Electrochemical cyclization of *N*-cyanamide alkenes with CF₃SO₂Na to access C, *N*- (bis)trifluoromethylated cyclic amidines and related compounds

Zhihua Yan,^a Wencheng Li, ^a Yuheng Wu, ^a Qibo Yan, ^a Zhonglin Wei, ^a Wei-Wei Liao*^{a,b}

^{*a*} Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

E-mail: wliao@jlu.edu.cn

Table of Contents

I.	General Information	SI-2
II.	Reaction Conditions Screening	SI-3
III.	Preparation of Substrates	SI-8
IV.	General Procedure and Experimental Details	SI-23
V.	Scale-up Reaction and Synthetic Transformations	SI-44
VI.	Control Experiments	SI-47
VII.	Cyclic Voltammetry (CV) Experiments	SI-52
VIII.	DFT Calculations	SI-55
IX.	References	SI-74
X.	Crystal Data and Structure Refinements	SI-75

XI. ¹H, ¹³C and ¹⁹F NMR Spectral Copies

I. General Information

All reactions were carried out under inert atmospheric condition unless otherwise noted, and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV), and KMnO4; column chromatography purifications were carried out using silica gel. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a 300, 400 or 500 MHz spectrometer in CDCl₃ or DMSO, fluorine nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a 376 or 470 MHz spectrometer in CDCl₃ or DMSO, and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 125 or 100 MHz spectrometer in CDCl₃ or DMSO unless otherwise noted. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 ppm, DMSO = δ 2.50 ppm). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to the carbon resonances of the solvent residual peak (CDCl₃ = δ 77.16 ppm, DMSO = δ 39.52 ppm). NMR data are presented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), integration. Mass spectra were recorded on the Bruker MicrOTOF Q II. Melting points were measured on a melting point apparatus and were uncorrected. Electrochemical reactions were performed under air using undivided glassware. Electrochemical reactions were conducted using DJS-292potentiostat in constant current mode. Cyclic voltammetry experiments were carried out in DY2113 potentiostat (Digi Ivy).

II. Reaction Conditions Screening

Table S1. Optimized reaction conditions: effect of solvent ^a

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol) and solvent (c = 0.03 M) in an undivided cell with graphite rod (Φ 6 mm) and Pt plate cathode ($10 \times 10 \times 0.1 mm$), constant current = 3.0 mA, 30 °C, 6 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard.

Table S2. Optimized reaction conditions: effect of electrolyte ^a

CN Ts-N	+ CF ₃ SO ₂ Na	C (+)/Pt (-), c undivided electrolyte (f DCM/H ₂ O 30 °C, f	cc 3 mA <u>1 cell</u> 0.03 M) (5/1) 3 h		F ₃ C, CF ₃ + Ts -		F ₃ C + 3 Ts	N ^N + NCF ₃	Ts~N_CF3
1aa	2a			3aa-(<i>E</i>)		4aa-syn		4aa-anti	5aa
		Entry	Electrolyte		Yield	$d(\%)^{b}$			
		_		3aa	4aa-syn	4aa- <i>anti</i>	5aa	_	
		1	Bu ₄ NBF ₄	30	18	16	17		
		2	LiClO ₄	0	0	0	0		
		3	Bu ₄ NClO ₄	24	17	19	13		
		4	Bu ₄ NPF ₆	25	15	15	24		
		5	TBAB	16	8	9	18		
		6	Bu ₄ NOAc	16	3	3	8		
		7	Et ₄ NOTs	6	0	0	0	_	

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol) and DCM/H₂O (5/1) (c = 0.03 M) in an undivided cell with graphite rod ($\Phi 6 mm$) and Pt plate cathode ($10 \times 10 \times 0.1 mm$), constant current = 3.0 mA, 30 °C, 6 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard.

CN TS ^{-N}	🥢 + C	F₃SO₂Na —	(+)/(-), cc undivided ce Addtive Bu ₄ NBF ₄ (0.03 DCM/H ₂ O (5/	<u>ell</u> 3 M) (1)	Ts-N-CF3+	F ₃ C	$\sim_{CF_3}^{1}$ F_3		- + ^T s∼∧ F ₃	CF3
1aa		2a	30 °Č, <i>t</i> h	,	3aa-(<i>E</i>)	4aa-sy	'n	4aa- <i>anti</i>		<u>5</u> aa
	Entry	+/_	I(mA)	t (h)	Additive		Yield	$(\%)^{b}$		
	Liiuy	1/-	I (IIIA)	<i>t</i> (II)	Additive	3 aa	4aa-syn	4aa- <i>anti</i>	5aa	
	1	C/C	3	6	-	30	18	16	17	_
	2	C/C	5	6	-	37	17	17	25	
	3	C/C	10	3	-	45	3	3	36	
	4	C/Pt	10	3	-	49	3	3	40	
	5	C/Fe	10	3	-	41	4	4	28	
	6	C-plate/Pt	10	3	-	43	3	4	37	
	7	RVC/Pt	10	3	-	30	15	15	18	
	8	C/Pt	10	3	TFA (3 eq)	48	3	3	39	
	9	C/Pt	10	3	AcOH (3 eq)	49	2	2	37	
	10	C/Pt	10	3	AcONa (3 eq)	48	2	2	34	
	11	C/Pt	10	3	KH ₂ PO ₄ (3 eq)	54	2	3	31	
	12	C/Pt	10	3	K ₃ PO ₄ (3 eq)	42	2	3	30	
	13	C/Pt	10	3	KH ₂ PO ₄ (1 eq)	51	6	6	32	
	14	C/Pt	10	3	KH_2PO_4 (5 eq)	52	9	9	23	
	15 ^c	C/Pt	10	3	$KH_2PO_4(3 eq)$	56 (52)	14	16	9	
	16 ^c	C/Pt	20	3	KH ₂ PO ₄ (3 eq)	<i>65 (61)</i>	0	0	24 (21)	
_	17 ^c	C/Pt	28	3	KH_2PO_4 (3 eq)	52	0	0	19	_

Table S3. Optimized reaction conditions: effects of current, electrode and additive ^a

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol), additive and DCM/H₂O (5/1) (c = 0.03 M) in an undivided cell with graphite rod ($\Phi 6$ mm), C-plate ($10 \times 10 \times 1$ mm), Ni ($10 \times 10 \times 1$ mm), Fe ($10 \times 10 \times 1$ mm), RVC (100 PPI, 1 cm $\times 1$ cm $\times 1$ cm) and Pt plate cathode ($10 \times 10 \times 0.1$ mm) constant current, 30 °C. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard. Isolated yields were given in parentheses. ^{*c*} **2a** (1.2 mmol).

CN Ts ^{-N} + 1aa	$CF_{3}SO_{2}Na \xrightarrow{C(+)/Pt(-), cc 20 mA}{undivided cell}$ $KH_{2}PO_{4} (3 eq)$ $Bu_{4}NBF_{4} (0.03 M)$ $DCM/H_{2}O (5/1)$ $2a \qquad 30 \ ^{\circ}C, t h$), cc 20 mA ded cell $_{4}$ (3 eq) $_{4}$ (0.03 M) $_{2}O$ (5/1) C, <i>t</i> h 3	CF ₃ CF ₃	F ₃ C + N ^{/N} Ts - N 4aa-sj	$\sum_{N_Ts} F_3$ CF_3 T_5	N N 4aa-anti	Ts O + Ts N CF ₃ CF ₃ 5aa
		. (1)			Yield			
	Entry	<i>t</i> (h)	Additive	3aa	4aa-syn	4aa- <i>anti</i>	5aa	
	1	3	KH ₂ PO ₄ (3 eq)	64	0	0	24	
	2	1	KH_2PO_4 (3 eq)	63	11	10	0	
	3	1.5	KH_2PO_4 (3 eq)	63	6	6	13	
	4	2	KH ₂ PO ₄ (3 eq)	<i>64 (61)</i>	0	0	22 (20)	
	5 ^c	2	KH_2PO_4 (3 eq)	56 (52)	0	0	19 (15)	
	6 ^d	2	KH_2PO_4 (3 eq)	56	0	0	23	
	7 ^e	4	KH_2PO_4 (3 eq)	56 (54)	0	0	23 (20)	
	9 <i>f</i>	2	-	-	-	-	-	
	10 ^g	2	KH_2PO_4 (3 eq)	-	-	-	-	
	11 ^h	2	KH_2PO_4 (3 eq)	60	trace	trace	20	

Table S4. Optimized reaction conditions: effects of other parameters ^a

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), additive and DCM/H₂O (5/1) (c = 0.03 *M*) in an undivided cell with graphite rod (Φ 6 mm) and Pt plate cathode (10 × 10 × 0.1 mm), constant current = 20 mA, 30 °C. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard. Isolated yields were given in parentheses. ^{*c*} (CF₃SO₂)₂Zn (0.6 mmol). ^{*d*} Under N₂. ^{*e*} Constant potential = 10 V (I = 17.6-14.3 mA). ^{*f*} The constant current mode cannot be supported due to the out of range of voltage when the reaction was performed with constant current = 20 mA without KH₂PO₄. ^{*g*} Without electricity. ^{*h*} IKA ElectraSyn 2.0. I = 20 mA: 1 h, 2.49 F·mol⁻¹; 1.5 h, 3.74 F·mol⁻¹; 2 h, 4.97 F·mol⁻¹; 3 h, 7.5 F mol⁻¹.

Table S5. Optimized reaction conditions: effect of mediator ^a

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), KH₂PO₄ (3 equiv) and DCM/H₂O (5/1) (c = 0.03 *M*) in an undivided cell with graphite rod (Φ 6 mm) and Pt plate cathode (10 × 10 × 0.1 mm), constant current, 30 °C. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard.

Table S6. Optimized reaction conditions for Dimer 4aa ^a

C Ts ^{/N}	N	+ CF ₃ SO ₂ Na	SO ₂ Na (+)/(-), cc undivided cell additive Bu ₄ NBF ₄ (0.03 M) solvent, 30 °C, t 2aa		Ts ~N_CF3 Ts ~N_CF3 + Ts ~N_		$F_3C_{V_1V}$	`Ts + ^{Ts} ∼N ∕) + ^{Ts} - N CF 5aa	
	1aa	2aa			3aa-(<i>E</i>) 4a	aa-syn	4aa-anti	!		
	Б (. /	τ.(t (h)	A 111/	Yield (%) ^b				
	Entry	+/-	I (mA)		Additive	3aa	4aa-syn	4aa- <i>anti</i>	5aa	
	1	C/C	3	6	-	30	17	18	16	
	2	C/C	2	8	-	28	17	18	16	
	3	C/C	1	16	-	23	18	19	21	
	4 ^{<i>c</i>}	C/C	1	16	-	23	15	16	17	
	5	C/Pt	1	16	-	20	17	17	24	
	6	RVC/Pt	1	16	-	16	18	19	20	
	7	C-plate/Pt	1	16	-	12	15	15	12	
	8	C/C	1	16	KH ₂ PO ₄ (3 equiv)	22	13	12	16	
	9	C/C	1	16	NaOAc (3 equiv)	25 (23)	21(20)	21(21)	3	
	10	C/C	1	16	NaOAc (1.5 equiv)	35	19	17	14	
	11	C/C	1	16	NaOAc (5 equiv)	26 (24)	24 (22)	22 (21)	2	
	12 ^d	C/C	1	16	NaOAc (5 equiv)	28	19	17	0	
	13 ^e	C/C	1	16	NaOAc (3 equiv)	16	21	22	0	
	14 ^f	C/C	1	16	NaOAc (3 equiv)	25 <u>(</u> 23)	24 (26)	25 (27)	0	

^{*a*} Reaction conditions: **1aa** (0.3 mmol), **2a** (0.9 mmol, 3 equiv), Bu₄NBF₄ (0.3 mmol), KH₂PO₄ (3 equiv) and DCM/H₂O (5/1) (c = 0.03 M) in an undivided cell, constant current, 30 °C. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard. Isolated yields were given in parentheses. ^{*c*} **2a** (0.75 mmol, 2.5 equiv). ^{*d*} c = 0.015 M. ^{*e*} Under nitrogen atmosphere. ^{*f*} IKA ElectraSyn 2.0. I = 1 mA, 16 h, 1.99 F mol⁻¹.

Table S7. Optimized reaction conditions for 12a ^a

Enters	Deviation from standard and ditions	Yield (%) ^b				
Entry	Deviation from standard conditions	12a	13a	14a		
1	none	41 (38)	< 1	4		
2	KH ₂ PO ₄ (3 eq) instead of NaOAc (5 eq)	30	3	2		
3	NaOAc (3 eq) instead of NaOAc (5 eq)	36	2	4		
4	Bu ₄ NClO ₄ instead of Bu ₄ NBF ₄	39	2	5		
5	Bu ₄ NPF ₆ instead of Bu ₄ NBF ₄	31	2	10		
6	MeCN/H ₂ O (5/1) instead of DCM/H ₂ O (5/1)	12	0	0		
7	Acetone/H ₂ O (5/1) instead of DCM/H ₂ O (5/1)	0	0	0		
8	DCM/H ₂ O (2/1) instead of DCM/H ₂ O (5/1)	37	3	5		
9	DCM/H ₂ O (10/1) instead of DCM/H ₂ O (5/1)	27	6	4		
10	C(+)/Ni(-) instead of C(+)/Pt(+)	31	6	1		
11	C(+)/C(-) instead of C(+)/Pt(+)	< 1	0	< 1		
12	C-plate(+)/Pt(-) instead of C(+)/Pt(+)	24	9	1		
13	RVC(+)/Pt(-) instead of C(+)/Pt(+)	21	4	1		
14	2 mA, 8 h instead of 5 mA, 6 h	19	4	1		
15	10 mA, 3 h instead of 5 mA, 6 h	37	4	3		
16	cp = 5 V, 8 h instead of $cc = 5 mA$, 6 h	35	< 1	3		
17	under nitrogen atmosphere	37	5	4		
18	IKA ElectraSyn 2.0	39	< 1	< 1		
19	No electricity	nd	nd	nd		

^{*a*} Reaction conditions: **11a** (0.3 mmol), **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), NaOAc (5 equiv) and DCM/H₂O (5/1) (c = 0.03 *M*) in an undivided cell with graphite rod (Φ 6 mm) and Pt plate cathode (10 × 10 × 0.1 mm), constant current = 5 mA, 30 °C, 6 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethylbenzene as the internal standard. Isolated yields were given in parentheses. **12a** (*E*-(C=N), *E*-(C=C))/ **12a** (*E*-(C=N), *Z*-(C=C)) > 19/1; **13a** as an exclusive (*E*)-form. I = 5 mA, 6 h, 3.73 F mol⁻¹.

III. Preparation of Substrates

1) Preparation of Substrates 1 and 8

Eq-1: ¹To a round-bottomed flask equipped with a stirring bar was charged with aryl sulfonamide S1 (1.2 equiv.), K_2CO_3 (2 equiv.) and dry DMF (0.3 M). Bromide S2 (1 equiv.) was slowly added and heated to 110 °C. The reaction was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and added water and extracted with ethyl acetate. The combined organic layers were washed by brine and then dried over anhydrous Na₂SO₄, filtered, concentrated and eventually purified silica gel column chromatography with petroleum ether/ethyl acetate to give the desired compounds S3.

Eq-2: ² To a solution of primary amine S5 (1.0 equiv.) in DCM (0.5 M for amine) and triethylamine (1.5 equiv.) was added sulfonyl chloride S4 (1.2 equiv.) in DCM (0.5 M for sulfonyl chloride) at 0 °C. The reaction mixture was warmed and stirred at room temperature. Upon completion, washed with HCl (0.5 M, aq.), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash silica column chromatography to afford Ts-substituted amine S3.

Eq-3: *Method A*: ³ A Schlenk tube was charged with zinc dust (3 equiv.), evacuated, and backfilled with argon. Benzyl bromide (2 equiv.) and THF (0.5 M) were added. After the mixture was stirred at room temperature for 15 min, amide **S1** (1 equiv.) and aldehyde **S6** (1.5 equiv.) were successively added. The reaction mixture was stirred at room temperature until the amide disappeared as monitored by TLC. The mixture was quenched with brine and extracted with ethyl acetate. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel or recrystallization to provide the desired product benzene sulfonyl imine. Then to a solution of benzene sulfonyl imine in THF (0.2 M) at 0 °C, allyl zinc reagent was added slowly to the mixture. The reaction mixture was stirred at 0 °C. Upon completion, quenched with saturated NH₄Cl and extracted with ethyl acetate. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel or recrystallization to provide the desired product **S3**.

Method B: ⁴ To a solution of $SnCl_2$ (1.1 equiv.), $TsNH_2$ (1equiv.) and aldehyde or ketone (1 equiv.) in DCM (0.3 M) in an ice-bath, then NCS (1.1 equiv.) in DCM (0.2 M) was added, followed by allyl trimethylsilane (1.5 equiv.) The reaction mixture was stirred at room temperature. Upon completion, quenched with saturated NH₄Cl and extracted with DCM. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel or recrystallization to provide the desired product **S3**.

Eq-4: ⁵ A 50 mL flask with a stir-bar was charged with NaH (60% wt, 2 equiv.), which was then evacuated and backfilled with N₂ for three times. THF (0.3 M) was added and the solution was cooled to 0 °C. Then a THF solution of sulfonamide **S3** (1 equiv.) was added slowly to the solution and the reaction was kept at room temperature for 30 min. Then cyanogen bromide (2 equiv.) was added into the reaction solution. After the addition, the reaction mixture was stirred at room temperature overnight. Upon completion, saturated ammonium chloride was added and the mixture was extracted with EtOAc, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the desired compounds **1** or **8**.

Eq-5: ⁶ To a flame-dried Schlenk tube equipped with a magnetic stir bar, a solution of NH₂CN (**S6**, 3 equiv.) in DMF (0.25 M) was added, Cs_2CO_3 (1 equiv) was added slowly in nitrogen atmosphere. Then **S2** (1 equiv.) was added dropwise *via* syringe to the solution at 0 °C. The tube was stirred at room temperature for 24 h. After completion, H₂O was added to the solution. Then the aqueous phase was extracted with EtOAc, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired compounds **S7**. To a solution of cyanamide **S7** (1 equiv.) and Et₃N (2 equiv.) in DCM (0.2 M) at 0 °C was slowly added acyl chloride (1.2 equiv.). ⁷ The resulting mixture was allowed to warm up to room temperature and stir for 12 h. Upon completion, the reaction mixture was quenched with H₂O and the aqueous phase was extracted with DCM. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash chromatography to give the desired organic layers be flash chromatography to give the desired substrates.

Substrates1aa-1ar, 1aw and 8i were prepared according to the procedures of eq-1 and eq-4. Substrates 8a-8d, 8k-8n, were prepared according to the procedures of eq-2 and eq-4. Substrates 8e-8h, 8j were prepared according to the procedures of eq-3 and eq-4. Substrates 1as-1av, 1ba, 1ca, 1fa, 1ga were prepared according to the procedures of eq-5.

2) Preparation of Substrates 11

Substrates **11a** was prepared according to the known procedures⁸ and similar procedure eq-4. Substrate **11b** was prepared according to the similar procedures of eq-3 and eq-4, and substrate **11d** was prepared according to the similar procedures of eq-2 and eq-4. Substrate **11c** was prepared according to the following procedures.

A solution of BrCN (1.2 equiv.) in MeOH (0.3 M) was slowly added to a mixture of aniline **S-8** 9 (1 equiv.) and NaOAc (3 equiv.) in MeOH (0.3 M) at 0 °C. The reaction mixture was stirred for 1 h, then was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was neutralized with saturated aqueous NaHCO₃ and concentrated to a small volume. The residue was taken up to water and extracted with DCM. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The product **S9** was purified by flash column chromatography. To a solution of primary amine **S9** (1.0 equiv.) in DCM (0.5 M for amine) and triethylamine (1.5 equiv.) was added tosyl chloride (1.2 equiv.) in DCM (0.5 M for TsCl) at 0 °C. The reaction mixture was warmed and stirred at room temperature. Upon completion, washed with HCl (1 M, aq.), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash silica column chromatography to afford **11c**.

Ts N N CN 1aa

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/6) to afford the title compound (91% yield, 228 mg) as white solid, mp: 40 - 41 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 5.63 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.15 - 5.06 (m, 2H), 3.44 (t, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 2.40 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.56, 133.83, 132.09, 130.54, 127.96, 119.26, 108.57, 49.55, 32.17, 21.86. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄N₂NaO₂S 273.0668; Found 273.0669.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (91% yield, 215 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.9 Hz, 2H), 5.62 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.14 – 5.06 (m, 2H), 3.47 (t, *J* = 7.2 Hz, 2H), 2.40 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 136.81, 135.12, 131.97, 129.95, 127.85, 119.30, 108.35, 49.62, 32.11. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃N₂O₂S 237.0692; Found 237.0684.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (94% yield, 250 mg) as white solid, mp: 48 - 49 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 5.63 (ddt, *J* = 17.2, 10.3, 6.9 Hz, 1H), 5.15 – 5.07 (m, 2H), 3.91 (s, 3H), 3.43 (t, *J* = 7.2 Hz, 2H), 2.39 (q, *J* = 6.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 164.88, 132.16, 130.30, 127.89, 119.16, 115.10, 108.71, 56.01, 49.39, 32.12. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄N₂NaO₃S 289.0617; Found 289.0607.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (91% yield, 253 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 5.62 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.14 – 5.04 (m, 2H), 3.45 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.4 Hz, 2H), 2.40 (q, *J*= 7.0 Hz, 2H), 1.74 – 1.63 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 151.08, 133.91, 132.06, 129.90, 127.89, 119.12, 108.50, 49.47, 37.97, 32.07, 24.10, 13.68. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₉N₂O₂S 279.1162; Found 279.1158.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (60% yield, 187 mg) as white solid, mp: 62 - 63 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 6.9 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 2H), 7.50 – 7.42 (m, 1H), 5.66 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.22 – 4.99 (m, 2H), 3.51 (t, *J* = 7.2 Hz, 2H), 2.44 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.06, 138.56, 135.05, 132.01, 129.30, 129.17, 128.41, 127.47, 119.33, 108.46, 49.62, 32.17. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇N₂O₂S 313.1005; Found 313.0998.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (91% yield, 246 mg) as white solid, mp: 77 - 78 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 5.63 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.21 – 5.04 (m, 2H), 3.48 (t, *J* = 7.1 Hz, 2H), 2.42 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 141.79, 134.94, 131.66, 130.06, 129.07, 119.23, 107.86, 49.52, 31.89. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₁ClN₂NaO₂S 293.0122; Found 293.0113.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (92% yield, 290 mg) as white solid, mp: 95 - 96 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.83 – 7.74 (m, 4H), 5.63 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.19 – 5.05 (m, 2H), 3.47 (t, *J* = 7.1 Hz, 2H), 2.42 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ

