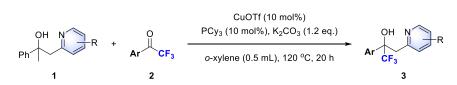
Supporting Information

Copper-Catalyzed Transfer Methylenation *via* C(sp³)-C(sp³) Bond Cleavage of Alcohols

Chuan-Ming Hong, Xin Zhuang, Zhen Luo, Si-Qi Xiong, Zheng-Qiang Liu, Qing-Lin Li, Fei-Fei Zou, Qing-Hua Li,* and Tang-Lin Liu*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

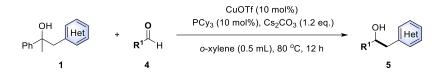
Contents:


I. General information	1
II. General procedure	1
III. Optimization of reaction conditions	3
IV. Gram scale reaction	3
V. Mechanism studies	4
VI. The analytical and spectral characterization data	8
VII. References	32
VIII. NMR spectra of the products	33
IX. The HRMS for the mixture of mechanism studies (experiment c)	94

I. General information

¹H and ¹³C NMR spectra were recorded on a Bruker Avance 600 MHZ and 400 MHZ instruments. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra (HRMS) were obtained on a Bruker Apex-2. For thin layer chromatography (TLC), Qingdao Haiyang Chemical were used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or potassium permanganate solution followed by heating using a heat gun. Flash chromatography separations were performed on Qingdao Haiyang Chemical 300-400 mesh silica gel. All reactions were carried out under a nitrogen atmosphere. All commercially available reagents were used as received for the reactions without any purification. All solvents were dried on alumina columns using a solvent dispensing system. And CuOTf comes from the vendor bidepharm. Alcohols¹, trifluoromethyl ketones^{2,3} and aldehydes⁴ are commercially available or synthesized via the known procedures.

II. General procedure


Method A (preparation of product 3):

To a vial equipped with a dried stir bar was added alcohols **1** (0.1 mmol), ketones **2** (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), K₂CO₃ (0.12 mmol), *o*-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 20 hours. The reaction mixture was added to water (10 mL), extracted with EtOAc (3×5 mL). The organic layer was washed with aqueous

NaHCO₃ and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give pure products.

Method B (preparation of product 5):

To a vial equipped with a dried stir bar was added alcohols 1 (0.1 mmol), aldehydes 4 (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), Cs₂CO₃ (0.12 mmol), *o*-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 12 hours. The reaction mixture was added to water (10 mL), extracted with EtOAc (3×5 mL). The organic layer was washed with aqueous NaHCO₃ and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give pure products.

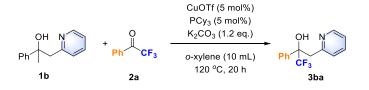
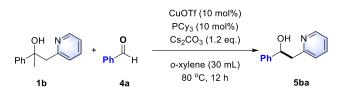
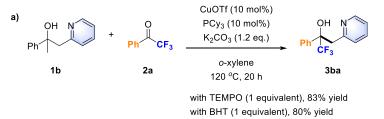

III. Optimization of reaction conditions

Table S1: Optimization of reaction conditions for preparation of secondary alcohol (5ba)

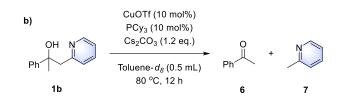

	Ph + Ph	[Cu] (10 mol%) PCy ₃ (10 mol%) Cs ₂ CO ₃ (1.2 eq H <i>o</i> -xylene (0.5 ml Temp., Time		
Entry ^a	[Cu]	Temp.	Time	Yield $(\%)^b$
1	CuOTf	120 °C	20 h	43
2	Cu(OTf) ₂	120 °C	20 h	32
3	CuCl	120 °C	20 h	30
4	Cu(OAc) ₂	120 °C	20 h	31
5	CuOTf	100 °C	20 h	47
6	CuOTf	80 °C	20 h	55
7	CuOTf	60 °C	20 h	45
8	CuOTf	80 °C	24 h	44
9	CuOTf	80 °C	12 h	69
10^{c}	-	80 °C	12 h	0
11 ^c	CuOTf	80 °C	12 h	0
12^{d}	CuOTf	80 °C	12 h	0

^{*a*}The reaction was carried out with 0.1 mmol of **1b**, 0.1 mmol of **4a**, 0.01 mmol [Cu], 0.01 mmol PCy₃, 1.2 equivalent Cs₂CO₃ in 0.5 mL of *o*-xylene under N₂ at corresponding temperature and time. ^{*b*}Isolated yields. ^{*c*}Without PCy₃. ^{*d*}Without Cs₂CO₃.

IV. Gram scale reaction

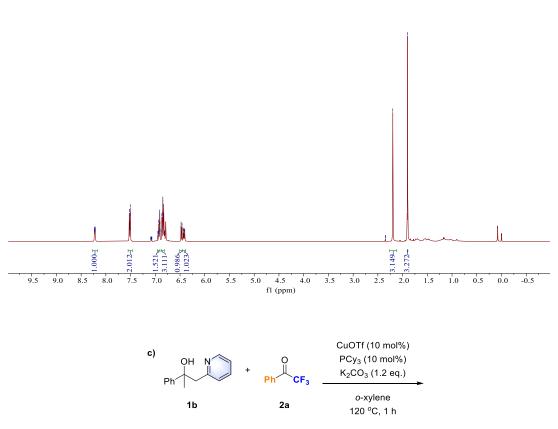


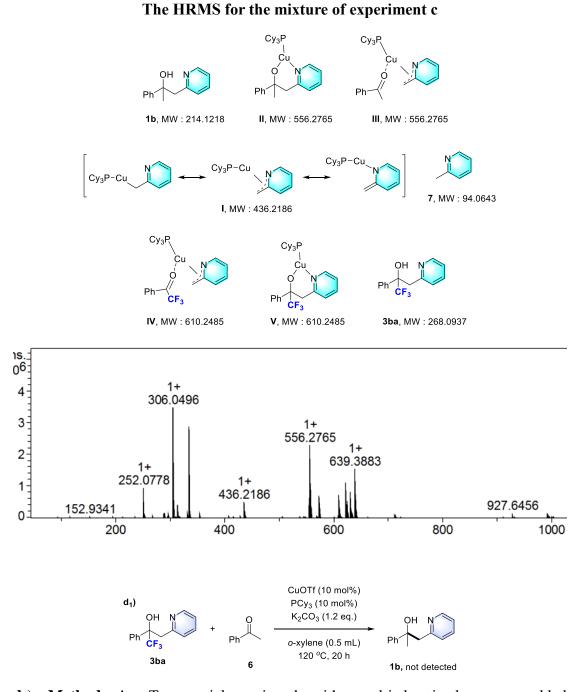
То vial equipped with a dried stir bar added 2-phenyl a was -1-(pyridin-2-yl)propan-2-ol 1b (6 mmol), 2,2,2-trifluoro-1-phenylethan-1-one 2a (6 mmol), CuOTf (5 mol%), PCy₃ (5 mol%), K₂CO₃ (7.2 mmol), o-xylene (10 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 20 hours. The reaction mixture was added to water (30 mL), extracted with EtOAc (3×25 mL). The organic layer was washed with aqueous NaHCO₃ and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give 1.36 g of product 3ba with 85% isolated yield.



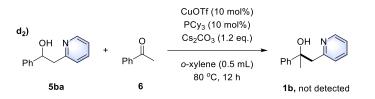
To added a vial equipped with а dried stir bar was 2-phenyl-1-(pyridin-2-yl)propan-2-ol 1b (6 mmol), benzaldehyde 4a (6 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), Cs₂CO₃ (7.2 mmol), *o*-xylene (30 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 12 hours. The reaction mixture was added to water (30 mL), extracted with EtOAc (3×25 mL). The organic layer was washed with aqueous NaHCO₃ and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give 0.54 g of product **5ba** with 46% isolated yield.

V. Mechanism studies


with a dried stir bar was a) To а vial equipped added 2-phenyl -1-(pyridin-2-yl)propan-2-ol 1b (0.1 mmol), 2,2,2-trifluoro-1-phenylethan-1-one 2a (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), K₂CO₃ (0.12 mmol), TEMPO (0.1 mmol) or BHT (0.1 mmol), o-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 20 hours. The reaction mixture was added to water (10 mL), extracted with EtOAc (3×5 mL). The organic layer was washed with aqueous NaHCO3 and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give product 3ba with 83% isolated yield (with TEMPO) and 80% isolated yield (with BHT), which could rule out the free radical mechanistic pathways.


b) То vial equipped with dried stir bar added a a was 2-phenyl-1-(pyridin-2-yl)propan-2-ol 1b (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), Cs₂CO₃ (0.12 mmol), toluene- d_8 (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 12 hours. The reaction mixture was detected by TLC, we found the starting substrate (compound 1b) was decomposed with 100% conversion, and the decomposed products acetophenone 6 and 2-methylpyridine 7 were observed with >95% ¹HNMR yields. The ¹HNMR of the reaction mixture was also tested. The NMR shows that under the copper catalyst, 2-phenyl-1-(pyridin-2-yl)propan-2-ol 1b could cleavage C(sp³)-C(sp³) bond, and led to 2-methylpyridine (ppm: 2.20, 8.24-8.20), acetophenone (ppm: 1.90) as it shown below. All these results support the cleavage $C(sp^3)$ - $C(sp^3)$ bond.

