Supporting Information

Formamidation of a Wide Range of Substituted and Functionalized Amines with CO and a Base

Chunyan Zhang,^{a,b,*} Yushuang Zhang,^a Qianqian Liang,^{a,d} Guohui Zhang,^a Wei Yang,^a Nanwen Li,^a Guiping Qin^{c,*} and Guoying Zhang^{a,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China. Email: zhanggy@sxicc.ac.cn.

^b Taiyuan University of Technology, Taiyuan, 030001, P. R. China. Email: qustzcy@163.com.

^c Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, P. R. China. Email: qin-guiping@kust.edu.cn.

^d University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

E-mail: zhanggy@sxicc.ac.cn;

Table of contents

1	General
2	Screening of reaction parameters
3	Experimental characterization data for products
4	Characterization data
5	Control experiments
6	Mechanism investigations
7	Deuterium-labeled investigations
8	Application and further transformation
9	References
10	NMR Spectra

1. General

Experimental: All reactions and manipulations with air sensitive compounds being present were performed under dry argon (Ar 5.0) or nitrogen (N₂ 5.0), using Schlenk and glove box techniques. Deuterated solvents were bought from Cambridge Isotope Laboratories, distilled accordingly, and stored over molecular sieves (3 Å). Other chemicals were purchased from commercial vendors and used without further purification. NMR spectra were collected on a Varian INOVA 300 and 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent signal. Coupling constants (J) are given in Hz (coupling patterns: s: singlet, s br: broad singlet, d: doublet, t: triplet, q: quartet, m: multiplet). GC analyses were carried out using an Agilent Technologies 6890N system equipped with a Machinery-Nagel (MN) Optima 5 HT column (30 m, 320 µm, 0.25 µm) or an Agilent Technologies 6850 system equipped with a MN Optima 17 column (30 m, 320 µm, 0.25 µm). GC/MS analyses were carried out on an Agilent 7890A/MSD 5975C system equipped with a HP-5MS column (30 m, 320 µm, 0.25 µm). High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass (ESI). MN silica gel 60 (0.040 – 0.063 mm particle size) was used for flash column chromatography.

2. Screening of reaction parameters

Using a nitrogen-filled glove box, an oven-dried pressure tube was charged with a magnetic stirring bar, base, amines (A2), additive and solvent. Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO and immersed into a pre-heated metal bath (design temperature) for design time. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released under well ventilated fume hood. Sat. aq. NH4Cl (10 mL) was then added and the mixture was extracted with ethyl acetate or DCM (3×10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1) on silica gel to give the product **B2**.

Entry	Parameter
Table S1	The difference of base screening
Table S2	The loading of base screening
Table S3	The difference of solvent screening
Table S4	The loading of solvent screening
Table S5	The pressure screening
Table S6	Reaction temperature screening
Table S7	Reaction time screening

H ₂ N	+ CO Reaction conditions	HNN
A2		н В2
Entry	Base (1.0 equiv)	B2 (%)
1	LiOH	0
2	NaOH	0
3	КОН	0
4	CsOH	0
5	Li ₂ CO ₃	0
6	Na ₂ CO ₃	0
7	K_2CO_3	0
8	Cs_2CO_3	0
9	'BuOLi	<5
10	'BuONa	68
11	'BuOK	67
12	'BuOCs	<5
13	pyridine	<5
14	TEA	0
15	TBD	0
16	DBU	0
17	'BuLi	0
18	NaH	<5
19	NaNH ₂	<5
20	КН	<5

Table S1: The difference of base screening [a]

^[a] Reaction conditions: base (1.0 mmol), A2 (1.0 mmol, 110 μ L), DMAc (2.0 mL), CO (1 bar), 60 °C, 6 h. Yield of B2 determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

H ₂ N + CO	Reaction conditions	HNN
A2		B2
Entry	^t BuONa (mmol)	B2 (%)
1	0	0
2	0.1	6
3	0.2	13
4	0.3	20
5	0.4	26
6	0.5	29
7	0.6	35
8	0.7	48
9	0.8	56
10	0.9	63
11	1.0	69
12	1.1	69
13	1.2	68
14	1.3	68
15	1.4	67
16	1.5	68
17	2.0	65
18	2.5	60
19	3.0	53

Table S2: The loading of base screening ^[a]

^[a] Reaction conditions: 'BuONa (x mmol), A2 (1.0 mmol, 110 μ L), DMAc (2.0 mL), CO (1 bar), 60 °C, 6 h. Yield of B2 determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

H ₂ N	+ CO Reaction conditions	H
A2		н В2
Entry	Solvent (2 mL)	B2 (%)
1	nitrobenzene	0
2	chlorobenzene	0
3	toluene	0
4	mesitylene	0
5	benzotrifluoride	0
6	THF	<5
7	1,4-dioxane	<5
8	DME	<5
9	anisole	<5
10	pyridine	0
11	Et ₃ N	0
12	methanol	0
13	ethanol	0
14	ⁱ PrOH	0
15	'BuOH	0
16	^t AmOH	0
17	DCM	0
18	DMSO	21
19	DMF	68
20	DMAc	69
21	NMP	50
22	HMPA	<5

Table S3: The difference of solvent screening [a]

^[a] Reaction conditions: ^{*t*}BuONa (1.0 mmol), A2 (1.0 mmol, 110 μ L), solvent (2.0 mL), CO (1 bar), 60 °C, 6 h. Yield of B2 determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

H ₂ N	+ CO Reaction conditions	H N H
A2		B2
Entry	DMAc (ml)	B2 (%)
1	-	67
2	0.5	72
3	1.0	73
4	1.5	72
5	2.0	73
6	2.5	73
7	3.0	74

Table S4: The loading of solvent screening [a]

^[a] Reaction conditions: 'BuONa (1.0 mmol), A2 (1.0 mmol, 110 μ L), DMAc (x mL), CO (1 bar), 60 °C, 6 h. Yield of **B2** determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

Table S5: The	pressure screening	[a]
14010 00. 1110		

+	CO Reaction conditions	
A2		H B2
Entry	P [bar]	B2 (%)
1	1	53
2	2	76
3	3	76
4	4	75
5	6	76
6	8	75
7	10	76
8	20	75

^[a] Reaction conditions: 'BuONa (1.0 mmol), A2 (1.0 mmol, 110 μ L), DMAc (1.0 mL), CO (x bar), 60 °C, 6 h. Yield of **B2** determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

H ₂ N + (Reaction conditions	
A2		B2
Entry	T [° C]	B2 (%)
1	RT	0
2	40	36
3	60	76
4	80	81
5	100	89
6	120	81
7	140	80

Table S6: Reaction temperature screening [a]

^[a] Reaction conditions: ^{*t*}BuONa (1.0 mmol), A2 (1.0 mmol, 110 μ L), DMAc (1.0 mL), CO (2 bar), T, 6 h. Yield of B2 determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard.

