 7.25 (m, 1H), 7.25 – 7.15 (m, 7H), 5.85 (t, *J* = 7.7 Hz, 1H), 3.36 – 3.23 (m, 2H), 3.11 (d, *J* = 7.7 Hz, 2H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 178.8, 159.2, 147.8, 137.3, 134.1, 133.6, 132.9, 131.2, 131.0, 130.4, 128.9, 128.4, 127.6, 127.3, 126.9, 126.6, 125.6, 74.9, 43.3, 36.6, 30.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃ClNO₃ 444.1361; Found: 444.1365.

(Z)-4-benzyl-2-(3-bromophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3al) Colourless oil, method A, 30.5 mg, 63% yield; method B: 26.1 mg, 54% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (t, *J* = 1.8 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.68 – 7.64 (m, 1H), 7.33 – 7.28 (m, 4H), 7.20 – 7.12 (m, 7H), 5.79 (t, *J* = 7.7 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.22 (d, *J* = 13.5 Hz, 1H), 3.10 - 3.01 (m, 2H), 2.20 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.5, 178.5, 159.1, 147.8, 137.4, 135.8, 134.0, 130.8, 130.5, 130.2, 128.9, 128.4, 128.3, 127.5, 127.4, 127.3, 126.7, 126.5, 123.0, 74.7, 43.2, 36.7, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃BrNO₃ 488.0856; Found: 488.0857.

(Z)-4-benzyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-(p-tolyl)oxazol-5(4H)-one (3am) Colourless oil, method B, 25.9 mg, 61% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.13 (m, 6H), 7.11 – 7.07 (m, 4H), 7.06 – 7.02 (m, 2H), 5.71 (t, *J* = 7.7 Hz, 1H), 3.19 (d, *J* = 13.4 Hz, 1H), 3.12 (d, *J* = 13.4 Hz, 1H), 2.97 (dd, *J* = 7.7, 2.7 Hz, 2H), 2.32 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.8, 179.2, 160.4, 147.7, 143.6, 137.4, 134.3, 130.3, 129.6, 128.9, 128.4, 128.3, 127.9, 127.4, 127.3, 126.9, 122.8, 74.6, 43.3, 36.7, 30.9, 21.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₃ 424.1907; Found: 424.1914.

(Z)-4-benzyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-(m-tolyl)oxazol-5(4H)-one (3an)

Colourless oil, method A, 34.6 mg, 82% yield; method B: 27.5 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.62 (m, 2H), 7.38 – 7.26 (m, 5H), 7.24 – 7.05 (m, 7H), 5.80 (t, *J* = 7.8 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 3.10 – 3.01 (m, 2H), 2.38 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 179.1, 160.5, 147.7, 138.8, 137.4, 134.2, 133.7, 130.3, 128.9, 128.8, 128.4, 128.3, 128.3, 127.4, 127.3, 126.9, 125.5, 125.2, 74.6, 43.3, 36.7, 30.9, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₃ 424.1907; Found: 424.1919.

(Z)-4-benzyl-2-(4-methoxyphenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ao) Colourless oil, method B, 33.4 mg, 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.5 Hz, 2H), 7.34 – 7.26 (m, 3H), 7.22 – 7.08 (m, 7H), 6.92 (d, *J* = 8.5 Hz, 2H), 5.80 (t, *J* = 7.7 Hz, 1H), 3.84 (s, 3H), 3.26 (d, *J* = 13.4 Hz, 1H), 3.19 (d, *J* = 13.4 Hz, 1H), 3.10 – 2.98 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 179.2, 163.3, 160.0, 147.6, 137.4, 134.3, 130.3, 129.8, 128.8, 128.3, 128.2, 127.4, 127.3, 126.9, 117.8, 114.3, 74.5, 55.5, 43.3, 36.8, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₄ 440.1856; Found: 440.1860.