135.73, 133.31, 131.87, 130.67, 129.29, 119.52, 108.09, 49.78, 32.15. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₁H₁₁BrN₂NaO₂S 336.9617; Found 336.9610.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (92% yield, 280 mg) as white solid, mp: 36 - 37 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.3 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 5.62 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.18 - 5.00 (m, 2H), 3.51 (t, *J* = 7.1 Hz, 2H), 2.43 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.28, 136.66 (q, *J* = 33.2 Hz), 131.75, 128.53, 127.15, 122.92 (q, *J* = 273.5 Hz), 119.65, 50.03, 32.21. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂F₃N₂O₂S 305.0566; Found 305.0555.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (87% yield, 245 mg) as yellow solid, mp: 80 - 81 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.47 (d, *J* = 8.6 Hz, 2H), 8.16 (d, *J* = 8.7 Hz, 2H), 5.63 (ddt, *J* = 16.7, 9.8, 6.7 Hz, 1H), 5.21 - 5.01 (m, 2H), 3.54 (t, *J* = 7.1 Hz, 2H), 2.45 (q, *J* = 6.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 151.46, 142.14, 131.63, 129.34, 125.15, 119.85, 107.54, 50.22, 32.20. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂N₃O₄S 282.0543; Found 282.0547.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/7) to afford the title compound (93% yield, 233 mg) as colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.78 – 7.70 (m, 2H), 7.58 – 7.46 (m, 2H), 5.63 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.15 – 5.05 (m, 2H), 3.45 (t, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.40 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.41, 136.57, 135.85, 131.98, 129.67, 127.97, 124.97, 119.16, 108.37, 49.51, 32.09, 21.37. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₅N₂O₂S 251.0849; Found 251.0841.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (88% yield, 224 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.75 (m, 1H), 7.68 – 7.61 (m, 2H), 7.49 – 7.43 (m, 1H), 5.63 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.15 – 5.08 (m, 2H), 3.50 (t, *J* = 7.1 Hz, 2H), 2.43 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.61, 161.59, 138.51 (d, *J* = 6.6 Hz), 131.84, 123.75, 122.47 (d, *J* = 21.1 Hz), 119.47, 115.24 (d, *J* = 25.0 Hz), 107.94, 49.86, 32.12. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₂FN₂O₂S 255.0598; Found 255.0586.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (89% yield, 241 mg) as white solid, mp: 83 - 84 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 5.62 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.18 - 5.05 (m, 2H), 3.50 (t, *J* = 7.1 Hz, 2H), 2.43 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 138.40, 136.27, 135.26, 131.85, 131.28, 127.81, 126.03, 119.59, 107.94, 49.91, 32.19. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₁ClN₂NaO₂S 293.0122; Found 293.0120.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (90% yield, 225 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.42 – 7.38 (m, 2H), 5.54 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.13 – 5.03 (m, 2H), 3.43 (t, *J* = 7.1 Hz, 2H), 2.72 (s, 3H), 2.40 (q, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 138.93, 135.10, 135.01, 133.59, 132.04, 131.03, 126.90, 119.37, 108.30, 49.26, 32.17, 21.09. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₅N₂O₂S 251.0849; Found 251.0843.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (90% yield, 243 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.2 Hz, 1H), 7.69 – 7.58 (m, 2H), 7.53 – 7.45 (m, 1H), 5.63 (ddt, *J* = 17.0, 10.1, 6.9 Hz, 1H), 5.21 – 5.05 (m, 2H), 3.56 (t, *J* = 7.2 Hz, 2H), 2.46 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 135.98, 134.33, 133.11, 132.89, 132.70, 131.90, 127.65, 119.48, 107.68, 50.12, 32.34. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₁H₁₁ClN₂NaO₂S 293.0122; Found 293.0121.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (90% yield, 284 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 1H), 7.88 – 7.75 (m, 1H), 7.60 – 7.42 (m, 2H), 5.64 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.23 – 4.95 (m, 2H), 3.56 (t, *J* = 7.2 Hz, 2H), 2.47 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 136.31, 135.87, 133.36, 131.90, 128.20, 121.05, 119.48, 107.74, 50.13, 32.30. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₁BrN₂NaO₂S 336.9617; Found 336.9609.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (85% yield, 239 mg) as yellow solid, mp: 59 - 60 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.25 - 8.20 (m, 1H), 7.95 - 7.80 (m, 3H), 5.73 (ddt, *J* = 17.0, 10.1, 6.9 Hz, 1H), 5.27 - 5.13 (m, 2H), 3.74 (t, *J* = 7.1 Hz, 2H), 2.53 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 147.97, 136.27, 132.88, 132.45, 131.91, 129.94, 125.25, 119.68, 107.38, 50.77, 32.58. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂N₃O₄S 282.0543; Found 282.0533.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (87% yield, 249 mg) as white solid, mp: 47 - 48 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 1H), 8.05 (t, *J* = 9.1 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.90 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.78 - 7.66 (m, 2H), 5.62 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.15 - 5.01 (m, 2H), 3.51 (t, *J* = 7.2 Hz, 2H), 2.42 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 135.76, 133.47, 131.99, 130.46, 130.21, 130.11, 129.67, 128.38, 128.18, 121.91, 119.29, 108.47, 49.63, 32.16. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₅N₂O₂S 287.0849; Found 287.0849.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (89% yield, 246 mg) as white solid, mp: 43 - 44 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 4.1 Hz, 1H), 7.06 (d, *J* = 4.1 Hz, 1H), 5.67 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.21 - 5.10 (m, 2H), 3.52 (t, *J* = 7.1 Hz, 2H), 2.46 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 141.35, 134.92, 133.57, 131.79, 127.86, 119.54, 107.62, 50.04, 32.10. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₉ClN₂NaO₂S₂ 298.9686; Found 298.9673.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (30% yield, 52 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.33 – 5.18 (m, 2H), 3.63 (t, J = 7.0 Hz, 2H), 3.22 (s, 3H), 2.54 (q, J = 6.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 132.25, 119.59, 107.96, 49.72, 40.84, 32.40. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₆H₁₁N₂O₂S 175.0536; Found 175.0540.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (67% yield, 153 mg) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.74 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.42 – 5.16 (m, 2H), 3.76 (t, J = 7.0 Hz, 2H), 2.59 (q, J = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 130.91, 120.74, 119.25 (q, J = 322.9 Hz), 104.92, 52.50, 32.36. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₆H₈F₃N₂O₂S 229.0253; Found 229.0238.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (25% yield, 63 mg) as white solid, mp: 61 - 62 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 5H), 5.68 – 5.54 (m, 1H), 5.17 – 5.10 (m, 2H), 4.56 (s, 2H), 3.12 (t, *J*= 7.2 Hz, 2H), 2.30 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 132.05, 130.95, 130.04, 129.44, 126.37, 119.39, 108.14, 59.82, 50.87, 32.68. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₅N₂O₂S 251.0849; Found 251.0854.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (25% yield, 51 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.27 – 5.16 (m, 2H), 3.54 (t, *J* = 7.2 Hz, 2H), 3.03 (s, 6H), 2.52 (q, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 132.48, 119.34, 109.53, 50.63, 38.88, 32.56. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₇H₁₄N₃O₂S 204.0801; Found 204.0798.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (91% yield, 419 mg) as white solid, mp: 105 - 106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.76 (s, 1H), 5.61 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.16 – 5.05 (m, 2H), 3.48 (t, *J* = 7.1 Hz, 2H), 2.42 (q, *J* = 7.0 Hz, 2H), 2.4 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.60, 144.99 (q, *J* = 38.5 Hz), 144.48, 140.28, 135.81, 131.87, 130.02, 128.96, 128.84, 125.84, 125.63, 121.03 (q, *J* = 269.4 Hz), 119.57, 108.01, 107.00, 49.81, 32.12, 21.43. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₀F₃N₄O₂S 461.1254; Found 461.1264.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (87% yield, 176 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.72 (m, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 5.82 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.31 – 5.14 (m, 2H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.57 (q, *J* = 6.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.55, 133.20, 133.07, 131.23, 128.71, 128.64, 118.99, 111.14, 46.89, 32.07.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (95% yield, 171 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.73 (ddt, J = 17.1, 10.1, 7.0 Hz, 1H), 5.20 – 5.10 (m, 2H), 3.67 (t, J = 6.9 Hz, 2H), 2.43 (q, J = 6.9 Hz, 2H), 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.89, 133.29, 118.71, 111.57, 47.62, 41.17, 32.06, 27.17. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₇N₂O₂ 181.1335; Found 181.1330.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (88% yield, 151 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.31 (m, 2H), 7.16 – 7.04 (m, 3H), 5.84 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H), 5.28 – 5.11 (m, 2H), 3.66 (t, J = 7.3 Hz, 2H), 2.58 (q, J = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.95, 133.16, 129.80, 123.76, 118.70, 116.12, 113.62, 48.95, 31.78.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (44% yield, 67 mg) as a colorless oil. ¹H NMR (300 MHz, CDCl3) δ 5.85 – 5.69 (m, 1H), 5.22 – 5.05 (m, 2H), 3.05 (t, J = 7.2 Hz, 2H), 2.98 (t, J = 6.0 Hz, 2H), 2.47 – 2.32 (m, 2H), 1.67 – 1.54 (m, 2H), 1.46 – 1.29 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 133.81, 117.83, 117.62, 51.32, 50.95, 32.08, 29.68, 19.67, 13.62.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (78% yield, 108 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.71 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.18 – 5.09 (m, 2H), 3.61 (t, J = 7.0 Hz, 2H), 2.40 (q, J = 7.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.26, 132.84, 118.70, 110.79, 45.23, 31.91, 22.14. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₇H₁₁N₂O 139.0866; Found 139.0867.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (91% yield, 179 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.74 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.25 – 5.01 (m, 2H), 3.53 (t, J = 7.0 Hz, 2H), 2.43 (q, J = 7.0 Hz, 2H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.99, 132.95, 118.75, 109.64, 85.55, 46.96, 32.27, 27.88. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₇N₂O₂ 197.1285; Found 197.1272.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (91% yield, 241 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 4.83 (s, 1H), 4.72 (s, 1H), 3.50 (t, *J* = 7.4 Hz, 2H), 2.49 (s, 3H), 2.35 (t, *J* = 7.4 Hz, 2H), 1.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.57, 139.70, 133.78, 130.54, 127.93, 114.17, 108.49, 48.40, 35.79, 22.07, 21.85. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇N₂O₂S 265.1005; Found 265.1015.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (65% yield, 212 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.7 Hz, 2H), 7.35 – 7.26 (m, 5H), 5.38 (s, 1H), 5.13 (s, 1H), 3.46 (t, *J* = 7.5 Hz, 2H), 2.86 (t, *J* = 7.5 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.51, 142.73, 139.10, 133.77, 130.53, 128.71, 128.14, 127.90, 126.07, 116.20, 108.58, 49.04, 34.10, 21.88. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₂S 327.1162; Found 327.1166.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/6) to afford the title compound (71% yield, 206 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 5.39 (brs, 1H), 3.48 (t, *J* = 7.3 Hz, 2H), 2.48 (s, 3H), 2.43 – 2.39 (m, 2H), 2.30 – 2.22 (m, 2H), 2.20 – 2.11 (m, 2H), 1.88 – 1.76 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.47, 138.23, 133.84, 130.51, 127.89, 127.83, 108.50, 48.52, 34.71, 32.61, 29.55, 23.27, 21.87. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₉N₂O₂S 291.1162; Found 291.1168.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (93% yield, 283 mg) as white solid, mp: 71 - 72 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 5.43 (brs, 1H), 3.44 (t, *J* = 7.3 Hz, 2H), 2.47 (s, 3H), 2.24 (t, *J* = 7.2 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.88 – 1.81 (m, 2H), 1.61 – 1.55 (m, 2H), 1.53 – 1.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.40, 134.04, 131.87, 130.50, 127.90, 125.75, 108.64, 48.75, 36.27, 27.93, 25.29, 22.71, 22.08, 21.85. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₁N₂O₂S 305.1318; Found 305.1323.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (90% yield, 294 mg) as white solid, mp: 89 - 90 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.27 - 7.18 (m, 7H), 5.59 - 5.51 (m, 1H), 5.18 (d, *J* = 17.0 Hz, 1H), 5.04 (d, *J* = 10.2 Hz, 1H), 4.85 (dd, *J* = 9.2, 6.5 Hz, 1H), 2.83 - 2.73(m, 1H), 2.70 - 2.62 (m, 1H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.01, 137.12, 134.37, 131.95, 130.00, 128.97, 128.00, 126.92, 119.84, 107.79, 63.74, 38.54, 21.80. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈N₂NaO₂S 349.0981; Found 349.0975.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (83% yield, 283 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 5.59 – 5.48 (m, 1H), 5.16 (d, J = 17.1 Hz, 1H), 5.02 (d, J = 10.1 Hz, 1H),

4.82 (dd, J = 9.0, 6.8 Hz, 1H), 2.82 – 2.70 (m, 1H), 2.69 – 2.60 (m, 1H), 2.41 (s, 3H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.95, 138.92, 134.43, 133.97, 132.05, 129.94, 129.53, 127.95, 126.84, 119.62, 107.76, 63.60, 38.35, 21.73, 21.16. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₂₀N₂NaO₂S 363.1138; Found 363.1136.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (80% yield, 289 mg) as white solid, mp: 80 - 81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.13 (d, *J* = 8.5 Hz, 2H), 5.57 - 5.47 (m, 1H), 5.17 (d, *J* = 16.0 Hz, 1H), 5.04 (d, *J* = 10.2 Hz, 1H), 4.82 (dd, *J* = 9.0, 6.7 Hz, 1H), 2.81 - 2.69 (m, 1H), 2.67 - 2.58 (m, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.33, 135.56, 134.95, 134.21, 131.48, 130.07, 129.09, 128.28, 127.89, 120.09, 107.56, 62.85, 38.32, 21.75. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈ClN₂O₂S 361.0772; Found 361.0771.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (20% yield, 64 mg) as white solid, mp: 69 - 70 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 5.81 - 5.73 (m, 1H), 5.24 - 5.14 (m, 2H), 2.64 (d, *J* = 7.3 Hz, 2H), 2.49 (s, 3H), 2.15 - 1.98 (m, 2H), 1.81 - 1.67 (m, 2H), 1.53 - 1.45 (m, 2H), 1.43 - 1.30 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 146.00, 136.47, 131.25, 130.21, 128.06, 120.54, 109.29, 71.69, 42.87, 34.81, 24.96, 22.10, 21.87. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₃N₂O₂S 319.1475; Found 319.1471.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (90% yield, 238 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 5.77 – 5.62 (m, 1H), 5.07 – 4.97 (m, 2H), 3.37 (t, *J* = 7.3 Hz, 2H), 2.48 (s, 3H), 2.08 (q, *J* = 7.0 Hz, 2H), 1.83 – 1.69 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.54, 136.11, 133.72, 130.57, 127.91, 116.54, 108.69, 49.67, 29.98, 27.00, 21.88. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇N₂O₂S 265.1005; Found 265.0992.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (73% yield, 249 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.23 (m, 1H), 7.22 – 7.18 (m, 2H), 7.18 – 7.16 (m, 2H), 7.16 – 7.14 (m, 2H), 5.78 – 5.68 (m, 1H), 5.06 – 4.98 (m, 2H), 4.84 – 4.75 (m, 1H), 2.38 (s, 3H), 2.14 – 2.07 (m, 1H), 2.07 – 1.97 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.96, 137.23, 136.02, 134.29, 129.96, 128.91, 127.86, 126.89, 116.65, 107.88, 63.40, 33.50, 30.02, 21.72. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₂S 341.1318; Found 341.1315.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (83% yield, 243 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 5.76 (ddt, *J* = 17.4, 10.1, 7.5 Hz, 1H), 5.14 – 5.01 (m, 2H), 3.19 (s, 2H), 2.48 (s, 3H), 2.07 (d, *J* = 7.4 Hz, 2H), 1.01 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 146.51, 133.81, 133.34, 130.54, 128.08, 118.96, 110.70, 60.50, 44.30, 35.88, 24.87, 21.90. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₁N₂O₂S 293.1318; Found 293.1311.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (73% yield, 304 mg) as white solid, mp: 108 - 109 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.31 - 7.26 (m, 4H), 7.26 - 7.22 (m, 2H), 7.14 - 7.08 (m, 4H), 5.38 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.14 - 4.95 (m, 2H), 4.13 (s, 2H), 3.07 (d, *J* = 7.0 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.46, 143.99, 133.24, 132.79, 130.45, 128.43, 128.29, 128.20, 127.20, 119.91, 109.03, 56.65, 50.30, 40.82, 21.91. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₅N₂O₂S 417.1631; Found 417.1639.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (95% yield, 303 mg) as white solid, mp: 58 - 59 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 5.74 (ddt, *J* = 14.8, 10.6, 7.4 Hz, 1H), 5.13 - 5.03 (m, 2H), 3.25 (s, 2H), 2.47 (s, 3H), 2.20 (d, *J* = 7.4 Hz, 2H), 1.66 - 1.59 (m, 4H), 1.55 - 1.47 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 146.49, 133.83, 133.61, 130.51, 128.01, 118.93, 110.49, 57.15, 46.80, 41.03, 35.05, 24.50, 21.85. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₃N₂O₂S 319.1475; Found 319.1484.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (93% yield, 309 mg) as white solid, mp: 59 - 60 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 4.86 (s, 1H), 4.71 (s, 1H), 3.32 (s, 2H), 2.48 (s, 3H), 2.21 (s, 2H), 1.75 (s, 3H), 1.67 - 1.57 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ 146.48, 142.20, 133.64, 130.51, 128.05, 115.43, 110.59, 57.10, 46.76, 44.87, 35.60, 25.07, 24.42, 21.88. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₅N₂O₂S 333.1631; Found 333.1632.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (80% yield, 199 mg) as white solid, mp: 80 - 81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 3.56 (t, *J* = 7.2 Hz, 2H), 2.56 (td, *J* = 7.2 Hz, 2.6 Hz, 2H), 2.49 (s, 3H), 2.00 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 146.79, 133.74, 130.64, 128.05, 108.36, 78.12, 71.86, 48.82, 21.91, 18.79. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃N₂O₂S 249.0692; Found 249.0678.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (71% yield, 230 mg) as white solid, mp: 75 - 76 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.34 – 7.15 (m, 7H), 5.03 (dd, *J* = 8.5, 7.0 Hz, 1H), 2.94 – 2.79 (m, 2H), 2.42 (s, 3H), 1.89 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 146.27, 135.92, 134.21, 130.13, 129.41, 129.08, 128.15, 126.90, 107.29, 77.99, 72.15, 62.56, 24.56, 21.82. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₇N₂O₂S 325.1005; Found 325.1000.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/6) to afford the title compound (an inseparable mixture, 80% yield, 181 mg, dr = 2.6:1) as colorless oil. The major isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 2.81 (d, J = 2.5 Hz, 2H), 2.46 (s, 3H), 2.30 – 2.20 (m, 2H), 2.02 – 1.95 (m, 2H), 1.99 (t, J = 2.7 Hz, 1H), 1.69 – 1.63 (m, 2H), 1.61 – 1.53 (m, 2H). The minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 2.54 (d, J = 2.5 Hz, 2H), 2.43 (s, 2H), 2.04 (t, J = 2.7 Hz, 1H), 1.94 – 1.88 (m, 2H), 1.86 – 1.78 (m, 4H), 1.78 – 1.72 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.18, 144.31, 135.72, 130.22, 129.74, 128.10, 126.88, 108.75, 78.99, 78.76, 75.93, 72.05, 71.94, 71.40, 39.54, 37.13, 30.35, 28.37, 23.47, 22.63, 21.86, 21.69. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₉N₂O₂S 303.1162; Found 303.1163.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (89% yield, 369 mg) as white solid, mp: 173 - 174 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.35 - 7.27 (m, 6H), 7.18 - 7.07 (m, 4H), 4.26 (s, 2H), 3.17 (d, *J* = 2.4 Hz, 2H), 2.49 (s, 3H), 1.95 (t, *J* = 2.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 146.63, 142.86, 133.40, 130.56, 128.53, 128.23, 127.64, 108.67, 80.08, 72.92, 57.24, 50.16, 28.43, 21.94. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃N₂O₂S 415.1475; Found 415.1486.

S10 was prepared according to the literature⁸. Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (81% yield, 263 mg) as yellow solid, mp: 95 - 96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.37 - 7.32 (m, 4H), 7.30 - 7.26 (m, 3H), 3.65 (t, *J* = 7.0 Hz, 2H), 2.78 (t, *J* = 7.0 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.65, 133.81, 131.76, 130.58, 128.35, 122.80, 108.49, 83.66, 83.51, 49.14, 21.84, 19.76. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₇N₂O₂S 325.1005; Found 325.1013.

IV. General Procedure and Experimental Details

1. General procedure for preparation of products 3 (or 9) and 5 (or 10)

In an undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of alkene **1** (or **8**) (0.3 mmol), CF₃SO₂Na **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), KH₂PO₄ (0.9 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with graphite rod (Φ 6 mm) as the anode and platinum plate (1 cm × 1 cm × 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA at 30 °C for 2 h. Upon completion, H₂O (5 mL) was added, the mixture was extracted with DCM (8 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to provide the desired products **3** (or **9**) and **5** (or **10**).

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3aa** (61% yield, 71 mg) as white solid, mp: 120 - 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.15 – 4.05 (m, 1H), 3.97 – 3.90 (m, 1H), 3.42 – 3.28 (m, 1H), 2.45 (s, 3H), 2.40 – 2.27 (m, 1H), 2.24 – 2.09 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.80 (q, J = 6.9 Hz), 145.92, 133.93, 129.54, 129.17, 125.65 (q, J = 277.5 Hz), 123.28 (q, J = 257.0 Hz), 46.66, 37.33, 33.84 (q, J = 29.4 Hz), 25.33, 21.83. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.74, -64.40 (t, J = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅F₆N₂O₂S 389.0753; Found 389.0756.

Compound **5aa** (20% yield, 19 mg) as white solid, mp: 119 - 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 4.12 – 3.96 (m, 1H), 3.77 – 3.59 (m, 1H), 2.83 – 2.63 (m, 2H), 2.43 – 2.39 (m, 1H), 2.41(s, 3H), 2.17 – 1.96 (m, 1H), 1.92 – 1.81 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.44, 145.68, 134.80, 129.90, 128.15, 126.41 (q, J = 276.7 Hz), 45.42, 38.35, 34.56 (q, J = 29.6 Hz), 25.91, 21.79. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.01 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₅F₃NO₃S 322.0719; Found 322.0717.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3ab** (48% yield, 54 mg) as white solid, mp: 86 - 88 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 4.18 - 4.06 (m, 1H), 4.02 - 3.87 (m, 1H), 3.45 - 3.28 (m, 1H), 2.43 - 2.29 (m, 1H), 2.26 - 2.09 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.81 (q, *J* = 7.1 Hz), 136.98, 134.65, 129.13, 128.92, 125.64 (q, *J* = 277.3 Hz), 123.22 (q, *J* = 257.1 Hz), 46.69, 37.33, 33.88 (q, *J* = 29.2 Hz), 25.35. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.93, -64.38 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₃F₆N₂O₂S 375.0596; Found 375.0605.

Compound **5ab** (18% yield, 17 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.3 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H), 4.16 – 3.95 (m, 1H), 3.76 – 3.61 (m, 1H), 2.83 – 2.64 (m, 2H), 2.52 – 2.37 (m, 1H), 2.13 – 1.97 (m, 1H), 1.95 – 1.82 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.48, 137.84, 134.51, 129.35, 128.18, 126.41 (q, J = 276.2 Hz), 45.49, 38.40, 34.62 (q, J = 29.6 Hz), 25.98. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.00 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃F₃NO₃S 308.0563; Found 308.0572.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3ac** (47% yield, 57 mg) as white solid, mp: 115 - 117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 9.0 Hz, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 4.13 - 4.05 (m, 1H), 3.97 - 3.90 (m, 1H), 3.88 (s, 3H), 3.40 - 3.32 (m, 1H), 2.42 - 2.28 (m, 1H), 2.27 - 2.07 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.75 (q, *J* = 6.4 Hz), 164.54, 131.57, 128.21, 125.67 (q, *J* = 277.8 Hz), 123.32 (q, *J* = 256.7 Hz), 114.05, 55.86, 46.63, 37.35, 33.89 (q, *J* = 29.2 Hz), 25.31. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.63, -64.38 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅F₆N₂O₃S 405.0702; Found 405.0710.

Compound **5ac** (27% yield, 27 mg) as white solid, mp: 120 - 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 4.11 – 3.98 (m, 1H), 3.87 (s, 3H), 3.75 – 3.57 (m, 1H), 2.82 – 2.65 (m, 2H), 2.52 – 2.36 (m, 1H), 2.11 – 1.95 (m, 1H), 1.94 – 1.78 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.46, 164.39, 130.55, 129.19, 126.44 (q, J = 276.6 Hz), 114.46, 55.87, 45.42, 38.39, 34.65 (q, J = 29.5 Hz), 25.96. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.01 (t, J = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₅F₃NO₄S 338.0668; Found 338.0670.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3ad** (54% yield, 67 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 4.18 – 4.06 (m, 1H), 4.00 – 3.88 (m, 1H), 3.43 – 3.29 (m, 1H), 2.73 – 2.61 (m, 2H), 2.40 – 2.27 (m, 1H), 2.25 – 2.07 (m, 3H), 1.75 – 1.59 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.79 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, *J* = 277.5 Hz), 123.28 (q, *J* = 6.9 Hz), 150.49, 134.13, 129.18, 128.95, 125.66 (q, J = 277.5 Hz), 123.28 (q, J = 10.5 Hz), 125.5 H

256.9 Hz), 46.65, 38.08, 37.34, 33.86 (q, J = 29.5 Hz), 25.32, 24.17, 13.71. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.79, -64.40 (t, J = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₉F₆N₂O₂S 417.1066; Found 417.1071.

Compound **5ad** (16% yield, 17 mg) as white solid, mp: 78 - 79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 4.08 – 3.99 (m, 1H), 3.75 – 3.64 (m, 1H), 2.83 – 2.70 (m, 2H), 2.69 – 2.64 (m, 2H), 2.51 – 2.37 (m, 1H), 2.11 – 1.96 (m, 1H), 1.94 – 1.82 (m, 1H), 1.72 – 1.61 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.46, 150.30, 135.03, 129.36, 128.22, 126.44 (q, J = 276.4 Hz), 45.46, 38.42, 38.13, 34.66 (q, J = 29.5 Hz), 25.98, 24.23, 13.89. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.00 (t, J = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₉F₃NO₃S 350.1032; Found 350.1037.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound **3ae** (70% yield, 94 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 4.20 – 4.07 (m, 1H), 4.04 – 3.94 (m, 1H), 3.46 – 3.19 (m, 1H), 2.48 – 2.33 (m, 1H), 2.31 – 2.11 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.83 (q, *J* = 6.9 Hz), 147.58, 139.05, 135.43, 129.76, 129.26, 128.99, 127.56, 127.47, 125.67 (q, *J* = 277.6 Hz), 123.29 (q, *J* = 257.1 Hz), 46.71, 37.37, 33.98 (q, *J* = 29.6 Hz), 25.41. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.76, -64.33 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇F₆N₂O₂S 451.0909; Found 451.0914.

Compound **5ae** (15% yield, 16 mg) as white solid, mp: 154 - 156 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 4.13 – 4.04 (m, 1H), 3.78 – 3.69 (m, 1H), 2.85 – 2.69 (m, 2H), 2.55 – 2.41 (m, 1H), 2.14 – 1.99 (m, 1H), 1.97 – 1.86 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.52, 147.49, 139.12, 136.30, 129.27, 128.95, 128.76, 127.93, 127.54, 126.44 (q, J = 276.3 Hz), 45.52, 38.44, 34.67 (q, J = 29.6 Hz), 26.03. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.98 (t, J = 10.6 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₇F₃NO₃S 384.0876; Found 384.0872.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound **3af** (51% yield, 63 mg) as white solid, mp: 139 - 142 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 4.12 – 4.05 (m, 1H), 4.00 – 3.91 (m, 1H), 3.41 – 3.32 (m, 1H), 2.44 – 2.32 (m, 1H), 2.30 – 2.14 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.84 (q, J = 6.8 Hz), 141.48, 135.38, 130.70, 129.26, 125.62 (q, J = 277.7 Hz), 123.14 (q, J = 257.3 Hz), 46.72, 37.31, 34.00 (q, J = 29.4 Hz), 25.39. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.01, -64.34 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂ClF₆N₂O₂S 409.0207; Found 409.0216.