The ¹H NMR of the reaction mixture of experiment b



c) To a vial equipped with a dried stir bar was added 2-phenyl -1-(pyridin-2-yl)propan-2-ol **1b** (0.1 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), K₂CO₃ (0.12 mmol), *o*-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 1 hour. The crude reaction mixture was given HRMS. As it shown below (for more details see part IX), we found the fragment of starting materials **1b**, some intermediates e.g. **I-V** and **7**, and product **3ba**. All these results could prove the formation of Cu-C(2-pyridine methyl) bond.

d₁) **Method A:** To a vial equipped with a dried stir bar was added 1,1,1-trifluoro-2-phenyl-3-(pyridin-2-yl)propan-2-ol **3ba** (0.1 mmol), acetophenone **6** (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), K₂CO₃ (0.12 mmol), *o*-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 20 hours. The reaction mixture was detected by TLC, all the starting materials were recovered.

d₂) **Method B:** To a vial equipped with a dried stir bar was added 1-phenyl-2-(pyridin-2-yl)ethan-1-ol **5ba** (0.1 mmol), acetophenone **6** (0.1 mmol), CuOTf (10 mol%), PCy₃ (10 mol%), Cs₂CO₃ (0.12 mmol), *o*-xylene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at corresponding temperature for 12 hours. The reaction mixture was detected by TLC, most of the starting materials were recovered and trace amounts of by-products such as 2-styrylpyridine, 1-phenyl-2-(pyridin-2-yl)ethan-1-one and 2-methylpyridine were obtained with low conversion.

VI. The analytical and spectral characterization data

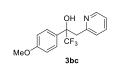
1,1,1-trifluoro-2-phenyl-3-(pyridin-2-yl)propan-2-ol (3ba)⁵

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.60 in hexane:ethyl acetate = 10:1) resulting in 22.1 mg of yellow solid in 83% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.40-8.36 (m, 1H), 8.05 (s, 1H), 7.67-7.61 (m, 2H), 7.56 (td, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.34-7.27 (m, 2H), 7.27-7.21 (m, 1H), 7.13-7.08 (m, 2H), 3.60 (d, *J* = 14.8 Hz, 1H), 3.47 (d, *J* = 14.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.15, 148.10, 138.58, 137.53, 128.26, 128.16, 126.86,
125.41 (q, J = 286.6 Hz), 124.72, 122.28, 77.42 (q, J = 28.4 Hz), 40.09.
¹⁹F NMR (376 MHz, CDCl₃) δ -79.16.

1,1,1-trifluoro-3-(pyridin-2-yl)-2-(p-tolyl)propan-2-ol (3bb)


The title compound was prepared according to the general procedure as $_{Me}$ $_{3bb}$ $_{3bb}$ described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.43 in hexane:ethyl acetate = 10:1) resulting in 19.7 mg of yellow solid in 70% yield, melting point 74-76 °C.

¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, *J* = 5.4 Hz, 1H), 7.98 (s, 1H), 7.59-7.54 (m, 1H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.14-7.07 (m, 4H), 3.58 (d, *J* = 14.4 Hz, 1H), 3.45 (d, *J* = 15.0 Hz, 1H), 2.29 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 157.30, 148.12, 137.98, 137.49, 135.62, 128.91, 126.77,
125.46 (q, *J* = 285.8 Hz), 124.73, 122.24, 77.34 (q, *J* = 28.4 Hz), 40.10, 21.12.
¹⁹F NMR (376 MHz, CDCl₃) δ -79.37.

HRMS (m/z): $[M+H]^+$ calcd for C₁₅H₁₅F₃NO 282.1100, found 282.1100.

1,1,1-trifluoro-2-(4-methoxyphenyl)-3-(pyridin-2-yl)propan-2-ol (3bc)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.30 in hexane:ethyl

acetate = 10:1) resulting in 25.2 mg of yellow solid in 85% yield, melting point 77-79 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, *J* = 5.4 Hz, 1H), 7.98 (s, 1H), 7.60-7.55 (m, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.14-7.08 (m, 2H), 6.88-6.79 (m, 2H), 3.76 (s, 3H), 3.57 (d, *J* = 14.4 Hz, 1H), 3.45 (d, *J* = 15.0 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 159.52, 157.29, 148.12, 137.50, 130.60, 128.17, 125.46
(q, J = 285.8 Hz), 124.75, 122.23, 113.55, 77.17 (q, J = 28.4 Hz), 55.29, 40.07.
¹⁹F NMR (376 MHz, CDCl₃) δ -79.63.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₅F₃NO₂ 298.1049, found 298.1051.

1,1,1-trifluoro-2-(4-fluorophenyl)-3-(pyridin-2-yl)propan-2-ol (3bd)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.43 in hexane:ethyl

acetate = 10:1) resulting in 21.1 mg of yellow solid in 74% yield, melting point 79-81 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 4.8 Hz, 1H), 8.12 (s, 1H), 7.63-7.59 (m, 3H), 7.16-7.12 (m, 1H), 7.11 (d, J = 7.8 Hz, 1H), 6.97 (t, J = 9.0 Hz, 2H), 3.59 (d, J = 15.0 Hz, 3.59 (d, J = 15.0 Hz)1H), 3.44 (d, *J* = 15.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.72 (d, J = 248.0 Hz), 156.91, 148.12, 137.65, 134.37 (d, J = 3.2 Hz), 128.81 (d, J = 8.3 Hz), 125.26 (q, J = 286.3 Hz), 124.72, 122.41, 115.08 (d, *J* = 21.6 Hz), 77.17 (q, *J* = 28.7 Hz), 39.99.

¹⁹F NMR (376 MHz, CDCl₃) δ -79.52, -114.44.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂F₄NO 286.0850, found 286.0849.

2-(4-chlorophenyl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3be)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.43 in hexane:ethyl acetate = 10:1) resulting in 24.1 mg of yellow oil in 80% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 5.4 Hz, 1H), 8.13 (s, 1H), 7.61-7.57 (m, 1H),

7.56 (d, J = 8.4 Hz, 2H), 7.32-7.21 (m, 2H), 7.16-7.12 (m, 1H), 7.10 (d, J = 7.8 Hz, 1H),3.58 (d, J = 15.0 Hz, 1H), 3.43 (d, J = 15.0 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.34, 148.55, 137.43, 136.83, 133.51, 129.45, 128.33, 125.78 (q, J = 287.9 Hz), 125.40, 122.65, 76.84 (q, J = 27.8 Hz), 40.18. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.44.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂ClF₃NO 302.0554, found 302.0550.

2-(4-bromophenyl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bf)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.43 in hexane:ethyl

acetate = 10:1) resulting in 19.7 mg of yellow solid in 57% yield, melting point 84-86 *°*С.

¹H NMR (400 MHz, CDCl₃) δ 8.40-8.36 (m, 1H), 7.59 (td, J = 7.6 Hz, 1.6 Hz, 1H),

7.51-7.47 (m, 2H), 7.44-7.42 (m, 1H), 7.42-7.39 (m, 1H), 7.17-7.12 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 3.58 (d, J = 15.2 Hz, 1H), 3.42 (d, J = 15.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.77, 148.16, 137.75, 137.70, 131.37, 130.08 (q, J =286.7 Hz), 128.77, 124.71, 122.69, 122.47, 77.28 (q, *J* = 28.4 Hz), 39.75. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.39.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂BrF₃NO 346.0049, found 346.0047.

2-([1,1'-biphenyl]-4-yl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bg)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.52 in hexane:ethyl

acetate = 10:1) resulting in 30.8 mg of yellow solid in 90% yield, melting point 79-81 *°*С.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 4.8 Hz, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.64-7.57 (m, 1H), 7.59-7.50 (m, 4H), 7.46-7.37 (m, 2H), 7.36-7.29 (m, 1H), 7.17-7.10 (m, 2H), 3.64 (d, J = 15.2 Hz, 1H), 3.51 (d, J = 15.2 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.72, 148.52, 140.26, 139.81, 137.49, 137.10, 129.38, 128.08, 127.11, 126.56, 126.00 (q, J = 287.9 Hz), 125.43, 122.64, 77.21 (q, J = 28.3 Hz), 40.18.

¹⁹F NMR (376 MHz, CDCl₃) δ -79.09.