Table S7: Reaction time screening ^{[a}	a]
---	----

H ₂ N +	CO Reaction conditions	
A2		B2
Entry	t [h]	B2 (%)
1	3	31
2	6	89
3	9	95
4	12	99 (92) ^[b]
5	15	98

^[a] Reaction conditions: 'BuONa (1.0 mmol), A2 (1.0 mmol, 110 μ L), DMAc (1.0 mL), CO (2 bar), 60 °C, x h. Yield of **B2** determined by GC-analysis using *n*-dodecane (100 μ L) as internal standard. ^[b] Isolated yield.

3. Experimental characterization data for products

Closed system:

Using a nitrogen-filled glove box, an oven-dried pressure tube (50 mL) was charged with a magnetic stirring bar, 'BuONa (961 mg, 10.0 mmol), amines **A** (10.0 mmol), and DMAc (10.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released under well ventilated fume hood. Sat. aq. NH₄Cl (50 mL) was then added and the mixture was extracted with ethyl acetate or DCM ($3 \times 50 \text{ mL}$) and the combined organics were washed with brine (50 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B**.

4. Characterization data

N-phenylformamide¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.1379 gram, 94% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 9.04 (br, 0.5H), 8.70 (d, J = 11.2 Hz, 0.5H), 8.33 (s, 0.5H), 8.22 (br, 0.5H), 7.56 (d, J = 7.6 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.23 – 6.98 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.10, 158.60, 135.99, 135.79, 128.67, 128.00, 124.20, 123.71, 119.12, 119.10, 117.72.

HRMS (ESI) calcd. for C₇H₈NO [M+H]: 122.0606, found: 122.0607.

N-p-tolylformamide¹

B2:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2967 gram, 96% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 9.4 Hz, 1H), 8.62 (d, *J* = 11.4 Hz, 1H), 8.31 (d, *J* = 1.9 Hz, 1H), 7.92 (s, 1H), 7.50 – 7.35 (m, 1H), 7.13 (dd, *J* = 13.0, 8.2 Hz, 2H), 7.01 – 6.97 (m, 1H), 2.31 (d, *J* = 8.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.27, 159.39, 135.14, 134.45, 134.18, 130.23, 129.56, 120.15, 119.10, 20.90, 20.82.

HRMS (ESI) calcd. for C₈H₁₀NO [M+H]: 136.0762, found: 136.0764.

N-m-tolylformamide¹

B3:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2156 gram, 93% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 – 8.76 (m, 1H), 8.69 (d, *J* = 11.3 Hz, 1H), 8.33 (d, *J* = 2.0 Hz, 1H), 7.88 (s, 1H), 7.40 (t, *J* = 1.8 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.29 – 7.14 (m, 2H), 6.99 – 6.89 (m, 4H), 2.33 (d, *J* = 9.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 163.09, 159.42, 139.84, 139.04, 136.93, 136.76, 129.53, 128.89, 126.04, 125.58, 120.72, 119.48, 117.16, 115.72, 21.46, 21.40.

HRMS (ESI) calcd. for C₈H₁₀NO [M+H]: 136.0762, found: 136.07625.

N-o-tolylformamide¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2156 gram, 90% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (d, *J* = 11.2 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.09 – 7.87 (m, 1H), 7.85 – 7.78 (m, 1H), 7.21 – 6.95 (m, 4H), 2.22 (d, *J* = 11.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.40, 158.15, 134.00, 133.59, 130.21, 129.54, 128.71, 127.57, 126.09, 125.81, 125.01, 124.49, 122.01, 119.65, 16.69.

HRMS (ESI) calcd. for C₈H₁₀NO [M+H]: 136.0762, found: 136.0761.

N-(4-(tert-butyl)phenyl)formamide²

B5:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.7358 gram, 98% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.24 – 9.84 (m, 1H), 8.72 (d, J = 11.0 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.37 – 7.28 (m, 1H), 7.15 – 7.07 (m, 1H), 1.25 (s, 7H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.94, 159.80, 146.54, 146.37, 136.16, 136.13, 126.49, 125.90, 119.36, 117.91, 40.60, 40.39, 40.18, 34.48, 34.44, 31.63.

HRMS (ESI) calcd. for C₁₁H₁₆NO [M+H]: 178.1232, found: 178.1231.

N-([1,1'-biphenyl]-2-yl)formamide³

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.9210 gram, 91% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (d, *J* = 11.3 Hz, 1H), 8.22 (d, *J* = 1.7 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 10.6 Hz, 1H), 7.33 – 7.25 (m, 1H), 7.25 – 7.15 (m, 3H), 7.15 – 7.08 (m, 3H), 3.99 (d, *J* = 3.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 163.21, 159.31, 138.83, 138.61, 135.09, 134.68, 132.94, 131.44, 131.31, 131.00, 128.96, 128.52, 128.43, 127.90, 127.61, 126.77, 126.47, 125.81, 124.12, 122.00, 38.01, 37.82.

HRMS (ESI) calcd. for C₁₄H₁₄NO [M+H]: 212.1075, found: 212.1078.

N-(2-benzylphenyl)formamide⁴

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.7540 gram, 89% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 11.3 Hz, 1H), 8.36 (d, *J* = 8.2 Hz, 1H), 8.25 (d, *J* = 1.5 Hz, 1H), 7.71 – 6.93 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 162.02, 158.99, 137.82, 137.36, 133.84, 133.78, 133.01, 132.01, 131.20, 130.18, 129.34, 129.20, 129.18, 128.75, 128.52, 128.16, 128.12, 125.37, 124.65, 121.57, 118.34.

HRMS (ESI) calcd. for C₁₃H₁₂NO [M+H]: 198.0919, found: 198.0918.