(Z)-4-benzyl-2-(3,5-dimethylphenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ap) Colourless oil, method A, 36.8 mg, 84% yield; method B: 29.6 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.32 – 7.27 (m, 3H), 7.21 – 7.14 (m, 6H), 7.14 – 7.10 (m, 2H), 5.79 (t, *J* = 7.7 Hz, 1H), 3.27 (d, *J* = 13.5 Hz, 1H), 3.20 (d, *J* = 13.4 Hz, 1H), 3.05 (d, *J* = 7.7 Hz, 2H), 2.34 (s, 3H), 2.33 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 179.1, 160.7, 147.7, 138.6, 137.4, 134.7, 134.2, 130.3, 128.9, 128.4, 128.3, 127.4, 127.3, 126.9, 125.7, 125.4, 74.5, 43.3, 36.8, 30.9, 21.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₈NO₃ 438.2064; Found: 438.2072.

(Z)-4-benzyl-2-(3,5-dichlorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3aq) Colourless oil, method B, 30.2 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.0 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.32 – 7.25 (m, 2H), 7.25 – 7.18 (m, 6H), 5.84 (t, *J* = 7.7 Hz, 1H), 3.32 (d, *J* = 13.5 Hz, 1H), 3.27 (d, *J* = 13.3 Hz, 1H), 3.12 (d, *J* = 7.7 Hz, 2H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 178.5, 158.4, 147.8, 138.7, 137.3, 134.6, 134.0, 132.0, 131.1, 130.3, 128.9, 128.5, 128.4, 127.6, 127.4, 127.3, 126.5, 123.9, 75.0, 43.3, 36.6, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₂Cl₂NO₃ 478.0971; Found: 478.0978.

(Z)-4-benzyl-2-(2,6-difluorophenyl)-4-(4-oxo-3-phenylpent-2-en-1-yl)oxazol-5(4H)-one (3ar) Colourless oil, method B, 36.4 mg, 59% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 1H), 7.30 – 7.23 (m, 3H), 7.18 (d, *J* = 7.0 Hz, 3H), 7.16 – 7.10 (m, 4H), 6.95 – 6.85 (m, 2H), 5.71 (t, *J* = 7.7 Hz, 1H), 3.23 (d, *J* = 13.5 Hz, 1H), 3.18 (d, *J* = 13.5 Hz, 1H), 3.11 – 2.96 (m, 2H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.8, 178.3, 161.1 (dd, *J*₁ = 262.6 Hz, *J*₂ = 5.4 Hz), 153.7 (d, *J* = 2.2 Hz), 148.1, 137.3, 133.9 (d, *J* = 10.4 Hz), 133.7, 130.4, 128.9, 128.4, 127.6, 127.4, 126.1, 112.4, 112.3 (d, *J* = 1.8 Hz), 112.2 (d, *J* = 1.6 Hz), 112.1, 74.8, 43.2, 36.5, 30.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₂F₂NO₃ 446.1562; Found: 446.1561.

Colourless oil, method A, 34.0 mg, 74% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 1.7 Hz, 1H), 7.95 – 7.89 (m, 1H), 7.84 – 7.74 (m, 3H), 7.52 – 7.47 (m, 1H), 7.47 – 7.42 (m, 1H), 7.19 – 7.15 (m, 3H), 7.14 – 7.10 (m, 2H), 7.09 – 7.00 (m, 5H), 5.75 (t, *J* = 7.7 Hz, 1H), 3.23 (d, *J* = 13.5 Hz, 1H), 3.16 (d, *J* = 13.5 Hz, 1H), 3.07 – 2.96 (m, 2H), 2.12 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.7, 179.0, 160.4, 147.8, 137.4, 135.4, 134.2, 132.6, 130.3, 129.4, 129.2, 128.9, 128.5, 128.3, 128.3, 128.0, 127.4, 127.3, 127.1, 126.8, 123.5, 122.7, 74.8, 43.4, 36.8, 30.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₂₅NaNO₃ 482.1727; Found: 482.1732.

(Z)-4-benzyl-4-(4-oxo-3-phenylpent-2-en-1-yl)-2-(thiophen-2-yl)oxazol-5(4H)-one (3at) Colourless oil, method A, 17.3 mg, 42% yield; method B: 20.0 mg, 48% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.49 (m, 2H), 7.33 – 7.27 (m, 3H), 7.23 – 7.15 (m, 5H), 7.15 – 7.10 (m, 2H), 7.10 – 7.04 (m, 1H), 5.86 – 5.72 (m, 1H), 3.26 (dd, *J* = 13.6, 3.8 Hz, 1H), 3.20 (dd, *J* = 13.5, 3.8 Hz, 1H), 3.11 – 3.00 (m, 2H), 2.20 (d, *J* = 3.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.7, 178.4, 156.1, 147.8, 137.4, 134.1, 132.0, 131.9, 130.3, 128.9, 128.4, 128.3, 128.2, 128.0, 127.4, 127.3, 126.7, 74.6, 43.3, 36.7, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₂NO₃S 416.1315; Found: 416.1324.