HRMS (m/z): $[M+H]^+$ calcd for C₂₀H₁₇F₃NO 344.1257, found 344.1255.

1,1,1-trifluoro-3-(pyridin-2-yl)-2-(*m*-tolyl)propan-2-ol (3bh)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.48 in hexane:ethyl acetate = 10:1) resulting in 23.0 mg of white oil in 82% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.48-8.33 (m, 1H), 8.04 (s, 1H), 7.59 (td, J = 8.0 Hz, 2.0 Hz, 1H), 7.46 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.15-7.09 (m, 2H), 7.09-7.04 (m, 1H), 3.59 (d, J = 14.8 Hz, 1H), 3.45 (d, J = 14.8 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.21, 148.04, 138.51, 137.78, 137.57, 129.03, 128.01, 127.55, 125.47 (q, J = 286.8 Hz), 124.72, 123.82, 122.28, 77.37 (q, J = 28.3 Hz), 40.19,21.67.

¹⁹F NMR (376 MHz, CDCl₃) δ -78.98.

HRMS (m/z): $[M+H]^+$ calcd for C₁₅H₁₅F₃NO 282.1100, found 282.1100.

2-(3-chlorophenyl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bi)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.45 in hexane:ethyl acetate = 10:1) resulting in 28.0 mg of yellow oil in 93% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.45-8.36 (m, 1H), 8.20 (s, 1H), 7.65 (s, 1H), 7.63-7.57 (m, 1H), 7.53-7.45 (m, 1H), 7.25-7.21 (m, 2H), 7.18-7.08 (m, 2H), 3.59 (d, J = 15.2 Hz)1H), 3.42 (d, *J* = 14.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.69, 148.14, 140.80, 137.73, 134.41, 129.44, 128.55, 127.37, 125.12 (q, J = 286.8 Hz), 125.03, 124.70, 122.49, 77.20 (q, J = 29.3 Hz), 39.86.

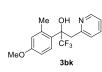
¹⁹F NMR (376 MHz, CDCl₃) δ -79.15.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂ClF₃NO 302.0554, found 302.0553.

2-(3,5-difluorophenyl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bj)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.45 in hexane:ethyl

acetate = 10:1) resulting in 24.2 mg of white solid in 80% yield, melting point 73-75 °C.


¹H NMR (400 MHz, CDCl₃) δ 8.42-8.39 (m, 1H), 8.36-8.22 (m, 1H), 7.62 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.22-7.09 (m, 4H), 6.70 (tt, *J* = 8.8 Hz, 2.0 Hz, 1H), 3.57 (d, *J* = 14.8 Hz, 1H), 3.38 (d, *J* = 15.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.00 (d, *J* = 249.1 Hz), 162.88 (d, *J* = 249.1 Hz), 156.38, 148.19, 142.87 (t, *J* = 8.6 Hz), 137.85, 124.88 (q, *J* = 286.8 Hz), 124.69, 122.63, 110.34 (d, *J* = 19.6 Hz), 110.27 (d, *J* = 19.4 Hz), 103.88 (t, *J* = 25.5 Hz), 77.23 (q, *J* = 28.5 Hz), 39.77.

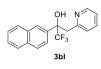
¹⁹F NMR (376 MHz, CDCl₃) δ -79.20, -109.50.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₁F₅NO 304.0755, found 304.0753.

1,1,1-trifluoro-2-(4-methoxy-2-methylphenyl)-3-(pyridin-2-yl)propan-2-ol (3bk)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.21 in hexane:ethyl

acetate = 10:1) resulting in 15.2 mg of yellow oil in 49% yield.


¹H NMR (400 MHz, CDCl₃) δ 8.41-8.34 (m, 1H), 7.61 (td, J = 8.0 Hz, 2.0 Hz, 1H), 7.43-7.31 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.15-7.08 (m, 1H), 6.64-6.58 (m, 2H), 3.73 (s, 3H), 3.66 (d, J = 15.2 Hz, 1H), 3.59 (d, J = 15.2 Hz, 1H), 2.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.02, 157.76, 148.05, 140.76, 137.50, 129.90, 127.93, 125.94 (q, *J* = 287.5 Hz), 124.78, 122.19, 118.51, 110.51, 79.74 (q, *J* = 28.6 Hz), 55.14, 40.43, 23.47.

¹⁹F NMR (376 MHz, CDCl₃) δ -79.03.

HRMS (m/z): $[M+H]^+$ calcd for C₁₆H₁₇F₃NO₂ 312.1206, found 312.1204.

1,1,1-trifluoro-2-(naphthalen-2-yl)-3-(pyridin-2-yl)propan-2-ol (3bl)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.55 in hexane:ethyl

acetate = 10:1) resulting in 28.5 mg of yellow solid in 90% yield, melting point

75-77°C.

¹H NMR (400 MHz, CDCl₃) δ 8.40-8.36 (m, 1H), 8.17-8.14 (m, 1H), 7.85-7.82 (m, 1H), 7.81-7.76 (m, 2H), 7.75-7.70 (m, 1H), 7.54 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.47 (dt, *J* = 9.6 Hz, 3.6 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.10-7.06 (m, 1H), 3.71 (d, *J* = 14.8 Hz, 1H), 3.60 (d, *J* = 15.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.02, 148.05, 137.62, 135.97, 133.09, 133.04, 128.61,
127.84, 127.56, 126.85, 126.52, 126.23, 125.48 (q, *J* = 286.8 Hz), 124.74, 124.26,
122.33, 77.64 (q, *J* = 28.4 Hz), 40.04.

¹⁹F NMR (376 MHz, CDCl₃) δ -78.96.

HRMS (m/z): $[M+H]^+$ calcd for C₁₈H₁₅F₃NO 318.1100, found 318.1100.

1,1,1-trifluoro-3-(pyridin-2-yl)-2-(thiophen-2-yl)propan-2-ol (3bm)⁵

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf=0.67 in hexane:ethyl acetate = 10:1)

resulting in 23.2 mg of yellow solid in 85% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.46-8.37 (m, 1H), 7.60 (td, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.21 (dd, *J* = 5.2 Hz, 1.6 Hz, 1H), 7.18-7.13 (m, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 4.0 Hz, 1H), 6.92 (dd, *J* = 4.8 Hz, 3.6 Hz, 1H), 3.58 (d, *J* = 14.8 Hz, 1H), 3.42 (d, *J* = 14.8 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.35, 148.49, 142.54, 137.49, 127.47, 127.00, 126.41, 125.45, 125.36 (q, *J* = 287.0 Hz), 122.73, 76.56 (q, *J* = 29.2 Hz), 41.30.
¹⁹F NMR (376 MHz, CDCl₃) δ -80.58.

2-(benzo[b]thiophen-2-yl)-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bn)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.41 in hexane:ethyl

acetate = 10:1) resulting in 29.7 mg of yellow solid in 92% yield, melting point 79-81

*°*С.

¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H), 8.44-8.32 (m, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.57 (td, *J* = 7.8 Hz, 1.8 Hz, 1H), 7.35 (s, 1H), 7.31-7.23 (m, 2H), 7.18-7.10 (m, 2H), 3.63 (d, *J* = 15.0 Hz, 1H), 3.49 (d, *J* = 15.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.55, 148.01, 144.11, 140.08, 139.72, 137.79, 124.87, 124.72 (q, *J* = 286.4 Hz), 124.48, 124.31, 123.86, 122.66, 122.55, 122.26, 77.16 (q, *J* = 30.1 Hz), 40.50.

¹⁹F NMR (376 MHz, CDCl₃) δ -80.13.

HRMS (m/z): $[M+H]^+$ calcd for C₁₆H₁₃F₃NOS 324.0664, found 324.0664.

1,1,1-trifluoro-3-(pyridin-2-yl)-2-(quinolin-6-yl)propan-2-ol (3bo)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.15 in hexane:ethyl

acetate = 10:1) resulting in 20.7 mg of yellow oil in 65% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.42-8.33 (m, 1H), 8.28 (s, 1H), 8.19-8.12 (m, 2H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.97-7.90 (m, 1H), 7.56 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.39 (dd, *J* = 8.4 Hz, 4.4 Hz, 1H), 7.19-7.07 (m, 2H), 3.71 (d, *J* = 15.2 Hz, 1H), 3.59 (d, *J* = 14.8 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.42, 151.62, 148.55, 147.64, 137.40, 136.90, 136.02, 128.81, 128.57, 127.52, 127.48, 126.00 (q, J = 288.5 Hz), 125.41, 122.62, 122.21, 77.20 (q, J = 27.7 Hz), 40.38.

¹⁹F NMR (376 MHz, CDCl₃) δ -78.94.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₇H₁₄F₃N₂O 319.1053, found 319.1049.