N-(4-methoxyphenyl)formamide¹

B8:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.4804 gram, 98% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (d, *J* = 11.0 Hz, 1H), 8.28 (s, 1H), 7.84 (s, 1H), 7.45 (s, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.85 (dd, *J* = 14.0, 8.7 Hz, 2H), 3.78 (d, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.32, 158.19, 156.54, 155.64, 129.02, 128.63, 120.84, 120.49, 113.85, 113.16, 54.52, 54.45.

HRMS (ESI) calcd. for C₈H₁₀NO₂ [M+H]: 152.0712, found: 152.0715.

N-(3-methoxyphenyl)formamide⁵

B9:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.4502 gram, 96% yield.

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.17 (s, 1H), 8.82 (d, J = 10.8 Hz, 1H), 8.28 (d, J = 1.7 Hz, 1H), 7.31 (t, J = 2.2 Hz, 1H), 7.26 – 7.17 (m, 1H), 7.14 – 7.12 (m, 1H), 6.81 – 6.75 (m, 1H), 6.66 – 6.64 (m, 1H), 3.73 (s, 2H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 163.02, 160.57, 160.09, 160.01, 140.05, 139.82, 130.69, 130.12, 111.90, 110.10, 109.43, 105.55, 103.79, 55.51, 55.39.

HRMS (ESI) calcd. for C₈H₁₀NO₂ [M+H]: 152.0712, found: 152.0714.

N-(2-methoxyphenyl)formamide¹

B10:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3746 gram, 91% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 11.6 Hz, 1H), 8.45 (d, *J* = 1.9 Hz, 1H), 8.36 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.03 – 7.53 (m, 1H), 7.19 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.16 – 7.00 (m, 1H), 7.00 – 6.86 (m, 2H), 3.94 – 3.75 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.24, 161.53, 158.85, 148.75, 147.82, 127.69, 126.75, 126.17, 125.25, 124.29, 123.62, 121.06, 120.45, 119.79, 116.69, 111.29, 110.07, 109.89, 55.72, 55.64.

HRMS (ESI) calcd. for C₈H₁₀NO₂ [M+H]: 152.0712, found: 152.0710.

N-(4-fluorophenyl)formamide¹

B11:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3487 gram, 97% yield.

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.42 – 10.20 (m, 1H), 10.15 (d, J = 10.8 Hz, 1H), 8.83 – 8.62 (m, 1H), 8.29 – 8.26 (m, 1H), 7.66 – 7.59 (m, 1H), 7.25 – 7.19 (m, 1H), 7.19 – 7.10 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.11, 160.42, 159.90, 159.78, 158.03, 157.40, 135.18, 135.15, 135.10, 135.08, 121.39, 121.31, 120.00, 119.92, 116.52, 116.29, 115.94, 115.72.

¹⁹**F NMR** (376 MHz, DMSO) δ -118.84, -119.76.

HRMS (ESI) calcd. for C₇H₇FNO [M+H]: 140.0512, found: 140.0511.

N-(4-chlorophenyl)formamide¹

B12:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.5346 gram, 99% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.33 (s, 1H), 8.79 (d, *J* = 8.1 Hz, 1H), 8.29 (s, 1H), 7.66 – 7.59 (m, 1H), 7.41 – 7.33 (m, 2H), 7.26 – 7.19 (m, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.99, 160.18, 137.86, 137.61, 129.69, 129.22, 127.93, 127.62, 121.17, 119.44.

HRMS (ESI) calcd. for C7H7CINO [M+H]: 156.0216, found: 156.0217.

N-(3-chlorophenyl)formamide¹

B13:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.4571 gram 94% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (d, *J* = 11.1 Hz, 1H), 8.64 (s, 1H), 8.38 (d, *J* = 1.4 Hz, 1H), 7.66 (t, *J* = 1.9 Hz, 1H), 7.39 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.30 – 7.22 (m, 1H), 7.20 – 7.14 (m, 1H), 7.14 – 7.08 (m, 1H), 7.00 (dd, *J* = 8.0, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.54, 159.23, 138.00, 137.97, 135.46, 134.74, 130.85, 130.14, 125.35, 124.93, 120.14, 118.77, 117.96, 116.70.

HRMS (ESI) calcd. for C7H7CINO [M+H]: 156.0216, found: 156.0212.

N-(2-chlorophenyl)formamide⁷

B14:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3951 gram, 90% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 11.2 Hz, 1H), 8.51 (d, *J* = 1.0 Hz, 1H), 8.41 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.76 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.33 – 7.22 (m, 1H), 7.16 – 7.12 (m, 1H), 7.10 – 7.06 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.55, 159.01, 158.93, 133.70, 130.32, 129.21, 129.13, 128.03, 127.89, 127.81, 125.96, 125.23, 125.15, 122.58, 122.09, 122.01, 118.78, 118.70.

HRMS (ESI) calcd. for C7H7CINO [M+H]: 156.0216, found: 156.0218.

N-(4-bromophenyl)formamide¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.9100 gram, 96% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (d, *J* = 11.3 Hz, 1H), 8.39 (d, *J* = 1.4 Hz, 1H), 7.99 (s, 1H), 7.54 – 7.39 (m, 2H), 7.29 (s, 1H), 6.98 (d, *J* = 8.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.07, 158.79, 135.83, 135.69, 132.81, 132.10, 121.44, 120.36, 118.29, 117.48.

HRMS (ESI) calcd. for C₇H₇BrNO [M+H]: 199.9711, found: 199.9715.

N-(2-bromophenyl)formamide¹

B16:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.7707 gram, 89% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 11.1 Hz, 1H), 8.50 (d, *J* = 1.8 Hz, 1H), 8.39 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.87 – 7.50 (m, 1H), 7.36 – 7.24 (m, 1H), 7.12 – 6.96 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.54, 158.85, 135.03, 134.79, 133.52, 132.37, 128.72, 128.49, 126.39, 125.67, 122.24, 118.93, 114.45, 113.00.

HRMS (ESI) calcd. for C₇H₇BrNO [M+H]: 199.9711, found: 199.9714.

N-(4-iodophenyl)formamide⁶

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 2.2966 gram, 93% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (d, *J* = 11.3 Hz, 1H), 8.39 (d, *J* = 1.7 Hz, 1H), 8.19 (d, *J* = 11.2 Hz, 1H), 7.70 – 7.55 (m, 1H), 7.43 – 7.29 (m, 1H), 6.92 – 6.70 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.13, 158.90, 138.74, 138.07, 136.56, 136.46, 121.75, 120.51, 88.71, 88.16.

