Supporting Information

Direct carbonylative difunctional of terminal alkynes with

sodium sulfinates to access olefin sulfonyl methyl esters

under metal-free conditions

Bo Chen^a, Han Yin^a, Zhi-Peng Bao,^{a,b} Chang-Sheng Kuai^a and Xiao-Feng Wu^{*a,b}

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China,

e-mail: xwu2020@dicp.ac.cn

^{b.} Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany

1 General information

Reagents, solvents and analytical methods:

Unless otherwise noted, all reactions were carried out under a carbon monoxide or nitrogen atmosphere. All reagents were commercially available. All solvents were dried by standard techniques, and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (b. p. 30-60 °C) and ethyl acetate as eluent. ¹H and ¹³C NMR spectra were taken on Bruker AVANCE III 400 MHz spectrometers and CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.0) as solvent. All coupling constants (*J*) are reported in Hz with the following abbreviations: s = singlet, d = doublet, dd = double doublet , t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. Gas chromatography (GC) analyses were performed on an Agilent HP-7890A instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d. 0.25 µm film thickness) using argon as carrier gas. Gas chromatography mass spectrometer (GC-MS) analyses were performed on Agilent 8890-7250 and Agilent Q-TOF 6540.

Because of the high toxicity of carbon monoxide, all of the reactions should be performed in an autoclave. The laboratory should well-equipped with a CO detector and alarm system.

2 Optimization of reaction conditions

Entry	[I] source	solvent	temperature	CO pressure	Yield % ^a
1	KI (10 mol%)	MeOH (1.6 mL)/H ₂ O		60 bar	trace
		(0.4 mL)	110 C		
2	KI (50 mol%)	MeOH (1.6 mL)/H ₂ O	110°C	60 bar	39
		(0.4 mL)			
3	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	110°C	60 bar	61
		(0.4 mL)			
4	KI (2 eq.)	MeOH (1.6 mL)/H ₂ O	110°C	60 bar	54
		(0.4 mL)			
5	KI (3 eq.)	MeOH (1.6 mL)/H ₂ O	110°C	60 bar	trace
		(0.4 mL)			
6	KI (1.5 eq.)	MeOH (2.0 mL)	4.4.90	60 bar	ND
			110 C		

7	KI (1.5 eq.)	MeOH (1.9 mL)/H ₂ O	0	60 bar	trace
		(0.1 mL)	110°C		
8	KI (1.5 eq.)	MeOH (1.8 mL)/H ₂ O	110°C	60 bar	trace
		(0.2 mL)			
9	KI (1.5 eq.)	MeOH (1.0 mL)/H ₂ O	110°C	60 bar	55
		(1.0 mL)			
10	KI (1.5 eq.)	1,4-dioxane (1.0	110 ⁰ C	60 bar	trace
		mL)/MeOH (0.5	110 C		
		mL)/H ₂ O (0.5 mL)			
11	KI (1.5 eq.)	1,4-dioxane (1.5	110°C	60 bar	trace
		mL)/MeOH (0.2	110 C		
		mL)/H ₂ O (0.2 mL)			
12	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	90°C	60 bar	trace
		(0.4 mL)	50 0		
13	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	120°C	60 bar	64
		(0.4 mL)	150 0		
14	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	81
		(0.4 mL)	150 0		
15	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	20 bar	71
		(0.4 mL)	100 0		
16	KI (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	10 bar	43
47		(0.4 mL)			
1/	Cal (1.5 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	33
10		(0.4 mL)		40 har	70
18	Nai (1.5 eq.)	(0.4 mL)	130 [°] C	40 bar	79
10			130°C	40 bar	<u></u>
19	LII (1.5 eq.)	(0.4 mL)		40 bar	80
20		(0.4 IIIL) MeOH (1.6 ml.)/H.O.		40 bar	62
20	1 DAI (1.5 Eq.)	(0.4 mL)	130 [°] C	40 681	02
21	L. (1.5 eq.)	MeOH (1.6 ml)/H ₂ O		40 bar	trace
		(0.4 ml.)	130 [°] C		
22	KI (1.5 eg.)/[1.2	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	30
	eq. PhSO ₂ Na]	(0.4 mL)			
23	KI (1.5 eg.)/[1.5	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	51
	eq. PhSO ₂ Na]	(0.4 mL)			
24	KI (1.1 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	80 (68 ^b)
		(0.4 mL)			
25	Lil (1.1 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	79
		(0.4 mL)			
26	KI (1.1	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	61
	eq.)/[K ₂ S ₂ O ₈ 2.2	(0.4 mL)			
	eq.]				