2-ferrocenyl-1,1,1-trifluoro-3-(pyridin-2-yl)propan-2-ol (3bp)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) ($\mathbf{R}f = 0.55$ in hexane:ethyl acetate =

10:1) resulting in 18.0 mg of yellow solid in 48% yield, melting point 104-106 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.55-8.50 (m, 1H), 7.89 (s, 1H), 7.69 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.25-7.22 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 4.56-4.43 (m, 1H), 4.25-4.19 (m, 6H), 4.17-4.13 (m, 2H), 3.60 (d, *J* = 14.8 Hz, 1H), 3.40 (d, *J* = 14.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.89, 148.18, 137.64, 125.60 (q, J = 289.8 Hz), 124.38, 122.29, 90.23, 75.37 (q, J = 27.9 Hz), 69.19, 68.13, 67.75, 67.41, 66.74, 41.18. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.08.

HRMS (m/z): $[M+H]^+$ calcd for C₁₈H₁₇F₃FeNO 376.0606, found 376.0601.

1,1,1-trifluoro-3-(6-methylpyridin-2-yl)-2-phenylpropan-2-ol (3ca)⁶

The title compound was prepared according to the general procedure as GF_3 GF_3

¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.71-7.58 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.34-7.28 (m, 2H), 7.27-7.22 (m, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 3.55 (d, *J* = 14.8 Hz, 1H), 3.41 (d, *J* = 14.8 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.21, 156.36, 138.78, 137.74, 128.20, 128.14, 126.88, 125.46 (q, *J* = 286.7 Hz), 121.89, 121.60, 77.36 (q, *J* = 28.2 Hz), 39.90, 24.17.

¹⁹F NMR (376 MHz, CDCl₃) δ -79.12.

1,1,1-trifluoro-3-(6-fluoropyridin-2-yl)-2-phenylpropan-2-ol (3da)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.70 in hexane:ethyl acetate = 10:1)

resulting in 16.5 mg of yellow solid in 58% yield, melting point 84-86 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.69-7.62 (m, 1H), 7.62-7.58 (m, 2H), 7.36-7.24 (m, 3H), 6.98 (dd, *J* = 7.2 Hz, 2.0 Hz, 1H), 6.76 (dd, *J* = 8.0 Hz, 2.4 Hz, 1H), 6.50 (s, 1H), 3.56 (d, *J* = 15.2 Hz, 1H), 3.48 (d, *J* = 15.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.38 (d, J = 245.23 Hz), 155.57 (d, J = 11.6 Hz), 142.28 (d, J = 8.1 Hz), 137.80, 128.49, 128.30, 126.78, 125.21 (q, J = 286.7 Hz), 121.95 (d, J = 4.2 Hz), 108.22 (d, J = 35.0 Hz), 77.38 (q, J = 28.8 Hz), 40.35. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.27, -79.18.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂F₄NO 286.0850, found 286.0849.

3-(6-chloropyridin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (3ea)

The title compound was prepared according to the general procedure as $GH \to GF_3$ $GH \to GF_3$ $GH \to GF_3$

¹H NMR (400 MHz, CDCl₃) δ 7.64-7.57 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.35-7.24 (m, 3H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.74 (s, 1H), 3.57 (d, *J* = 14.8 Hz, 1H), 3.47 (d, *J* = 15.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.59, 150.31, 139.85, 137.85, 128.48, 128.31, 126.74, 125.24 (q, *J* = 286.7 Hz), 123.16, 123.01, 77.58 (q, *J* = 28.7 Hz), 40.51.

¹⁹F NMR (376 MHz, CDCl₃) δ -79.10.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂ClF₃NO 302.0554, found 302.0553.

3-(4-chloropyridin-2-yl)-1,1,1-trifluoro-2-phenylpropan-2-ol (3fa)

The title compound was prepared according to the general procedure as $3f_a$ $3f_a$ $3f_a$ $3f_a$ $3f_a$ $3f_a$ 17.0 mg of yellow oil in 56% yield. The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed $3f_a$ 17.0 mg of yellow oil in 56% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 5.4 Hz, 1H), 7.66-7.58 (m, 3H), 7.33 (t, J = 7.8 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.16 (s, 1H), 3.59 (d, J = 15.0 Hz, 1H), 3.46 (d, J = 15.0 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 158.71, 149.06, 145.59, 138.19, 128.48, 128.32, 126.78, 125.28 (q, J = 286.0 Hz), 125.03, 122.86, 77.36 (q, J = 28.5 Hz), 40.24.

¹⁹F NMR (565 MHz, CDCl₃) δ -79.13.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₂ClF₃NO 302.0554, found 302.0552.

1-phenyl-2-(pyridin-2-yl)ethan-1-ol (5ba)⁷

The title compound was prepared according to the general procedure as OH N described, silica gel flash column chromatography was performed using 5ba hexanes and ethyl acetate (10:1) (Rf = 0.31 in hexane:ethyl acetate = 3:1)

resulting in 13.7 mg of colorless solid in 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.0 Hz, 1H), 7.61 (td, J = 7.6 Hz, 2.0 Hz, 1H), 7.46-7.39 (m, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28-7.22 (m, 1H), 7.20-7.15 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 5.66 (s, 1H), 5.17 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 3.21-3.02 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 159.94, 148.74, 144.24, 136.96, 128.44, 127.40, 125.98, 123.94, 121.83, 73.48, 45.88.

1-(4-chlorophenyl)-2-(pyridin-2-yl)ethan-1-ol (5bb)⁷

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.20 in hexane:ethyl acetate = 3:1) resulting in 9.6 mg of white solid in 41% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.57-8.46 (m, 1H), 7.65-7.58 (m, 1H), 7.40-7.28 (m, 4H), 7.21-7.17 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H), 5.92 (s, 1H), 5.15 (t, J = 6.0 Hz, 1H), 3.09 (d, J = 6.0 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.57, 148.70, 142.77, 137.08, 133.00, 128.56, 127.37, 123.95, 121.97, 72.81, 45.58.

2-(pyridin-2-yl)-1-(p-tolyl)ethan-1-ol (5bc)⁷

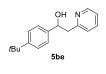
The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.25 in hexane:ethyl acetate = 3:1) resulting in 13.6 mg of white solid in 64% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.56-8.47 (m, 1H), 7.61 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.38-7.28 (m, 2H). 7.21-7.12 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 1H), 5.54 (s, 1H), 5.14 (dd, *J* = 8.8 Hz, 3.6 Hz, 1H), 3.36-2.51 (m, 2H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.01, 148.73, 141.31, 136.96, 136.91, 129.11, 125.91, 123.94, 121.77, 73.32, 45.96, 21.22.

1-([1,1'-biphenyl]-4-yl)-2-(pyridin-2-yl)ethan-1-ol (5bd)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) ($\mathbf{R}f = 0.28$ in hexane:ethyl


acetate = 3:1) resulting in 12.4 mg of white solid in 45% yield, melting point 129-131 o C.

¹H NMR (400 MHz, CDCl₃) δ 8.57-8.53 (m, 1H), 7.64 (dd, J = 7.6 Hz, 2.0 Hz, 1H), 7.62-7.56 (m, 4H), 7.51-7.48 (m, 2H), 7.45-7.40 (m, 2H), 7.37-7.30 (m, 1H), 7.21-7.17 (m, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.73 (s, 1H), 5.22 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 3.29-3.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.93, 148.77, 143.31, 141.18, 140.37, 137.03, 128.87, 127.31, 127.24, 126.44, 123.99, 121.90, 73.27, 45.78.

HRMS (m/z): $[M+H]^+$ calcd for C₁₉H₁₈NO 276.1383, found 276.1382.

1-(4-(tert-butyl)phenyl)-2-(pyridin-2-yl)ethan-1-ol (5be)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.38 in hexane:ethyl

acetate = 3:1) resulting in 8.4 mg of yellow solid in 33% yield, melting point 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59-8.49 (m, 1H), 7.62 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.41-7.36 (m, 4H), 7.20-7.16 (m, 1H), 7.15-7.11 (m, 1H), 5.14 (dd, *J* = 9.2 Hz, 3.2 Hz, 1H), 3.26-2.89 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 160.13, 150.36, 148.77, 141.20, 136.93, 125.74, 125.38, 123.95, 121.79, 73.30, 45.87, 34.63, 31.53.

HRMS (m/z): $[M+H]^+$ calcd for C₁₇H₂₂NO 256.1696, found 256.1696.

1-(4-(methylthio)phenyl)-2-(pyridin-2-yl)ethan-1-ol (5bf)

MeS 5bf

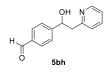
The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.29 in hexane:ethyl

acetate = 3:1) resulting in 13.7 mg of yellow solid in 56% yield, melting point 114-116 o C.