HRMS (ESI) calcd. for C₇H₇INO [M+H]: 247.9572, found: 247.9574.

N-(2-iodophenyl)formamide⁵

B18:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 2.0991 gram, 85% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.57 (s, 1H), 8.35 (s, 1H), 7.88 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.79 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.45 – 7.31 (m, 1H), 7.16 – 6.80 (m, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.16, 160.78, 139.96, 139.62, 138.94, 129.86, 129.16, 128.27, 127.41, 125.08, 95.54, 93.16.

HRMS (ESI) calcd. for C₇H₇INO [M+H]: 247.9572, found: 247.9575.

N-(4-(trifluoromethyl)phenyl)formamide⁴

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.8148 gram, 96% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.49 – 10.06 (m, 1H), 8.81 (s, 1H), 8.31 (s, 1H), 7.74 – 7.67 (m, 2H), 7.31 (t, *J* = 4.2 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.96, 163.10, 160.21, 144.64, 144.22, 144.20, 138.95, 138.16, 137.85, 124.37, 122.73, 122.14, 121.92, 121.83, 120.96, 120.67, 119.29, 119.19, 116.75.

¹⁹**F NMR** (376 MHz, DMSO) δ -57.29, -57.37.

HRMS (ESI) calcd. for C₈H₇F₃NO [M+H]: 190.0480, found: 190.0478.

N-(4-cyanophenyl)formamide⁵

B20:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3729 gram, 94% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.64 (s, 1H), 8.99 (s, 1H), 8.37 (s, 1H), 7.84 – 7.70 (m, 2H), 7.38 (d, J = 8.4 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 163.14, 160.88, 143.36, 142.75, 134.25, 133.88, 119.76, 119.40, 117.52, 105.90, 105.68.

HRMS (ESI) calcd. for C₈H₇N₂O [M+H]: 147.0558, found: 147.0556.

N-(2-cyanophenyl)formamide⁵

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2560 gram, 86% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 10.40 (s, 1H), 8.49 (d, *J* = 90.8 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.83 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.44 (d, *J* = 15.8 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.56, 158.87, 135.05, 134.80, 133.54, 132.39, 128.73, 128.51, 126.40, 125.68, 122.25, 118.94, 114.46, 113.01.

HRMS (ESI) calcd. for C₈H₇N₂O [M+H]: 147.0558, found: 147.0559.

N-(4-(dimethylamino)phenyl)formamide⁶

B22:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2301 gram, 75% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.04 – 9.58 (m, 1H), 8.50 (d, *J* = 11.3 Hz, 1H), 8.15 (d, *J* = 2.0 Hz, 1H), 7.53 – 7.30 (m, 2H), 7.11 – 6.91 (m, 1H), 6.83 – 6.57 (m, 2H), 2.84 (s, 6H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.96, 159.16, 148.31, 147.70, 128.55, 128.06, 120.92, 120.48, 113.80, 113.13, 40.95, 40.90.

HRMS (ESI) calcd. for C₉H₁₃N₂O [M+H]: 165.1028, found: 165.1026.

N-(benzo[d][1,3]dioxol-5-yl)formamide⁸

B23:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.5514 gram, 94% yield.

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.16 – 9.93 (m, 1H), 8.61 (d, J = 10.9 Hz, 1H), 8.20 (d, J = 1.8 Hz, 1H), 7.30 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.87 (dd, J = 9.9, 5.3 Hz, 1H), 6.61 (dd, J = 8.3, 2.2 Hz, 1H), 5.99 (d, J = 2.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.08, 159.64, 148.31, 147.54, 144.16, 143.57, 133.11, 133.08, 112.36, 111.34, 108.97, 108.58, 101.73, 101.62, 101.47, 100.60.

HRMS (ESI) calcd. for $C_8H_8NO_3$ [M+H]: 166.0505, found: 166.0509.

methyl 4-formamidobenzoate⁵

B24:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.7190 gram, 96% yield.

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.71 – 10.42 (m, 1H), 8.97 (d, J = 10.5 Hz, 1H), 8.35 (s, 1H), 8.06 – 7.86 (m, 2H), 7.72 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.6 Hz, 1H), 3.82 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.20, 163.04, 160.63, 143.44, 142.95, 131.26, 130.87, 124.81, 119.11, 116.90, 52.38.

HRMS (ESI) calcd. for C₉H₁₀NO₃ [M+H]: 180.0661, found: 180.0663.

N-(naphthalen-1-yl)formamide¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.5567 gram, 91% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.67 (d, *J* = 10.9 Hz, 1H), 8.37 (d, *J* = 1.1 Hz, 1H), 7.90 (s, 1H), 7.52 – 7.38 (m, 5H), 7.00 (t, *J* = 5.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.83, 160.56, 144.22, 142.52, 125.43, 125.10, 119.02, 116.58.

HRMS (ESI) calcd. for C₁₁H₁₀NO [M+H]: 172.0762, found: 172.0765.

N-(naphthalen-2-yl)formamide¹

B26:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.6594 gram, 97% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, *J* = 11.3 Hz, 1H), 8.46 (s, 1H), 8.38 (d, *J* = 1.8 Hz, 1H), 8.15 (d, *J* = 2.0 Hz, 1H), 7.80 – 7.66 (m, 3H), 7.52 (s, 1H), 7.47 – 7.30 (m, 3H), 7.18 (d, *J* = 1.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.80, 158.18, 133.23, 133.16, 132.74, 132.68, 130.06, 129.79, 128.92, 127.90, 126.77, 126.65, 126.55, 126.20, 126.10, 125.64, 124.48, 124.26, 118.57, 117.72, 116.06, 114.15.

HRMS (ESI) calcd. for C₁₁H₁₀NO [M+H]: 172.0762, found: 172.0766.

N-(pyridin-4-yl)formamide⁵

B27:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.0862 gram, 89% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 10.46 (d, *J* = 9.5 Hz, 1H), 9.06 (d, *J* = 10.5 Hz, 1H), 8.50 – 8.32 (m, 3H), 7.54 (d, *J* = 6.2 Hz, 2H), 7.20 (d, *J* = 5.8 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 163.00, 161.33, 151.05, 151.00, 146.03, 145.07, 113.82, 111.62.