27	KI (1.1	MeOH (1.6 mL)/H ₂ O	400°C	40 bar	41
	eq.)/[(NH ₄) ₂ S ₂ O ₈	(0.4 mL)	130 C		
	2.2 eq.]				
28	I ₂ (0.5 eq.)	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	72
		(0.4 mL)			
29	KI (1.1 eq.)/[H ₂ O ₂	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	ND
	5.0 eq.]	(0.4 mL)			
30	KI (1.1	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	ND
	eq.)/[Ag ₂ CO ₃ 2.2	(0.4 mL)			
	eq.]				
31	KI (1.1 eq.)/[BQ	MeOH (1.6 mL)/H ₂ O	400°C	40 bar	ND
	2.2 eq.]	(0.4 mL)	130 C		
32	KI (1.1	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	ND
	eq.)/[Mn(OAc)₃	(0.4 mL)			
	2H2O 2.2 eq.]				
33	KI (1.1	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	20
	eq.)/[Oxone 2.2	(0.4 mL)			
	eq.]				
34	KI (1.1	MeOH (1.6 mL)/H ₂ O	130°C	40 bar	ND
	eq.)/[PhI(OAc) ₂	(0.4 mL)			
	2.2 eq.]				

a) The yields were determined by GC using hexadecane as the internal standard. b) Isolated yield.

3 General procedure

A 4 mL screw-cap vial was charged with alkynes (0.2 mmol), sodium sulfinates (0.4 mmol), $Na_2S_2O_8$ (0.44 mmol, 105 mg), KI (0.22 mmol, 36 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After MeOH (1.6 mL) and water (0.4 mL) were added with a syringe under N_2 atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N_2 atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 130 °C for 20 h. The reaction mixture was then diluted with EtOAc, filtered through silica gel with copious washings (Et₂O or EtOAc), concentrated, and purified by column chromatography.

4 failed examples

5 Millimole Scale Experiment

A 100 mL beaker was charged with ethynylbenzene (2.0 mmol), sodium benzenesulfinate (4 mmol), Na₂S₂O₈ (4.4 mmol, 1050 mg), KI (2.2 mmol, 360 mg) and an oven-dried stirring bar. After MeOH (16 mL) and water (4 mL) were added with a syringe under N₂ atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N₂ atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 130 °C for 20 h. The reaction mixture was then diluted with EtOAc, filtered through silica gel with copious washings, concentrated, and purified by column chromatography(EtOAc/PE = 1:4 v/v), obtained **3aa** 248 mg (yield 41%).

6 Spectroscopic data of products

methyl 2-phenyl-3-(phenylsulfonyl)acrylate

COOMe _~SO₂Ph

3aa, a mixture of *E* and Z = 3:1, yellow oil, yield 68%.

¹H NMR (700 MHz, Chloroform-*d*) δ 7.98 – 7.92 (m, 0.65H), 7.51 (s, 1.00H), 7.48 (dd, J = 8.4, 1.5 Hz, 2.31H), 7.46 – 7.44 (m, 1.02H), 7.36 – 7.31 (m, 1.60H), 7.29 (tt, J = 7.4, 1.6 Hz, 2.96H), 7.22 (dd, J = 8.5, 7.0 Hz, 1.96H), 7.08 – 7.03 (m, 1.95H), 6.55 (s, 0.34H) 3.94 (s, 1.01H), 3.69 (s, 3.00H). ¹³C NMR (176 MHz, CDCl₃) δ 166.5, 165.5, 146.1, 143.1, 140.5, 140.2, 139.7, 133.9, 133.7, 132.1, 131.3, 130.8, 129.4, 129.4, 129.3, 129.2, 129.0, 128.0, 127.8, 127.0, 126.5, 53.4, 53.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₄O₄S 303.0686; Found: 303.0685.

methyl 3-(phenylsulfonyl)-2-(p-tolyl)acrylate

COOMe _~SO₂Ph

3ba, a mixture of *E* and Z = 3:1, yellow oil, yield 41%.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.91 (m, 0.6H), 7.55 – 7.50 (m, 2.30H), 7.49 – 7.44 (m, 2.32H), 7.34 – 7.27 (m, 2.11H), 7.23 (d, *J* = 8.3 Hz, 0.79H), 7.11 (d, *J* = 8.2 Hz, 0.68H), 7.04 (d, *J* = 8.0 Hz, 2.04H), 6.98 (d, *J* = 8.2 Hz, 2.05H), 6.52 (s, 0.30H), 3.94 (s, 0.88H), 3.69 (s, 3.00H), 2.30 (s, 2.99H), 2.28 (s, 0.87H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 165.7, 143.1, 142.0, 140.4, 139.9, 139.9, 139.5, 133.8, 133.6, 129.9, 129.4, 129.4, 128.9, 128.5, 128.0, 128.0, 127.9, 127.0, 125.3, 53.4, 53.1, 21.5, 21.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₇H₁₆O₄S 317.0842; Found: 317.0840.