Compound **5af** (16% yield, 16 mg) as white solid, mp: 128 - 129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 4.08 – 3.94 (m, 1H), 3.75 – 3.65 (m, 1H), 2.83 – 2.66 (m, 2H), 2.51 – 2.41 (m, 1H), 2.14 – 1.99 (m, 1H), 1.96 – 1.79 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.52, 141.35, 136.18, 129.72, 129.68, 126.35 (q, J = 276.4 Hz), 45.51, 38.37, 34.59 (q, J = 29.7 Hz), 26.00. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.99 (t, J = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂ClF₃NO₃S 342.0173; Found 342.0179.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound **3ag** (58% yield, 79 mg) as white solid, mp: 143 - 145 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 4.13 – 4.05 (m, 1H), 4.01 – 3.90 (m, 1H), 3.40 – 3.31 (m, 1H), 2.47 – 2.32 (m, 1H), 2.31 – 2.13 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.83 (q, J = 6.8 Hz), 135.93, 132.27, 130.72, 130.14, 125.62 (q, J = 277.6 Hz), 123.13 (q, J = 257.2 Hz), 46.72, 37.31, 34.01 (q, J = 29.5 Hz), 25.40. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.01, -64.33 (t, J = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂BrF₆N₂O₂S 452.9702; Found 452.9707.

Compound **5ag** (20% yield, 23 mg) as white solid, mp: 141 - 142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 4.06 – 3.97 (m, 1H), 3.78 – 3.63 (m, 1H), 2.84 – 2.65 (m, 2H), 2.50 – 2.41 (m, 1H), 2.13 – 1.98 (m, 1H), 1.97 – 1.83 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.52, 136.71, 132.67, 129.97, 129.73, 126.35 (q, J = 277.0 Hz), 45.50, 38.35, 34.57 (q, J = 29.7 Hz), 25.98. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.98 (t, J = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂BrF₃NO₃S 385.9668; Found 385.9664.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/2) to afford the title compound **3ah** (62% yield, 82 mg) as white solid, mp: 76 - 77 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 4.19 – 4.08 (m, 1H), 4.03 – 3.94 (m, 1H), 3.43 – 3.34 (m, 1H), 2.46 – 2.33 (m, 1H), 2.32 – 2.16 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.95 (q, J = 6.9 Hz), 140.47, 136.13 (q, J = 33.0 Hz), 129.86, 124.07, 125.60 (q, J = 277.9 Hz), 123.16 (q, J = 273.3 Hz), 123.05 (q, J = 257.4 Hz), 46.79, 37.31, 34.04 (q, J = 29.6 Hz), 25.44. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.30, -63.38, -64.41 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₂F₉N₂O₂S 443.0470; Found 443.0479.

Compound **5ah** (20% yield, 23 mg) as white solid, mp: 115 - 117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 4.11 – 4.02 (m, 1H), 3.80 – 3.69 (m, 1H), 2.93 – 2.60 (m, 2H), 2.53 – 2.43 (m, 1H), 2.14 – 2.00 (m, 1H), 1.98 – 1.85 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.58, 141.21, 136.05 (q, J = 32.8 Hz), 128.88, 126.50, 126.32 (q, J = 276.6 Hz), 123.14 (q, J = 273.3 Hz), 45.58, 38.36, 34.55 (q, J = 29.8 Hz), 26.01. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.33, -65.00 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂F₆NO₃S 376.0437; Found 376.0444.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound (13% yield, 21 mg) as white solid, mp: 65 - 66 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 4.20 - 4.07 (m, 1H), 4.04 - 3.93 (m, 1H), 3.47 - 3.36 (m, 1H), 2.47 - 2.33 (m, 1H), 2.32 - 2.14 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.79 (q, *J* = 6.3 Hz), 144.83, 138.05, 130.64, 125.59 (q, *J* = 277.2 Hz), 124.69, 123.04 (q, *J* = 256.8 Hz), 122.41 (q, *J* = 264.9 Hz), 121.32 (q, *J* = 267.8 Hz), 46.76, 37.29, 34.10 (q, *J* = 29.6 Hz), 25.40. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.35, -64.37 (t, *J* = 10.1 Hz), -65.45, -70.42. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₂F₁₂N₃O₃S 542.0402; Found 542.0414.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3aj** (55% yield, 64 mg) as white solid, mp: 59 - 60 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 4.14 – 4.06 (m, 1H), 4.00 – 3.91 (m, 1H), 3.39 – 3.32 (m, 1H), 2.44 (s, 3H), 2.40 – 2.29 (m, 1H), 2.27 – 2.10 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.73 (q, J = 6.3 Hz), 139.25, 136.72, 135.43, 129.78, 128.80, 126.02, 125.66 (q, J = 277.4 Hz), 123.27 (q, J = 257.1 Hz), 46.66, 37.34, 33.91 (q, J = 29.4 Hz), 25.34, 21.33. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.87, -64.38 (t, J = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅F₆N₂O₂S 389.0753; Found 389.0746.

Compound **5aj** (17% yield, 16 mg) as white solid, mp: 76 - 77 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.50 – 7.38 (m, 2H), 4.08 – 4.00 (m, 1H), 3.75 – 3.64 (m, 1H), 2.84 – 2.68 (m, 2H), 2.49 – 2.40 (m, 1H), 2.45 (s, 3H), 2.12 – 1.96 (m, 1H), 1.95 – 1.82 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.29, 139.56, 137.55, 135.20, 129.06, 128.25, 126.29 (q, *J* = 277.8 Hz), 125.16, 77.28, 45.36, 38.29, 34.52 (q, *J* = 29.9 Hz), 25.85, 21.38. ¹⁹F NMR (470 MHz, CDCl₃) δ -65.00 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₅F₃NO₃S 322.0719; Found 322.0729.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3ak** (57% yield, 67 mg) as white solid, mp: 76 - 77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 1H), 7.75 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.55 (td, *J* = 8.1, 5.3 Hz, 1H), 7.39 (td, *J* = 8.2, 2.4 Hz, 1H), 4.14 - 4.07 (m, 1H), 4.00 - 3.91 (m, 1H), 3.43 - 3.35 (m, 1H), 2.45 - 2.33 (m, 1H), 2.30 - 2.14 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.84 (q, *J* = 6.8 Hz), 162.12 (d, *J* = 252.0 Hz), 138.82 (d, *J* = 7.2 Hz), 130.72 (d, *J* = 7.7 Hz), 125.61 (q, J = 277.5 Hz), 124.99, 123.12 (q, J = 257.3 Hz), 121.94 (d, J = 21.4 Hz), 116.56 (d, J = 25.0 Hz), 46.77, 37.31, 33.99 (q, J = 29.5 Hz), 25.40. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.18, -64.37 (t, J = 10.2 Hz), -109.50 (td, J = 8.0, 5.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂F₇N₂O₂S 393.0502; Found 393.0511.

Compound **5ak** (7% yield, 7 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.9 Hz, 1H), 7.75 (dt, J = 7.9, 1.9 Hz, 1H), 7.62 – 7.51 (m, 1H), 7.38 (td, J = 8.3, 2.4 Hz, 1H), 4.10 – 3.99 (m, 1H), 3.78 – 3.64 (m, 1H), 2.84 – 2.68 (m, 2H), 2.52 – 2.42 (m, 1H), 2.14 – 1.98 (m, 1H), 1.97 – 1.84 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.49, 163.39, 161.39, 131.18 (d, J = 7.4 Hz), 126.36 (q, J = 275.6 Hz), 124.04, 121.85 (d, J = 21.2 Hz), 115.61 (d, J = 24.9 Hz), 45.56, 38.37, 34.59 (q, J = 29.8 Hz), 25.99. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.98 (t, J = 10.8 Hz), -108.72 (td, J = 8.0, 5.6 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂F₄NO₃S 326.0469; Found 326.0471.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3al** (45% yield, 55 mg) as white solid, mp: 64 - 65 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 4.17 - 4.08 (m, 1H), 4.04 - 3.94 (m, 1H), 3.45 - 3.35 (m, 1H), 2.49 - 2.34 (m, 1H), 2.33 - 2.13 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.81 (q, J = 6.3 Hz), 138.52, 135.17, 134.75, 130.16, 129.18, 127.45, 125.61 (q, J = 277.5 Hz), 123.10 (q, J = 257.7 Hz), 46.75, 37.29, 34.03 (q, J = 29.8 Hz), 25.41. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.18, -64.31 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂ClF₆N₂O₂S 409.0207; Found 409.0214.

Compound **5al** (15% yield, 15 mg) as white solid, mp: 109 - 111 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 4.11 – 3.97 (m, 1H), 3.82 – 3.64 (m, 1H), 2.86 – 2.64 (m, 2H), 2.53 – 2.40 (m, 1H), 2.14 – 1.99 (m, 1H), 1.97 – 1.84 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.49, 139.40, 135.57, 134.66, 130.62, 128.11, 126.48, 126.36 (q, *J* = 276.7 Hz), 45.57, 38.37, 34.59 (q, *J* = 29.8 Hz), 26.00. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.98 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂ClF₃NO₃S 342.0173; Found 342.0166.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3am** (40% yield, 47 mg) as white solid, mp: 134 - 136 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 4.26 - 4.19 (m, 1H), 4.04 - 3.97 (m, 1H), 3.46 - 3.35 (m, 1H), 2.60 (s, 3H), 2.48 - 2.35 (m, 1H), 2.33 - 2.18 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.69 (q, J = 6.7 Hz), 138.30, 135.88, 134.36, 132.58, 132.42, 126.29, 125.66 (q, J = 277.6 Hz), 123.06 (q, J = 256.9 Hz), 46.33, 37.39, 33.92 (q, J = 29.0 Hz), 25.62, 20.53. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.17, -64.36 (t, J = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅F₆N₂O₂S 389.0753; Found 389.0749.

Compound **5am** (13% yield, 13 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 9.1 Hz, 1H), 7.53 (t, J = 8.1 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 4.17 – 4.01 (m, 1H), 3.93 – 3.76 (m, 1H), 2.91 – 2.65 (m, 2H), 2.62 (s, 3H), 2.57 – 2.43 (m, 1H), 2.09 – 1.99 (m, 1H), 1.99 – 1.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.40, 138.09, 136.31, 134.38, 132.74, 131.52, 126.64, 126.41 (q, J = 276.5 Hz), 45.37, 38.41, 34.56 (q, J = 29.5 Hz), 26.29, 20.58. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.94 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₅F₃NO₃S 322.0719; Found 322.0729.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3an** (45% yield, 55 mg) as white solid, mp: 158 - 159 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 8.4 Hz, 1H), 7.53 - 7.45 (m, 2H), 4.42 - 4.25 (m, 1H), 4.16 - 3.99 (m, 1H), 3.48 - 3.23 (m, 1H), 2.47 - 2.20 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 165.78 (q, *J* = 6.6 Hz), 135.23, 135.03, 131.54, 127.18, 125.64 (q, *J* = 277.5 Hz), 123.93 (q, *J* = 257.2 Hz), 46.53, 37.37, 33.97 (q, *J* = 29.7 Hz), 25.72. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.49, -64.46 (t, *J* = 9.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂ClF₆N₂O₂S 409.0207; Found 409.0216.

Compound **5an** (16% yield, 16 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, J = 7.9, 1.4 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.54 – 7.47 (m, 2H), 4.28 – 4.17 (m, 1H), 4.04 – 3.93 (m, 1H), 2.91 – 2.80 (m, 1H), 2.76 – 2.60 (m, 1H), 2.58 – 2.48 (m, 1H), 2.11 – 1.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.52, 135.71, 135.26, 133.73, 132.07, 131.85, 127.52, 126.40 (q, J = 283.1 Hz), 45.74, 38.21, 34.50 (q, J = 29.8 Hz), 26.49. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.95 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺Calcd for C₁₂H₁₂ClF₃NO₃S 342.0173; Found 342.0180.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound **3ao** (60% yield, 81 mg) as white solid, mp: 163 - 164 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 8.2 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 4.44 – 4.29 (m, 1H), 4.17 – 4.09 (m, 1H), 3.47 – 3.35 (m, 1H), 2.46 – 2.29 (m, 3H), 2.28 – 2.21 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.72 (q, J = 6.9 Hz), 136.99, 135.56, 135.17, 135.04, 127.70, 122.89 (q, J = 257.1 Hz), 125.65 (q, J = 277.4 Hz), 119.62, 46.71, 37.34, 34.06 (q, J = 29.2 Hz), 25.72. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.47, -64.42 (t, J =10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂BrF₆N₂O₂S 452.9702; Found 452.9712.

Compound **5ao** (16% yield, 18 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 9.6 Hz, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.55 (t, J = 8.3 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 4.34 – 4.22 (m, 1H), 4.07 – 3.97 (m, 1H), 2.93 – 2.81 (m, 1H), 2.78 – 2.62 (m, 1H), 2.60 – 2.50 (m, 1H), 2.11 – 1.94 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.49, 137.43, 135.36, 135.20, 134.22, 128.07, 126.39 (q, J = 276.7 Hz), 120.14, 45.88, 38.19, 34.53 (q, J = 30.0 Hz), 26.46. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.95 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂BrF₃NO₃S 385.9668; Found 385.9662.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/3) to afford the title compound (14% yield, 18 mg) as white solid, mp: 146 - 147 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 7.6 Hz, 1H), 7.86 - 7.74 (m, 3H), 4.29 - 4.16 (m, 1H), 4.10 - 3.98 (m, 1H), 3.50 - 3.39 (m, 1H), 2.51 - 2.34 (m, 3H), 2.32 - 2.22 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.17 (q, *J* = 6.8 Hz), 148.32, 136.43, 135.53, 131.79, 130.79, 125.66 (q, *J* = 276.7 Hz), 124.47, 122.96 (q, *J* = 256.9 Hz), 46.59, 37.39, 33.81 (q, *J* = 29.7 Hz), 25.80. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.33, -64.47 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂F₆N₃O₄S 420.0447; Found 420.0451.

After stirring at 30 °C, 10 mA for 3.5 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound **3aq** (5% yield, 6 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.08 – 7.89 (m, 4H), 7.74 – 7.61 (m, 2H), 4.23 – 4.12 (m, 1H), 4.07 – 3.94 (m, 1H), 3.44 – 3.26 (m, 1H), 2.42 – 2.28 (m, 1H), 2.26 – 2.08 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.74 (q, *J* = 6.8 Hz), 135.80, 133.63, 132.04, 131.85, 129.87, 129.84, 129.19, 128.08, 127.95, 125.63 (q, *J* = 277.2 Hz), 123.23 (q, *J* = 256.9 Hz), 123.09, 46.79, 37.37, 33.98 (q, *J* = 29.5 Hz), 25.43. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.88, -64.35 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅F₆N₂O₂S 425.0753; Found 425.0763.

Compound **3aq'** (32% yield, 34 mg) as white solid, mp: 162 - 163 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 – 8.77 (m, 1H), 7.95 – 7.80 (m, 3H), 7.75 – 7.56 (m, 2H), 4.37 – 4.22 (m, 1H), 4.17 – 4.03 (m, 1H), 3.55 – 3.22 (m, 2H), 2.79 – 2.59 (m, 1H), 2.41 – 2.20 (m, 1H), 2.08 – 1.88 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.84, 141.01, 135.71, 129.59, 129.46, 128.00, 127.75, 127.38, 125.44, 126.65 (q, *J* = 276.4 Hz), 119.60, 116.98, 43.46, 39.08 (q, *J* = 2.8 Hz), 35.89 (q, *J* = 29.4 Hz), 26.73. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.57 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄F₃N₂O₂S 355.0723; Found 355.0730.

After stirring at 30 °C, 10 mA for 3.5 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (46% yield, 57 mg) as yellow solid, mp: 84 - 85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 4.2 Hz, 1H), 6.99 (d, J = 4.1 Hz, 1H), 4.09 - 4.01 (m, 1H), 3.97 - 3.88 (m, 1H), 3.49 - 3.39 (m, 1H), 2.52 - 2.36 (m, 1H), 2.33 - 2.16 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.92 (q, J = 6.6 Hz), 140.80, 135.90, 134.02, 126.92, 125.62 (q, J = 277.8 Hz), 124.22 (q, J = 257.4 Hz), 46.72, 37.39, 34.13 (q,

J = 29.1 Hz), 25.35. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.96, -64.31 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₀ClF₆N₂O₂S₂ 414.9771; Found 414.9779.

$$\overset{O}{\overset{Me}{\underset{0}{\overset{N'}{\sim}}N}}\overset{N}{\overset{CF_{3}}{\overset{He}{\underset{0}{\overset{N'}{\sim}}}}}_{CF_{3}} 3as$$

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (44% yield, 41 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.06 – 3.95 (m, 1H), 3.91 – 3.81 (m, 1H), 3.58 – 3.46 (m, 1H), 3.35 (s, 3H), 2.60 – 2.45 (m, 1H), 2.43 – 2.17 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.53 (q, *J* = 6.7 Hz), 125.70 (q, *J* = 277.6 Hz), 123.31 (q, *J* = 256.9 Hz), 45.96, 40.79, 37.67, 34.12 (q, *J* = 29.6 Hz), 25.37. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.94, -64.28. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₁₁F₆N₂O₂S 313.0440; Found 313.0449.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/2) to afford the title compound (49% yield, 54 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.15 – 4.05 (m, 1H), 4.02 – 3.93 (m, 1H), 3.61 – 3.53 (m, 1H), 2.60 – 2.46 (m, 1H), 2.42 – 2.26 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.49 (q, *J* = 7.5 Hz), 125.40 (q, *J* = 277.5Hz), 122.79 (q, *J* = 258.9 Hz), 119.55 (q, *J* = 324.2 Hz), 48.00, 37.20, 33.76 (q, *J* = 29.6 Hz), 25.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.90, -64.23 (t, *J* = 10.0 Hz), -72.94. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₈F₉N₂O₂S 367.0157; Found 367.0164.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (27% yield, 32 mg) as white solid, mp: 103 - 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.32 (m, 5H), 4.83 (d, *J* = 14.3 Hz, 1H), 4.75 (d, *J* = 14.3 Hz, 1H), 3.47 – 3.37 (m, 2H), 3.37 – 3.28 (m, 1H), 2.44 – 2.30 (m, 1H), 2.06 – 1.74 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.64 (q, *J* = 6.9 Hz), 130.48, 129.82, 129.16, 127.72, 125.53 (q, *J* = 277.6 Hz), 123.45 (q, *J* = 257.3 Hz), 58.03, 47.45, 37.54, 33.69 (q, *J* = 30.6 Hz), 25.44. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.68, -64.56 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄F₆N₂NaO₂S 411.0572; Found 411.0584.

$$Me O V CF_3 Me O V CF_3 Av$$

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/5) to afford the title compound (27% yield, 28 mg) as white solid, mp: 84 - 85 °C. ¹H NMR (500 MHz, CDCl₃) δ 4.03 - 3.93 (m, 1H), 3.90 - 3.82 (m, 1H), 3.51 - 3.44 (m, 1H), 2.95 (s, 6H), 2.57 - 2.44 (m, 1H), 2.39 - 2.24 (m, 2H), 2.22 - 2.13 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.85 (q, *J* = 6.6 Hz), 125.75 (q, *J* = 277.0 Hz), 123.72 (q, *J* = 256.6 Hz), 48.37, 38.57, 37.15, 34.21 (q, *J* = 29.2 Hz), 25.70. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.36, -64.31 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₁₄F₆N₃O₂S 342.0705; Found 342.0711.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound **3aw** (58% yield, 104 mg) as white solid, mp: 118 - 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 6.75 (s, 1H), 4.23 - 4.07 (m, 1H), 4.03 - 3.89 (m, 1H), 3.47 - 3.32 (m, 1H), 2.39 (s, 3H), 2.43 - 2.32 (m, 1H), 2.30 - 2.10 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.81 (q, J = 6.8 Hz), 145.59, 144.44 (q, J = 38.2 Hz), 144.05, 140.15, 136.09, 130.31, 129.92, 128.85, 125.71, 125.62 (q, J = 277.6 Hz), 125.09, 123.09 (q, J = 257.5 Hz), 121.14 (q, J = 269.9 Hz), 106.66, 46.75, 37.29, 34.04 (q, J = 29.8 Hz), 25.41, 21.39. ¹⁹F NMR (470 MHz, CDCl₃) δ -52.03, -62.53, -64.26 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₀F₉N₄O₂S 599.1158; Found 599.1165.

Compound **5aw** (11% yield, 18 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 6.75 (s, 1H), 4.04 – 3.95 (m, 1H), 3.74 – 3.63 (m, 1H), 2.81 – 2.67 (m, 2H), 2.56 – 2.42 (m, 1H), 2.39 (s, 3H), 2.12 – 1.97 (m, 1H), 1.94 – 1.81 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.41, 145.52, 144.53 (q, J = 38.5 Hz), 144.06, 140.15, 137.01, 129.98, 129.33, 128.86, 126.36 (q, J = 276.5 Hz), 125.73, 125.51, 121.12 (q, J = 268.9 Hz), 106.70, 45.51, 38.34, 34.57 (q, J = 29.7 Hz), 25.95, 21.48. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.56, -64.94 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀F₆N₃O₃S 532.1124; Found 532.1123.

After stirring at 30 °C, 5 mA for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (37% yield, 31 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.12 – 4.02 (m, 1H), 3.77 – 3.63 (m, 1H), 3.61 – 3.53 (m, 1H), 2.57 (s, 3H), 2.53 – 2.41 (m, 1H), 2.36 – 2.21 (m, 1H), 2.20 – 2.11 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.60, 168.11 (q, *J* = 6.1 Hz), 125.88 (q, *J* = 253.4 Hz), 125.78 (q, *J* = 278.1 Hz), 77.41, 44.74, 38.33, 34.41 (q, *J* = 29.1 Hz), 26.98, 24.06. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.69, -64.41 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₁₀F₆N₂NaO 299.0590; Found 299.0598.

After stirring at 30 °C, 5 mA for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (47% yield, 47 mg) as white solid, mp: 124 - 125 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.98 – 3.88 (m, 1H), 3.81 – 3.68 (m, 1H), 3.53 – 3.44 (m, 1H), 2.62 – 2.43 (m, 1H), 2.33 – 2.20 (m, 1H), 2.19 – 2.04 (m, 2H), 1.53 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 168.07 (q, *J* = 5.0 Hz), 149.34, 125.88 (q, *J* = 278.0 Hz), 124.44 (q, *J* = 257.2 Hz), 84.08, 45.98, 37.67, 34.17 (q, *J* = 29.0 Hz), 28.08, 24.53. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.08, -64.40 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M – Boc + H]⁺Calcd for C₇H₉F₆N₂ 235.0664; Found 235.0656.

After stirring at 30 °C for 2 hours (Scheme 5b), the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/2) to afford the title compound (54% yield, 43 mg) as white solid, mp: 124 - 127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32 - 8.20 (m, 1H), 7.77 - 7.69 (m, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.49 - 7.41 (m, 1H), 4.45 - 4.31 (m, 1H), 4.04 - 3.83 (m, 1H), 3.59 - 3.43 (m, 1H), 3.34 - 3.14 (m, 1H), 2.73 - 2.57 (m, 1H), 2.38 - 2.17 (m, 1H), 2.12 - 1.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.83, 158.65, 148.99, 134.39, 127.18, 126.78, 126.70 (q, *J* = 276.7 Hz), 126.56, 120.95, 44.81, 38.45 (q, *J* = 2.8 Hz), 36.07 (q, *J* = 29.1 Hz), 27.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.68 (t, *J* = 10.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂F₃N₂O 269.0896; Found 269.0906. NMR spectra data were in accordance with the reported data¹¹.

After stirring at 30 °C for 2 hours (Scheme 5b), the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/1) to afford the title compound (41% yield, 38 mg) as white solid, mp: 192 - 195 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 - 7.81 (m, 1H), 7.74 - 7.58 (m, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 4.24 - 4.13 (m, 1H), 4.07 - 3.91 (m, 1H), 3.57 - 3.34 (m, 1H), 3.19 - 2.96 (m, 1H), 2.81 - 2.58 (m, 1H), 2.40 - 2.20 (m, 1H), 2.18 - 2.01 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.93, 134.53, 133.29, 127.01, 126.40 (q, *J* = 276.4 Hz), 125.22, 122.02, 115.16, 48.11, 39.45, 35.67 (q, *J* = 29.6 Hz), 26.11. NMR spectra data were in accordance with the reported data. ¹⁰

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (60% yield, 72 mg) as white solid, mp: 103 - 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 4.05 - 3.98 (m, 1H), 3.97 - 3.89 (m, 1H), 2.59 - 2.47 (m, 1H), 2.45 (s, 3H), 2.41 - 2.28 (m, 2H), 2.09 - 1.98 (m, 1H), 1.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.79 (q, *J* = 6.8 Hz), 145.70, 133.77, 129.48, 129.34, 125.84 (q, *J* = 278.4 Hz), 122.80 (q, *J* = 255.3 Hz), 45.38, 45.25, 39.02 (q, *J* = 28.1 Hz), 33.94, 22.21, 21.88. ¹⁹F NMR (470 MHz, CDCl₃) δ -46.02, -59.93 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₇F₆N₂O₂S 403.0909; Found 403.0919.