HRMS (ESI) calcd. for $C_6H_7N_2O$ [M+H]: 123.0558, found: 123.0555.

N-benzylformamide¹

B28:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.1076 gram, 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 – 8.02 (m, 1H), 7.45 – 7.13 (m, 4H), 6.22 (s, 1H), 4.41 (dd, *J* = 28.1, 6.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 164.82, 161.26, 137.67, 128.74, 127.74, 126.99, 45.67, 42.10.

HRMS (ESI) calcd. for C₈H₁₀NO [M+H]: 136.0762, found: 136.0760.

N-(4-fluorobenzyl)formamide⁹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.2398 gram, 82% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.54 (s, 1H), 8.14 (d, *J* = 1.8 Hz, 1H), 7.31 (dd, *J* = 8.6, 5.6 Hz, 1H), 7.23 – 7.04 (m, 2H), 4.29 (d, *J* = 6.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.62, 165.34, 162.86, 161.52, 160.45, 136.29, 135.70, 135.67, 129.78, 129.70, 115.73, 115.60, 115.52, 115.39, 44.29, 41.84.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -115.83, -116.06.

HRMS (ESI) calcd. for C₈H₉FNO [M+H]: 154.0668, found: 154.0664.

N-(4-chlorobenzyl)formamide9

B30:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.4537 gram, 86% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.56 (s, 1H), 8.15 (d, *J* = 1.7 Hz, 1H), 7.45 – 7.35 (m, 1H), 7.29 (dd, *J* = 11.3, 5.2 Hz, 2H), 4.30 (d, *J* = 6.2 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.71, 165.40, 161.61, 139.16, 138.54, 131.90, 129.60, 128.72, 44.32, 41.90.

HRMS (ESI) calcd. for C₈H₉ClNO [M+H]: 170.0373, found: 170.0370.

N-(4-bromobenzyl)formamide¹⁰

B31:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.7038 gram, 80% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.50 (t, *J* = 33.1 Hz, 1H), 8.26 – 8.07 (m, 1H), 7.57 – 7.48 (m, 1H), 7.22 (t, *J* = 8.2 Hz, 2H), 4.28 (d, *J* = 6.2 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 169.71, 165.41, 161.62, 139.58, 138.97, 131.64, 129.97, 120.36, 44.38, 41.96.

HRMS (ESI) calcd. for C₈H₉BrNO [M+H]: 213.9868, found: 213.9864.

N-cyclohexylformamide¹¹

B32:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.0295 gram, 82% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (t, *J* = 7.4 Hz, 1H), 6.06 (d, *J* = 78.7 Hz, 1H), 4.01 - 3.75 (m, 1H), 3.42 - 3.18 (m, 1H), 2.08 - 1.83 (m, 2H), 1.75 - 1.69 (m, 1H), 1.67 - 1.56 (m, 1H), 1.39 - 1.31 (m, 2H), 1.22 - 1.16 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 163.68, 160.42, 77.42, 77.10, 76.78, 51.04, 47.06, 34.64, 32.98, 25.40, 25.00, 24.74, 24.71.

HRMS (ESI) calcd. for C₇H₁₄NO [M+H]: 128.1075, found: 128.1077.

Morpholine-4-carbaldehyde¹¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.0125 gram, 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 3.81 – 3.63 (m, 4H), 3.63 – 3.51 (m, 2H), 3.47 – 3.33 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.84, 67.23, 66.43, 45.79, 40.59.

HRMS (ESI) calcd. for C₅H₁₀NO₂ [M+H]: 116.0712, found: 116.0717.

N,N'-(1,4-phenylene)diformamide⁶

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3461 gram, 82% yield.

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.14 (s, 1H), 10.08 (d, J = 11.3 Hz, 1H), 8.69 (dd, J = 11.1, 2.0 Hz, 1H), 8.23 (d, J = 2.0 Hz, 1H), 7.59 – 7.46 (m, 2H), 7.15 (t, J = 4.4 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 162.90, 159.74, 134.82, 134.45, 120.64, 120.06, 119.32, 118.72, 40.60, 40.40, 40.19, 39.98, 39.77, 39.56, 39.35.

HRMS (ESI) calcd. for C₈H₉N₂O₂ [M+H]: 165.0664, found: 165.0666.

N,*N*'-(naphthalene-1,8-diyl)diformamide

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.5627 gram, 73% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 – 8.53 (m, 2H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.62 – 7.44 (m, 3H), 7.32 (d, *J* = 7.3 Hz, 1H), 7.26 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.11, 159.65, 134.29, 134.08, 132.13, 131.00, 128.85, 128.55, 127.77, 127.04, 126.81, 126.52, 126.23, 126.14, 125.71, 125.52, 121.32, 120.90, 120.38, 119.07.

HRMS (ESI) calcd. for C₁₂H₁₁N₂O₂ [M+H]: 215.0821, found: 215.0823.

B36:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 1.3533 gram, 76% yield.

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.30 – 10.01 (m, 1H), 8.75 (d, J = 11.0 Hz, 1H), 8.47 (s, 1H), 8.26 (t, J = 2.0 Hz, 1H), 8.11 (t, J = 7.5 Hz, 1H), 7.62 – 7.48 (m, 2H), 7.26 – 7.10 (m, 3H), 4.22 (dd, J = 23.0, 6.0 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.30, 162.97, 161.44, 159.96, 137.49, 134.62, 128.90, 128.33, 119.55, 117.99, 40.78, 40.69.

HRMS (ESI) calcd. for C₉H₁₁N₂O₂ [M+H]: 179.0821, found: 179.0824.

5. Control experiments.

5.1 Ultra-pure substrates experiment:

Ph-
$$H_2$$
 + CO
A1 2 atm $2 = 10^{-10}$ $2 = 10^{-1$

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 99.99% 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC, GC-MS and ICP-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1**.