methyl 3-(phenylsulfonyl)-2-(m-tolyl)acrylate

COOMe ,SO₂Ph

3ca, a mixture of *E* and Z = 3:1, yellow oil, yield 57%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.90 (m, 0.70H), 7.52 – 7.41 (m, 4.70H), 7.32 – 7.24 (m, 2.22H), 7.21 – 7.06 (m, 3.83H), 6.87 (dt, *J* = 7.3, 1.8 Hz, 0.99H), 6.74 (d, *J* = 2.0 Hz, 0.99H), 6.53 (s, 0.35H), 3.94 (s, 1.00H), 3.69 (s, 3.00H), 2.26 (s, 1.09H), 2.20 (s, 3.01H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 165.6, 146.3, 143.3, 140.4, 140.3, 139.8, 139.1, 137.4, 133.8, 133.5, 132.1, 132.0, 130.7, 130.0, 129.7, 129.4, 129.1, 128.8, 128.1, 128.0, 127.7, 127.5, 126.5, 126.3, 124.2, 53.4, 53.2, 21.4, 21.3.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₇H₁₆O₄S 317.0842; Found: 317.0843.

methyl 2-(4-(tert-butyl)phenyl)-3-(phenylsulfonyl)acrylate

COOMe _~SO₂Ph

3da, a mixture of *E* and Z = 10:3, yellow oil, yield 55%.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.98 – 7.91 (m, 0.60H), 7.56 – 7.46 (m, 2.05H), 7.45 – 7.38 (m, 3.15H), 7.35 – 7.26 (m, 1.59H), 7.25 – 7.17 (m, 4.30H), 6.53 (s, 0.28H) 7.01 – 6.94 (m, 1.96H), 3.94 (s, 0.9H), 3.70 (s, 3.00H), 1.25 (s, 9.24H), 1.22 (d, *J* = 3.2 Hz, 2.98H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 165.7, 155.1, 152.5, 146.0, 143.3, 140.4, 139.7, 133.8, 133.4, 129.4, 129.3, 128.7, 128.0, 127.9, 127.7, 126.8, 126.2, 125.4, 124.7, 53.3, 53.1, 34.9, 34.7, 31.3, 31.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₂₀H₂₂O₄S 359.1312; Found: 359.1314.

methyl 2-(4-fluorophenyl)-3-(phenylsulfonyl)acrylate

COOMe ್ಷ-SO₂Ph

3ea, a mixture of *E* and Z = 15:1, yellow oil, yield 50%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.46 (m, 4H), 7.37 – 7.31 (m, 2H), 7.11 – 7.05 (m, 2H), 6.92 (t, *J* = 8.7 Hz, 2H), 3.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 164.3 (d, *J* = 251.48 Hz), 141.9, 140.8, 139.7, 133.9, 131.6 (d, *J* = 8.39 Hz), 129.1, 128.0, 126.7 (d, *J* = 3.39 Hz), 115.0 (d, *J* = 22.32 Hz), 53.5.

¹⁹F NMR (376 MHz, CDCI₃) δ -111.15.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₃FO₄S 321.0591; Found: 321.0596.

methyl 2-(2-fluorophenyl)-3-(phenylsulfonyl)acrylate

COOMe _~SO₂Ph

3fa, a mixture of *E* and Z = 4:1, yellow oil, yield 42%.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.92 (m, 0.61H), 7.62 – 7.47 (m, 4.97H), 7.38 – 7.27 (m, 3.97H), 7.23 (td, *J* = 7.4, 1.8 Hz, 1.19H), 7.11 (td, *J* = 7.5, 1.1 Hz, 1.40H), 6.86 (ddd, *J* = 9.5, 8.3, 1.1 Hz, 1.16H), 6.78 (s, 0.30H), 3.93 (s, 0.85H), 3.70 (s, 3.00H).