¹H NMR (400 MHz, CDCl₃) δ 8.56-8.49 (m, 1H), 7.61 (td, J = 7.6 Hz, 2.0 Hz, 1H), 7.38-7.30 (m, 2H), 7.25-7.22 (m, 2H), 7.20-7.15 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 5.70 (s, 1H), 5.13 (dd, J = 7.6 Hz, 4.0 Hz, 1H), 3.12-3.06 (m, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.82, 148.73, 141.36, 137.25, 137.01, 127.00, 126.55,

123.96, 121.88, 73.08, 45.71, 16.26.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₄H₁₆NOS 246.0947, found 246.0947.


4-(1-hydroxy-2-(pyridin-2-yl)ethyl)benzonitrile (5bg)⁷

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.28 in hexane:ethyl acetate = 3:1) resulting in 10.0 mg of white solid in 45% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, *J* = 5.4 Hz, 1H), 7.66-7.60 (m, 3H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.23-7.19 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 5.25-5.19 (m, 1H), 3.18-2.96 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.20, 149.66, 148.76, 137.26, 132.34, 126.72, 123.94, 122.19, 119.06, 111.23, 72.81, 45.08.

4-(1-hydroxy-2-(pyridin-2-yl)ethyl)benzaldehyde (5bh)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.28 in hexane:ethyl

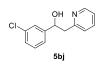
acetate = 3:1) resulting in 8.0 mg of white oil in 35% yield.

¹H NMR (600 MHz, CDCl₃) δ 10.00 (s, 1H), 8.54 (d, *J* = 4.8, 1H), 7.86 (d, *J* = 7.2Hz, 2H), 7.66-57 (m, 3H), 7.21 (t, *J* = 6.0 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 5.26 (dd, *J* = 9.0 Hz, 3.6 Hz, 1H), 3.20-3.17 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 192.20, 159.34, 151.20, 148.69, 137.24, 135.72, 130.04, 126.57, 123.96, 122.14, 73.07, 45.16.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₄H₁₄NO₂ 228.1019, found 228.1017.

1-(2-chlorophenyl)-2-(pyridin-2-yl)ethan-1-ol (5bi)


The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.42 in hexane:ethyl acetate = 3:1) resulting in 18.4 mg of yellow oil in 79% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.55-8.51 (m, 1H), 7.66 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.62 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.33 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.29-7.24 (m, 1H), 7.21-7.16 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 1H), 5.50 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 3.25 (dd, *J* = 15.2 Hz, 2.4 Hz, 1H), 3.00 (dd, *J* = 14.8 Hz, 8.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.83, 148.63, 141.49, 137.12, 131.54, 129.30, 128.34, 127.63, 127.13, 123.89, 121.96, 70.23, 43.53.

HRMS (m/z): $[M+H]^+$ calcd for C₁₃H₁₃ClNO 234.0680, found 234.0679.

1-(3-chlorophenyl)-2-(pyridin-2-yl)ethan-1-ol (5bj)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.50 in hexane:ethyl

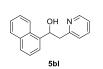
acetate = 3:1) resulting in 13.7 mg of yellow solid in 59% yield, melting point 95-97 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.55-8.49 (m, 1H), 7.65-7.59 (m, 1H), 7.45-7.42 (m, 1H), 7.32-7.15 (m, 4H), 7.10 (d, J = 8.0 Hz, 1H), 5.93 (s, 1H), 5.14 (t, J = 6.4 Hz, 1H), 3.10 (d, J = 6.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.58, 148.73, 146.38, 137.12, 134.41, 129.72, 127.50, 126.27, 124.14, 123.94, 122.01, 72.85, 45.47.

HRMS (m/z): $[M+H]^+$ calcd for C₁₃H₁₃ClNO 234.0680, found 234.0680.

1-(3-methoxyphenyl)-2-(pyridin-2-yl)ethan-1-ol (5bk)


as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.11 in hexane:ethyl acetate = 3:1) resulting in 14.9 mg of yellow solid in 65% yield, melting point 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56-8.51 (m, 1H), 7.62 (td, J = 7.6 Hz, 1.6 Hz, 1H), 7.28-7.23 (m, 1H), 7.20-7.15 (m, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.04-6.96 (m, 2H), 6.82-6.78 (m, 1H), 5.65 (s, 1H), 5.15 (dd, J = 7.2 Hz, 4.8 Hz, 1H), 3.81 (s, 3H), 3.25-2.99 (m, 2H).

The title compound was prepared according to the general procedure

¹³C NMR (101 MHz, CDCl₃) δ 159.94, 159.91, 148.75, 145.99, 137.00, 129.45, 123.98, 121.87, 118.34, 113.18, 111.40, 73.41, 55.38, 45.83.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₆NO₂ 230.1176, found 230.1177.

1-(naphthalen-1-yl)-2-(pyridin-2-yl)ethan-1-ol (5bl)⁸

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.40 in hexane:ethyl

acetate = 3:1) resulting in 19.4 mg of yellow solid in 78% yield, melting point 110-112 *°*С.

¹H NMR (400 MHz, CDCl₃) δ 8.66-8.57 (m, 1H), 8.18-8.09 (m, 1H), 7.91-7.85 (m, 1H), 7.82-7.73 (m, 2H), 7.65-7.59 (m, 1H), 7.55-7.44 (m, 3H), 7.22 (dd, *J* = 7.6 Hz, 4.8 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 5.99-5.94 (m, 1H), 5.87 (s, 1H), 3.53-2.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.15, 148.88, 139.64, 137.03, 133.95, 130.40, 129.11, 127.84, 126.07, 125.76, 125.45, 123.89, 123.36, 123.14, 121.94, 70.21, 45.04.

1-(furan-2-yl)-2-(pyridin-2-yl)ethan-1-ol (5bm)⁷

The title compound was prepared according to the general procedure as finite relation to the general procedure as described, silica gel flash column chromatography was performed usinghexanes and ethyl acetate (10:1) (Rf = 0.15 in hexane:ethyl acetate = 3:1)resulting in 12.7 mg of yellow oil in 67% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.54-8.49 (m, 1H), 7.63 (td, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.37 (dd, *J* = 2.0 Hz, 0.8 Hz, 1H), 7.21-7.12 (m, 2H), 6.31 (dd, *J* = 3.2 Hz, 1.6 Hz, 1H), 6.24-6.22 (m, 1H), 5.20 (dd, *J* = 8.4 Hz, 3.6 Hz, 1H), 3.39-3.16 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.52, 156.48, 148.72, 141.86, 137.01, 123.97, 121.91, 110.26, 105.96, 67.47, 41.94.

2-(pyridin-2-yl)-1-(thiophen-2-yl)ethan-1-ol (5bn)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.30 in hexane:ethyl acetate = 3:1)

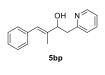
resulting in 16.0 mg of yellow solid in 78% yield, melting point 48-50 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.53-8.49 (m, 1H), 7.63 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.21 (dd, *J* = 4.8 Hz, 1.2 Hz, 1H), 7.20-7.16 (m, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.00-6.89 (m, 2H), 5.97 (s, 1H), 5.44 (t, *J* = 5.6 Hz, 1H), 3.26 (d, *J* = 6.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.46, 148.71, 148.37, 137.04, 126.64, 124.32, 124.06, 123.26, 121.97, 69.76, 45.56.

HRMS (m/z): $[M+H]^+$ calcd for C₁₁H₁₂NOS 206.0634, found 206.0633.

(E)-4-phenyl-1-(pyridin-2-yl)but-3-en-2-ol (5bo)⁸



The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.20 in hexane:ethyl acetate = 3:1) resulting in 17.8 mg of yellow solid in 79% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.56-8.47 (m, 1H), 7.63 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.43-7.34 (m, 2H), 7.32-7.27 (m, 2H), 7.24-7.20 (m, 1H), 7.20-7.14 (m, 2H), 6.67 (dd, *J* = 16.0 Hz, 1.2 Hz, 1H), 6.30 (dd, *J* = 16.0 Hz, 6.0 Hz, 1H), 5.39 (s, 1H), 4.81-4.72 (m, 1H), 3.36-2.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.83, 148.78, 137.17, 136.95, 131.82, 130.12, 128.63, 127.58, 126.63, 123.98, 121.81, 71.90, 43.80.

(E)-3-methyl-4-phenyl-1-(pyridin-2-yl)but-3-en-2-ol (5bp)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.27 in hexane:ethyl

acetate = 3:1) resulting in 12.2 mg of yellow oil in 51% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.58-8.48 (m, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.22-7.14 (m, 3H), 6.59 (s, 1H), 4.61 (t, *J* = 6.0 Hz, 1H), 3.07 (d, *J* = 6.0 Hz, 2H), 1.94 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.11, 148.79, 139.58, 138.05, 137.00, 129.14, 128.17, 126.40, 125.55, 123.92, 121.81, 76.64, 42.41, 14.43.

HRMS (m/z): $[M+H]^+$ calcd for C₁₆H₁₈NO 240.1383, found 240.1377.