Figure R3. The spectrum of ICP-MS

Na (ppm)	Ca (ppm)	Fe (ppm)	K (ppm)	Mg (ppm)	Al 27/27 (ppb)
10.39	0.26	0	0.56	4.47	0
Pd 106/106 (ppb)	Rh 103/103 (ppb)	Cr 52/52 (ppb)	Pb 208/208 (ppb)	V 51/51 (ppb)	Zn 66/66 (ppb)
0.06	0.00	0.00	0.00	0.03	4.04
Cu 63/63 (ppb)	Mn 55/55 (ppb)	Ti 48/48 (ppb)	Ba 138/138 (ppb)	Cd 111/111 (ppb)	Co 59/59 (ppb)
1.69	0.09	0.21	0.32	0.01	0.01
Ni 60/60 (ppb)					
0.26					

Table R1 The data of ICP-MS

5.2 Control experiment with 15-crown-5:

Ph-NH₂ + CO
$$\xrightarrow{99.99\% tBuONa}$$
 Ph \xrightarrow{Ph} \xrightarrow{Ph} H
A1 2 bar with 15-crown-5 (2.0 equiv): B1, <5%

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), 15-crown-5 (2 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1**.

5.3 Control experiment with 18-crown-6:

Ph-NH₂ + CO
$$\xrightarrow{99.99\% tBuONa}$$
 Ph $_N$ \xrightarrow{Ph}_H
A1 2 bar with 18-crown-6 (2.0 equiv): B1, 13%

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), 18-crown-6 (2 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1**.

5.4 Radical capture experiment with TMEPO:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), TMEPO (0.5 mmol or 2 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a preheated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product

formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1**.

5.5 Radical capture experiment with Ph₂C=CH₂:

Ph-NH₂ + CO
$$\xrightarrow{tBuONa (1 equiv)}$$
 Ph \xrightarrow{N} Ph \xrightarrow{N} H
A1 2 atm with Ph₂C=CH₂ (0.5 equiv): B1, 94% with Ph₂C=CH₂ (2.0 equiv): B1, 82%

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), Ph₂C=CH₂ (0.5 mmol or 2 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a preheated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1**.

6 Mechanism investigations

6.1 Mechanism investigations for 60 minutes:

$$Ph-NH_{2} + CO \xrightarrow{tBuONa} Ph_{N} \xrightarrow{O}_{H} + \underbrace{O}_{O} \xrightarrow{O}_{H}$$

$$A1 \quad 2 \text{ atm} \quad for 60 \text{ min:} B1, 23\% \quad C1, 7\%$$

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, ^{*t*}BuONa (96.1 mg, 1.0 mmol), amines **A1** (91 μ L, 1.0 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 30 minutes. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

6.2 Synthesis of C1:

Using a nitrogen-filled glove box, an oven-dried pressure tube (50 mL) was charged with a magnetic stirring bar, ^{*t*}BuONa (96.1 mg, 10 mmol), and DMAc (10 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with Et₂O (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product C1 formation. The solvent was evaporated under reduced pressure for giving the C1 (163 mg, 16% yield) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 7.99 (s, 1H), 1.48 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃): 160.7, 81.4, 28.3. **HRMS** (ESI) calcd. for C₅H₁₁O₂ [M+H]: 103.0759, found: 103.0758.

6.3 Mechanism investigations with C1 in absence of base:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, C1 (2.0 mmol), amines A1 (91 μ L, 1.0 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the tube immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the mixture was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product **B1** formation.

6.4 Mechanism investigations with C1 in presence of base:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (96.1 mg, 1.0 mmol), C1 (2.0 mmol), amines A1 (91 μ L, 1.0 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the tube immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the mixture was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product **B1** formation.

6.5 Mechanism investigations with A1-Na and C1

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, NaH (26.4 mg, 1.1 mmol), amines A1 (91 μ L, 1.0 mmol). Then the glass tube was closed tightly and removed from the glove box. Then the mixture immersed into a pre-heated metal bath (100 °C) for an hour. After the reaction was finished, the tube was cooled to room temperature and put into the glove box again. The C1 (2.0 mmol) and DMAc (1.0 mL) were added. Then the tube closed tightly and removed from the glove box. The mixture was immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the mixture and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product B1 formation.

6.6 Mechanism investigations for the competition experiment:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, ^{*t*}BuONa (0.96 g, 10.0 mmol), amines A2 (5.0 mmol) and A15 (5.0 mmol), and DMAc (10.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 30 minutes. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3×10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation. Then the solvent was evaporated under reduced pressure and the residue was

purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B2**, 128.0 mg, 19% yield. **B15**, 110.1 mg, 11% yield.

6.7 Mechanism investigations for the competition experiment:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 'BuONa (0.96 g, 10.0 mmol), amines **A8** (5.0 mmol) and **A19** (5.0 mmol), and DMAc (10.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 30 minutes. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with ethyl acetate (3×10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B8**, 151.1 mg, 20% yield. **B19**, 94.6 mg, 10% yield.
7 Deuterium-labeled investigations

7.1 Deuterium-labeled investigations with A1-D:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 99.99% 'BuONa (96.1 mg, 1.0 mmol), amines A1-D (93 μ L, 1.0 mmol), and DMAc (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC, GC-MS and ICP-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1-D**. **HRMS** (ESI) calcd. for C₇H₆D₂NO [M+H]: 124.0731, found: 124.0733.

Figure S1

7.2 Deuterium-labeled investigations with DMAc-d9:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 99.99% 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), and DMAc- d_9 (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC, GC-MS and ICP-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1-D**. **HRMS** (ESI) calcd. for C₇H₈NO [M+H]: 122.0606, found: 122.0604.

Figure S2

7.3 Deuterium-labeled investigations with A1-D and DMAc-d9:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 99.99% 'BuONa (96.1 mg, 1.0 mmol), amines A1-D (93 μ L, 1.0 mmol), and DMAc-*d*₉ (1.0 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC, GC-MS and ICP-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1-D**. **HRMS** (ESI) calcd. for C₇H₆D₂NO [M+H]: 124.0731, found: 124.0733.

7.4 Deuterium-labeled investigations with D₂O:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, NaH (26.4 mg, 1.1 mmol), amines A1 (91 μ L, 1.0 mmol). Then the glass tube was closed tightly and removed from the glove box. Then the mixture immersed into a pre-heated metal bath (100 °C) for an hour. After the reaction was finished, the tube was cooled to room temperature and put into the glove box again. The C1 (2.0 mmol) and DMAc (1.0 mL) were added. Then the tube closed tightly and removed from the glove box. The mixture was immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the reaction was finished to room temperature and D₂O (1.0 mL) was then added. Then mixture was cooled to room temperature and D₂O (1.0 mL) was then added. Then mixture was extracted with ethyl acetate (3 × 5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product **B1-D** formation. **HRMS** (ESI) calcd. for C₇H₇DNO [M+H]: 123.0669, found: 123.0668.