After stirring at 30 °C, 10 mA for 3.5 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (39% yield, 50 mg) as white solid, mp: 110 - 112 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 4.06 - 3.98 (m, 1H), 3.90 - 3.82 (m, 1H), 3.25 - 3.08 (m, 1H), 2.44 (s, 3H), 2.40 - 2.31 (m, 1H), 2.10 - 1.95 (m, 2H), 1.94 - 1.86 (m, 1H), 1.84 - 1.72 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 166.34 (q, *J* = 6.6 Hz), 145.47, 133.98, 129.48, 129.21, 126.68 (q, *J* = 279.1 Hz), 122.90 (q, *J* = 255.3 Hz), 55.05, 47.78 (q, *J* = 26.1 Hz), 45.43, 36.32, 30.19, 24.82, 21.87, 21.52. ¹⁹F NMR (470 MHz, CDCl₃) δ -45.31, -64.54 (d, *J* = 9.0 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₉F₆N₂O₂S 429.1066; Found 429.1076.

After stirring at 30 °C, 10 mA for 3.5 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (37% yield, 49 mg) as white solid, mp: 112 - 115 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.01 – 3.87 (m, 2H), 2.91 – 2.75 (m, 1H), 2.43 (s, 3H), 4.01 – 3.87 (m, 1H), 2.11 – 2.03 (m, 1H), 1.93 – 1.85 (m, 1H), 1.85 – 1.77 (m, 2H), 1.73 – 1.65 (m, 1H), 1.63 – 1.54 (m, 1H), 1.44 – 1.25 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.46 (q, J = 6.7 Hz), 145.23, 133.70, 129.43, 128.97, 126.62 (q, J = 281.1 Hz), 122.72 (q, J = 254.7 Hz), 49.66, 45.02, 43.97 (q, J = 25.9 Hz), 32.92, 26.48, 23.79, 22.55, 21.72, 21.16. ¹⁹F NMR (470 MHz, CDCl₃) δ -44.47, -66.64 (d, J = 8.8 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁F₆N₂O₂S 443.1222; Found 443.1230.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the major isomer (48% yield, 66 mg) as white solid, mp: 88 - 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.37 - 7.28 (m, 3H), 7.20 - 7.07 (m, 4H), 5.45 (t, *J* = 7.4 Hz, 1H), 3.56 - 3.43 (m, 1H), 2.71 - 2.52 (m, 2H), 2.40 (s, 3H), 2.37 - 2.26 (m, 1H), 2.25 - 2.15 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.48 (q, *J* = 7.0 Hz), 145.44, 139.80, 134.39, 129.62, 129.00, 128.71, 126.97, 125.78 (q, *J* = 278.2 Hz), 123.38 (q, *J* = 257.4 Hz), 63.17, 36.86, 36.08, 35.31 (q, *J* = 29.4 Hz), 21.77. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.42, -64.17 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉F₆N₂O₂S 465.1066; Found 465.1070.

The minor isomer (14% yield, 20 mg) as white solid, mp: 170 - 172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.28 (d, J = 7.4 Hz, 2H), 5.70 (d, J = 9.1 Hz, 1H), 3.37 (t, J = 10.1 Hz, 1H), 2.79 – 2.67 (m, 1H), 2.40 (s, 3H), 2.44 – 2.34 (m, 1H), 2.22 (d, J = 13.5 Hz, 1H), 2.07 – 1.83 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.29 (q, J = 7.5 Hz), 145.97, 141.31, 134.24, 130.06, 129.32, 128.36, 125.28, 125.58 (q, J = 277.8 Hz), 123.21 (q, J = 256.9 Hz), 63.41, 36.52, 36.21 (q, J = 29.7 Hz), 35.51, 21.90. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.72, -65.45 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉F₆N₂O₂S 465.1066; Found 465.1073.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the major isomer (40% yield, 57 mg) as white solid, mp: 117 - 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.3 Hz, 2H), 7.17 - 7.10 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 5.40 (t, *J* = 7.4 Hz, 1H), 3.58 - 3.40 (m, 1H), 2.67 - 2.52 (m, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 2.34 - 2.23 (m, 1H), 2.22 - 2.12 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.52 (q, *J* = 6.9 Hz), 145.38, 138.58, 136.83, 134.47, 129.62, 128.91, 126.88, 125.78 (q, *J* = 277.4 Hz), 123.40 (q, *J* = 257.7 Hz), 63.05, 36.84, 36.14, 35.22 (q, *J* = 29.4 Hz), 21.75, 21.25. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.34, -64.22 (t, *J* = 10.2 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₁F₆N₂O₂S 479.1222; Found 479.1223.

The minor isomer (10% yield, 14 mg) as white solid, mp: 175 - 177 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 5.67 (d, J = 9.1 Hz, 1H), 3.35 (t, J = 10.0 Hz, 1H), 2.77 – 2.65 (m, 1H), 2.46 (s, 3H), 2.44 – 2.40 (m, 1H), 2.37 (s, 3H), 2.20 (d, J = 13.5 Hz, 1H), 2.05 – 1.91 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.35 (q, J = 6.8 Hz), 145.90, 138.32, 138.12, 134.29, 130.05, 129.96, 129.29, 125.62 (q, J = 277.7 Hz), 125.15, 123.23 (q, J = 256.9 Hz), 63.33, 36.52, 36.24 (q, J = 28.9 Hz), 35.57, 21.89, 21.22. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.68, -65.45 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₁F₆N₂O₂S 479.1222; Found 479.1232.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the major isomer (41% yield, 61 mg) as white solid, mp: 118 - 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 5.41 (t, *J* = 7.5 Hz, 1H), 3.58 - 3.40 (m, 1H), 2.63 - 2.51 (m, 2H), 2.42 (s, 3H), 2.36 - 2.22 (m, 1H), 2.17 - 2.03 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.41 (q, *J* = 6.6 Hz), 145.75, 138.46, 134.58, 134.33, 129.49, 129.17, 129.12, 128.30, 125.70 (q, *J* = 277.4 Hz), 123.30 (q, *J* = 257.7 Hz), 62.48, 36.74, 35.95, 35.04 (q, *J* = 29.8 Hz), 21.79. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.62, -64.17 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈ClF₆N₂O₂S 499.0676; Found 499.0684.

The minor isomer (12% yield, 18 mg) as white solid, mp: 203 - 206 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 5.65 (d, J = 9.2 Hz, 1H), 3.37 (t, J = 10.1 Hz, 1H), 2.82 - 2.65 (m, 1H), 2.47 (s, 3H), 2.47 - 2.32 (m, 1H), 2.19 (d, J = 13.6 Hz, 1H), 2.00 - 1.82 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.05 (q, J = 6.4 Hz), 146.19, 140.01, 134.30, 134.04, 130.02, 129.56, 129.42, 126.71, 125.49 (q, J = 277.8 Hz), 123.13 (q, J = 256.9 Hz), 77.41, 62.82, 36.44, 36.22 (q, J = 30.4 Hz), 35.37, 21.92. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.85, -65.31 (t, J = 10.0 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈ClF₆N₂O₂S 499.0676; Found 499.0675.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (49% yield, 67 mg) as white solid, mp: 155 - 156 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.26 (t, J = 10.4 Hz, 1H), 2.92 - 2.82 (m, 1H), 2.63 - 2.48 (m, 1H), 2.43 (s, 3H), 2.41 - 2.36 (m, 1H), 2.26 - 2.13 (m, 1H), 2.06 (dd, J = 13.8, 9.4 Hz, 1H), 1.90 (d, J = 13.9 Hz, 1H), 1.84 (d, J = 11.8 Hz, 2H), 1.74 - 1.65 (m, 2H), 1.52 - 1.41 (m, 1H), 1.40 - 1.30 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.25 (q, J = 6.4 Hz), 145.09, 135.73, 129.85, 129.00, 125.83 (q, J = 277.5 Hz), 123.08 (q, J = 256.5 Hz), 72.82, 38.36, 36.58 (q, J = 29.1 Hz), 36.33, 35.81, 34.59, 24.50, 24.20, 23.50, 21.78. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.00, -64.18 (t, J = 10.0 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₃F₆N₂O₂S 457.1379; Found 457.1391.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (25% yield, 32 mg) as white solid, mp: 121 - 122 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 3.97 (dd, *J* = 13.5, 1.7 Hz, 1H), 3.46 (d, *J* = 13.5 Hz, 1H), 3.38 - 3.28 (m, 1H), 2.44 (s, 3H), 2.39 - 2.26 (m, 2H), 1.83 - 1.65 (m, 2H), 1.12 (s, 3H), 0.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.38 (q, *J* = 7.0 Hz), 145.29, 134.94, 129.82, 129.16, 125.85 (q, *J* = 278.0 Hz), 122.98 (q, *J* = 257.0 Hz), 56.44, 38.82, 37.98 (q, *J* = 28.8 Hz), 32.72, 32.00, 28.42, 26.46, 21.82. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.01, -63.83 (t, *J* = 9.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₁F₆N₂O₂S 431.1222; Found 431.1232.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (33% yield, 55 mg) as white solid, mp: 153 - 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 3H), 7.15 - 7.09 (m, 3H), 7.07 (t, *J* = 7.3 Hz, 2H), 6.90 (d, *J* = 7.4 Hz, 2H), 4.62 (dd, *J* = 12.8, 2.7 Hz, 1H), 4.30 (d, *J* = 12.8 Hz, 1H), 3.55 - 3.26 (m, 1H), 3.07 - 2.94 (m, 1H), 2.45 (s, 3H), 2.43 - 2.30 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.97 (q, *J* = 6.6 Hz), 157.78, 145.16, 144.97, 140.96, 134.26, 129.81, 129.18, 129.02, 128.93, 127.46, 127.19, 126.30, 125.90 (q, *J* = 278.3 Hz), 122.69 (q, *J* = 257.4 Hz), 55.43, 46.37, 39.02 (q, *J* = 28.9 Hz), 38.15, 34.15, 21.80. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.90, -63.63 (t, *J* = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₅F₆N₂O₂S 555.1535; Found 555.1538.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (32% yield, 44 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 3.87 (dd, J = 13.0, 2.1 Hz, 1H), 3.57 (d, J = 13.0 Hz, 1H), 3.41 – 3.33 (m, 1H), 2.44 (s, 3H), 2.41 – 2.33 (m, 2H), 2.02 – 1.89 (m, 1H), 1.83 – 1.76 (m, 1H), 1.73 – 1.59 (m, 5H), 1.55 – 1.47 (m, 1H), 1.23 (t, J = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.28 (q, J = 6.9 Hz), 145.25, 134.87, 129.73, 129.20, 125.89 (q, J = 278.0 Hz), 122.93 (q, J = 257.5 Hz), 55.41, 43.14, 38.81, 38.24 (q, J = 28.9 Hz), 38.09, 36.67, 33.53, 24.53, 24.45, 21.83. ¹⁹F NMR (470 MHz, CDCl₃) δ -51.36, -63.88 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₃F₆N₂O₂S 457.1379; Found 457.1389.

After stirring at 30 °C for 2 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/10) to afford the title compound (10% yield, 14 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 3.63 (d, J = 11.5 Hz, 1H), 3.48 (d, J = 11.7 Hz, 1H), 2.55 – 2.48 (m, 2H), 2.45 (s, 3H), 2.11 (d, J = 14.2 Hz, 1H), 1.72 (s, 1H), 1.70 – 1.62 (m, 4H), 1.59 – 1.51 (m, 2H), 1.47 – 1.40 (m, 2H), 1.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.31, 144.90, 135.55, 129.50, 128.93, 126.23 (q, J = 278.9 Hz), 121.83 (q, J = 256.8 Hz), 56.23, 48.65, 43.02, 42.82, 42.71 (q, J = 27.2 Hz), 37.73, 36.94, 25.81, 24.43, 24.05, 21.80. ¹⁹F NMR (470 MHz, CDCl₃) δ -58.30 (t, J = 10.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅F₆N₂O₂S 471.1535; Found 471.1542.

2. General procedure for preparation of products 4

In the IKA ElectraSyn 2.0 undivided cell (25 mL) equipped with a stir bar, a mixture of **1** (0.3 mmol), CF₃SO₂Na **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol), NaOAc (0.9 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with two graphite plate electrodes (0.8 cm \times 1.5 cm \times 0.2 cm). The reaction mixture was stirred and electrolyzed at a constant current of 1 mA at 30 °C for 16 h. Upon completion, 5 mL H₂O was added, the mixture was extracted with DCM (8 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to provide the desired products **4**.

After stirring at 30 °C, 1 mA for 16 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound **4aa***-syn* (21% yield, 20 mg) as white solid, mp: 238 - 240 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 4H), 7.27 (d, J = 8.4 Hz, 4H), 4.10 – 3.80 (m, 4H), 3.52 – 3.42 (m, 2H), 3.05 – 2.74 (m, 2H), 2.41 (s, 6H), 2.24 – 2.00 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 160.44, 144.66, 136.04, 129.62, 127.54, 126.50 (q, J = 277.6 Hz), 48.21, 35.16, 33.47 (q, J = 28.0 Hz), 24.62, 21.71. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.55 (t, J = 10.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₉F₆N₄O₄S₂ 639.1529; Found 639.1539.

Compound **4aa**-*anti* (21% yield, 20 mg) as white solid, mp: 249 - 251 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 4H), 4.14 - 4.05 (m, 2H), 3.87 - 3.76 (m, 2H), 3.51 - 3.42 (m, 2H), 2.96 - 2.78 (m, 2H), 2.43 (s, 6H), 2.26 - 2.07 (m, 4H), 2.05 - 1.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 160.43, 144.81, 135.76, 129.60, 127.64, 126.47 (q, *J* = 278.4 Hz), 48.16, 35.36, 32.94 (q, *J* = 28.6 Hz), 24.42, 21.78. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.44 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₉F₆N₄O₄S₂ 639.1529; Found 639.1540.

After stirring at 30 °C, 1 mA for 16 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/5) to afford the title compound **4ao**-*syn* (20% yield, 22 mg) as white solid, mp: 254 - 257 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd, J = 7.3, 2.2 Hz, 2H), 7.74 (dd, J = 7.2, 1.8 Hz, 2H), 7.54 – 7.42 (m, 4H), 4.25 – 4.10 (m, 4H), 3.25 – 3.04 (m, 2H), 2.88 – 2.75 (m, 2H), 2.24 – 1.97 (m, 6H). ¹³C NMR (125 MHz, DMSO) δ 159.84, 137.57, 135.49, 135.15, 132.12, 126.60 (q, J = 278.6 Hz), 119.16, 47.87, 34.50, 32.42 (q, J = 27.2 Hz), 24.00. ¹⁹F NMR (470 MHz, DMSO) δ -61.29 (t, J = 11.4 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₃Br₂F₆N₄O₄S₂ 766.9426; Found 766.9417.

Compound **4ao**-*anti* (20% yield, 22 mg) as white solid, mp: 265 - 268 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (dd, *J* = 7.7, 1.9 Hz, 2H), 7.69 (dd, *J* = 7.6, 1.3 Hz, 2H), 7.51 - 7.35 (m, 4H), 4.37 - 4.18 (m, 2H), 4.09 - 3.91 (m, 2H), 3.29 - 3.12 (m, 2H), 2.80 - 2.58 (m, 2H), 2.23 - 1.90 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 160.71, 138.62, 135.43, 134.51, 133.21, 127.60, 126.37 (q, *J* = 278.4 Hz), 120.14, 48.12, 35.11, 32.83 (q, *J* = 28.5 Hz), 24.09. ¹⁹F NMR (470 MHz, CDCl₃) δ -61.85 (t, *J* = 10.9 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₃Br₂F₆N₄O₄S₂ 766.9426; Found 766.9419.

After stirring at 30 °C, 1 mA for 16 hours, the residue was purified by column chromatography (silica gel, EtOAc /Petroleum ether: 1/3) to afford the title compound **4ak**-*syn* (23% yield, 23 mg) as yellow solid, mp: 225 - 247 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.52 – 7.44 (m, 2H), 7.36 – 7.27 (m, 2H), 4.14 – 3.97 (m, 2H), 3.93 – 3.80 (m, 2H), 3.54 – 3.36 (m, 2H), 3.14 – 2.87 (m, 2H), 2.36 – 2.06 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.28 (d, J = 251.7 Hz), 160.56, 140.77 (d, J = 7.0 Hz), 130.86 (d, J = 7.7 Hz), 126.42 (q, J = 277.8 Hz), 123.29 (d, J = 3.3 Hz), 120.95 (d, J = 21.2 Hz), 115.10 (d, J = 24.8 Hz), 48.36, 35.32 (q, J = 2.8 Hz), 33.84 (q, J = 28.4 Hz), 24.84. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.83 (t, J = 10.8 Hz), -109.47 – -109.57 (m). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂F₈N₄O₄S₂ 647.1027; Found 647.1018.

Compound **4ak**-*anti* (24% yield, 23 mg) as white solid, mp: 253 - 255 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.9 Hz, 2H), 7.63 - 7.57 (m, 2H), 7.54 - 7.45 (m, 2H), 7.37 - 7.29 (m, 2H), 4.20 - 4.07 (m, 2H), 3.88 - 3.74 (m, 2H), 3.56 - 3.41 (m, 2H), 2.93 - 2.75 (m, 2H), 2.34 - 1.96 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.24 (d, *J* = 251.7 Hz), 160.63, 140.38 (d, *J* = 6.9 Hz), 130.90 (d, *J* = 7.7 Hz), 126.37 (q, *J* = 277.7 Hz), 123.20 (d, *J* = 3.4 Hz), 121.08 (d, *J* = 21.2 Hz), 115.20 (d, *J* = 24.9 Hz), 48.34, 35.44 (q, *J* = 3.0 Hz), 33.14 (q, *J* = 28.4 Hz), 24.56. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.65 (t, *J* = 10.9 Hz), -109.38 - -109.52 (m). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂F₈N₄O₄S₂ 647.1027; Found 647.1019.

3. One pot method for preparation of products 5aa

In an undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of **1aa** (0.3 mmol, 75 mg), CF₃SO₂Na **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol), NaOAc (0.9 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with two graphite rod (Φ 6 mm) electrodes and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 1 mA at 30 °C for 16 h. Then, the reaction mixture was stirred and electrolyzed at a constant current of 20 mA at 30 °C for 1 h. Upon completion, 5 mL H₂O was added, the mixture was extracted with DCM (8 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to provide the desired products **5aa** (42,4 mg, 44% yield), **3aa** (23.2 mg, 20% yield).

4. General procedure for preparation of products 12

In an undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of alkyne **11** (0.3 mmol), CF₃SO₂Na **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), NaOAc (1.5 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with graphite rod (Φ 6 mm) as the anode and platinum plate (1 cm × 1 cm × 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at 30 °C for 6 h. Upon completion, 5 mL H₂O was added, the mixture was extracted with DCM (8 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to provide the desired products **12**.

After stirring at 30 °C for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the major isomer **12a** (*E*-(C=N), *E*-(C=C)) (38% yield, 44 mg) as white solid, mp: 131 - 133 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 6.63 - 6.56 (m, 1H), 4.05 (t, *J* = 6.9 Hz, 2H), 3.07 - 2.99 (m, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.37 (q, *J* = 7.4 Hz), 146.15, 139.27 (q, *J* = 5.0 Hz), 133.64, 129.69, 129.53, 125.03 (qq, *J* = 36.5, 8.1 Hz), 122.34 (q, *J* = 256.5 Hz), 122.28 (q, *J* = 272.0 Hz), 45.88, 25.87, 21.86. ¹⁹F NMR (470 MHz, CDCl₃) δ -49.13, -60.63 (dt, *J* = 7.7, 2.5 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃F₆N₂O₂S 387.0596; Found 387.0606.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the minor isomer 12a (*E*-(C=N), *Z*-(C=C)) (1% yield, 1 mg) as white solid, mp: 138 - 141 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 5.85 (q, *J* = 8.2 Hz, 1H), 3.93 (t, *J* = 6.4 Hz, 2H), 2.75 (t, *J* = 6.3 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 153.14 (q, *J* = 8.0 Hz), 145.91, 138.54 (q, *J* = 5.0 Hz), 134.24, 129.65, 129.12, 121.83 (q, *J* = 255.9 Hz), 121.02 (q, *J* = 37.8 Hz), 120.24 (q, *J* = 270.7 Hz), 46.43, 33.41, 21.84. ¹⁹F NMR (470 MHz, CDCl₃) δ -54.62 (q, *J* = 10.0 Hz), -62.56 (t, *J* = 9.4 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃F₆N₂O₂S 387.0596; Found 387.0600.

After stirring at 30 °C for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (26% yield, 36 mg) as yellow solid, mp: 123 - 125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.3 Hz, 2H), 7.38 - 7.31 (m, 3H), 7.20 - 7.08 (m, 4H), 6.81 - 6.65 (m, 1H), 5.60 (d, J = 8.9 Hz, 1H), 3.55 - 3.32 (m, 1H), 3.05 (d, J = 18.5 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.40 (q, J = 7.3 Hz), 145.78, 139.61, 138.95 (q, J = 4.3 Hz), 133.71, 130.02, 129.28, 126.42, 125.58 (qq, J = 31.5, 5.0 Hz), 122.49 (q, J = 256.8 Hz), 122.19 (q, J = 272.7 Hz), 61.42, 36.12, 21.81. ¹⁹F NMR (470 MHz, CDCl₃) δ -48.95, -60.57 (dt, J = 7.3, 2.7 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₇F₆N₂O₂S 463.0909; Found 463.0918.

After stirring at 30 °C, 10 mA for 3 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (30% yield, 40 mg) as white solid, mp: 78 - 79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.60 – 6.46 (m, 1H), 2.90 – 2.85 (m, 2H), 2.82 – 2.72 (m, 2H), 2.45 (s, 3H), 2.09 – 1.98 (m, 2H), 1.80 – 1.65 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 157.73 (q, J = 7.5 Hz), 145.48, 138.28 (q, J = 5.0 Hz), 135.26, 129.95, 129.19, 123.89 (qq, J = 30.9, 3.8 Hz), 122.36 (q, J = 257.2 Hz), 122.30 (q, J = 271.2 Hz), 74.92, 44.07, 38.12, 24.48, 21.82. ¹⁹F NMR (470 MHz, CDCl₃) δ -49.12, -59.78 (dt, J = 7.5, 2.6 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉F₆N₂O₂S 441.1066; Found 441.1073.

After stirring at 30 °C for 6 hours, the residue was purified by column chromatography (silica gel, DCM/Petroleum ether: 1/1) to afford the title compound (6% yield, 10 mg) as white solid, mp: 130 - 133 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.29 - 7.15 (m, 6H), 7.13 - 6.98 (m, 6H), 6.32 - 6.12 (m, 1H), 4.60 (s, 2H), 3.48 - 3.39 (m, 2H), 2.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 158.67 (q, *J* = 7.8 Hz), 144.87, 144.47, 139.78 (q, *J* = 3.8 Hz), 134.45, 129.64, 129.02, 127.42, 126.95, 125.02 (q, *J* = 35.4 Hz), 122.54 (q, *J* = 256.6 Hz), 121.91 (q, *J* = 273.0 Hz), 54.34, 47.61, 37.59, 21.78. ¹⁹F NMR (470 MHz, CDCl₃) δ -48.09, -59.01 (dt, *J* = 7.8, 2.4 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₃F₆N₂O₂S 553.1379; Found 553.1373.

After stirring at 30 °C for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (2% yield, 4 mg) as yellow solid, mp: 208 - 211 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16 - 8.09 (m, 2H), 7.74 (d, *J* = 8.2 Hz, 4H), 7.23 (d, *J* = 8.1 Hz, 4H), 3.96 (t, *J* = 7.3 Hz, 4H), 3.00 - 2.93 (m, 4H), 2.42 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 151.17, 144.87, 137.00 (q, *J* = 5.0 Hz), 135.15, 129.67, 127.82, 126.73 (q, *J* = 34.4 Hz), 123.36 (q, *J* = 272.4 Hz), 47.02, 25.64, 21.78. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.35 (dt, *J* = 8.5, 2.4 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₅F₆N₄O₄S₂ 635.1216; Found 635.1220.

After stirring at 30 °C for 6 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/9) to afford the title compound (8% yield, 8 mg) as white solid, mp: 156 - 158 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.56 - 6.45 (m, 1H), 3.96 (t, *J* = 6.9 Hz, 2H), 3.06 - 2.98 (m, 2H), 2.44 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.12, 146.07, 140.31 (q, *J* = 5.0 Hz), 134.41, 129.99, 128.49, 122.75 (q, *J* = 271.3 Hz), 121.62 (q, *J* = 36.1 Hz), 43.99, 22.50, 21.83. ¹⁹F NMR (470 MHz, CDCl₃) δ -61.38 (dt, *J* = 7.3, 3.3 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₃F₃NO₃S 320.0563; Found 320.0571.

Scheme S1. Unsuccessful cyanamide bearing internal alkyne moiety

V. Scale-up Experiment and Synthetic Transformations

1. Gram-Scale Experiment

$$\begin{array}{c} CN \\ Ts - N \\ Ts - N \\ \end{array} + CF_3SO_2Na \\ (4.0 \text{ equiv.}) \\ \textbf{(4.0 equiv.)} \\ \textbf{1aa} \\ \textbf{2a} \\ \textbf{2a} \\ \textbf{2a} \\ \textbf{30 °C, 22 h} \\ \textbf{30 °C, 22 h} \\ \textbf{3aa-(E)} \\ \textbf{3aa-(E)}$$

In an undivided cell (250 mL) equipped with a stir bar, a mixture of 1aa (6.5 mmol, 1.63 g), CF₃SO₂Na 2a (26 mmol, 4.1 g), Bu₄NBF₄ (6.5 mmol, 2.14 g), KH₂PO₄ (19.5 mmol, 2.65 g) and DCM/H₂O (v/v = 5/1, 162 mL) were added. The cell was equipped with graphite plate (2 cm \times 2 cm \times 0.1 cm) as the anode and platinum plate (2 cm \times 2 cm \times 0.02 cm) as the cathode and connected to a DC regulated power supply (the distance between the electrodes is about 10 mm). The reaction mixture was stirred and electrolyzed at a constant current of 40 mA at 30 °C for 22 h. When the reaction was finished, the mixture was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60 - 90 °C)) to provide the desired product 3aa (53% yield, 1.33 g).