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 164.5, 159.4 (d, J = 247.49 Hz), 142.0, 139.3, 137.6, 133.9, 131.8 (d, J = 2.58 Hz), 131.6 (d, J = 8.27 Hz), 129.4, 129.1, 128.1, 128.0, 124.9 (d, J = 3.68 Hz), 123.7 (d, J = 3.68 Hz), 119.1 (d, J = 16.11 Hz), 116.7 (d, J = 22.55 Hz), 115.1 (d, J = 21.34 Hz), 53.5, 53.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.1, -111.8.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₃FO₄S 321.0591; Found: 321.0599.

methyl 2-(4-chlorophenyl)-3-(phenylsulfonyl)acrylate

3ga, a mixture of *E* and Z > 20:1, yellow oil, yield 31%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.51 (m, 3H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.02 (d, *J* = 8.5 Hz, 2H), 3.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.1, 141.7, 140.9, 139.6, 135.6, 133.9, 130.9, 129.1, 128.1, 128.0, 53.5. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₃ClO₄S 337.0296; Found: 337.0299.

3ha, a mixture of *E* and Z > 20:1, yellow oil, yield 49%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.48 (m, 4H), 7.40 – 7.33 (m, 4H), 6.98 – 6.90 (m, 2H), 3.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.0, 141.7, 140.9, 139.6, 133.9, 129.7, 129.1, 128.0, 123.9, 53.5. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₃BrO₄S 380.9791; Found: 380.9787.

methyl 2-(4-methoxyphenyl)-3-(phenylsulfonyl)acrylate

COOMe _~SO₂Ph MeO

3ia, a mixture of *E* and Z = 9:4, yellow oil, yield 18%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.91 (m, 0.87H), 7.56 – 7.50 (m, 2.68H), 7.49 – 7.43 (m, 2.63H), 7.36 – 7.26 (m, 2.95H), 7.10 – 7.03 (m, 2.03H), 6.84 – 6.79 (m, 0.95H), 6.78 – 6.73 (m, 2.04H), 6.46 (s, 0.44H), 3.95 (s, 1.25H), 3.76 (s, 3.04H), 3.75 (s, 1.33H), 3.71 (s, 3.00H).

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 160.6, 142.8, 140.0, 139.5, 133.7, 133.6, 131.2, 129.3, 128.9, 128.8, 128.0, 127.9, 123.7, 123.0, 114.7, 113.3, 55.5, 55.3, 53.3, 53.1.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₇H₁₆O₅S 333.0791; Found: 333.0790.

methyl 2-(4-(cyanomethyl)phenyl)-3-(phenylsulfonyl)acrylate

COOMe _~SO₂Ph CN

3ja, a mixture of *E* and Z = 3:2, yellow oil, yield 26%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.92 (m, 1.47H), 7.58 – 7.49 (m, 6.36H), 7.36 (td, *J* = 6.8, 5.7, 1.7 Hz, 4.54H), 7.30 (d, *J* = 8.3 Hz, 2.00H), 7.22 (d, *J* = 8.0 Hz, 2.46H), 7.15 – 7.09 (m, 2.13H), 6.56 (s, 0.64H), 3.95 (s, 1.91H), 3.71 (s, 5.00H), 3.70 (s, 1.36H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 165.2, 145.1, 141.9, 140.8, 140.0, 139.6, 134.0, 134.0, 133.2, 132.1, 131.1, 130.9, 130.2, 129.5, 129.1, 128.8, 128.1, 128.0, 127.8, 127.5, 127.3, 117.4, 117.0, 53.5, 53.3, 23.6, 23.5.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₈H₁₅NO₄S 342.0795; Found: 342.0796.

methyl 2-(4-acetylphenyl)-3-(phenylsulfonyl)acrylate

COOMe _≪ഹSO₂Ph

3ka, a mixture of *E* and Z = 5:2, yellow oil, yield 44%.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.95 (dd, J = 8.7, 1.6 Hz, 1.01H), 7.90 – 7.83 (m, 3.24H), 7.59 – 7.48 (m, 5.62H), 7.44 (d, J = 8.5 Hz, 0.99H), 7.39 – 7.33 (m, 2.39H), 7.21 (dt, J = 9.0, 2.1 Hz, 2.19H), 6.63 (s, 0.46H), 3.96 (s, 1.21H), 3.70 (s, 3.00H), 2.56 (s, 3.01H), 2.52 (s, 1.21H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 197.0, 166.0, 164.9, 144.8, 141.7, 140.8, 139.8, 139.6, 138.7, 137.3, 136.3, 135.7, 134.1, 134.1, 129.7, 129.5, 129.2, 129.0, 128.6, 128.1, 128.0, 127.7, 127.3, 53.6, 53.4, 26.7, 26.7.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₈H₁₆O₅S 345.0791; Found: 345.0794.