Figure S4

7.5 Deuterium-labeled investigations with D₂O:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, NaH (26.4 mg, 1.1 mmol), amines A1-D (93 μ L, 1.0 mmol). Then the glass tube was closed tightly and removed from the glove box. Then the mixture immersed into a pre-heated metal bath (100 °C) for an hour. After the reaction was finished, the tube was cooled to room temperature and put into the glove box again. The C1 (2.0 mmol) and DMAc (1.0 mL) were added. Then the tube closed tightly and removed from the glove box. The mixture was immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the mixture was cooled to room temperature and D₂O (1.0 mL) was then added. Then mixture was extracted with ethyl acetate (3 × 5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product **B1-D** formation. **HRMS** (ESI) calcd. for C₇H₇DNO [M+H]: 123.0669, found: 123.0670.

Figure S5

7.6 Labeled investigations with CH₃¹³C(O)N(CH₃)₂:

Using a nitrogen-filled glove box, an oven-dried pressure tube (10 mL) was charged with a magnetic stirring bar, 99.99% 'BuONa (96.1 mg, 1.0 mmol), amines A1 (91 μ L, 1.0 mmol), and CH₃¹³C(O)N(CH₃)₂ (0.5 mL). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 12 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released. Sat. aq. NH₄Cl (10 mL) was then added and the mixture was extracted with DCM (3 × 10 mL) and the combined organics were washed with brine (10 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC, GC-MS and ICP-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 – 1:1, DCM 2%, Et₃N 2%) on silica gel to give the corresponding products **B1-C**.

¹**H NMR** (400 MHz, CDCl₃) δ 9.04 (br, 0.5H), 8.70 (d, J = 11.2 Hz, 0.5H), 8.33 (s, 0.5H), 8.22 (br, 0.5H), 7.56 (d, J = 7.6 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.23 – 6.98 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.10, 158.60, 135.99, 135.79, 128.67, 128.00, 124.20, 123.71, 119.12, 119.10, 117.72. **HRMS** (ESI) calcd. for C₇H₈NO [M+H]: 122.0606, found: 122.0604.

8. Application and further transformation

8.1 Gram experiment for Paracetamol

Using a nitrogen, an oven-dried tube (1.0 L) was charged with a mechanical agitator bar, 'BuONa (19.2 g, 200 mmol), amine A37 (10.9 g, 100 mmol), and DMAc (200 mL). Then the tube was placed in an autoclave which was closed tightly. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 48 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released under well ventilated fume hood. Sat. aq. NH₄Cl (200 mL) was then added and the mixture was extracted with DCM (3×200 mL) and the combined organics were washed with brine (200 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by recrystallization (DCM) to give the corresponding product **Paracetamol**.

Paracetamol:⁶

¹**H NMR** (400 MHz, DMSO- d_6) δ 9.99 – 9.84 (m, 1H), 9.30 (s, 1H), 8.56 (d, J = 11.2 Hz, 1H), 8.21 (t, J = 3.0 Hz, 1H), 7.52 – 7.31 (m, 1H), 7.13 – 6.91 (m, 1H), 6.84 – 6.66 (m, 2H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 163.01, 159.27, 154.64, 153.97, 130.43, 130.10, 121.23, 120.63, 116.24, 115.62.

HRMS (ESI) calcd. for C₇H₈NO₂ [M+H]: 138.0555, found: 138.0558.

8.2 Gram experiment for B2

Using a nitrogen, an oven-dried tube (2.5 L) was charged with a mechanical agitator bar, ^{*I*}BuONa (96.1 g, 1.0 mol), amine A2 (107.1g, 1.0 mol), and DMAc (1.0 L). Then the tube was placed in an autoclave which was closed tightly. Then the autoclave was purged and charged with CO (2 bar) and immersed into a pre-heated metal bath (100 °C) for 48 hours. After the reaction was finished, the autoclave was cooled to room temperature and the pressure was carefully released under well ventilated fume hood. Sat. aq. NH₄Cl (1 L) was then added and the mixture was extracted with DCM (3 × 1 L) and the combined organics were washed with brine (1 L), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by recrystallization (DCM) to give the corresponding product **B2**.

8.3 Synthesis of D1

To a stirring 0 °C mixture of Me₂NH • HCl (3 mmol) and **B2** (1 mmol) in DCM (5 mL), as added Et₃N (3 mmol) dropwise under argon. After 5 min at 0°C and 12 hours at room temperature, 5 mL water was added and mixed vigorously until the organic layer became clear. The mixture was extracted with DCM (3×5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 10%) on silica gel to give the corresponding products **D1**.

1,1-dimethyl-3-(p-tolyl)urea (D1): ¹²

¹**H NMR** (400 MHz, CDCl₃) δ 7.22-7.25 (m, 2H), 7.04-7.07 (m, 2H), 6.30 (br, 1H), 2.99 (s, 6H), 2.27 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 136.6, 132.6, 129.4, 120.2, 36.5, 20.8; HRMS (ESI) calcd. for C₁₀H₁₅N₂O [M+H]: 179.1180, found: 179.1182

8.4 Synthesis of D2

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, **B2** (1 mmol), FeI₂ (0.1 mmol), MeCN (3.0 mL), TMDS (2 mmol) and TMSCN (2 mmol). Then the seal tube was closed tightly with a rubber stopper, removed from the glove box and stirred at room temperature for 12 h. After the reaction was finished, sat. aq. NH4Cl (5 mL) was then added. The mixture was extracted with DCM (3×5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 5:1, DCM 2%) on silica gel to give the corresponding products **D2**.

2-(*p*-tolylamino)acetonitrile (D2): ¹³

¹**H NMR** (400 MHz, CDCl₃) δ 7.05 (d, *J* = 8.4 Hz, 2H), 6.64 – 6.58 (m, 2H), 4.01 (d, *J* = 7.1 Hz, 2H), 3.82 (s, 1H), 2.26 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 142.6, 130.0, 129.3, 117.0, 113.7, 33.0, 20.4; HRMS (ESI) calcd. for C₉H₁₁N₂ [M+H]: 147.0922, found: 147.0924.