1-cyclohexyl-2-(pyridin-2-yl)ethan-1-ol (5bq)⁸

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf=0.54 in hexane:ethyl acetate = 3:1)

resulting in 10.9 mg of yellow solid in 53% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.68-8.23 (m, 1H), 7.60 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.20-6.88 (m, 2H), 4.94 (s, 1H), 3.86-3.74 (m, 1H), 3.23-2.46 (m, 2H), 2.22-1.92 (m, 1H), 1.80-1.68 (m, 3H), 1.72-1.64 (m, 1H), 1.47-1.34 (m, 1H), 1.32-1.01 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 161.01, 148.70, 136.80, 123.86, 121.49, 75.36, 43.69, 40.58, 29.17, 28.63, 26.75, 26.48, 26.39.

1-cyclopropyl-2-(pyridin-2-yl)ethan-1-ol (5br)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.15 in hexane:ethyl acetate = 3:1)

resulting in 10.9 mg of yellow oil in 67% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.56-8.40 (m, 1H), 7.63 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.22-7.10 (m, 2H), 3.40-3.27 (m, 1H), 3.14-2.93 (m, 2H), 1.03-0.91 (m, 1H), 0.59-0.51 (m, 1H), 0.50-0.46 (m, 1H), 0.45-0.38 (m, 1H), 0.26-0.17 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.37, 148.76, 136.82, 123.92, 121.61, 75.85, 43.70, 17.33, 3.27, 2.09.

HRMS (m/z): $[M+H]^+$ calcd for C₁₀H₁₄NO 164.1070, found 164.1068.

3-ethyl-1-(pyridin-2-yl)pentan-2-ol (5bs)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.35 in hexane:ethyl acetate = 3:1)

resulting in 11.6 mg of yellow oil in 60% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.53-8.44 (m, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.19-7.10 (m, 2H), 4.11-3.99 (m, 1H), 2.95-2.77 (m, 2H), 1.65-1.56 (m, 1H), 1.54-1.45 (m, 2H), 1.38-1.28 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 161.18, 148.75, 136.82, 123.83, 121.52, 72.53, 46.77, 40.52, 22.16, 21.70, 11.91.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₂H₂₀NO 194.1539, found 194.1539.

tert-butyl 4-(1-hydroxy-2-(pyridin-2-yl)ethyl)piperidine-1-carboxylate (5bt)

OH N The title compound was prepared according to the general S25

procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.28 in hexane:ethyl acetate = 3:1) resulting in 10.0 mg of white oil in 33% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, *J* = 4.8 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.19-7.10 (m, 2H), 4.24-4.04 (m, 2H), 3.85-3.76 (m, 1H), 2.98-2.80 (m, 2H), 2.73-2.59 (m, 2H), 1.95-1.87 (m, 2H), 1.75-1.65 (m, 2H), 1.59-1.53 (m, 1H), 1.45 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 160.50, 155.05, 148.72, 137.00, 123.91, 121.72, 79.40, 74.50, 42.12, 40.22, 28.64, 28.24.

HRMS (m/z): $[M+H]^+$ calcd for C₁₇H₂₇N₂O₃ 307.2016, found 307.2018.

(E)-4,8-dimethyl-1-(pyridin-2-yl)nona-3,7-dien-2-ol (5bu)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.13 in hexane:ethyl acetate = 3:1) resulting in 8.7 mg of yellow oil in 36% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 5.4 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.18-7.11 (m, 2H), 5.29 (d, *J* = 8.4 Hz, 1H), 5.09 (t, *J* = 7.2 Hz, 1H), 4.87-4.79 (m, 1H), 3.02-2.86 (m, 2H), 2.13-2.05 (m, 2H), 2.01 (t, *J* = 7.2 Hz, 2H), 1.68 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.25, 148.82, 138.24, 136.77, 131.71, 127.01, 124.22, 124.00, 121.64, 68.24, 44.15, 39.69, 26.59, 25.81, 17.83, 16.77.

HRMS (m/z): [M+H]⁺ calcd for C₁₆H₂₄NO 246.1852, found 246.1847.

4,8-dimethyl-1-(pyridin-2-yl)non-7-en-2-ol (5bv)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf=0.33 in hexane:ethyl acetate = 3:1) resulting in 6.0 mg of yellow oil in 24% yield, **5bv** was obtained as 1:1 diastereomixture. Trials to isolate each diastereomer resulted in failure. ¹H NMR (600 MHz, CDCl₃) δ 8.53-8.47 (m, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.18-7.10 (m, 2H), 5.14-5.07 (m, 1H), 4.19-4.09 (m, 1H), 2.94-2.74 (m, 2H), 2.06-1.91 (m, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.52-1.40 (m, 2H), 1.38-1.30 (m, 1H), 1.24-1.11 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.61, 148.76, 136.82, 131.22, 125.09, 123.89, 121.61,
69.27, 44.81, 44.31, 38.08, 29.45, 25.85, 25.67, 20.33, 17.80; (other isomer) 160.61,
148.76, 136.82, 131.22, 125.05, 123.89, 121.61, 68.82, 44.72, 43.63, 37.08, 29.01,
25.85, 25.57, 19.35, 17.79.

HRMS (m/z): $[M+H]^+$ calcd for C₁₆H₂₆NO 248.2009, found 248.2006.

1-((S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)-2-(pyridin-2-yl)ethan-1-ol (5bw)

OH N[⊄]

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.26 in hexane:ethyl

acetate = 3:1) resulting in 11.9 mg of yellow oil in 49% yield, **5bw** was obtained as 1:1 diastereomixture. Trials to isolate each diastereomer resulted in failure.

¹H NMR (400 MHz, CDCl₃) δ 8.50-8.46 (m, 1H), 7.61 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.17-7.11 (m, 2H), 5.78-5.72 (m, 1H), 4.84-4.62 (m, 2H), 4.51-4.22 (m, 1H), 3.04-2.86 (m, 2H), 2.37-2.25 (m, 1H), 2.24-2.04 (m, 3H), 2.01-1.93 (m, 1H), 1.90-1.81 (m, 1H), 1.73 (s, 3H), 1.57-1.42 (m, 1H).

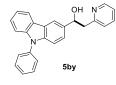
¹³C NMR (101 MHz, CDCl₃) δ 160.48, 150.09, 148.76, 136.89, 126.54,123.89, 122.65, 121.67, 108.71, 75.07, 42.48, 41.46, 30.63, 27.75, 25.35, 20.95; (other isomer) 160.38, 150.09, 148.75, 136.86, 126.0, 123.85, 121.87,121.67, 108.67, 74.95, 42.45, 41.38, 30.57, 27.72, 24.71, 20.91.

HRMS (m/z): [M+H]⁺ calcd for C₁₆H₂₂NO 244.1696, found 244.1690.

(*S*,*E*)-4-(3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl)-1-(pyridin-2-yl)but-3-en-2 -ol (5bx)

The title compound was prepared according to the general procedure

as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.10 in hexane:ethyl acetate = 3:1) resulting in 17.7 mg of yellow oil in 44% yield.


¹H NMR (600 MHz, CDCl₃) δ 8.54-8.46 (m, 1H), 7.61 (td, *J* = 7.8 Hz, 1.8 Hz, 1H), 7.55-7.48 (m, 2H), 7.38-7.33 (m, 2H), 7.19-7.12 (m, 2H), 7.11-7.02 (m, 4H), 6.73 (dd, *J* = 16.2, 1.2 Hz, 1H), 5.79 (dd, *J* = 16.2, 5.4 Hz, 1H), 4.82-4.73 (m, 1H), 4.69-4.64 (m, 1H), 3.04-2.77 (m, 2H), 1.61 (d, *J* = 7.2 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ161.49 (d, *J* = 224.5 Hz), 159.58, 148.59, 139.07, 137.03, 135.13, 134.09, 132.06 (d, *J* = 7.9 Hz), 131.90 (d, *J* = 3.2 Hz), 128.55, 124.01, 121.87, 121.71, 119.67, 119.47, 118.73, 115.31 (d, *J* = 21.1 Hz), 114.42, 111.75, 71.56, 47.77, 42.74, 21.85, 21.82.

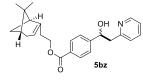
¹⁹F NMR (376 MHz, CDCl₃) δ -117.17.

HRMS (m/z): $[M+H]^+$ calcd for C₂₆H₂₆FN₂O 401.2024, found 401.2017.

(S)-1-(9-phenyl-9H-carbazol-3-yl)-2-(pyridin-2-yl)ethan-1-ol (5by)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.11 in hexane:ethyl

acetate = 3:1) resulting in 16.0 mg of yellow oil in 44% yield.


¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, *J* = 4.8 Hz, 1H), 8.23 (s, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.65-7.59 (m, 3H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.49-7.43 (m, 2H), 7.42-7.36 (m, 3H), 7.30-7.26 (m, 1H), 7.22-7.17 (m, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 5.43-5.32 (m, 1H), 3.33-3.15 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 160.11, 148.77, 141.37, 140.54, 137.95, 136.99, 136.11,
129.99, 127.52, 127.20, 126.02, 124.26, 124.02, 123.58, 123.49, 121.84, 120.50,
120.02, 117.81, 109.91, 109.73, 73.97, 46.55.

HRMS (m/z): $[M+H]^+$ calcd for C₂₅H₂₁N₂O 365.1648, found 365.1640.

2-((1S,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl-4-((S)-1-hydroxy-2-(pyr

idin-2-yl)ethyl)benzoate (5bz)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.23)

in hexane:ethyl acetate = 3:1) resulting in 18.4 mg of yellow oil in 47% yield, **5bz** was obtained as 1:1 diastereomixture. Trials to isolate each diastereomer resulted in failure. ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 5.4 Hz, 1H), 8.04-7.94 (m, 2H), 7.62 (td, J =7.8, 1.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.23-7.17 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H), 5.39-5.33 (m, 1H), 5.23 (dd, J = 8.4 Hz, 4.2 Hz, 1H), 4.37-4.25 (m, 2H), 3.26-2.97 (m, 2H), 2.45-2.40 (m, 2H), 2.38 (dt, J = 8.4 Hz, 6.0 Hz, 1H), 2.30-2.17 (m, 2H), 2.13 (td, J = 5.4 Hz, 1.8 Hz, 1H), 2.11-2.07 (m, 1H), 1.27 (s, 3H), 1.17 (d, J = 8.4 Hz, 1H), 0.84 (s, 3H); (other isomer) 8.54 (d, J = 5.4 Hz, 1H), 8.04-7.94 (m, 2H), 7.62 (td, J = 7.8, 1.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.23-7.17 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H), 5.39-5.33 (m, 1H), 5.23 (dd, J = 8.4 Hz, 4.2 Hz, 1H), 4.37-4.25 (m, 2H), 3.26-2.97 (m, 2H), 2.45-2.40 (m, 2H), 2.38 (dt, J = 8.4 Hz, 6.0 Hz, 1H), 2.30-2.17 (m, 2H), 2.13 (td, J = 5.4 Hz, 1.8 Hz, 1H), 2.11-2.07 (m, 1H), 1.27 (s, 3H), 1.17 (d, *J* = 8.4 Hz, 1H), 0.83 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.65, 159.52, 149.27, 148.69, 144.45, 137.15, 129.80, 129.54, 125.88, 123.96, 122.03, 119.05, 73.10, 63.41, 45.97, 45.34, 40.92, 38.17, 36.23, 31.84, 31.55, 26.42, 21.30.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₅H₃₀NO₃ 392.2220, found 392.2208

1-phenyl-2-(quinolin-2-yl)ethan-1-ol (5ga)⁹

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.45 in hexane:ethyl acetate = 3:1) resulting in 16.0 mg of white solid in 64% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.74-7.69 (m, 1H), 7.57-7.51 (m, 1H), 7.51-7.45 (m, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.31-7.27 (m, 1H), 7.23 (d, J = 8.4 Hz, 1H), 6.16 (s, 1H), 5.34 (dd, J = 9.0

Hz, 3.6 Hz, 1H), 3.60-2.98 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 160.71, 147.23, 144.14, 136.96, 129.97, 128.90, 128.51, 127.74, 127.45, 127.03, 126.38, 126.04, 122.24, 73.12, 46.29.

2-(5-ethylpyridin-2-yl)-1-phenylethan-1-ol (5ha)

The title compound was prepared according to the general procedure as hexanes and ethyl acetate (10:1) (Rf = 0.23 in hexane:ethyl acetate = 3:1) resulting in 12.3 mg of yellow oil in 54% yield.

¹H NMR (600 MHz, CDCl₃) δ 8.39-8.37 (m, 1H), 7.45 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.27-7.23 (m, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 5.14 (dd, *J* = 7.8 Hz, 3.6 Hz, 1H), 3.20-3.02 (m, 2H), 2.64 (q, *J* = 7.8 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 157.18, 148.31, 144.35, 137.42, 136.46, 128.44, 127.38, 126.01, 123.50, 73.62, 45.37, 25.88, 15.44.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₇NO 228.1383, found 228.1376

2-(4,6-dimethylpyridin-2-yl)-1-phenylethan-1-ol (5ia)

The title compound was prepared according to the general procedure as M_{Me} described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (R*f* = 0.27 in hexane:ethyl acetate = 3:1)

resulting in 17.3 mg of yellow oil in 76% yield.

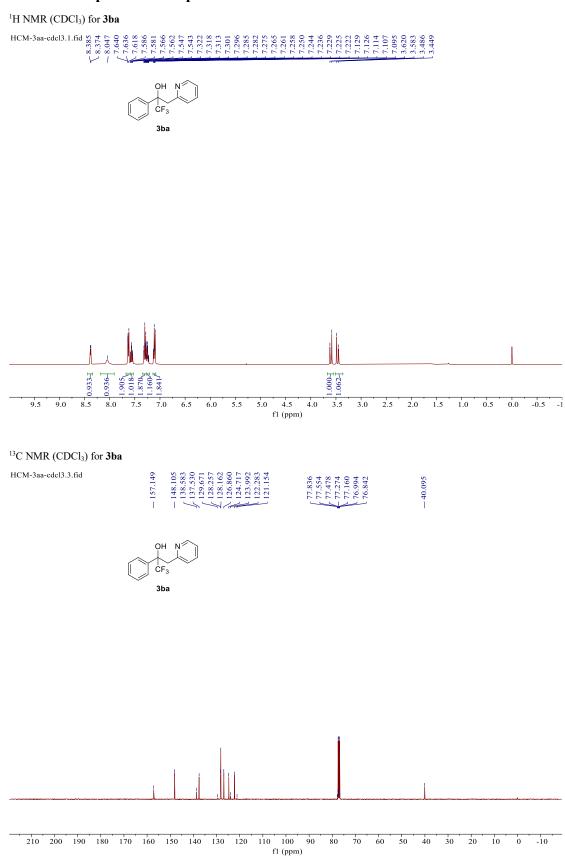
¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.27-7.24 (m, 1H), 6.87 (s, 1H), 6.74 (s, 1H), 5.10 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 3.07-2.96 (m, 2H), 2.51 (s, 3H), 2.27 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.11, 157.24, 148.47, 144.52, 128.42, 127.30, 126.00, 122.38, 121.71, 73.57, 45.39, 24.28, 21.04.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₇NO 228.1383, found 228.1375

1-phenyl-2-(pyridin-4-yl)ethan-1-ol (5ja)¹⁰

The title compound was prepared according to the general procedure as f_{3ja} described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (10:1) (Rf = 0.28 in hexane:ethyl acetate = 3:1) resulting in 5.0 mg of yellow oil in 25% yield.

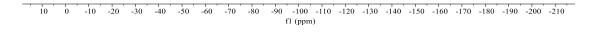

¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.37-7.27 (m, 5H), 7.10 (d, *J* = 4.8 Hz, 2H), 4.94 (dd, *J* = 8.4 Hz, 5.4 Hz, 1H), 3.09-2.96 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 149.68, 147.52, 143.66, 128.71, 128.08, 126.00, 125.07, 74.67, 45.25.