methyl 3-(phenylsulfonyl)-2-(thiophen-3-yl)acrylate

COOMe _∽SO₂Ph

3la, a mixture of E and Z = 10:3, yellow oil, yield 55%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.89 (m, 0.62H), 7.59 – 7.53 (m, 2.31H), 7.52 – 7.44 (m, 3.58H), 7.43 – 7.39 (m, 0.34H), 7.37 – 7.26 (m, 2.43H), 7.13 (dd, *J* = 5.1, 3.0 Hz, 0.99H), 7.08 – 7.04 (m, 0.35H) 6.83 (dd, *J* = 5.0, 1.3 Hz, 0.97H), 6.05 (s, 0.30H), 3.96 (s, 0.91H), 3.72 (s, 3.00H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 165.2, 140.3, 139.7, 138.2, 133.8, 133.7, 130.2, 129.4, 129.2, 128.9, 128.8, 128.2, 127.9, 127.8, 127.7, 125.0, 125.0, 124.7, 53.4, 53.2.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₄H₁₂O₄S₂ 309.0250; Found: 309.0250.

methyl 2-((phenylsulfonyl)methylene)octanoate

COOMe SO₂Ph س

3ma, a mixture of *E* and Z = 20:3, yellow oil, yield 60%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (dq, *J* = 7.1, 2.0 Hz, 2.32H), 7.63 – 7.57 (m, 1.04H), 7.53 – 7.48 (m, 2.24H), 7.08 (s, 0.90H), 6.09 (s, 0.16H), 3.84 (s, 0.46H), 3.70 (s, 3.00H), 2.76 (dd, *J* = 8.8, 6.4 Hz, 2.05H), 1.40 – 1.12 (m, 11.00H), 0.81 (t, *J* = 6.7 Hz, 4.17H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 145.8, 140.8, 136.7, 134.0, 129.5, 127.7, 52.9, 31.4, 29.4, 29.1, 27.3, 22.5, 14.0.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₂₂O₄S 311.1312; Found: 311.1316.

methyl 2-cyclopropyl-3-(phenylsulfonyl)acrylate

COOMe _{≪ഹ}SO₂Ph

3na, a mixture of *E* and Z = 15:1, colorless oil, yield 12%.

¹H NMR (400 MHz, Chloroform-*d*) δ7.96 – 7.92 (m, 0.41H), 7.91 – 7.86 (m, 2.17H), 7.62 – 7.57 (m, 1.17H), 7.53 – 7.48 (m, 2.57H), 6.83 (s, 0.95H), 3.83 (s, 0.21H), 3.63 (s, 3.00H), 2.69 (tt, *J* = 8.6, 5.2 Hz, 1.11H), 1.11 – 1.05 (m, 1.99H), 0.91 (dt, *J* = 8.6, 3.2 Hz, 2.10H).

¹³C NMR (176 MHz, CDCl₃) δ 164.6, 152.2, 148.3, 141.1, 134.7, 133.8, 133.5, 133.2, 129.4, 129.2, 129.0, 128.2, 127.5, 127.1, 52.5, 25.8, 10.9, 10.7, 9.5, 9.3.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₃H₁₄O₄S 267.0686; Found: 267.0691.

methyl (E)-3-(phenylsulfonyl)acrylate

MeOOC

SO₂Ph

30a, the product was obtained from ethynyltrimethylsilane, colorless oil, yield 13%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.80 (m, 2H), 7.68 – 7.57 (m, 1H), 7.58 – 7.49 (m, 2H), 7.28 (d, *J* = 15.2 Hz, 1H), 6.78 (d, *J* = 15.1 Hz, 1H), 3.74 (s, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 163.9, 143.5, 138.4, 134.4, 130.5, 129.7, 128.4, 52.8.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₀H₁₀O₄S 227.0373; Found: 223.0375.

methyl 6-methoxy-2-((phenylsulfonyl)methylene)hexanoate

3pa, the product was obtained from 6-iodohex-1-yne, A mixture of *E* and Z > 20:1, colorless oil, yield 27%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.85 (m, 2H), 7.64 – 7.57 (m, 1H), 7.55 – 7.47 (m, 2H), 7.09 (s, 1H), 3.70 (s, 3H), 3.33 (t, *J* = 6.4 Hz, 2H), 3.26 (s, 3H), 2.87 – 2.76 (m, 2H), 1.59 (ddt, *J* = 7.2, 5.9, 1.6 Hz, 2H), 1.49 – 1.43 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 165.9, 145.3, 140.6, 137.0, 134.0, 129.5, 127.7, 72.2, 58.5, 53.0, 29.5, 26.9, 25.8.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₅H₂₀O₅S 313.1104; Found: 313.1113.