In an undivided cell (100 mL) equipped with a stir bar, a mixture of 1aa (5 mmol, 1.25 g), CF₃SO₂Na 2a (15 mmol, 2.46 g), Bu₄NBF₄ (5 mmol, 1.65 g), NaOAc (15 mmol, 1.23 g) and DCM/H₂O (v/v = 5/1, 100 mL) were added. The cell was equipped with two graphite rod (Φ 6 mm) electrodes (the immersion length is 2 cm), and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at 30 °C for 54 h. When the reaction was finished, the mixture was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60 - 90 °C) to provide the desired product **4aa** (45% yield, 0.718 g, *anti/syn* = 1/1).

2. Transformations of the Product 3aa and 4aa

To solution of **3aa** (0.2 mmol, 77.7 mg) in THF (0.05 *M*, 4 mL) in a dried tube was added HCl (5 *N*, 0.12 mL) at room temperature, then the reaction mixture was warmed to 80 °C and allowed to proceed for 12 h. Upon completion, the mixture was cooled to room temperature and the solution was concentrated *in vacuo* to get the crude product. The crude product was washed with DCM (1 mL × 2) to afford the title compound **15** (62% yield, 50 mg) as white solid, mp: 149 - 151 °C. ¹H NMR (500 MHz, DMSO) δ 11.16 (s, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.61 (t, *J* = 5.8 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 2.78 - 2.65 (m, 3H), 2.60 - 2.52 (m, 1H), 2.48 - 2.39 (m, 1H), 2.38 (s, 3H), 1.74 - 1.56 (m, 2H). ¹³C NMR (125 MHz, DMSO) δ 172.25, 142.74, 137.23, 129.65, 126.55, 126.51 (q, *J* = 277.1 Hz), 118.99 (q, *J* = 259.5 Hz), 39.85, 37.00, 34.09 (q, *J* = 27.8 Hz), 31.63, 20.92. ¹⁹F NMR (470 MHz, DMSO) δ - 56.26, -63.59 (t, *J* = 11.2 Hz). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₆F₆N₂NaO₃S 429.0678; Found 429.0674.

To a flame-dried sealed tube equipped with a magnetic stir bar were added **4aa**-*syn* (0.05 mmol, 1 equiv, 31.9 mg), HOAc (0.125 M, 0.1 mL). The tube was stirred at 80 °C for 12 h. Then the mixture was cooled to room temperature and the solvent was then removed *in vacuo*. Purification of the crude mixture by flash column chromatography (silica gel, EtOAc/Petroleum ether = 1: 3) afforded **4aa**-*anti* in 82% yield as a white solid.

To solution of **4aa**-*syn* or **4aa**-*anti* (0.1 mmol, 63.86 mg) in THF (0.05 *M*, 2 mL) in a dried tube was added HCl (5 *N*, 0.06 mL) at room temperature, then the reaction mixture was warmed to 80 °C and allowed to proceed for 12 h. Upon completion, the mixture was cooled to room temperature and the solution was concentrated *in vacuo*. Purification of the crude mixture by flash column chromatography (silica gel, EtOAc/Petroleum ether = 1: 5) afforded **5aa** in 74% - 76% yield as a white solid.

In an undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of **4aa**-anti (0.1 mmol, 63.8 mg), Bu₄NBF₄ (0.2 mmol, 2 equiv, 66 mg) and DCM/H₂O (v/v = 5/1, 6.6 mL) were added. The cell was equipped with graphite rod (Φ 6 mm) as the anode and platinum plate (1 cm × 1 cm × 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA at 30 °C for 2 h. Upon completion, the solution was concentrated *in vacuo*. Purification of the crude mixture by flash column chromatography (silica gel, EtOAc/Petroleum ether = 1: 5) afforded **5aa** (72% yield, 46 mg) as a white solid.

In a flame-dried undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of **4aa***-anti* (0.1 mmol, 63.8 mg), Bu₄NBF₄ (0.2 mmol, 2 equiv, 66 mg) and DCM/MeOH (v/v = 5/1, 6.6 mL) were added. The cell was equipped with graphite rod (Φ 6 mm) as the anode and platinum plate (1 cm × 1 cm × 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA at 30 °C for 2 h. Upon completion, the solution was concentrated *in vacuo*. Purification of the crude mixture by flash column chromatography (silica gel, EtOAc/Petroleum ether = 1: 3) afforded **18** (67% yield, 47 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.07 (t, *J* = 6.3 Hz, 1H), 3.68 (s, 3H), 3.04 – 2.94 (m, 1H), 2.94 – 2.84 (m, 1H), 2.82 – 2.73 (m, 1H), 2.64 – 2.48 (m, 1H), 2.42 (s, 3H), 2.23 – 2.08 (m, 1H), 1.90 – 1.71 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 173.95, 143.78, 136.79, 129.92, 127.16, 126.06 (q, *J* = 277.2 Hz), 52.48, 40.75, 36.94, 35.79 (q, *J* = 29.0 Hz), 32.00, 21.60. ¹⁹F NMR (470 MHz, CDCl₃) δ - 65.04 (t, *J* = 10.6 Hz). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₉F₃NO₄S 354.0981; Found 354.0987.

VI. Control Experiments

1. Radical scavenger trapping

Characterization of BHT-1a-CF₃ additive product S-3 by mass spectrometry

Reaction mixture was analyzed on a LC/MS (Agilent 1290 Infinity LC System connected to the Bruker micrOTOF-QII MS instrument). The high resolution mass spectrometry was performed to confirm the elemental compositions of BHT-**1aa**-CF₃ additive product **S-13**. **S-13**: HRMS (ESI) calculated for HRMS(ESI): calcd. for $C_{28}H_{38}F_3N_2O_3S$ ([M+H]⁺): 539.2550, found 539.2560. (Figure S1, a). The major product ions were observed in the fragmentation of protonated BHT additive product by CID mass spectra with argon as collision gas after isolation of the target precursor ion (Figure S1, b). The possible chemical structure of BHT additive product **S-13** and the major product ions observed in the fragmentation of its [M+H]⁺ ionwere given in Figure S1, c.

S-13: HRMS(ESI): calcd. for $C_{28}H_{38}F_3N_2O_3S$ ([M+H]⁺): 539.2550, found 539.2543.

Figure S1. a) High resolution mass spectra of BHT additive product S-13 from reaction mixture by LC/MS. b) MS² mass spectra of

protonated BHT additive product S-13. c) The possible chemical structure of BHT additive product S-13 and the major product ions observed in the fragmentation of its $[M+H]^+$ ion.

2. Effects of N-substituted group

In an undivided three necked-flask (25 mL) equipped with a stir bar, a mixture of **1ba** (or **1da**) (0.3 mmol), CF₃SO₂Na **2a** (1.2 mmol), Bu₄NBF₄ (0.3 mmol), KH₂PO₄ (0.9 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with graphite rod (Φ 6 mm) as the anode and platinum plate (1 cm × 1 cm × 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA at 30 °C for 2 h. Upon completion, H₂O (5 mL) was added, the mixture was extracted with DCM (8 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (60-90 °C)) to provide the desired products **6** (or **7**).

3. Radical cross-coupling

3-1.

In an undivided three necked-flask (25 mL) equipped with a stir bar (eq-1), a mixture of **1aa** (0.15 mmol), **1da** (0.15 mmol), CF₃SO₂Na **2a** (0.9 mmol), Bu₄NBF₄ (0.3 mmol), NaOAc (0.9 mmol) and DCM/H₂O (v/v = 5/1, 10 mL) were added. The cell was equipped with two graphite plate electrodes (0.8 cm \times 1.5 cm \times 0.2 cm). The reaction mixture was stirred and electrolyzed at a constant current of 1 mA at 30 °C for 16 h. Upon completion, 5 mL H₂O was added, the mixture was extracted with DCM (8 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The yields were determined by ¹⁹F NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

Figure S2. ¹⁹F NMR analyses of the mixture (eq-1).

3-2.

The procedure of eq-2 was similar to that of eq-1.

Figure S3. ¹⁹F NMR analyses of the mixture (eq-2).

3aa: HRMS(ESI): calcd. for $C_{14}H_{15}F_6N_2O_2S$ ([M+H]⁺): 389.0753, found 389.0762.

Figure S4. High-resolution mass analyses of the mixture (eq-2). a-e) The high-resolution mass analyses of **3aa**, **4aa**, **3ak**, **4ak** and **18** from reaction mixture by LC/MS. f) MS² mass spectra of protonated **18**.

18

4. Electrochemical/ hydrolytic reaction

The formation of **5aa** was not observed when the resulting mixture of electrochemical process was subjected further to the hydrolytic reaction conditions at $30 \, {}^{\circ}\text{C}$.

5. The ¹⁸O deuterium label experiment

This result indicated that the oxygen atom of amide was derived from the solvent of water.

VII. Cyclic Voltammetry (CV) Experiments

Cyclic voltammetry experiments were carried out in DY2113 potentiostat (Digi Ivy). Working electrode: glassy carbon, counter electrode: Pt wire, reference electrode: SCE. a)

Figure S5. Cyclic voltammograms. **Black line**: "Bu4NPF₆ (0.1 M) and in 5 mL acetonitrile and 1 mL H₂O (background). a) **red line**: KH₂PO₄ (0.006 M), "Bu4NPF₆ (0.1 M) and in 5 mL acetonitrile and 1 mL H₂O; **yellow line: 1aa** (0.002 M), "Bu4NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **2a** (0.002 M), "Bu4NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **1aa** (0.002 M), "Bu4NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **1aa** (0.002 M), "Bu4NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **1aa** (0.002 M), **2a** (0.008 M), "Bu4NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak it 1.33 V.

b) red line: **3aa** (0.002 M), "Bu₄NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O; yellow line: **4aa**-*syn* (0.002 M), "Bu₄NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.50 V; green line: **4aa**-*anti* (0.002

b)

M), n Bu₄NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.44 V; **blue line: 5aa** (0.002 M), n Bu₄NPF₆ (0.1 M) and KH₂PO₄ (0.006 M) in 5 mL acetonitrile and 1 mL H₂O. Scan rate: 50 mV/s.

In Figure S5, the voltammogram disclosed that no oxidative peaks were observed for compounds **1aa**, **3aa** and **5aa** in the potential window of interest. The anodic oxidation of the **2a**, followed by an irreversible reaction, occurred at a potential of ca. 1.21 V (*vs.* SCE) (the oxidation peak of **2a**: 1.4 V vs Ag/AgCl in acetonitrile ¹²), which may account for the oxidative generation of CF₃ radical. Besides, azine **4aa** also showed distinct oxidation peaks at 1.50 V (*syn*) and 1.44 V (*anti*) (*vs.* SCE) which were high than that of **2a**.

Figure S6. Cyclic voltammograms. **Black line**: "Bu₄NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O (background); **red line**: **NaOAc** (0.006 M), "Bu₄NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, the oxidation peak of NaOAc: 1.69 V; **green line**: **1aa** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, the oxidation peak of NaOAc: 1.75 V; **blue line**: **2a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.31, 1.76 V (NaOAc); **blue line**: **1aa** (0.002 M), **2a** (0.006 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.1 M) and NaOAc (0.006 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.39 V; Scan rate: 50 mV/s.

In the presence of NaOAc (0.006 M) (Figure S6), the anodic oxidation of the **2a** occurred at a potential of ca. 1.31 V (*vs* SCE). The oxidation peak of NaOAc was assigned to 1.69 V (TBAOAc: 1.78 V vs Ag/AgCl in acetonitrile ¹³).

Figure S7. Cyclic voltammograms. **Black line**: "Bu₄NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O (background); **red line**: NaOAc (0.01 M), "Bu₄NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, the oxidation peak of NaOAc: 1.80 V; **yellow line**: **11a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **2a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O; **green line**: **11a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak of 2a: 1.28 V; **blue line**: **11a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.40; **purple line**: **12a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.40; **purple line**: **12a** (0.002 M), "Bu₄NPF₆ (0.1 M) and NaOAc (0.01 M) in 5 mL acetonitrile and 1 mL H₂O; scan rate: 50 mV/s.

When **11a** was employed (Figure S7), the anodic oxidation of the **2a** occurred at a potential of 1.28 V (*vs* SCE) in the presence of NaOAc (0.01 M), while product **12a** didn't display any oxidative peak in the potential window of interest.

Figure S8. Cyclic voltammograms. Black line: "Bu4NPF6 (0.1 M) in 5 mL acetonitrile and 1 mL H2O (background); red line: 3aa (0.002 M), "Bu4NPF6 (0.1 M) in 5 mL acetonitrile and 1 mL H2O, reduction peak: -2.05 V; yellow line: 4aa-syn (0.002 M), "Bu4NPF6 (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.49 V; green line: 4aa-anti (0.002 M), "Bu₄NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, oxidation peak: 1.48 V; blue line: 5aa (0.002 M), "Bu4NPF₆ (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, reduction peak: -2.12 V; purple line: 12a (0.002 M), "Bu4NPF6 (0.1 M) in 5 mL acetonitrile and 1 mL H₂O, reduction peak: -1.16, -2.42 V. Scan rate: 50 mV/s.

Further cyclic voltammetric (CV) experiments indicated that no reductive peaks of 4aa can be observed, while compounds 3aa and 5aa demonstrated high reductive peaks at -2.05 V (vs SCE) and -2.12 V (vs SCE) respectively. In addition, the reductive peak of compound 12a was observed at a potential of -1.16 V and -2.42 V (vs SCE) (Figure S8).

VIII. DFT Calculations

Ts -

All Density functional theory (DFT) calculations were carried out in the Gaussian 16 program suite ¹⁴ at the B3LYP level of theory with 6-311G(d,p) basis set.

`CF⊴

Sum of electronic and zero-point Energies=	-1461.430948
Sum of electronic and thermal Energies=	-1461.409212
Sum of electronic and thermal Enthalpies=	-1461.408268
Sum of electronic and thermal Free Energies=	-1461.487503

Forces (Hartrees/Bohr) Center Atomic Ζ Х Y Number Number 1 7 -0.000001411 -0.000006287 -0.000017803 2 6 -0.000005913 0.00000036 0.0000046003 6 -0.00000936 0.00000379 -0.00000207 4 6 0.000001451 0.000001467 0.000002356 5 6 0.00000996 0.000002275 0.000004399 6 6 0.000007246 0.000006184 -0.000003138 7 7 0.0000031900.000004443 -0.000083868 6 0.000004414 0.000001878 -0.000001193 9 6 -0.000002024 -0.000002500 -0.000006944 10 6 0.00000800 -0.000003903 -0.000004298 0.00000325 0.000001626 0.00000811 11 6 -0.000003347 -0.000001724 0.00000802 12 6 6 -0.00000382 -0.000005272 0.000002361 13 -0.00000013 14 6 -0.000000563 0.00000973 15 16 0.000003165 0.000002125 -0.000013598 8 -0.000006849 -0.000011201 -0.000006997 16 8 17 0.000002525 0.000000153 0.000007470 0.000001030 -0.00000847 0.0000672418 6 19 9 0.00000106 -0.000000102 0.00009868 9 0.00000983 0.000005883 20 0.000007383 21 9 -0.000003454 0.000001101 0.000011377 22 1 0.000002579 0.000006374 -0.00000003 23 1 -0.00000354 -0.00000395 0.00000740 24 1 -0.00000904-0.000001396 -0.000001213 25 0.00000067 0.00002086 -0.000003936 1 26 1 0.000001583 0.000004280 0.000004197 1 27 -0.000001785 -0.000001867 0.000003560 28 1 -0.000000056 0.000003429 0.000003735 29 1 0.000001037 -0.000001025 -0.000008344 0.00000950 0.00000598 -0.000005821 30 1 1 -0.000001597-0.000002560 0.000004444 31 32 1 -0.000002117 -0.000003953 0.000001782 33 1 0.00000721 0.000001758 -0.00000202 34 -0.000001332 -0.000002689 0.00000533 1 35 1 -0.00000694 0.00000208 0.000003968

<u>TS1a</u>

Zero-point correction=	0.256848 (Hartree/Particle)
Thermal correction to Energy=	0.277244
Thermal correction to Enthalpy=	0.278188
Thermal correction to Gibbs Free Energy=	0.203282
Sum of electronic and zero-point Energies=	-1461.416979
Sum of electronic and thermal Energies=	-1461.396583
Sum of electronic and thermal Enthalpies=	-1461.395639
Sum of electronic and thermal Free Energies=	-1461.470545

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	7	-0.000000544	-0.000000261	0.000000934
2	6	0.000001590	0.000000644	-0.000000149
3	6	0.00000360	-0.00000039	-0.000001581
4	6	-0.000000942	-0.000000990	-0.000001084
5	6	-0.000001387	0.000001204	0.000000588
6	6	0.000000302	-0.000000999	-0.000003261
7	7	0.000002401	0.000002182	0.000000442
8	6	0.000000187	0.000000163	0.000002447
9	6	-0.000001265	-0.000000732	0.000002346
10	6	-0.000000981	-0.000000411	0.000002063
11	6	0.000000247	0.000000421	0.000001742
12	6	0.000001258	0.000001589	0.000001695
13	6	0.000001151	0.000001358	0.000002181
14	6	0.000000354	0.000000616	0.000001040
15	16	0.000000021	0.000000381	0.000003409
16	8	-0.000001355	-0.000001024	0.000003555
17	8	0.000000733	0.000001320	0.000003908
18	6	-0.000000428	-0.000000474	-0.000004824
19	9	0.000000203	-0.00000286	-0.000006098
20	9	-0.000000913	-0.000001466	-0.000004516
21	9	0.000001412	0.000000002	-0.000005408
22	1	0.000000949	0.000000460	-0.000001963
23	1	-0.000001061	-0.000000983	-0.000000218
24	1	-0.000001872	-0.000002242	-0.000001879
25	1	-0.000001480	-0.000001303	-0.000000155
26	1	-0.000001991	-0.000001736	0.000001211
27	1	0.000001379	0.000000538	-0.000003884
28	1	-0.000000206	-0.000001207	-0.000004132
29	1	-0.000001711	-0.000001381	0.000002458
30	1	-0.000001658	-0.000001364	0.000001749

31	1	0.000002146	0.000002106	0.000001578
32	1	0.000001869	0.000002232	0.000002433
33	1	-0.000000402	-0.00000344	0.000000859
34	1	0.000000547	0.00000862	0.000002252
35	1	0.000001089	0.000001164	0.000000264

Ts N N CF₃

Zero-point correction=	0.260405 (Hartree/Particle)
Thermal correction to Energy=	0.280343
Thermal correction to Enthalpy=	0.281288
Thermal correction to Gibbs Free Energy=	0.208020
Sum of electronic and zero-point Energies=	-1461.448951
Sum of electronic and thermal Energies=	-1461.429013
Sum of electronic and thermal Enthalpies=	-1461.428068
Sum of electronic and thermal Free Energies=	-1461.501336

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	7	-0.000000753	-0.000000727	-0.000001772
2	6	0.000000119	-0.000000101	-0.000002467
3	6	-0.000000047	-0.000001016	-0.000001448
4	6	-0.000001038	0.000000134	-0.000003554
5	6	-0.000001060	0.000000640	-0.000002060
6	6	0.000000395	-0.000000851	-0.000001279
7	7	0.00000348	-0.000002717	-0.000000833
8	6	-0.00000062	0.000000272	0.00000360
9	6	-0.000000564	0.000001663	0.000000915
10	6	-0.000000176	0.000001378	0.000002029
11	6	0.000000497	0.000000737	0.000003058
12	6	0.000000977	-0.00000316	0.000002522
13	6	0.000000525	-0.00000836	0.000001079
14	6	0.000000773	0.000001085	0.000005111
15	16	-0.000000402	0.00000026	-0.000001287
16	8	-0.000001331	0.000001267	-0.000002280
17	8	0.000000200	-0.000000723	-0.000002913
18	6	0.000000363	-0.000000628	-0.000000717
19	9	0.00000886	-0.000001098	0.000000484
20	9	-0.000000211	-0.000000393	-0.000001797

21	9	0.000001216	-0.000002539	-0.000001201
22	1	0.00000207	-0.000001761	-0.000002779
23	1	-0.000000893	0.00000008	-0.000003989
24	1	-0.000000967	0.000000508	-0.000002747
25	1	-0.00000888	0.000001776	-0.000001006
26	1	-0.000001290	0.000001452	-0.000002931
27	1	0.000001037	-0.000001751	-0.000000176
28	1	-0.00000936	-0.000000491	0.00000088
29	1	-0.000000920	0.000002334	0.00000297
30	1	-0.000000585	0.000002872	0.000002967
31	1	0.000001356	-0.000001410	0.000002960
32	1	0.00000890	-0.000001537	0.00000236
33	1	0.000000429	0.000001673	0.000004977
34	1	0.000000769	0.000000998	0.000004984
35	1	0.000001133	0.000000076	0.000005168

TS2a

Zero-point correction=	0.259811 (Hartree/Particle)
Thermal correction to Energy=	0.278760
Thermal correction to Enthalpy=	0.279705
Thermal correction to Gibbs Free Energy=	0.210271
Sum of electronic and zero-point Energies=	-1461.423221
Sum of electronic and thermal Energies=	-1461.404271
Sum of electronic and thermal Enthalpies=	-1461.403327
Sum of electronic and thermal Free Energies=	-1461.472760

Center Atomic Forces (Hartrees/Bohr) Y Ζ Number Number Х _____ -----7 0.000002252 -0.00000371-0.000002641 2 6 0.00000550 -0.00000217 -0.000000943 6 0.00000901 -0.0000028020.00000307 4 6 0.000002186 -0.000002981-0.000000196 5 6 0.000003226 -0.000002610-0.00000654-0.000000580 -0.000002979 -0.000000166 6 6 7 7 -0.000000481 0.0000004420.00000330 0.000000915 0.000002418 8 6 -0.0000004559 0.00000370 0.000002591 6 -0.00000058010 6 -0.000001165 0.0000033710.00000049 0.000003699 11 -0.000002395 -0.00000075 6 -0.0000018260.00003638 0.00000087 12 6 6 -0.00000686 0.000002800 -0.000000546 13

14	6	-0.000004122	0.000004313	0.00000363
15	16	0.000003031	0.000001152	-0.000001333
16	8	0.000003867	0.000001173	-0.000001310
17	8	0.000003522	0.000002489	-0.000001485
18	6	-0.000000983	-0.000005330	0.000001158
19	9	-0.000002091	-0.000005873	0.000001676
20	9	0.000000374	-0.000006103	0.000001092
21	9	-0.000002189	-0.000005309	0.000001378
22	1	-0.000000277	-0.000002366	0.000000506
23	1	0.000002798	-0.000002850	-0.000000359
24	1	0.000002679	-0.000004520	0.000000064
25	1	0.000003357	-0.000002499	-0.000000597
26	1	0.000004478	-0.000001740	-0.000001056
27	1	-0.000001604	-0.000002732	0.000000960
28	1	0.000000502	-0.000003394	0.00000884
29	1	0.000001248	0.000002185	-0.000000785
30	1	-0.000001608	0.000003308	-0.000000136
31	1	-0.000002802	0.000003864	0.000000163
32	1	0.000000250	0.000003295	-0.000000591
33	1	-0.000004801	0.000003494	0.000000811
34	1	-0.000004058	0.000005559	0.00000270
35	1	-0.000004840	0.000004885	0.000000586

Ň Illa [∼]CF₃

Zero-point correction=	0.261250 (Hartree/Particle)
Thermal correction to Energy=	0.280313
Thermal correction to Enthalpy=	0.281257
Thermal correction to Gibbs Free Energy=	0.211106
Sum of electronic and zero-point Energies=	-1461.443044
Sum of electronic and thermal Energies=	-1461.423981
Sum of electronic and thermal Enthalpies=	-1461.423037
Sum of electronic and thermal Free Energies=	-1461.493188

Center	Atomic	For	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z	
1	7	-0.000000149	-0.000000215	-0.000001231	
2	6	0.000000022	0.000000610	-0.000000233	
3	6	0.000000219	0.00000355	0.000000206	
4	6	-0.000000116	0.000000415	-0.000000791	

5	6	0.000000144	0.000000161	-0.000001414
6	6	-0.000000446	0.000000404	0.000000296
7	7	-0.000000255	0.000000324	0.000000102
8	6	0.000000065	-0.00000870	-0.000000411
9	6	-0.000000192	-0.000000935	-0.000000488
10	6	0.000000281	-0.000000632	0.000000434
11	6	0.000000647	-0.00000084	0.000001083
12	6	-0.000000116	0.000000550	0.000000533
13	6	-0.000000188	0.00000383	0.00000003
14	6	0.000000170	-0.000000375	0.000001456
15	16	0.000000453	0.000000524	-0.000001525
16	8	-0.000000199	-0.000000961	-0.000001583
17	8	-0.000000379	0.000000446	-0.000001808
18	6	0.000000682	-0.000000481	0.000001427
19	9	0.000000329	-0.000000509	0.000001511
20	9	-0.000000223	0.000000758	-0.000000576
21	9	-0.000000545	0.000001863	0.000000476
22	1	-0.000000573	0.000001166	0.000000194
23	1	-0.00000308	0.000001007	-0.000001285
24	1	-0.000000432	0.000000312	-0.00000784
25	1	-0.000000189	-0.000000568	-0.000001362
26	1	-0.00000840	-0.000000502	-0.000001740
27	1	0.000000070	-0.00000298	0.000001463
28	1	0.000000669	-0.000000059	0.00000017
29	1	-0.00000025	-0.000001223	-0.000000991
30	1	0.000000332	-0.000001477	0.000000501
31	1	0.00000002	0.00000393	0.000001310
32	1	-0.00000188	0.00000844	-0.00000370
33	1	0.000000524	-0.000000936	0.000001944
34	1	0.000000425	-0.000000599	0.000001683
35	1	0.00000326	0.000000211	0.000001954