3. Scale-up Experiment

Method A: To a flame dried reaction tube were added $Pd(PPh_3)_2Cl_2$ (105.3 mg, 5 mol%) and ligand L4 (174 mg, 10 mol%), followed by addition distilled chlorobenzene (30.0 mL). Then vinyl methylene cyclic carbonate 1a (3.0 mmol, 606 mg) and azlatone 2a (3.0 mmol, 970 mg) were added at 0 °C under an argon atmosphere. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the corresponding product 3aa in 70% yield.

Method B: To a flame dried reaction tube were added $Pd(PPh_3)_2Cl_2$ (105.3 mg, 5 mol%) and ligand L4 (174 mg, 10 mol%), followed by addition distilled CH_2Cl_2 (30.0 mL). Then vinyl methylene cyclic carbonate 1a (3.0 mmol, 606 mg), *N*-acyl amino acid 4a (3.6 mmol, 840 mg) and DCC (36 mmol, 1.2 equiv) were added at 0 °C under an argon atmosphere. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the corresponding product 3aa in 82% yield.

4. Synthesis of compound 5

To a sealed tube equipped with compound **3aa** (81.8 mg, 0.2 mmol) in 2 mL THF were added pyrrolidine (21.5 mg, 1.5 equiv). The reaction mixture stirred at room temperature for 18 h. After completion, the resulting mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give the corresponding product **5** in 69% yield.

(Z)-N-(2-benzyl-1,6-dioxo-5-phenyl-1-(pyrrolidin-1-yl)hept-4-en-2-yl)benzamide (5)

Colourless oil, 66.2 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (bs, 1H), 7.78 – 7.70 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.33 (m, 5H), 7.13 – 7.16 (m, 3H), 7.12 – 7.04 (m, 2H), 6.97 – 6.88 (m, 2H), 6.78 (dd, J = 9.3, 4.8 Hz, 1H), 4.05 – 3.88 (m, 2H), 3.59 – 3.49 (m, 2H), 3.44 (d, J = 11.4 Hz, 1H), 3.10 (d, J = 14.4 Hz, 1H), 2.89 (dd, J = 16.3, 9.2 Hz, 1H), 2.84 – 2.72 (m, 1H), 2.23 (s, 3H), 1.88 – 1.70 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 168.8, 166.4, 144.5, 138.0, 135.9, 135.4, 135.3, 131.6, 129.8, 129.4, 128.7, 128.4, 128.3, 128.0, 127.1, 127.0, 65.3, 38.0, 33.7, 27.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₃₃N₂O₃ 481.2486; Found: 481.2469.

5. Synthesis of compound 6

To a sealed tube equipped with compound **3aa** (81.8 mg, 0.2 mmol) in 2 mL MeOH were added K_2CO_3 (69 mg, 2.5 equiv). The reaction mixture stirred at room temperature for 7 h. After completion, the resulting mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the corresponding product **6** in 63% yield.

methyl (Z)-2-benzamido-2-benzyl-6-oxo-5-phenylhept-4-enoate (6)

white solid, 55.6 mg, 63% yield; m.p. 89.1-90.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.48 – 7.41 (m, 1H), 7.40 – 7.27 (m, 5H), 7.11 – 7.06 (m, 3H), 6.98 (d, *J* = 7.3 Hz, 2H), 6.93 (s, 1H), 6.87 (dd, *J* = 6.8, 2.7 Hz, 2H), 6.71 – 6.62 (m, 1H), 3.79 (dd, *J* = 13.5, 2.0 Hz, 1H), 3.65 (s, 3H), 3.64 – 3.55 (m, 1H), 2.98 (d, *J* = 13.5 Hz, 1H), 2.82 – 2.71 (m, 1H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 173.0, 167.0, 145.3, 136.6, 135.7, 135.6, 134.9, 131.9, 129.7, 129.5, 128.8, 128.5, 128.4, 127.9, 127.2, 127.0, 65.7, 53.0, 40.5, 35.6, 27.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₈NO₄ 442.2013; Found: 442.2018.