methyl 3-oxo-2-(tosylmethylene)octanoate

3mb, a mixture of E and Z = 10:1, colorless oil, yield 67%.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.84 – 7.64 (m, 2.53H), 7.29 (d, *J* = 8.1 Hz, 2.57H), 7.07 (s, 0.95H), 6.08 (s, 0.11H), 3.83 (s, 0.30H), 3.69 (s, 3.00H), 2.74 (dd, *J* = 8.8, 6.4 Hz, 2.02H), 2.38 (s, 3.97H), 1.39 – 1.10 (m, 10.89H), 0.89 – 0.73 (m, 4.20H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 145.3, 145.1, 137.8, 137.1, 130.1, 127.8, 52.9, 31.5, 29.4, 29.1, 27.3, 22.5, 21.7, 14.1.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₇H₂₄O₄S 325.1468; Found: 325.1477.

methyl 2-(((4-fluorophenyl)sulfonyl)methylene)-3-oxooctanoate

3mc, a mixture of *E* and Z = 5:1, colorless oil, yield 81%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.84 (m, 2.37H), 7.27 – 7.11 (m, 2.60H), 7.05 (s, 0.95H), 6.08 (s, 0.18H), 3.84 (s, 0.56H), 3.71 (s, 3.00H), 2.80 – 2.70 (m, 2.02H), 2.32 – 2.26 (m, 0.38H), 1.42 – 1.10 (m, 10.50H), 0.92 – 0.71 (m, 3.93H).

¹³C NMR (101 MHz, CDCl₃) δ 167.6, 166.0 (d, J = 258.34 Hz), 165.9, 149.7, 145.9, 136.8 (d, J = 3.03 Hz), 136.5, 130.9 (d, J = 9.75 Hz), 130.7 (d, J = 9.48 Hz), 127.4, 116.8 (d, J = 23.11 Hz), 116.6 (d, J = 22.54Hz), 53.0, 52.8, 34.8, 31.4, 31.3, 29.4, 29.2, 28.4, 27.3, 26.5, 22.5, 22.4, 14.0, 13.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₂₁FO₄S 329.1217; Found: 329.1222. methyl 2-(((4-chlorophenyl)sulfonyl)methylene)-3-oxooctanoate

3md, a mixture of E and Z = 5:1, colorless oil, yield 58%.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.83 – 7.77 (m, 2.22H), 7.51 – 7.43 (m, 2.38H), 7.05 (s, 0.89H), 6.07 (s, 0.18H), 3.84 (s, 0.57H), 3.71 (s, 3.00H), 2.82 – 2.69 (m, 2.03H), 2.33 – 2.25 (m, 0.40H), 1.44 – 1.11 (m, 11.14H), 0.80 (dt, *J* = 17.0, 6.7 Hz, 4.16H).

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 165.9, 150.1, 146.3, 140.8, 139.2, 136.2, 129.8, 129.6, 129.4, 129.2, 127.2, 53.0, 52.8, 34.8, 31.4, 31.3, 29.4, 29.2, 28.4, 27.4, 26.5, 22.5, 22.4, 14.0, 13.9.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₂₁ClO₄S 345.0922; Found: 345.0926.

methyl 3-((4-chlorophenyl)sulfonyl)-2-phenylacrylate

3ad, a mixture of *E* and Z = 20:3, yellow oil, yield 16%.

¹H NMR (400 MHz, Chloroform-*d*) δ7.91 – 7.86 (m, 0.34H), 7.51 (s, 0.99H), 7.50 – 7.45 (m, 0.38H), 7.41 – 7.35 (m, 2.28H), 7.35 – 7.29 (m, 1.61H), 7.27 – 7.21 (m, 3.96H), 7.05 – 7.01 (m, 1.88H), 6.53 (s, 0.15H), 3.95 (s, 0.44), 3.71 (s, 3.00H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 143.4, 140.5, 140.3, 138.1, 130.7, 129.7, 129.5, 129.5, 129.4, 129.4, 129.3, 129.2, 127.9, 127.0, 53.5.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₆H₁₃ClO₄S 337.0296; Found: 337.0298.

methyl 3-(ethylsulfonyl)-2-phenylacrylate

COOMe _~SO₂Et

3ae, a mixture of *E* and Z = 4:1, yellow oil, yield 45%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.31 (m, 7.31H),6.57 (s, 0.26H) 3.86 (s, 0.77H), 3.76 (s, 3.00H), 3.12 (q, *J* = 7.5 Hz, 0.58H), 2.66 (q, *J* = 7.4 Hz, 2.12H), 1.35 (t, *J* = 7.5 Hz, 0.96H), 1.17 (t, *J* = 7.4 Hz, 3.28H).