CF₃ 0 lb

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= 0.229066 (Hartree/Particle) 0.247298 0.248243 0.177516 -986.868256

Sum of electronic and thermal Energies=	-986.850023
Sum of electronic and thermal Enthalpies=	-986.849079
Sum of electronic and thermal Free Energies=	-986.919805

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
	6	0.000019860	-0.000012614	-0.000016154
2	7	-0.000016955	0.000013160	0.000011067
3	6	0.000004647	-0.000008694	0.000002756
4	6	0.000001581	-0.000005631	-0.000006145
5	7	0.000003381	-0.000000746	-0.000003598
6	6	-0.000016665	0.000005065	0.000003933
7	8	-0.000016223	0.000002958	0.000005882
8	6	0.000001049	0.000004566	0.000002685
9	6	-0.000007041	0.000004985	0.000001211
10	6	0.000010346	-0.000001240	0.000000948
11	6	0.000007765	0.000000720	0.00000288
12	6	0.000010596	-0.000010579	-0.000003176
13	6	0.000005748	0.000007056	-0.000004388
14	6	0.000004085	-0.000001658	0.000004860
15	6	0.000009686	0.000007875	0.000004818
16	9	-0.000002292	-0.000007036	-0.000006800
17	6	-0.000003674	-0.000002165	0.000007869
18	9	0.000000207	0.000001462	0.000000113
19	9	-0.000004693	0.000004601	-0.000001587
20	1	-0.000003076	0.000006249	-0.000000328
21	1	-0.000001386	0.000002668	0.000003116
22	1	0.000000389	-0.000000987	0.000001500
23	1	0.000001249	0.000000044	0.000001559
24	1	-0.000000946	0.000000994	-0.000000857
25	1	-0.000000690	-0.000001546	0.000000342
26	1	0.000001158	0.000001716	0.000000229
27	1	-0.00000820	-0.000001726	-0.000001489
28	1	-0.000002340	-0.000000769	-0.000000497
29	1	0.000001239	-0.000000107	0.00000826
30	1	-0.000002171	-0.000003843	-0.000002349
31	1	-0.000004012	-0.000004776	-0.000006632

<u>TS1b</u>

Zero-point correction=0.229593 (Hartree/Particle)Thermal correction to Energy=0.246525

Thermal correction to Enthalpy=	0.247470
Thermal correction to Gibbs Free Energy=	0.181062
Sum of electronic and zero-point Energies=	-986.855017
Sum of electronic and thermal Energies=	-986.838084
Sum of electronic and thermal Enthalpies=	-986.837140
Sum of electronic and thermal Free Energies=	-986.903548

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	-0.000001011	0.000000377	-0.000003948
2	7	0.000000792	-0.000000056	-0.000000814
3	6	-0.000001211	-0.000000636	-0.000001195
4	6	0.000000615	0.000001144	0.000000228
5	6	-0.000000222	0.000001084	-0.000003269
6	8	-0.00000377	0.000000788	-0.000005363
7	6	-0.000001081	-0.000000658	-0.000002386
8	6	-0.000000156	0.000000375	-0.000002716
9	6	0.000000412	0.000001032	-0.000003393
10	6	0.000000924	0.000002084	-0.000005323
11	6	0.000000911	0.000001342	-0.000004511
12	6	-0.000000599	-0.000001136	0.000001679
13	6	0.000001231	0.000000163	0.000002990
14	6	-0.000000321	-0.000001128	0.000005483
15	7	0.000001414	0.00000638	0.000001788
16	9	0.000001944	-0.000000113	0.000006720
17	6	0.000000253	-0.000001056	0.000006386
18	9	0.000000112	-0.000002183	0.000008557
19	9	-0.000001269	-0.000001684	0.000005472
20	1	-0.000001813	-0.000001183	-0.000002262
21	1	0.00000304	0.00000378	-0.000001518
22	1	-0.000001312	-0.000001449	-0.000000103
23	1	-0.000001248	-0.000000671	-0.000001163
24	1	0.000000541	0.000001282	-0.000004148
25	1	0.000001743	0.000002851	-0.000006615
26	1	0.000001642	0.000002516	-0.000006118
27	1	-0.000001331	-0.000001334	0.000001413
28	1	-0.000002537	-0.000002145	0.000001595
29	1	0.000001288	0.000000785	0.000002269
30	1	-0.000000964	-0.000001495	0.000005076
31	1	0.000001325	0.00000087	0.000005191

Zero-point correction=	0.233304 (Hartree/Particle)
Thermal correction to Energy=	0.249783
Thermal correction to Enthalpy=	0.250728
Thermal correction to Gibbs Free Energy=	0.186032
Sum of electronic and zero-point Energies=	-986.887362
Sum of electronic and thermal Energies=	-986.870882
Sum of electronic and thermal Enthalpies=	-986.869938
Sum of electronic and thermal Free Energies=	-986.934634

Center	Atomic	Forces (Hartrees/Bohr)		ır)
Number	Number	Х	Y	Z
1	6	0.000019602	-0.000001496	0.000019662
2	7	-0.000009466	0.000042981	0.000013651
3	6	-0.000000353	-0.000007302	-0.000000723
4	6	0.000011130	-0.000039791	-0.000030150
5	6	-0.000013553	0.000004889	-0.000023176
6	8	-0.000001822	-0.000002330	-0.000007589
7	6	-0.000001418	0.000001032	0.000013233
8	6	0.000004473	-0.000004641	0.000003196
9	6	-0.000002054	0.000010414	-0.000003977
10	6	-0.000005993	-0.000001525	0.000007953
11	6	0.000007340	-0.000003566	0.000009493
12	6	0.000001558	0.000000753	-0.000010180
13	6	-0.000000704	0.000004404	0.000013324
14	6	-0.000005768	-0.000010097	-0.000005564
15	7	-0.000004242	0.000004405	0.000006478
16	9	-0.000005440	-0.000004646	-0.000000245
17	6	0.000026448	0.000013113	0.000013128
18	9	-0.000002342	-0.000002448	-0.000000871
19	9	-0.000018590	-0.000014794	-0.000020179
20	1	0.000002800	0.000001980	-0.000002338
21	1	0.000001665	0.000000125	-0.000004084
22	1	0.000003101	-0.000000611	-0.000001605
23	1	0.00000281	0.000005468	0.000009371
24	1	-0.000000887	0.000000414	0.000006872
25	1	-0.000000447	-0.000001144	0.000000919
26	1	-0.000001761	-0.000000211	-0.000000945

27	1	0.000001296	-0.00000339	-0.000001832
28	1	-0.00000807	0.000002731	-0.000003669
29	1	-0.000001977	0.000000201	-0.000002335
30	1	-0.000000317	0.000001212	0.000000567
31	1	-0.000001754	0.00000820	0.000001616

<u>TS2b</u>

Zero-point correction=	0.229593 (Hartree/Particle)
Thermal correction to Energy=	0.246525
Thermal correction to Enthalpy=	0.247470
Thermal correction to Gibbs Free Energy=	0.181062
Sum of electronic and zero-point Energies=	-986.855017
Sum of electronic and thermal Energies=	-986.838084
Sum of electronic and thermal Enthalpies=	-986.837140
Sum of electronic and thermal Free Energies=	-986.903548

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	6	-0.000001011	0.000000377	-0.000003948
2	7	0.000000792	-0.000000056	-0.000000814
3	6	-0.000001211	-0.000000636	-0.000001195
4	6	0.000000615	0.000001144	0.000000228
5	6	-0.000000222	0.000001084	-0.000003269
6	8	-0.000000377	0.000000788	-0.000005363
7	6	-0.000001081	-0.000000658	-0.000002386
8	6	-0.000000156	0.00000375	-0.000002716
9	6	0.000000412	0.000001032	-0.000003393
10	6	0.000000924	0.000002084	-0.000005323
11	6	0.000000911	0.000001342	-0.000004511
12	6	-0.000000599	-0.000001136	0.000001679
13	6	0.000001231	0.000000163	0.000002990
14	6	-0.000000321	-0.000001128	0.000005483
15	7	0.000001414	0.000000638	0.000001788
16	9	0.000001944	-0.000000113	0.000006720
17	6	0.000000253	-0.000001056	0.000006386
18	9	0.000000112	-0.000002183	0.000008557
19	9	-0.000001269	-0.000001684	0.000005472
20	1	-0.000001813	-0.000001183	-0.000002262
21	1	0.00000304	0.00000378	-0.000001518
22	1	-0.000001312	-0.000001449	-0.000000103
23	1	-0.000001248	-0.000000671	-0.000001163
24	1	0.000000541	0.000001282	-0.000004148

25	1	0.000001743	0.000002851	-0.000006615
26	1	0.000001642	0.000002516	-0.000006118
27	1	-0.000001331	-0.000001334	0.000001413
28	1	-0.000002537	-0.000002145	0.000001595
29	1	0.000001288	0.00000785	0.000002269
30	1	-0.000000964	-0.000001495	0.000005076
31	1	0.000001325	0.00000087	0.000005191

Zero-point correction=	0.234204 (Hartree/Particle)
Thermal correction to Energy=	0.249655
Thermal correction to Enthalpy=	0.250599
Thermal correction to Gibbs Free Energy=	0.189507
Sum of electronic and zero-point Energies=	-986.891404
Sum of electronic and thermal Energies=	-986.875954
Sum of electronic and thermal Enthalpies=	-986.875010
Sum of electronic and thermal Free Energies=	-986.936101

Center	Atomic	mic Forces (Hartrees/Bohr)		nr)
Number	Number	Х	Y	Z
1	6	0.000002780	0.000011511	0.000008331
2	7	-0.000005322	-0.000008028	0.000003821
3	6	0.000006526	-0.000001569	0.000002125
4	6	-0.000001171	0.000004596	0.000003906
5	6	0.000000041	-0.000009116	-0.000003747
6	8	0.000005618	-0.000004445	0.000006374
7	6	0.000003423	0.000007458	0.000000333
8	6	0.000002816	-0.000004664	-0.000004494
9	6	-0.000002103	-0.000006357	0.00000306
10	6	0.000005935	0.000003040	-0.000005810
11	6	-0.000008716	0.000005362	0.000010261
12	6	0.000001910	-0.000004092	-0.000001270
13	6	-0.000000102	-0.000000058	0.000004613
14	6	-0.000001077	-0.000001636	-0.000006668
15	7	0.000001141	-0.000007866	-0.000006637
16	9	-0.000003700	-0.000005404	-0.000001128
17	6	0.000001973	0.000017105	-0.000007157

18	9	-0.000004475	0.000008663	-0.000003523
19	9	-0.000006421	0.000002605	-0.000000617
20	1	0.00000844	0.000000179	0.000004685
21	1	0.000003002	-0.000001987	0.000004526
22	1	0.000000133	-0.000004011	-0.000004302
23	1	-0.000002060	-0.000000175	-0.000005912
24	1	-0.000001994	0.000002109	-0.000007024
25	1	0.000000748	0.000001401	0.000003429
26	1	0.000001162	-0.000000290	0.000002034
27	1	0.000001439	-0.000001343	0.000002534
28	1	0.000002184	-0.000004106	0.000001571
29	1	0.000000107	-0.000003238	-0.000003617
30	1	-0.000000924	0.000001251	0.000002390
31	1	-0.000003717	0.000003104	0.000000667

Zero-point correction=	0.219777 (Hartree/Particle)
Thermal correction to Energy=	0.236120
Thermal correction to Enthalpy=	0.237064
Thermal correction to Gibbs Free Energy=	0.170604
Sum of electronic and zero-point Energies=	-873.322783
Sum of electronic and thermal Energies=	-873.306441
Sum of electronic and thermal Enthalpies=	-873.305497
Sum of electronic and thermal Free Energies=	-873.371957

Center	Atomic	For	rces (Hartrees/Boł	ur)
Number	Number	Х	Y	Ζ
1	6	-0.000000564	-0.000000539	0.000003742
2	6	-0.000001895	0.000000555	0.000004367
3	6	-0.000001233	0.000000431	0.000004587
4	6	0.000000223	-0.000000742	0.000002288
5	6	0.000000861	-0.000001124	0.000002014
6	6	0.000000107	-0.000000777	0.000002639
7	7	0.000001543	0.000001872	0.000001890
8	6	0.000002444	-0.000001464	0.000000631
9	6	0.000000807	-0.000000195	-0.000001138
10	6	-0.00000808	-0.000001043	-0.000001776
11	6	-0.000000459	-0.000002657	0.000003005

12	6	-0.000001043	0.000000530	-0.000004612	
13	7	0.00000022	0.00000294	0.000003893	
14	9	-0.000001006	0.000003467	-0.000007451	
15	6	-0.000002638	0.00000832	-0.000004466	
16	9	-0.000000606	0.000001270	-0.000007322	
17	9	0.000001184	0.000000593	-0.000006294	
18	1	-0.000001276	0.00000236	0.000004515	
19	1	-0.000002954	0.000001190	0.000005466	
20	1	-0.000002709	0.000000543	0.000003640	
21	1	0.000001690	-0.000001976	0.000000650	
22	1	0.000001636	-0.000001212	0.000002392	
23	1	0.000002763	-0.000000107	-0.000000905	
24	1	0.000002711	-0.000002127	0.00000390	
25	1	0.000001562	-0.000000672	-0.000000718	
26	1	0.000001833	-0.000001260	-0.000002134	
27	1	-0.000001234	0.000001211	-0.000001944	
28	1	0.000000151	0.00000316	-0.000004124	
29	1	-0.000001113	0.000002554	-0.000003224	

<u>TS1c</u>

Zero-point correction=	0.220317 (Hartree/Particle)
Thermal correction to Energy=	0.235427
Thermal correction to Enthalpy=	0.236372
Thermal correction to Gibbs Free Energy=	0.174869
Sum of electronic and zero-point Energies=	-873.311339
Sum of electronic and thermal Energies=	-873.296229
Sum of electronic and thermal Enthalpies=	-873.295285
Sum of electronic and thermal Free Energies=	-873.356787

Center	Atomic	Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z	
1	6	0.000000273	0.000003987	-0.000001283	
2	6	-0.000000092	0.000002544	-0.000006791	
3	6	-0.000000137	0.000000792	-0.000006929	
4	6	0.000000058	0.000000115	-0.000001084	
5	6	0.000000156	0.000001746	0.000004700	
6	6	0.000000355	0.000003383	0.000004306	
7	7	-0.000000298	-0.000001802	-0.000000821	
8	6	-0.000000353	-0.000002254	0.000005798	
9	6	-0.00000025	-0.000006881	0.000003650	
10	6	-0.000000250	-0.000003863	-0.000002237	
11	6	0.000000555	-0.000001182	-0.000005888	

12	6	-0.000000058	0.000001284	-0.000000468
13	7	-0.000000542	-0.000001177	-0.000011531
14	9	-0.000000271	-0.000001845	-0.000002847
15	6	0.000000205	0.000001798	0.000001035
16	9	0.000000820	0.000008162	0.000001733
17	9	-0.000000390	-0.000000923	0.000007021
18	1	0.00000366	0.000005323	-0.000001498
19	1	-0.00000084	0.000002753	-0.000010998
20	1	-0.00000367	-0.00000390	-0.000010872
21	1	-0.000000466	0.000001322	0.000008302
22	1	0.000000569	0.000004609	0.000008515
23	1	0.000000511	0.000002105	0.000006791
24	1	0.000000506	-0.000005114	0.000008370
25	1	-0.000000645	-0.000011125	0.000002954
26	1	-0.000000216	-0.000006237	0.000008029
27	1	-0.000000713	-0.000006989	-0.000004893
28	1	0.000000245	0.000005064	0.000002482
29	1	0.000000285	0.000004794	-0.000005548

Zero-point correction= 0.223910 (Hartree/Particle) Thermal correction to Energy= 0.238530 Thermal correction to Enthalpy= 0.239474 Thermal correction to Gibbs Free Energy= 0.179555 Sum of electronic and zero-point Energies= -873.347808 Sum of electronic and thermal Energies= -873.333188 Sum of electronic and thermal Enthalpies= -873.332244 Sum of electronic and thermal Free Energies= -873.392163

Center	Atomic	For	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z	
		0.000004337	-0.000016378	-0.000000751	
2	6	-0.000016136	0.000013982	-0.000005925	
3	6	-0.000002233	-0.000001655	0.000006113	
4	6	-0.000015676	0.000011559	-0.000006724	
5	6	0.000004926	-0.000008672	0.000000267	
6	6	0.000009257	0.000007373	-0.000004217	
7	7	0.000002027	-0.000032406	-0.000001310	
8	6	0.000007432	0.000030806	-0.000006929	

9	6	-0.000002460	0.000001613	0.000010710	
10	6	-0.000011819	-0.000029065	-0.000019947	
11	6	-0.000012406	0.000038922	-0.000006823	
12	6	0.000013068	-0.000001705	0.000017277	
13	7	0.000025087	-0.000017519	0.000011392	
14	9	-0.000021080	0.000009301	-0.000014669	
15	6	0.000042312	0.000024380	0.000052683	
16	9	-0.000002501	-0.000006551	-0.000002044	
17	9	-0.000019546	-0.000037956	-0.000011584	
18	1	0.000001092	0.000003274	-0.000004124	
19	1	-0.000000166	0.000000420	0.000002103	
20	1	-0.000004318	0.000003649	0.000001143	
21	1	0.000008630	0.000005958	-0.000005993	
22	1	0.000002299	-0.000000793	-0.000007780	
23	1	0.000000586	-0.000004759	-0.000004010	
24	1	-0.000007950	-0.000001686	-0.000005666	
25	1	0.000002949	0.000012405	-0.000002246	
26	1	0.000005595	-0.000001417	-0.000002189	
27	1	-0.000003073	0.000003008	0.000010934	
28	1	-0.000004581	-0.000005327	-0.000003510	
29	1	-0.000005651	-0.000000760	0.000003820	

SO₂

Zero-point correction=	0.006645 (Hartree/Particle)
Thermal correction to Energy=	0.009740
Thermal correction to Enthalpy=	0.010684
Thermal correction to Gibbs Free Energy=	-0.017598
Sum of electronic and zero-point Energies=	-548.598199
Sum of electronic and thermal Energies=	-548.595104
Sum of electronic and thermal Enthalpies=	-548.594160
Sum of electronic and thermal Free Energies=	-548.622442

Center	Atomic	Foi	ces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	16	0.000000000	0.000000000	0.000333150
2	8	0.000000000	0.000311124	-0.000166575
3	8	0.000000000	-0.000311124	-0.000166575

Zero-point correction=	0.234499 (Hartree/Particle)
Thermal correction to Energy=	0.252493
Thermal correction to Enthalpy=	0.253438
Thermal correction to Gibbs Free Energy=	0.185717
Sum of electronic and zero-point Energies=	-1421.941732
Sum of electronic and thermal Energies=	-1421.923737
Sum of electronic and thermal Enthalpies=	-1421.922793
Sum of electronic and thermal Free Energies=	-1421.990514

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	6	-0.000003850	0.000008352	0.000003718
2	6	0.000004121	0.000007211	0.000004845
3	6	-0.000001328	0.000004303	0.000007906
4	6	0.000005178	0.000004166	0.000001038
5	6	-0.000004014	0.000008202	-0.000000524
6	6	-0.000009855	0.000009608	0.000004321
7	7	-0.000006891	-0.000003573	-0.000004155
8	6	-0.000007452	-0.000002839	-0.000007884
9	6	-0.000008469	-0.000002358	0.000003116
10	6	-0.000000437	-0.000020248	-0.000002406
11	6	0.000003973	0.000023976	-0.000005344
12	6	0.000008430	0.000007127	-0.000012174
13	7	0.000002725	-0.000010839	-0.000006354
14	16	0.000013689	0.000003627	0.000013616
15	8	0.000005275	0.000009493	0.000007186
16	8	0.000005032	0.000008806	0.000001910
17	9	0.000010584	-0.000007187	0.000000947
18	6	0.000005525	-0.000032484	0.000004536
19	9	0.000001276	-0.000015415	-0.000008962
20	9	-0.000004766	0.000002115	-0.000009010
21	1	-0.000002465	0.000011969	0.000006377
22	1	0.000003114	0.000006172	0.000005013
23	1	0.000002963	0.000000183	0.000000844
24	1	-0.000006304	0.000007266	0.000003110
25	1	-0.000007280	0.000012796	0.000004885
26	1	-0.000004416	-0.000001926	-0.000001769
27	1	-0.000007838	0.000000541	0.000000318

28	1	-0.000005865	-0.00000824	-0.000001862
29	1	-0.000002052	-0.000008350	-0.000002168
30	1	0.000003725	-0.000004924	-0.000002335
31	1	0.000006071	-0.000011391	-0.000004981
32	1	0.000001599	-0.000013556	-0.000003758

<u>TS3c</u>

Zero-point correction=	0.234079 (Hartree/Particle)
Thermal correction to Energy=	0.250892
Thermal correction to Enthalpy=	0.251837
Thermal correction to Gibbs Free Energy=	0.187999
Sum of electronic and zero-point Energies=	-1421.932150
Sum of electronic and thermal Energies=	-1421.915337
Sum of electronic and thermal Enthalpies=	-1421.914392
Sum of electronic and thermal Free Energies=	-1421.978230

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Z
1	6	0.000002490	0.000005367	0.000002667
2	6	0.000002256	0.000005049	0.000002034
3	6	0.000001566	0.000001905	-0.000000250
4	6	0.000000782	0.000001411	0.000002232
5	6	-0.000000849	0.000002941	0.000002668
6	6	0.000000881	0.000005097	0.000003522
7	7	-0.000000796	-0.000000327	-0.000001000
8	6	-0.000000393	-0.000000843	-0.000003151
9	6	0.000000134	-0.000003975	-0.000002632
10	6	0.000000762	-0.000005816	0.000000131
11	6	-0.000002126	0.00000386	-0.000003051
12	6	-0.000001799	-0.000005352	-0.000004291
13	7	-0.000003329	-0.000000505	0.000001635
14	16	-0.000003343	0.000000412	0.000006026
15	8	-0.000002861	0.000001819	0.000004242
16	8	-0.000002891	0.000001222	0.000004012
17	9	0.000001460	0.000000225	-0.000001885
18	6	-0.000002450	0.00000334	-0.000000104
19	9	0.000000668	-0.000002905	-0.000002473
20	9	0.000001214	-0.000001718	-0.000005302
21	1	0.000002470	0.000006474	0.000003799
22	1	0.000002674	0.000004442	0.000001348
23	1	0.000002676	0.000002727	-0.000000936
24	1	0.000003678	0.000001522	0.000002914
25	1	0.000001016	0.000005361	0.000004501
----	---	--------------	--------------	--------------
26	1	0.000002108	-0.000000719	-0.000003493
27	1	0.000000783	-0.000002586	-0.000002369
28	1	-0.000000942	-0.000004415	-0.000003071
29	1	0.000000746	-0.000004754	-0.000004008
30	1	-0.000002370	-0.000004633	-0.000000620
31	1	-0.000002413	-0.000002749	0.000000503
32	1	-0.000001803	-0.000005397	-0.000003599

Zero-point correction=	0.234765 (Hartree/Particle)
Thermal correction to Energy=	0.251914
Thermal correction to Enthalpy=	0.252858
Thermal correction to Gibbs Free Energy=	0.188068
Sum of electronic and zero-point Energies=	-1421.933757
Sum of electronic and thermal Energies=	-1421.916608
Sum of electronic and thermal Enthalpies=	-1421.915664
Sum of electronic and thermal Free Energies=	-1421.980453

Center Atomic Forces (Hartrees/Bohr)

Number	Number	Х	Y	Ζ
1	6	0.000003398	0.000009010	-0.000002931
2	6	0.000000186	0.000003642	-0.000001323
3	6	-0.000002280	-0.000003117	0.000006520
4	6	-0.000004342	0.000003606	0.000000795
5	6	0.000002513	-0.000006745	-0.000001715
6	6	0.000006373	0.000003572	-0.000002054
7	7	-0.000020060	0.000008711	0.000010174
8	6	-0.000000069	0.000002234	0.000020593
9	6	-0.000003812	-0.000006754	-0.000003402
10	6	0.000005003	-0.000012501	-0.000000936
11	6	0.000009325	-0.000005214	-0.000003819
12	6	0.000003697	-0.000004640	0.000011413
13	7	-0.000013306	-0.000004713	-0.000000394
14	16	0.000003286	0.000019349	-0.000014900
15	8	-0.000000441	0.000000757	-0.000015575
16	8	-0.000007795	-0.000001881	-0.000001549
17	9	-0.000010659	0.000018171	-0.000009159

18	6	0.000036047	-0.000017067	-0.000017723
19	9	0.000007961	-0.000001132	0.000001069
20	9	-0.000010617	0.000005141	0.000008825
21	1	0.000003814	0.000008703	-0.000004949
22	1	0.000003487	0.000004627	0.000000758
23	1	-0.000002572	-0.000003813	-0.000001832
24	1	0.000001295	0.000002552	-0.000004851
25	1	0.000001440	0.000008480	-0.000008211
26	1	0.000001996	-0.000004453	0.000008304
27	1	-0.000001715	0.000003399	0.000005358
28	1	-0.000002668	-0.000007465	0.000005716
29	1	0.000000578	-0.000005484	0.000006058
30	1	-0.000005099	-0.000007349	0.000000331
31	1	-0.000000625	-0.000000893	0.000004055
32	1	-0.000004337	-0.000008735	0.000005352

IX. References

- Ebule, R.; Mudshinge, S.; Nantz, M. H.; Mashuta, M. S.; Hammond, G. B.; Xu, B., J. Org. Chem. 2019, 84, 3249-3259.
- 2. Zhao, S.; Zang, Z.-L.; Li, S.; Wen, X.; Wang, C.; Guo, J.; He, Y., J. Org. Chem. 2020, 85, 9321-9330.
- 3. Fan, R.; Pu, D.; Wen, F.; Ye, Y.; Wang, X., J. Org. Chem. 2008, 73, 3623-3625.
- 4. Masuyama, Y.; Tosa, J.; Kurusu, Y., Chem. Commun. 1999, 1075-1076.
- 5. Qian, P.; Deng, Y.; Mei, H.; Han, J.; Zhou, J.; Pan, Y., Org. Lett. 2017, 19, 4798-4801.
- 6. Castillo, J.-C.; Orrego-Hernández, J.; Portilla, J., Eur. J. Org. Chem. 2016, 2016, 3824-3835.
- Kobayashi, Y.; Inukai, S.; Kondo, N.; Watanabe, T.; Sugiyama, Y.; Hamamoto, H.; Shioiri, T.; Matsugi, M., *Tetrahedron Lett* 2015, 56, 1363-1366.
- 8. Shen, Y.; Wang, C.; Chen, W.; Cui, S., Org. Chem. Front. 2018, 5, 3574-3578.
- 9. Wang, J.; Chen, S.; Zhao, Y., Synthesis 2006, 2006, 1705-1710.
- 10. Li, Z.; Jiao, L.; Sun, Y.; He, Z.; Wei, Z.; Liao, W.-W., Angew. Chem. Int. Ed. 2020, 59, 7266-7270.
- 11. Zheng, J.; Deng, Z.; Zhang, Y.; Cui, S., Adv. Synth. Catal. 2016, 358, 746-751.
- 12. Ruan, Z.; Huang, Z.; Xu, Z.; Mo, G.; Tian, X.; Yu, X.-Y.; Ackermann, L. Org. Lett. 2019, 21, 1237-1240.
- 13. Hu, X.; Zhang, G.; Nie, L.; Kong, T.; Lei, A. Nat. Commun. 2019, 10, 5467.