8.4 Synthesis of D3

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, **B2** (1.2 mmol), PhI (1 mmol), CuI (0.05 mmol), N,N-dimethylglycine (0.1 mmol), K₂CO₃ (2 mmol), and DMF (0.5 mL). Then the seal

tube was closed tightly with a rubber stopper, removed from the glove box and immersed into a pre-heated metal bath (110 °C) for 48 hours. After the reaction was finished, the mixture was cooled to room temperature sat. aq. NH₄Cl (5 mL) was then added. The mixture was extracted with DCM (3×5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 2:1, DCM 2%) on silica gel to give the corresponding products **D3**.

N-Phenyl-*N*-(*p*-tolyl)formamide (D3): ¹⁴

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.63 (s, 1H), 7.46–7.35 (m, 5H), 7.35–7.27 (m, 5H), 7.23 (s, 2H), 7.20–7.13 (m, 4H), 7.13–7.06 (m, 2H), 2.38 (s, 3H), 2.36 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 161.7, 141.8, 139.7, 139.1, 137.1, 136.9, 130.5, 129.7, 129.6, 129.0, 126.8, 126.5, 126.2, 125.7, 125.3, 124.6, 29.7, 21.1, 20.8;

HRMS (ESI) calcd. for C₁₄H₁₄NO [M+H]: 212.1075, found: 212.1078

8.5 Synthesis of D4

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, **B2** (1.0 mmol), pyridine (1.5 mL), DPPA (2.0 mmol). Then the seal tube was closed tightly with a rubber stopper, removed from the glove box and immersed into a pre-heated metal bath (90 °C) for 24 hours. After the reaction was finished, the mixture was cooled to room temperature sat. aq. NH4Cl (5 mL) was then added. The mixture was extracted with DCM (3×5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%) on silica gel to give the corresponding products **D4**.

ethyl 1-(p-tolyl)-1H-imidazole-4-carboxylate (D4):15

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 1.3 Hz, 1H), 7.78 (d, *J* = 1.2 Hz, 1H), 7.26 (s, 2H), 4.37 (q, 2H), 2.38 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 162.7, 138.5, 136.2, 134.9, 134.0, 130.6, 124.0, 121.6, 60.7, 21.0, 14.3;

HRMS (ESI) calcd. for C₁₃H₁₅N₂O₂ [M+H]: 231.1134, found: 231.1133.

8.6 Synthesis of D5

To a stirring 0 °C mixture of DIPA (2.7 equiv, 0.26 mL) and **B2** (1 mmol g) in DCM (0.9 M), as added POCl₃ (1.1 mmol) dropwise under argon. After 5 min at 0°C and 15 min at room temperature, 1 mL water was added and mixed vigorously until the organic layer became clear. The mixture was extracted with DCM (3×2 mL) and the combined organics were washed with brine (2 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 4:1) on silica gel to give the corresponding products **D5**.

4-methylphenyl isocyanide (D5): 16

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 4.59 (s, 2H), 2.38 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 157.2 (t, *J* = 5.2 Hz), 138.2, 129.5, 126.6, 45.3 (t, *J* = 7.1 Hz), 21.0;

HRMS (ESI) calcd. for C₈H₉N [M+H-HCN]: 105.0699, found: 105.0694.

8.7 Synthesis of D6

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, **B2** (1.0 mmol), pyridine (1.5 mL), DPPA (2.0 mmol). Then the seal tube was closed tightly with a rubber stopper, removed from the

glove box and immersed into a pre-heated metal bath (90 °C) for 24 hours. After the reaction was finished, the mixture was cooled to room temperature sat. aq. NH₄Cl (5 mL) was then added. The mixture was extracted with DCM (3×5 mL) and the combined organics were washed with brine (5 mL), dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1 - 1:1, DCM 2%) on silica gel to give the corresponding products **D6**.

1-(p-Tolyl)-1H-tetrazole (D6):¹⁵

¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 2.44 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 140.4, 140.4, 130.7, 121.0, 21.2;

HRMS (ESI) calcd. for C₈H₉N₄ [M+H]: 161.0827, found: 161.0826.

9. References

- Jia, M.; Zhang, H.; Lin, Y.; Chen, D.; Chen, Y.; Xia, Y. Org. Biomol. Chem. 2018, 16, 3615 – 3624.
- (2) Nguyen, T. V. Q.; Yoo, W.-J.; Kobayashi. Angew. Chem., Int. Ed. 2011, 54, 9209 9212.
- (3) Wang, C.; Wu, L.; Xu, W.; He, F.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6954-6959.
- (4) Yu, Y.; Zhang, Y.; Sun, C.; Shi, L.; Wang, W.; Li, H. J. Org. Chem. 2020, 85, 2725 2732.
- (5) Ghosh, T.; Jana, S.; Dash, J. Org. Lett. 2019, 21, 6690 6694.
- (6) Yin, J.; Zhang, J.; Cai, C.; Deng, G-J.; Gong, H. Org. Lett. 2019, 21, 387 392.
- (7) Tan, Z; Li, Z; Ma, Y; Qin, J; Yu, C. Eur. J. Org. Chem. 2019, 28, 4538 4545.
- (8) Shen, N.; Zhai, S.-J.; Cheung, C.; Ma, J.-A. Chem. Commun. 2020, 56, 9620-9623.
- (9) Ortega, N.; Richter, C.; Glorius, F. Org. Lett. 2013, 15, 1776-1779.
- (10) Kang, B.; Hong, S. H. Adv. Synth. Catal. 2015, 357, 834-840.
- (11) Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G. RSC Adv. 2013, 3, 7697 7703.
- (12) Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066 – 10067.
- (13) Wang, H.; Shao, Y.; Zheng, H.; Wang, H.; Cheng, J.; Wan, X. Chem.-Eur. J. 2013, 21. 18333-18337.
- (14) Natalia, L.; Patricia, G.; Alejandro, B. J. Org. Chem. 2020, 85, 11072-11079.
- (15) Song, Q.; Wang, Y.; Zhou, Y. Chem. Commun. 2020, 56, 6106 6109.
- (16) Polisar, J.G.; Li, L.; Norton, J. R. Tetrahedron Lett. 2011, 52, 2933 2934.

10. NMR Spectra

S55

S60

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2021-10-27 YY0034-616-ZYS-51.11.fid

S120