¹³C NMR (101 MHz, CDCl₃) δ 165.4, 143.8, 137.2, 131.4, 131.0, 129.8, 129.4, 129.3, 128.1, 127.0, 124.7, 53.5, 53.1, 50.2, 49.0, 6.8, 6.7.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₂H₁₄O₄S 255.0686; Found: 255.0691.

methyl 3-(methylsulfonyl)-2-phenylacrylate

3af, a mixture of *E* and Z = 5:1, yellow oil, yield 67%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.30 (m, 7.17H), 6.66 (s, 0.21), 3.87 (s, 0.61H), 3.76 (s, 3.00H), 3.04 (s, 0.60H), 2.58 (s, 3.01H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 165.4, 148.5, 142.9, 139.3, 131.9, 131.5, 130.9, 130.0, 129.5, 129.3, 128.3, 127.1, 126.7, 53.5, 53.2, 43.9, 42.9.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₁H₁₂O₄S 241.0529; Found: 241.0533.

methyl 2-([1,1'-biphenyl]-4-yl)-3-(methylsulfonyl)acrylate

COOMe ~SO₂Me

3qf, a mixture of *E* and Z = 15:4, yellow oil, yield 44%.

¹H NMR (700 MHz, Chloroform-*d*) δ 7.62 – 7.57 (m, 3.11H), 7.56 – 7.51 (m, 3.57H), 7.46 – 7.40 (m, 4.06H), 7.38 (t, *J* = 7.8 Hz, 3.58H), 7.32 – 7.28 (m, 2.12H), 6.70 (s, 0.30), 3.89 (s, 0.80H), 3.79 (s, 3.00H), 3.06 (s, 0.77H), 2.65 (s, 3.06H).

¹³C NMR (176 MHz, CDCl₃) δ 166.2, 165.5, 148.2, 144.4, 142.8, 142.7, 140.0, 139.1, 130.1, 129.9, 129.7, 129.1, 129.0, 128.9, 128.9, 128.8, 128.3, 128.0, 127.9, 127.7, 127.6, 127.4, 127.2, 127.1, 127.1, 126.9, 126.2, 53.6, 53.3, 43.9, 43.0.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₇H₁₆O₄S 317.0842; Found: 317.0850.

methyl 3-(methylsulfonyl)-2-(4-(trifluoromethoxy)phenyl)acrylate

COOMe SO₂Me CF₃O

3rf, a mixture of *E* and Z > 20:1, colorless oil, yield 43%.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.37 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.17 (m, 2H), 3.78 (s, 3H), 2.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.0, 150.2, 141.8, 139.3, 131.3, 129.2, 120.3 (t, *J* = 137.69 Hz), 53.6, 43.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -57.7.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₂H₁₁F₃O₅S 325.0352; Found: 325.0355.

methyl 4-(3-methoxy-1-(methylsulfonyl)-3-oxoprop-1-en-2-yl)benzoate

3sf, a mixture of *E* and Z > 20:1, colorless oil, yield 50%.

¹H NMR (700 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 8.3 Hz, 2H), 7.48 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 2.70 (s, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 165.3, 163.8, 141.2, 138.5, 134.4, 130.3, 128.5, 128.3, 52.7, 51.3, 42.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₃H₁₄O₆S 299.0584; Found: 299.0589.

methyl 2-(4-cyanophenyl)-3-(methylsulfonyl)acrylate

COOMe _~SO₂Me

3tf, a mixture of *E* and Z > 20:1, yellow oil, yield 23%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.63 (m, 2H), 7.51 (s, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H), 2.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.4, 141.5, 139.5, 135.5, 131.7, 130.2, 118.2, 113.6, 53.8, 43.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₂H₁₁NO₄S 266.0482; Found: 266.0483.

methyl 2-(2-fluorophenyl)-3-(methylsulfonyl)acrylate

3uf, a mixture of *E* and Z = 5:1, yellow oil, yield 64%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (s, 1.02H), 7.37 (ddt, *J* = 12.9, 5.3, 2.6 Hz, 1.32H), 7.30 (qd, *J* = 7.5, 7.0, 1.8 Hz, 1.19H), 7.15 (td, *J* = 7.6, 1.1 Hz, 1.27H), 7.07 (tdd, *J* = 9.5, 8.0, 1.1 Hz, 1.38H), 6.83 (s, 0.23H), 3.85 (s, 0.64H), 3.76 (s, 3.00H), 3.10 (s, 0.64H), 2.78 (s, 3.08H).