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, **2016**.

Crystal Data and Structure Refinements X.

1. Compound 3ab-(E):

CCDC number: 2189917

Table 1. Crystal data and structure refinement i	or Jab .		
Identification code 3ab			
Empirical formula	C13 H12 F6 N2 O2 S		
Formula weight	374.31		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 11.9474(9) Å	α= 90°.	
	b = 33.043(3) Å	β=104.806(2)°.	
	c = 8.2924(9) Å	$\gamma = 90^{\circ}$.	
Volume	3165.0(5) Å ³		
Z	8		
Density (calculated)	1.571 Mg/m ³		
Absorption coefficient	ion coefficient 0.279 mm ⁻¹		
F(000) 1520			
Crystal size	0.200 x 0.180 x 0.170 mm ³		
Theta range for data collection	2.555 to 25.150°.		
Index ranges	-14<=h<=14, -39<=k<=39, -9<	<=l<=9	
Reflections collected	159031		
Independent reflections	5657 [R(int) = 0.0881]		
Completeness to theta = 25.150°	99.9 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5657 / 0 / 409		
Goodness-of-fit on F ²	1.063		
Final R indices [I>2sigma(I)]	R1 = 0.0863, wR2 = 0.2041		

Table 1 Crystal data and structure refinement for **3ab**

SI-75

R indices (all data)	R1 =	= 0.0958, wR2 = 0.2130
Extinction coefficient	n/a	
Largest diff. peak and hole	0.91	7 and -0.697 e.Å ⁻³
Table 2. Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement parameters (Å ² x 10 ³)

for Y. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	8280(1)	334(1)	6867(1)	78(1)
C(2)	8424(1)	-42(1)	6191(2)	110(1)
C(3)	9502(1)	-228(1)	6602(2)	129(1)
C(4)	10437(1)	-40(1)	7688(2)	118(1)
C(5)	10293(1)	336(1)	8364(2)	84(1)
C(6)	9215(1)	523(1)	7954(1)	59(1)
C(7)	10560(2)	1574(1)	8580(2)	71(1)
C(8)	10486(2)	1910(1)	7322(3)	74(1)
C(9)	9850(2)	1722(1)	5632(2)	56(1)
C(10)	9042(1)	1420(1)	6163(2)	47(1)
C(11)	7669(2)	1296(1)	3654(2)	58(1)
C(12)	10622(2)	1491(1)	4746(2)	64(1)
C(13)	11371(2)	1740(1)	3985(3)	102(1)
C(14)	3641(1)	725(1)	10691(1)	69(1)
C(15)	4045(1)	576(1)	12303(1)	92(1)
C(16)	5138(1)	402(1)	12800(2)	92(1)
C(17)	5829(1)	377(1)	11685(2)	89(1)
C(18)	5425(1)	526(1)	10073(2)	68(1)
C(19)	4331(1)	700(1)	9576(1)	50(1)
C(20)	5142(2)	1327(1)	6088(2)	58(1)
C(21)	5295(2)	1780(1)	6047(2)	59(1)
C(22)	5287(1)	1923(1)	7807(2)	45(1)
C(23)	4448(1)	1623(1)	8268(2)	43(1)
C(24)	3811(2)	1971(1)	10298(2)	68(1)
C(25)	6457(1)	1892(1)	9106(2)	54(1)
C(26)	7313(2)	2200(1)	8913(3)	72(1)
F(1)	6534(1)	1288(1)	3288(1)	91(1)
F(2)	7972(1)	992(1)	2802(2)	104(1)
F(3)	7968(1)	1622(1)	2954(2)	122(1)
F(4)	12162(1)	1943(1)	5103(2)	164(1)

F(5)	10802(2)	1993(1)	2875(2)	147(1)
F(6)	11986(1)	1513(1)	3171(2)	149(1)
F(7)	2907(1)	1995(1)	10805(2)	152(1)
F(8)	4645(2)	1999(1)	11534(2)	254(1)
F(9)	3826(2)	2314(1)	9644(2)	231(1)
F(10)	7673(1)	2146(1)	7529(2)	120(1)
F(11)	8274(1)	2192(1)	10129(2)	110(1)
F(12)	6911(1)	2573(1)	8836(2)	121(1)
N(1)	9501(1)	1336(1)	7826(2)	55(1)
N(2)	8136(1)	1237(1)	5352(2)	51(1)
N(3)	4448(1)	1282(1)	7319(2)	50(1)
N(4)	3825(1)	1635(1)	9317(2)	51(1)
O(1)	9808(1)	994(1)	10506(2)	85(1)
O(2)	7822(1)	1032(1)	8726(2)	72(1)
O(3)	4152(1)	578(1)	6450(2)	79(1)
O(4)	2571(1)	924(1)	7268(2)	76(1)
S (1)	9022(1)	976(1)	8902(1)	57(1)
S(2)	3774(1)	850(1)	7528(1)	54(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Y.

C(1)-C(2)	1.3900
C(1)-C(6)	1.3900
C(1)-H(1)	0.9300
C(2)-C(3)	1.3900
C(2)-H(2)	0.9300
C(3)-C(4)	1.3900
C(3)-H(3)	0.9300
C(4)-C(5)	1.3900
C(4)-H(4)	0.9300
C(5)-C(6)	1.3900
C(5)-H(5)	0.9300
C(6)-S(1)	1.7358(13)
C(7)-N(1)	1.485(2)
C(7)-C(8)	1.510(3)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700

C(8)-C(9)	1.543(3)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(12)	1.524(3)
C(9)-C(10)	1.531(2)
C(9)-H(9)	0.9800
C(10)-N(2)	1.2709(19)
C(10)-N(1)	1.3748(19)
C(11)-F(1)	1.312(2)
C(11)-F(3)	1.317(2)
C(11)-F(2)	1.329(2)
C(11)-N(2)	1.390(2)
C(12)-C(13)	1.472(3)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-F(5)	1.300(3)
C(13)-F(4)	1.325(3)
C(13)-F(6)	1.347(3)
C(14)-C(15)	1.3900
C(14)-C(19)	1.3900
C(14)-H(14)	0.9300
C(15)-C(16)	1.3900
C(15)-H(15)	0.9300
C(16)-C(17)	1.3900
C(16)-H(16)	0.9300
C(17)-C(18)	1.3900
С(17)-Н(17)	0.9300
C(18)-C(19)	1.3900
C(18)-H(18)	0.9300
C(19)-S(2)	1.7308(10)
C(20)-N(3)	1.478(2)
C(20)-C(21)	1.512(3)
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(21)-C(22)	1.536(2)
C(21)-H(21A)	0.9700
C(21)-H(21B)	0.9700
C(22)-C(23)	1.528(2)

1.535(2)
0.9800
1.281(2)
1.3733(19)
1.237(2)
1.257(3)
1.258(3)
1.379(2)
1.480(3)
0.9700
0.9700
1.317(3)
1.321(2)
1.337(3)
1.6736(16)
1.6691(14)
1.4189(13)
1.4160(14)
1.4206(15)
1.4196(15)
120.0
120.0
120.0
120.0
120.0
120.0
120.0
120.0 120.0
120.0 120.0 120.0
120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0

C(1)-C(6)-S(1)	120.25(6)
N(1)-C(7)-C(8)	101.83(14)
N(1)-C(7)-H(7A)	111.4
C(8)-C(7)-H(7A)	111.4
N(1)-C(7)-H(7B)	111.4
C(8)-C(7)-H(7B)	111.4
H(7A)-C(7)-H(7B)	109.3
C(7)-C(8)-C(9)	105.09(15)
C(7)-C(8)-H(8A)	110.7
C(9)-C(8)-H(8A)	110.7
C(7)-C(8)-H(8B)	110.7
C(9)-C(8)-H(8B)	110.7
H(8A)-C(8)-H(8B)	108.8
C(12)-C(9)-C(10)	108.27(14)
C(12)-C(9)-C(8)	114.93(15)
C(10)-C(9)-C(8)	101.66(15)
С(12)-С(9)-Н(9)	110.5
С(10)-С(9)-Н(9)	110.5
C(8)-C(9)-H(9)	110.5
N(2)-C(10)-N(1)	120.23(15)
N(2)-C(10)-C(9)	132.22(14)
N(1)-C(10)-C(9)	107.45(13)
F(1)-C(11)-F(3)	107.19(15)
F(1)-C(11)-F(2)	105.52(15)
F(3)-C(11)-F(2)	104.04(16)
F(1)-C(11)-N(2)	110.78(16)
F(3)-C(11)-N(2)	118.50(15)
F(2)-C(11)-N(2)	109.89(15)
C(13)-C(12)-C(9)	115.76(19)
С(13)-С(12)-Н(12А)	108.3
C(9)-C(12)-H(12A)	108.3
С(13)-С(12)-Н(12В)	108.3
C(9)-C(12)-H(12B)	108.3
H(12A)-C(12)-H(12B)	107.4
F(5)-C(13)-F(4)	108.7(2)
F(5)-C(13)-F(6)	104.9(2)
F(4)-C(13)-F(6)	104.4(2)
F(5)-C(13)-C(12)	113.5(2)

F(4)-C(13)-C(12)	112.7(2)
F(6)-C(13)-C(12)	111.9(2)
C(15)-C(14)-C(19)	120.0
C(15)-C(14)-H(14)	120.0
C(19)-C(14)-H(14)	120.0
C(14)-C(15)-C(16)	120.0
С(14)-С(15)-Н(15)	120.0
C(16)-C(15)-H(15)	120.0
C(17)-C(16)-C(15)	120.0
С(17)-С(16)-Н(16)	120.0
C(15)-C(16)-H(16)	120.0
C(16)-C(17)-C(18)	120.0
С(16)-С(17)-Н(17)	120.0
С(18)-С(17)-Н(17)	120.0
C(19)-C(18)-C(17)	120.0
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
C(18)-C(19)-C(14)	120.0
C(18)-C(19)-S(2)	120.39(6)
C(14)-C(19)-S(2)	119.42(6)
N(3)-C(20)-C(21)	101.92(14)
N(3)-C(20)-H(20A)	111.4
C(21)-C(20)-H(20A)	111.4
N(3)-C(20)-H(20B)	111.4
C(21)-C(20)-H(20B)	111.4
H(20A)-C(20)-H(20B)	109.2
C(20)-C(21)-C(22)	104.66(13)
C(20)-C(21)-H(21A)	110.8
C(22)-C(21)-H(21A)	110.8
C(20)-C(21)-H(21B)	110.8
C(22)-C(21)-H(21B)	110.8
H(21A)-C(21)-H(21B)	108.9
C(23)-C(22)-C(25)	108.60(12)
C(23)-C(22)-C(21)	101.66(12)
C(25)-C(22)-C(21)	114.86(14)
C(23)-C(22)-H(22)	110.5
C(25)-C(22)-H(22)	110.4
C(21)-C(22)-H(22)	110.5

N(4)-C(23)-N(3)	119.97(14)
N(4)-C(23)-C(22)	133.01(14)
N(3)-C(23)-C(22)	107.01(13)
F(8)-C(24)-F(7)	107.29(19)
F(8)-C(24)-F(9)	101.10(19)
F(7)-C(24)-F(9)	101.30(19)
F(8)-C(24)-N(4)	114.84(18)
F(7)-C(24)-N(4)	112.89(16)
F(9)-C(24)-N(4)	117.82(17)
C(26)-C(25)-C(22)	114.07(14)
C(26)-C(25)-H(25A)	108.7
C(22)-C(25)-H(25A)	108.7
C(26)-C(25)-H(25B)	108.7
C(22)-C(25)-H(25B)	108.7
H(25A)-C(25)-H(25B)	107.6
F(12)-C(26)-F(11)	106.95(18)
F(12)-C(26)-F(10)	106.03(19)
F(11)-C(26)-F(10)	104.13(17)
F(12)-C(26)-C(25)	113.30(18)
F(11)-C(26)-C(25)	113.17(18)
F(10)-C(26)-C(25)	112.55(17)
C(10)-N(1)-C(7)	113.26(14)
C(10)-N(1)-S(1)	125.02(11)
C(7)-N(1)-S(1)	121.49(11)
C(10)-N(2)-C(11)	122.50(15)
C(23)-N(3)-C(20)	113.39(13)
C(23)-N(3)-S(2)	124.79(12)
C(20)-N(3)-S(2)	121.80(11)
C(23)-N(4)-C(24)	121.49(15)
O(2)-S(1)-O(1)	120.08(9)
O(2)-S(1)-N(1)	109.17(8)
O(1)-S(1)-N(1)	103.71(8)
O(2)-S(1)-C(6)	108.24(7)
O(1)-S(1)-C(6)	109.09(8)
N(1)-S(1)-C(6)	105.62(7)
O(4)-S(2)-O(3)	118.98(9)
O(4)-S(2)-N(3)	109.56(8)
O(3)-S(2)-N(3)	103.70(8)

O(4)-S(2)-C(19)	108.59(8)
O(3)-S(2)-C(19)	109.37(6)
N(3)-S(2)-C(19)	105.84(6)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
	05(1)	(4(1)	70(1)	2(1)	25(1)	12(1)
C(1)	95(1)	64(1)	78(1)	2(1)	25(1)	-13(1)
C(2)	177(2)	69(1)	90(1)	-12(1)	45(1)	-36(1)
C(3)	225(3)	63(1)	129(2)	1(1)	100(1)	2(2)
C(4)	153(2)	85(1)	145(2)	27(1)	90(1)	49(1)
C(5)	82(1)	79(1)	98(1)	13(1)	35(1)	18(1)
C(6)	69(1)	58(1)	56(1)	11(1)	27(1)	2(1)
C(7)	69(1)	78(1)	56(1)	-14(1)	2(1)	-15(1)
C(8)	77(1)	68(1)	73(1)	-10(1)	13(1)	-23(1)
C(9)	59(1)	45(1)	59(1)	5(1)	7(1)	-7(1)
C(10)	51(1)	44(1)	44(1)	1(1)	11(1)	4(1)
C(11)	58(1)	68(1)	43(1)	2(1)	4(1)	-6(1)
C(12)	56(1)	80(1)	56(1)	10(1)	15(1)	-4(1)
C(13)	86(1)	140(2)	82(1)	15(1)	27(1)	-29(1)
C(14)	86(1)	69(1)	54(1)	4(1)	22(1)	-14(1)
C(15)	144(2)	88(1)	47(1)	-1(1)	31(1)	-38(1)
C(16)	147(2)	63(1)	53(1)	8(1)	-1(1)	-24(1)
C(17)	105(2)	54(1)	83(1)	4(1)	-21(1)	-4(1)
C(18)	82(1)	50(1)	67(1)	1(1)	7(1)	-4(1)
C(19)	69(1)	36(1)	41(1)	1(1)	8(1)	-10(1)
C(20)	78(1)	60(1)	40(1)	-5(1)	24(1)	-2(1)
C(21)	76(1)	66(1)	38(1)	4(1)	20(1)	-12(1)
C(22)	53(1)	42(1)	40(1)	6(1)	15(1)	0(1)
C(23)	58(1)	38(1)	34(1)	3(1)	13(1)	1(1)
C(24)	79(1)	66(1)	70(1)	-32(1)	38(1)	-24(1)
C(25)	57(1)	58(1)	48(1)	4(1)	15(1)	3(1)
C(26)	67(1)	74(1)	76(1)	-6(1)	20(1)	-9(1)
F(1)	56(1)	151(1)	61(1)	-7(1)	3(1)	3(1)

SI-83

F(2)	105(1)	145(1)	63(1)	-28(1)	23(1)	17(1)
F(3)	134(1)	125(1)	75(1)	48(1)	-29(1)	-49(1)
F(4)	132(1)	242(2)	126(1)	-13(1)	44(1)	-114(1)
F(5)	170(1)	152(1)	128(1)	73(1)	56(1)	-15(1)
F(6)	112(1)	231(2)	128(1)	7(1)	76(1)	-7(1)
F(7)	135(1)	154(1)	205(1)	-114(1)	116(1)	-54(1)
F(8)	174(2)	312(1)	206(1)	-214(1)	-77(1)	116(1)
F(9)	445(2)	66(1)	289(1)	-51(1)	288(1)	-28(1)
F(10)	108(1)	169(1)	99(1)	-13(1)	56(1)	-52(1)
F(11)	68(1)	147(1)	103(1)	-2(1)	0(1)	-24(1)
F(12)	102(1)	61(1)	186(2)	-3(1)	14(1)	-18(1)
N(1)	59(1)	57(1)	44(1)	1(1)	6(1)	-4(1)
N(2)	55(1)	54(1)	42(1)	0(1)	10(1)	-7(1)
N(3)	78(1)	38(1)	39(1)	2(1)	24(1)	-3(1)
N(4)	64(1)	49(1)	48(1)	-9(1)	27(1)	-9(1)
O(1)	112(1)	89(1)	45(1)	8(1)	4(1)	5(1)
O(2)	72(1)	80(1)	73(1)	13(1)	37(1)	15(1)
O(3)	147(1)	45(1)	46(1)	-11(1)	26(1)	-6(1)
O(4)	68(1)	73(1)	73(1)	11(1)	-8(1)	-13(1)
S(1)	69(1)	61(1)	43(1)	5(1)	16(1)	6(1)
S(2)	80(1)	39(1)	37(1)	-1(1)	8(1)	-8(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Y.

	Х	у	Z	U(eq)
			· · · · · · · · · · · · · · · · · · ·	
H(1)	7559	459	6592	94
H(2)	7799	-168	5464	132
H(3)	9599	-480	6150	155
H(4)	11158	-165	7963	142
H(5)	10918	462	9091	101
H(7A)	11254	1413	8689	85
H(7B)	10544	1680	9665	85
H(8A)	11253	2001	7296	89
H(8B)	10056	2138	7590	89

H(9)	9401	1929	4895	67
H(12A)	11109	1309	5542	77
H(12B)	10132	1326	3879	77
H(14)	2909	841	10359	82
H(15)	3583	593	13050	110
H(16)	5408	303	13879	111
H(17)	6560	261	12017	107
H(18)	5887	509	9326	82
H(20A)	4730	1223	5004	70
H(20B)	5881	1189	6453	70
H(21A)	4666	1903	5215	71
H(21B)	6022	1848	5796	71
H(22)	4982	2199	7771	54
H(25A)	6329	1917	10210	65
H(25B)	6780	1625	9029	65

2. Compound 4aa-syn:

CCDC number: 2189919

Table 1. Crystal data and structure refinement for **4aa-syn**.

Identification code	4aa-syn
Empirical formula	C26 H28 F6 N4 O4 S2
Formula weight	638.64
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic

Space group	C2/c		
Unit cell dimensions	a = 19.8426(6) Å	α= 90°.	
	b = 14.7342(4) Å	β=112.8380(10)°.	
	c = 21.7333(9) Å	$\gamma = 90^{\circ}.$	
Volume	5855.9(3) Å ³		
Z	8		
Density (calculated)	1.449 Mg/m ³		
Absorption coefficient	0.259 mm ⁻¹		
F(000)	2640		
Crystal size	0.200 x 0.180 x 0.170 mm ³		
Theta range for data collection	2.765 to 23.737°.		
Index ranges	-22<=h<=22, -16<=k<=16, -24<=l<=24		
Reflections collected	99617		
Independent reflections	4444 [R(int) = 0.0283]		
Completeness to theta = 23.737°	99.8 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.9572 and 0.9500		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4444 / 0 / 381		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0388, $wR2 = 0.0994$		
R indices (all data)	R1 = 0.0438, wR2 = 0.1054		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.236 and -0.339 e.Å ⁻³		

Table 2	. Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement parame	eters (Å ² x 10 ³)
for Y.	U(eq) is defined as one	third of the trace of the	e orthogonalized U ^{ij} tensor.	

	X	У	Z	U(eq)
S(1)	6872(1)	1398(1)	8755(1)	40(1)
F(1)	3820(1)	257(2)	9214(1)	101(1)
F(2)	3089(1)	-149(2)	8247(1)	100(1)
F(3)	3353(1)	1242(1)	8454(1)	104(1)
O(1)	7437(1)	1343(1)	9405(1)	52(1)
O(2)	6933(1)	884(1)	8223(1)	50(1)
N(1)	6120(1)	1072(1)	8858(1)	38(1)
N(2)	5366(1)	1040(1)	7730(1)	39(1)

C(1)	3642(1)	416(2)	8573(1)	61(1)
C(2)	4249(1)	316(2)	8344(1)	45(1)
C(3)	4857(1)	1017(1)	8647(1)	36(1)
C(4)	5315(1)	877(2)	9392(1)	51(1)
C(5)	6060(1)	1262(2)	9506(1)	47(1)
C(6)	5426(1)	1027(1)	8338(1)	33(1)
C(7)	6723(1)	2546(2)	8522(1)	41(1)
C(8)	6332(1)	2781(2)	7863(1)	59(1)
C(9)	6209(2)	3688(2)	7702(1)	72(1)
C(10)	6474(2)	4363(2)	8175(2)	63(1)
C(11)	6876(2)	4108(2)	8822(1)	62(1)
C(12)	7000(1)	3208(2)	9004(1)	51(1)
C(13)	6338(2)	5356(2)	7982(2)	95(1)
S(2)	9287(1)	2616(1)	8861(1)	52(1)
F(4)	7507(1)	3754(2)	5666(1)	119(1)
F(5)	8347(1)	4205(1)	5361(1)	104(1)
F(6)	8204(1)	2797(1)	5484(1)	112(1)
O(3)	8740(1)	2766(1)	9123(1)	69(1)
O(4)	9940(1)	3140(1)	9101(1)	64(1)
N(3)	8867(1)	2809(1)	8052(1)	50(1)
N(4)	9885(1)	2695(1)	7771(1)	47(1)
C(14)	8194(2)	3609(2)	5750(1)	70(1)
C(15)	8723(1)	3654(2)	6456(1)	51(1)
C(16)	8594(1)	2916(2)	6894(1)	47(1)
C(17)	7905(1)	3076(2)	7037(1)	70(1)
C(18)	8066(1)	2675(2)	7716(1)	66(1)
C(19)	9197(1)	2812(1)	7581(1)	42(1)
C(20)	9505(2)	1456(2)	8946(1)	56(1)
C(21)	10199(2)	1176(2)	9057(2)	80(1)
C(22)	10370(2)	268(3)	9152(2)	102(1)
C(23)	9863(3)	-368(2)	9128(2)	93(1)
C(24)	9164(2)	-83(2)	9016(2)	92(1)
C(25)	8977(2)	835(2)	8927(2)	76(1)
C(26)	10054(3)	-1373(2)	9225(2)	141(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Y.