6. Synthesis of compound 7

Under arogen atmosphere, compound **3da** (48.8 mg, 0.1 mmol), naphthalen-1-ylboronic acid (20.6 mg, 1.2 equiv), Na₂CO₃ (15.9 mg, 1.5 equiv), and Pd(PPh₃)₄ (5.7 mg, 10 mol%) were successively added to mixed solvents of toluene (1.5 mL) and EtOH (1.5 mL). The resulting mixture was stirred at reflux for 20 h. The reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 3:1) to afford the corresponding products **7** in 43% yield.

ethyl (Z)-2-benzamido-2-benzyl-5-(4-(naphthalen-1-yl)phenyl)-6-oxohept-4-enoate (7) Colourless oil, 25.1 mg, 43% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.78 – 7.68 (m, 3H), 7.55 (d, J = 7.5 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.37 – 7.29 (m, 3H), 7.21 – 7.11 (m, 6H), 7.08 – 6.94 (m, 4H), 5.69 (t, J = 7.7 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 13.6 Hz, 1H), 3.51 (dd, J = 15.1, 8.0 Hz, 1H), 3.36 (d, J = 13.6 Hz, 1H), 2.91 (dd, J = 15.1, 7.4 Hz, 1H), 2.07 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.8, 172.9, 167.1, 146.5, 141.4, 139.3, 137.5, 136.2, 135.4, 133.9, 133.4, 131.5, 130.1, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.3, 127.2, 127.1, 126.4, 126.0, 125.9, 125.8, 125.5, 65.2, 62.4, 40.3, 35.9, 30.7, 14.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₉H₃₆NO₄ 582.2639; Found: 582.2643.

7. The preliminary attempt to the asymmetric decarboxylative allylation

In a flame dried reaction tube were added $Pd_2(dba)_3$ CHCl₃ (5.0 mg, 5 mol%) and ligand L* (10 mol%). Then, distilled chlorobenzene (0.3 mL) was added and stirred for 30 minutes at rt. Vinyl methylene cyclic carbonate **1a** (0.1mmol, 20.2 mg) and azlatone **2a** (0.1 mmol, 25.1 mg) were added under an argon atmosphere. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the corresponding product **3aa** (The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm)).

8. X-Ray crystal data for compound 3ja

ORTEP of **3ja** (at 50% level)

Crystal data and structure refinement for 3ja (CCDC-2184568)				
Identification code	202112381			
Empirical formula	$C_{29}H_{27}NO_3$			
Formula weight	437.51			
Temperature/K	293(2)			
Crystal system	orthorhombic			
Space group	Pna2 ₁			
a/Å	8.29455(17)			
b/Å	18.4338(4)			
c/Å	16.1206(3)			
$\alpha/^{\circ}$	90			
β/°	90			
γ/°	90			
Volume/Å ³	2464.84(9)			
Z	4			
$\rho_{calc}g/cm^3$	1.179			
μ/mm^{-1}	0.602			
F(000)	928.0			
Crystal size/mm ³	$0.14 \times 0.1 \times 0.09$			
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/ $^\circ$	7.284 to 134.144			
Index ranges	$-6 \le h \le 9, -21 \le k \le 22, -11 \le l \le 19$			
Reflections collected	8291			
Independent reflections	3209 [$R_{int} = 0.0325$, $R_{sigma} = 0.0374$]			
Data/restraints/parameters	3209/1/301			
Goodness-of-fit on F ²	1.035			
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0405, wR_2 = 0.1004$			
Final R indexes [all data]	$R_1 = 0.0500, wR_2 = 0.1106$			
Largest diff. peak/hole / e $Å^{-3}$	0.09/-0.14			
Flack parameter	0.3(3)			

9. ¹H, and ¹³C NMR spectra for compounds 3

110 100 f1 (ppm)

S39

Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	7.360	13638.29	1577.49	49.93	
	9.649	13678.22	987.97	50.07	
		27316.51		100.00	

Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	7.390	11309.71	1290.01	40.81	
	9.752	16404.13	1153.75	59.19	
		27713.84		100.00	