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 164.5, 159.4 (d, J = 246.95 Hz), 143.0, 140.2, 138.2, 133.1(d, J = 8.57 Hz), 131.9 (d, J = 8.57 Hz), 131.6 (d, J = 2.34 Hz), 129.9 (d, J = 2.61 Hz), 125.0 (d, J = 3.75 Hz), 124.0 (d, J = 3.75 Hz), 119.1 (d, J = 16.03 Hz), 116.7 (d, J = 21.58 Hz), 115.4 (d, J = 20.98 Hz), 53.7, 53.3, 43.9, 42.9.

¹⁹F NMR (376 MHz, CDCI₃) δ -111.40, -112.28.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₁H₁₁FO₄S 259.0435; Found: 259.0441.

methyl 2-(3-chlorophenyl)-3-(methylsulfonyl)acrylate

3vf, a mixture of E and Z = 10:1, yellow oil, yield 46%.

¹H NMR (700 MHz, Chloroform-*d*) δ 7.45 (s, 0.90H), 7.36 (ddd, *J* = 8.1, 2.1, 1.1 Hz, 0.93H), 7.32 – 7.27 (m, 1.98H), 7.22 (dt, *J* = 7.7, 1.4 Hz, 0.92H), 6.66 (s, 0.10H), 3.88 (s, 0.28H), 3.78 (s, 3.00H), 3.05 (s, 0.23H) 2.72 (s, 3.00H).

¹³C NMR (176 MHz, CDCl₃) δ 164.9, 141.6, 139.5, 134.2, 132.5, 130.0, 129.5, 129.3, 127.8, 53.7, 43.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₁H₁₁ClO₄S 275.0139; Found: 275.0138.

methyl 3-(methylsulfonyl)-2-(naphthalen-2-yl)acrylate

3wf, a mixture of *E* and Z = 5:1, yellow oil, yield 47%.

¹**H NMR (700 MHz, Chloroform-***d***)** δ 7.89 – 7.86 (m, 0.97H), 7.84 – 7.77 (m, 3.80H), 7.52 – 7.44 (m, 3.63H), 7.37 (dd, *J* = 8.4, 1.8 Hz, 0.99H), 6.78 (s, 0.23H), 3.92 (s, 0.61H), 3.77 (s, 3.00H), 3.08 (s, 0.60H), 2.57 (s, 3.14H).

¹³C NMR (176 MHz, CDCl₃) δ 165.2, 164.4, 147.5, 141.9, 139.4, 138.4, 133.4, 132.5, 131.9, 131.4, 128.7, 128.3, 128.0, 127.9, 127.6, 127.3, 127.2, 127.1, 127.0, 126.8, 126.8, 126.8, 126.8, 126.4, 126.2, 125.8, 125.6, 125.1, 121.8, 52.5, 52.3, 42.9, 41.9.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₅H₁₄O₄S 291.0686; Found: 291.0681.

methyl (E)-3-(methylsulfonyl)acrylate

MeOOC

SO₂Me

3xf, the product was obtained from ethynyltrimethylsilane, colorless oil, yield 46%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 15.2 Hz, 1H), 6.82 (d, *J* = 15.2 Hz, 1H), 3.79 (s, 3H), 2.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.7, 142.1, 132.5, 52.9, 42.4.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₅H₈O₄S 165.0216; Found: 165.0218.

methyl 6-methoxy-2-((methylsulfonyl)methylene)hexanoate

3yf, the product was obtained from 6-iodohex-1-yne, A mixture of *E* and Z > 20:1, colorless oil, yield 28%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 (s, 1H), 3.77 (s, 3H), 3.33 (t, *J* = 6.2 Hz, 2H), 3.25 (s, 3H), 2.97 (s, 3H), 2.81 – 2.75 (m, 2H), 1.60 – 1.51 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 146.7, 135.7, 72.1, 58.5, 53.1, 43.8, 29.4, 27.0, 25.9.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₀H₁₈O₅S 251.0948; Found: 251.0953.

7 Copies of NMR spectra for compounds