S(1)-O(1)	1.4253(15)
S(1)-O(2)	1.4256(15)
S(1)-N(1)	1.6640(17)
S(1)-C(7)	1.758(2)
F(1)-C(1)	1.320(3)
F(2)-C(1)	1.340(3)
F(3)-C(1)	1.327(3)
N(1)-C(6)	1.402(2)
N(1)-C(5)	1.487(2)
N(2)-C(6)	1.280(2)
N(2)-N(2)#1	1.406(3)
C(1)-C(2)	1.478(3)
C(2)-C(3)	1.529(3)
C(2)-H(2A)	0.9003
C(2)-H(2B)	0.9296
C(3)-C(6)	1.521(3)
C(3)-C(4)	1.533(3)
C(3)-H(3)	1.0000
C(4)-C(5)	1.510(3)
C(4)-H(4A)	0.9578
C(4)-H(4B)	0.9884
C(5)-H(5A)	0.9681
C(5)-H(5B)	0.9554
C(7)-C(12)	1.380(3)
C(7)-C(8)	1.381(3)
C(8)-C(9)	1.380(4)
C(8)-H(8)	0.9500
C(9)-C(10)	1.379(4)
C(9)-H(9)	0.9500
C(10)-C(11)	1.374(4)
C(10)-C(13)	1.516(4)
C(11)-C(12)	1.379(4)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
S(2)-O(4)	1.4214(19)

S(2)-O(3)	1.4231(17)
S(2)-N(3)	1.653(2)
S(2)-C(20)	1.755(3)
F(4)-C(14)	1.321(4)
F(5)-C(14)	1.334(3)
F(6)-C(14)	1.333(3)
N(3)-C(19)	1.411(3)
N(3)-C(18)	1.483(3)
N(4)-C(19)	1.277(3)
N(4)-N(4)#2	1.416(3)
C(14)-C(15)	1.486(4)
C(15)-C(16)	1.531(3)
C(15)-H(15A)	0.9328
C(15)-H(15B)	0.9327
C(16)-C(19)	1.514(3)
C(16)-C(17)	1.534(3)
C(16)-H(16)	1.0000
C(17)-C(18)	1.504(4)
C(17)-H(17A)	1.0164
C(17)-H(17B)	0.9153
C(18)-H(18A)	0.9651
C(18)-H(18B)	1.0513
C(20)-C(21)	1.366(4)
C(20)-C(25)	1.380(4)
C(21)-C(22)	1.376(5)
C(21)-H(21)	0.9500
C(22)-C(23)	1.361(6)
C(22)-H(22)	0.9500
C(23)-C(24)	1.377(5)
C(23)-C(26)	1.523(5)
C(24)-C(25)	1.396(4)
C(24)-H(24)	0.9500
C(25)-H(25)	0.9500
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
O(1)-S(1)-O(2)	119.49(10)

O(1)-S(1)-N(1)	104.61(9)
O(2)-S(1)-N(1)	108.51(9)
O(1)-S(1)-C(7)	108.70(10)
O(2)-S(1)-C(7)	109.58(10)
N(1)-S(1)-C(7)	104.93(9)
C(6)-N(1)-C(5)	110.94(16)
C(6)-N(1)-S(1)	123.83(13)
C(5)-N(1)-S(1)	118.62(13)
C(6)-N(2)-N(2)#1	113.06(19)
F(1)-C(1)-F(3)	106.6(3)
F(1)-C(1)-F(2)	106.0(2)
F(3)-C(1)-F(2)	105.3(2)
F(1)-C(1)-C(2)	114.7(2)
F(3)-C(1)-C(2)	111.9(2)
F(2)-C(1)-C(2)	111.6(2)
C(1)-C(2)-C(3)	113.5(2)
C(1)-C(2)-H(2A)	106.1
C(3)-C(2)-H(2A)	111.6
C(1)-C(2)-H(2B)	105.7
C(3)-C(2)-H(2B)	108.9
H(2A)-C(2)-H(2B)	111.0
C(6)-C(3)-C(2)	114.45(16)
C(6)-C(3)-C(4)	103.33(16)
C(2)-C(3)-C(4)	114.14(17)
C(6)-C(3)-H(3)	108.2
C(2)-C(3)-H(3)	108.2
C(4)-C(3)-H(3)	108.2
C(5)-C(4)-C(3)	105.29(17)
C(5)-C(4)-H(4A)	113.1
C(3)-C(4)-H(4A)	113.3
C(5)-C(4)-H(4B)	108.2
C(3)-C(4)-H(4B)	107.1
H(4A)-C(4)-H(4B)	109.5
N(1)-C(5)-C(4)	101.97(16)
N(1)-C(5)-H(5A)	109.0
C(4)-C(5)-H(5A)	111.8
N(1)-C(5)-H(5B)	108.0
C(4)-C(5)-H(5B)	113.4

H(5A)-C(5)-H(5B)	112.0
N(2)-C(6)-N(1)	120.03(17)
N(2)-C(6)-C(3)	131.85(17)
N(1)-C(6)-C(3)	108.04(15)
C(12)-C(7)-C(8)	120.6(2)
C(12)-C(7)-S(1)	119.18(17)
C(8)-C(7)-S(1)	120.25(17)
C(9)-C(8)-C(7)	118.6(2)
C(9)-C(8)-H(8)	120.7
C(7)-C(8)-H(8)	120.7
C(10)-C(9)-C(8)	122.0(3)
С(10)-С(9)-Н(9)	119.0
C(8)-C(9)-H(9)	119.0
C(11)-C(10)-C(9)	117.9(2)
C(11)-C(10)-C(13)	121.1(3)
C(9)-C(10)-C(13)	120.9(3)
C(10)-C(11)-C(12)	121.7(2)
С(10)-С(11)-Н(11)	119.2
С(12)-С(11)-Н(11)	119.2
C(11)-C(12)-C(7)	119.2(2)
С(11)-С(12)-Н(12)	120.4
C(7)-C(12)-H(12)	120.4
С(10)-С(13)-Н(13А)	109.5
С(10)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(10)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(4)-S(2)-O(3)	119.78(12)
O(4)-S(2)-N(3)	107.92(10)
O(3)-S(2)-N(3)	104.58(11)
O(4)-S(2)-C(20)	109.69(12)
O(3)-S(2)-C(20)	107.69(12)
N(3)-S(2)-C(20)	106.34(11)
C(19)-N(3)-C(18)	110.71(19)
C(19)-N(3)-S(2)	126.05(16)
C(18)-N(3)-S(2)	120.10(16)
C(19)-N(4)-N(4)#2	112.4(2)

F(4)-C(14)-F(6)	105.9(3)
F(4)-C(14)-F(5)	106.4(3)
F(6)-C(14)-F(5)	105.6(3)
F(4)-C(14)-C(15)	114.4(3)
F(6)-C(14)-C(15)	111.3(2)
F(5)-C(14)-C(15)	112.5(2)
C(14)-C(15)-C(16)	112.9(2)
C(14)-C(15)-H(15A)	105.0
C(16)-C(15)-H(15A)	112.3
C(14)-C(15)-H(15B)	107.1
C(16)-C(15)-H(15B)	110.4
H(15A)-C(15)-H(15B)	108.8
C(19)-C(16)-C(15)	115.23(18)
C(19)-C(16)-C(17)	103.93(19)
C(15)-C(16)-C(17)	113.2(2)
C(19)-C(16)-H(16)	108.1
C(15)-C(16)-H(16)	108.1
C(17)-C(16)-H(16)	108.1
C(18)-C(17)-C(16)	105.7(2)
C(18)-C(17)-H(17A)	108.0
C(16)-C(17)-H(17A)	109.8
C(18)-C(17)-H(17B)	112.6
C(16)-C(17)-H(17B)	108.7
H(17A)-C(17)-H(17B)	111.8
N(3)-C(18)-C(17)	102.1(2)
N(3)-C(18)-H(18A)	109.3
C(17)-C(18)-H(18A)	111.6
N(3)-C(18)-H(18B)	109.8
C(17)-C(18)-H(18B)	112.7
H(18A)-C(18)-H(18B)	111.0
N(4)-C(19)-N(3)	120.3(2)
N(4)-C(19)-C(16)	131.87(19)
N(3)-C(19)-C(16)	107.73(18)
C(21)-C(20)-C(25)	120.4(3)
C(21)-C(20)-S(2)	120.2(2)
C(25)-C(20)-S(2)	119.3(2)
C(20)-C(21)-C(22)	119.6(3)
C(20)-C(21)-H(21)	120.2

C(22)-C(21)-H(21)	120.2
C(23)-C(22)-C(21)	121.9(4)
C(23)-C(22)-H(22)	119.1
C(21)-C(22)-H(22)	119.1
C(22)-C(23)-C(24)	118.4(3)
C(22)-C(23)-C(26)	121.6(4)
C(24)-C(23)-C(26)	120.0(4)
C(23)-C(24)-C(25)	121.0(3)
C(23)-C(24)-H(24)	119.5
C(25)-C(24)-H(24)	119.5
C(20)-C(25)-C(24)	118.7(3)
C(20)-C(25)-H(25)	120.6
C(24)-C(25)-H(25)	120.6
C(23)-C(26)-H(26A)	109.5
C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2 #2 -x+2,y,-z+3/2

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	36(1)	48(1)	35(1)	-2(1)	12(1)	0(1)
F(1)	88(1)	173(2)	62(1)	24(1)	49(1)	-4(1)
F(2)	66(1)	132(2)	110(1)	0(1)	43(1)	-38(1)
F(3)	76(1)	99(1)	158(2)	22(1)	69(1)	29(1)
O(1)	40(1)	65(1)	41(1)	1(1)	5(1)	3(1)
O(2)	46(1)	59(1)	48(1)	-8(1)	22(1)	2(1)
N(1)	39(1)	47(1)	25(1)	0(1)	11(1)	-2(1)
N(2)	36(1)	53(1)	28(1)	-2(1)	13(1)	-1(1)
C(1)	51(1)	76(2)	63(2)	14(1)	28(1)	0(1)
C(2)	47(1)	52(1)	40(1)	6(1)	20(1)	-4(1)

SI-93

C(3)	43(1)	39(1)	30(1)	3(1)	18(1)	4(1)
C(4)	53(1)	72(2)	30(1)	2(1)	19(1)	-2(1)
C(5)	52(1)	60(1)	27(1)	-1(1)	16(1)	-1(1)
C(6)	38(1)	33(1)	29(1)	1(1)	14(1)	0(1)
C(7)	38(1)	46(1)	42(1)	-1(1)	17(1)	-7(1)
C(8)	70(2)	57(2)	43(1)	3(1)	14(1)	-15(1)
C(9)	80(2)	68(2)	58(2)	20(1)	16(1)	-7(2)
C(10)	65(2)	52(2)	79(2)	10(1)	35(2)	-3(1)
C(11)	66(2)	52(2)	73(2)	-12(1)	32(1)	-11(1)
C(12)	52(1)	54(1)	46(1)	-4(1)	17(1)	-5(1)
C(13)	121(3)	56(2)	120(3)	20(2)	59(2)	7(2)
S(2)	67(1)	52(1)	52(1)	-3(1)	37(1)	4(1)
F(4)	65(1)	180(2)	87(1)	26(1)	4(1)	14(1)
F(5)	132(2)	108(2)	60(1)	23(1)	22(1)	-13(1)
F(6)	144(2)	94(1)	67(1)	-27(1)	7(1)	-15(1)
O(3)	87(1)	71(1)	73(1)	0(1)	58(1)	14(1)
O(4)	74(1)	68(1)	55(1)	-7(1)	30(1)	-9(1)
N(3)	48(1)	58(1)	55(1)	2(1)	31(1)	2(1)
N(4)	48(1)	58(1)	44(1)	0(1)	26(1)	0(1)
C(14)	77(2)	68(2)	57(2)	0(1)	17(1)	-6(2)
C(15)	55(1)	43(1)	52(1)	0(1)	18(1)	-4(1)
C(16)	48(1)	41(1)	52(1)	-6(1)	19(1)	-8(1)
C(17)	47(1)	91(2)	69(2)	5(2)	21(1)	-4(1)
C(18)	52(2)	80(2)	77(2)	2(2)	36(1)	-4(1)
C(19)	47(1)	39(1)	46(1)	-3(1)	25(1)	-4(1)
C(20)	74(2)	55(1)	51(1)	1(1)	37(1)	8(1)
C(21)	92(2)	78(2)	95(2)	20(2)	63(2)	24(2)
C(22)	131(3)	87(3)	119(3)	32(2)	83(3)	48(2)
C(23)	156(4)	66(2)	68(2)	13(2)	56(2)	35(2)
C(24)	134(3)	58(2)	86(2)	2(2)	44(2)	-10(2)
C(25)	83(2)	65(2)	85(2)	4(2)	39(2)	0(2)
C(26)	263(6)	68(2)	101(3)	23(2)	82(4)	57(3)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Y.

у

z

U(eq)

H(2A)	4047	355	7896	54
H(2B)	4440	-260	8480	54
H(3)	4627	1632	8587	44
H(4A)	5101	1143	9676	61
H(4B)	5367	216	9471	61
H(5A)	6079	1912	9578	56
H(5B)	6451	954	9848	56
H(8)	6151	2327	7529	71
H(9)	5934	3853	7251	86
H(11)	7074	4563	9153	75
H(12)	7272	3045	9456	61
H(13A)	6501	5487	7619	143
H(13B)	6611	5735	8369	143
H(13C)	5815	5487	7833	143
H(15A)	9183	3607	6435	61
H(15B)	8679	4228	6616	61
H(16)	8538	2323	6656	57
H(17A)	7821	3753	7063	83
H(17B)	7517	2801	6709	83
H(18A)	7824	3006	7955	80
H(18B)	7942	1979	7697	80
H(21)	10560	1605	9069	96
H(22)	10856	80	9238	122
H(24)	8804	-518	9000	111
H(25)	8495	1028	8854	91
H(26A)	9653	-1706	9279	212
H(26B)	10503	-1454	9624	212
H(26C)	10129	-1606	8834	212

3. Compound 4aa-anti:

CCDC number: 2189918

Table 1. Crystal data and structure refinement f	for 4aa-<i>anti</i> .		
Identification code	4aa- <i>anti</i>		
Empirical formula	C26 H28 F6 N4 O4 S2		
Formula weight	638.66		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 9.6979(5) Å	α= 90°.	
	b = 13.7295(6) Å	β=117.729(3)°.	
	c = 11.9468(5) Å	$\gamma = 90^{\circ}$.	
Volume	1408.01(12) Å ³		
Z	2		
Density (calculated)	1.506 Mg/m ³		
Absorption coefficient	0.270 mm ⁻¹		
F(000)	660		
Crystal size	0.210 x 0.200 x 0.180 mm ³		
Theta range for data collection	2.700 to 27.500°.		
Index ranges	-12<=h<=12, -17<=k<=17, -15<=l<=15		
Reflections collected	51146		
Independent reflections	3225 [R(int) = 0.0300]		
Completeness to theta = 25.242°	99.7 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3225 / 0 / 191		
Goodness-of-fit on F ²	1.051		
Final R indices [I>2sigma(I)]	R1 = 0.0308, wR2 = 0.0753		
R indices (all data)	R1 = 0.0346, wR2 = 0.0784		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.357 and -0.384 e.Å ⁻³ SI-96		

	х	у	Z	U(eq)
S(1)	-1868(1)	-2352(1)	-1411(1)	18(1)
F(1)	2498(1)	-1686(1)	4532(1)	34(1)
F(2)	3576(1)	-468(1)	4139(1)	56(1)
F(3)	1750(1)	-247(1)	4669(1)	44(1)
O(1)	-1676(1)	-1904(1)	-2413(1)	25(1)
O(2)	-2053(1)	-3387(1)	-1415(1)	28(1)
N(1)	-387(1)	-431(1)	-317(1)	16(1)
N(2)	-310(1)	-2118(1)	-56(1)	17(1)
C(1)	2206(2)	-802(1)	3979(1)	27(1)
C(2)	990(2)	-824(1)	2618(1)	20(1)
C(3)	1554(1)	-1244(1)	1712(1)	18(1)
C(4)	1936(2)	-2338(1)	1857(1)	23(1)
C(5)	407(2)	-2846(1)	976(1)	21(1)
C(6)	229(1)	-1178(1)	372(1)	15(1)
C(7)	-3424(1)	-1776(1)	-1308(1)	17(1)
C(8)	-4258(2)	-1048(1)	-2162(1)	20(1)
C(9)	-5503(2)	-610(1)	-2078(1)	23(1)
C(10)	-5900(2)	-886(1)	-1143(1)	23(1)
C(11)	-5021(2)	-1604(1)	-281(1)	23(1)
C(12)	-3793(2)	-2062(1)	-359(1)	20(1)
C(13)	-7295(2)	-441(1)	-1097(2)	32(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for Y. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles $[\circ]$ for Y.

S(1)-O(2)	1.4309(10)
S(1)-O(1)	1.4326(10)
S(1)-N(2)	1.6525(11)
S(1)-C(7)	1.7586(12)
F(1)-C(1)	1.3479(17)
F(2)-C(1)	1.3320(18)
F(3)-C(1)	1.3395(18)

N(1)-C(6) $1.2739(16)$ $N(1)$ -N(1)#1 $1.418(2)$ $N(2)$ -C(6) $1.3981(16)$ $N(2)$ -C(5) $1.4853(16)$ $C(1)$ $C(2)$
N(1)-N(1)#1 $1.418(2)$ $N(2)-C(6)$ $1.3981(16)$ $N(2)-C(5)$ $1.4853(16)$ $C(1)-C(2)$ $1.5025(12)$
N(2)-C(6) 1.3981(16) N(2)-C(5) 1.4853(16)
N(2)-C(5) 1.4855(16)
C(1)-C(2) 1.5005(18)
C(2) - C(3) 1.5551(17)
C(2)-H(2A) 0.9900
C(2)-H(2B) 0.9900
C(3)-C(6) 1.518/(16)
C(3)-C(4) 1.5375(18)
C(3)-H(3) 1.0000
C(4)-C(5) 1.530(2)
C(4)-H(4A) 0.9900
C(4)-H(4B) 0.9900
C(5)-H(5A) 0.9900
C(5)-H(5B) 0.9900
C(7)-C(8) 1.3874(18)
C(7)-C(12) 1.3943(18)
C(8)-C(9) 1.3940(19)
C(8)-H(8) 0.9500
C(9)-C(10) 1.392(2)
C(9)-H(9) 0.9500
C(10)-C(11) 1.394(2)
C(10)-C(13) 1.5093(18)
C(11)-C(12) 1.3886(19)
С(11)-Н(11) 0.9500
С(12)-Н(12) 0.9500
C(13)-H(13A) 0.9800
C(13)-H(13B) 0.9800
С(13)-Н(13С) 0.9800
O(2)-S(1)-O(1) 119.22(6)
O(2)-S(1)-N(2) 104.60(6)
O(1)-S(1)-N(2) 108.65(6)
O(1)-S(1)-N(2)108.65(6)O(2)-S(1)-C(7)109.67(6)
O(1)-S(1)-N(2)108.65(6)O(2)-S(1)-C(7)109.67(6)O(1)-S(1)-C(7)108.35(6)
O(1)-S(1)-N(2)108.65(6)O(2)-S(1)-C(7)109.67(6)O(1)-S(1)-C(7)108.35(6)N(2)-S(1)-C(7)105.50(6)

C(6)-N(2)-C(5)	111.52(10)
C(6)-N(2)-S(1)	123.62(9)
C(5)-N(2)-S(1)	122.97(9)
F(2)-C(1)-F(3)	108.02(13)
F(2)-C(1)-F(1)	105.74(13)
F(3)-C(1)-F(1)	105.39(11)
F(2)-C(1)-C(2)	112.99(11)
F(3)-C(1)-C(2)	111.09(12)
F(1)-C(1)-C(2)	113.13(12)
C(1)-C(2)-C(3)	114.42(11)
C(1)-C(2)-H(2A)	108.7
C(3)-C(2)-H(2A)	108.7
C(1)-C(2)-H(2B)	108.7
C(3)-C(2)-H(2B)	108.7
H(2A)-C(2)-H(2B)	107.6
C(6)-C(3)-C(2)	108.42(10)
C(6)-C(3)-C(4)	102.64(10)
C(2)-C(3)-C(4)	115.72(11)
C(6)-C(3)-H(3)	109.9
C(2)-C(3)-H(3)	109.9
C(4)-C(3)-H(3)	109.9
C(5)-C(4)-C(3)	105.21(10)
C(5)-C(4)-H(4A)	110.7
C(3)-C(4)-H(4A)	110.7
C(5)-C(4)-H(4B)	110.7
C(3)-C(4)-H(4B)	110.7
H(4A)-C(4)-H(4B)	108.8
N(2)-C(5)-C(4)	101.13(10)
N(2)-C(5)-H(5A)	111.5
C(4)-C(5)-H(5A)	111.5
N(2)-C(5)-H(5B)	111.5
C(4)-C(5)-H(5B)	111.5
H(5A)-C(5)-H(5B)	109.4
N(1)-C(6)-N(2)	121.53(11)
N(1)-C(6)-C(3)	129.84(11)
N(2)-C(6)-C(3)	108.62(10)
C(8)-C(7)-C(12)	121.22(12)
C(8)-C(7)-S(1)	119.87(10)

C(12)-C(7)-S(1)	118.92(10)
C(7)-C(8)-C(9)	119.11(12)
C(7)-C(8)-H(8)	120.4
C(9)-C(8)-H(8)	120.4
C(10)-C(9)-C(8)	120.77(13)
C(10)-C(9)-H(9)	119.6
C(8)-C(9)-H(9)	119.6
C(9)-C(10)-C(11)	118.94(12)
C(9)-C(10)-C(13)	120.42(14)
C(11)-C(10)-C(13)	120.60(13)
C(12)-C(11)-C(10)	121.27(12)
C(12)-C(11)-H(11)	119.4
C(10)-C(11)-H(11)	119.4
C(11)-C(12)-C(7)	118.66(12)
C(11)-C(12)-H(12)	120.7
C(7)-C(12)-H(12)	120.7
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
С(10)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z

U^{11} U^{22} U^{33} U^{23} U^{13} S(1) 19(1) 19(1) 18(1) -4(1) 10(1) F(1) 45(1) 38(1) 21(1) 13(1) 15(1) F(2) 38(1) 93(1) 24(1) 3(1) 4(1) F(2) 71(1) 26(1) 23(1) 4(1) 21(1)	
S(1) $19(1)$ $19(1)$ $18(1)$ $-4(1)$ $10(1)$ $F(1)$ $45(1)$ $38(1)$ $21(1)$ $13(1)$ $15(1)$ $F(2)$ $38(1)$ $93(1)$ $24(1)$ $3(1)$ $4(1)$ $F(3)$ $71(1)$ $36(1)$ $23(1)$ $4(1)$	U ¹²
F(1) $45(1)$ $38(1)$ $21(1)$ $13(1)$ $15(1)$ $F(2)$ $38(1)$ $93(1)$ $24(1)$ $3(1)$ $4(1)$ $F(3)$ $71(1)$ $26(1)$ $23(1)$ $4(1)$	0(1)
F(2) $38(1)$ $93(1)$ $24(1)$ $3(1)$ $4(1)$ $F(2)$ $71(1)$ $26(1)$ $23(1)$ $4(1)$ $21(1)$	14(1)
E(2) 71(1) 26(1) 22(1) 4(1) 21(1)	-33(1)
$\Gamma(3)$ $\Gamma(1)$ $SO(1)$ $2S(1)$ $-4(1)$ $2I(1)$	4(1)
O(1) 25(1) 36(1) 18(1) -3(1) 14(1)	1(1)
O(2) 31(1) 19(1) 35(1) -9(1) 16(1)	-1(1)
N(1) 15(1) 16(1) 16(1) 1(1) 8(1)	-1(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

N(2)	17(1)	16(1)	17(1)	2(1)	8(1)	2(1)
C(1)	32(1)	30(1)	18(1)	3(1)	11(1)	-3(1)
C(2)	21(1)	20(1)	17(1)	2(1)	8(1)	2(1)
C(3)	16(1)	20(1)	16(1)	4(1)	6(1)	4(1)
C(4)	24(1)	22(1)	20(1)	4(1)	8(1)	9(1)
C(5)	27(1)	18(1)	22(1)	6(1)	14(1)	6(1)
C(6)	13(1)	18(1)	15(1)	1(1)	8(1)	1(1)
C(7)	14(1)	18(1)	18(1)	-4(1)	8(1)	-3(1)
C(8)	19(1)	21(1)	19(1)	-1(1)	8(1)	-3(1)
C(9)	17(1)	20(1)	26(1)	-2(1)	5(1)	-1(1)
C(10)	14(1)	23(1)	28(1)	-12(1)	8(1)	-6(1)
C(11)	19(1)	30(1)	22(1)	-7(1)	12(1)	-7(1)
C(12)	18(1)	23(1)	19(1)	-1(1)	9(1)	-3(1)
C(13)	18(1)	35(1)	44(1)	-17(1)	14(1)	-3(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Y.

y -152 -1216 -865 -2488 -2548 -2548 -3474	z 2348 2547 1781 1606 2743 661	U(eq) 23 23 21 28 28 28 25
-152 -1216 -865 -2488 -2548 -3474	2348 2547 1781 1606 2743 661	23 23 21 28 28 28 25
-152 -1216 -865 -2488 -2548 -3474	2348 2547 1781 1606 2743 661	23 23 21 28 28 28 25
-1216 -865 -2488 -2548 -3474	2547 1781 1606 2743 661	23 21 28 28 25
-865 -2488 -2548 -3474	1781 1606 2743 661	21 28 28 25
-2488 -2548 -3474	1606 2743 661	28 28 25
-2548 -3474	2743 661	28 25
-3474	661	25
		-
-2960	1400	25
-852	-2795	24
-117	-2666	28
-1783	374	27
-2561	222	24
144	-1628	49
-265	-223	49
	-1410	49
	-1783 -2561 144 -265 -913	-1783 374 -2561 222 144 -1628 -265 -223 -913 -1410