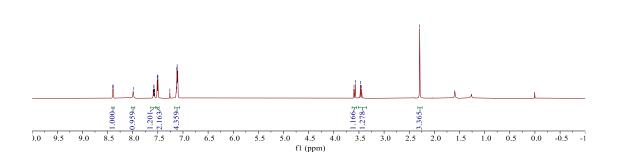
VII. References

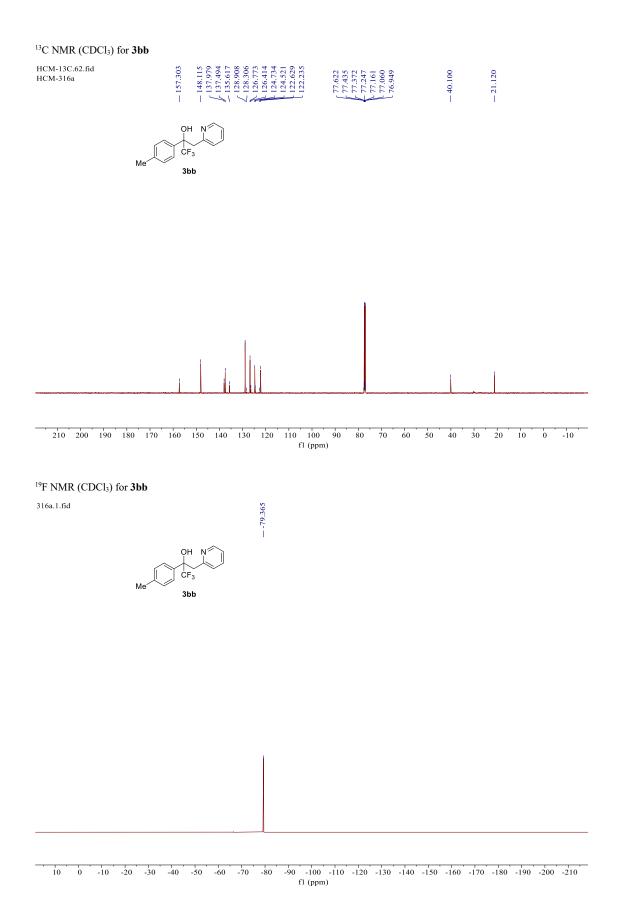
- 1. Niwa, T.; Yorimitsu H.; Oshima, K. Angew. Chem. Int. Ed., 2007, 46, 2643-2645.
- 2. Xu, X.; Min, Q.-Q.; Li, N. Liu, F. Chem. Commun., 2018, 54, 11017-11020.
- 3. Liu, X.; Liu, L.; Huang, T.; Zhang, J.; Tang, Z.; Li. C.; Chen, T. Org. Lett., 2021, 23, 4930-4934.
- 4. Wang, X.; Liu, F.; Yan, Z.; Qiang, Q.; Huang, W.; Rong, Z.-Q. ACS Catal., 2021, 11, 7319-7326.
- 5. Graves, V. B.; Shaikh, A. *Tetrahedron Lett.*, **2013**, *54*, 695-698.
- 6. Jamal, Z.; Teo, Y.-C. *RSC Adv.*, **2015**, *5*, 26949-26953.
- 7. Mao, D.; Hong, G.; Wu, S.; Liu, X.; Yu, J.; Wang, L. *Eur. J. Org. Chem.*, **2014**, 2014, 3009-3019.
- 8. Rendler, S.; Plefka, O.; Karatas, B.; Auer, G.; Fröhlich, R.; Mück-Lichtenfeld, C.; Grimme, S.; Oestreich, M. *Chem. Eur. J.*, *2008*, *14*, 11512-11528.
- 9. Nageswara Rao, N.; Meshram, H. M. Tetrahedron Lett., 2013, 54, 5087-5090.
- 10. Barrios-Rivera, J.; Xu, Y.; Clarkson, G. J.; Wills, M. Tetrahedron, 2022, 103, 132562.

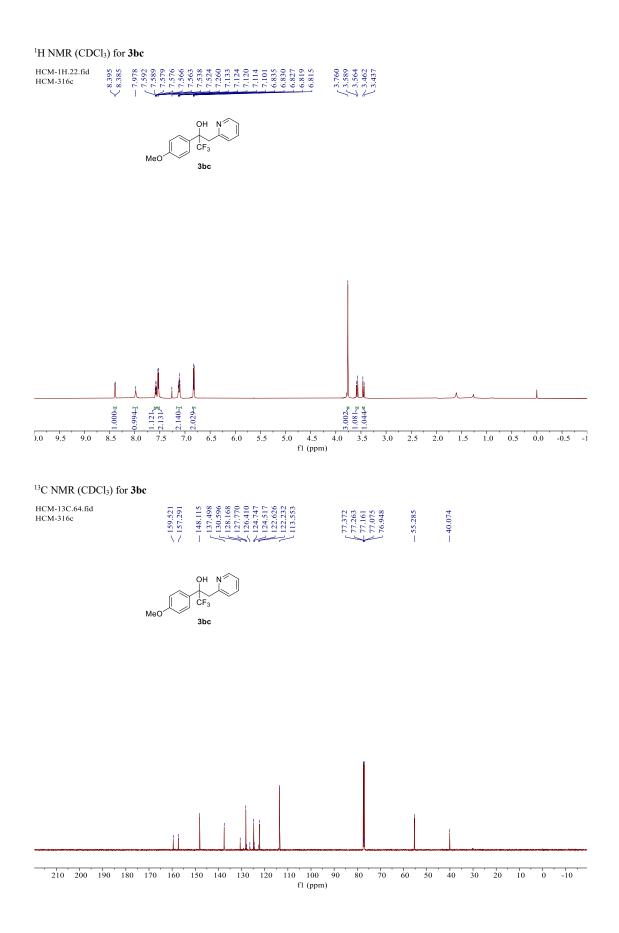
VIII. NMR spectra of the products

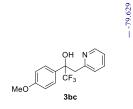


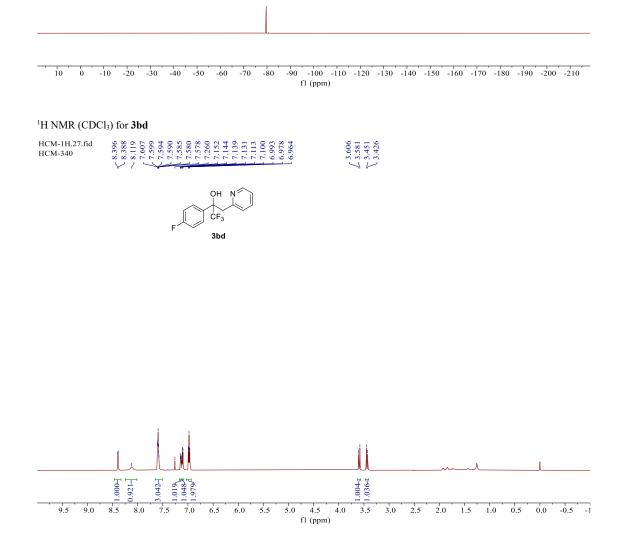
¹⁹F NMR (CDCl₃) for **3ba**

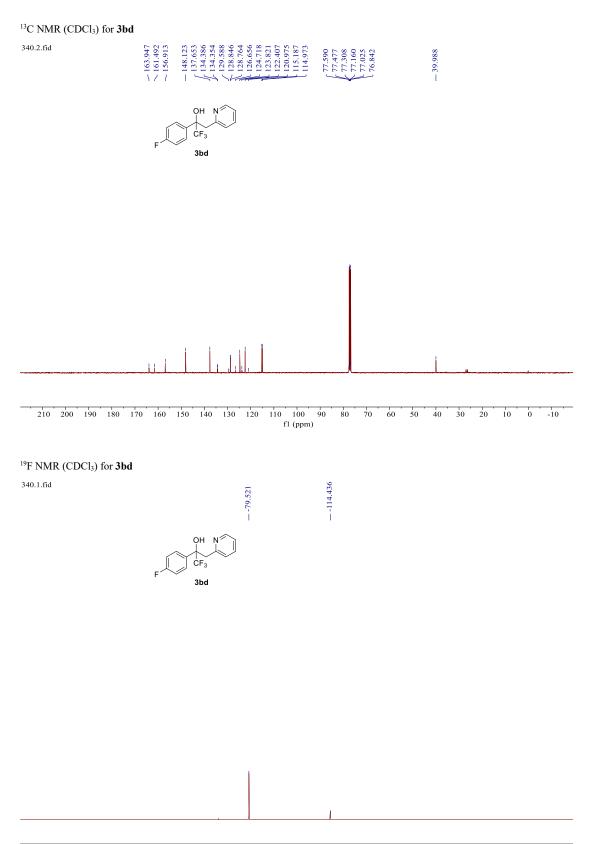

OH N CF₃





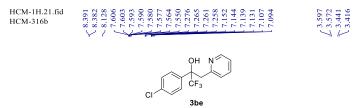


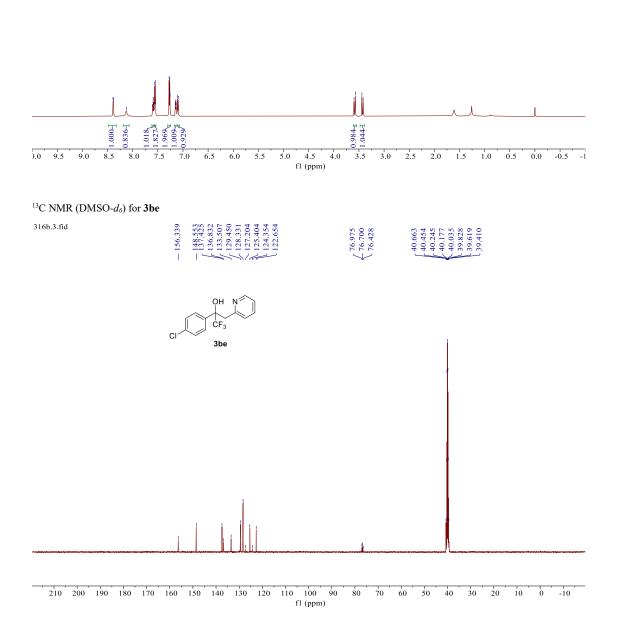




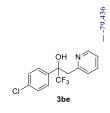
 ^{19}F NMR (CDCl₃) for 3bc

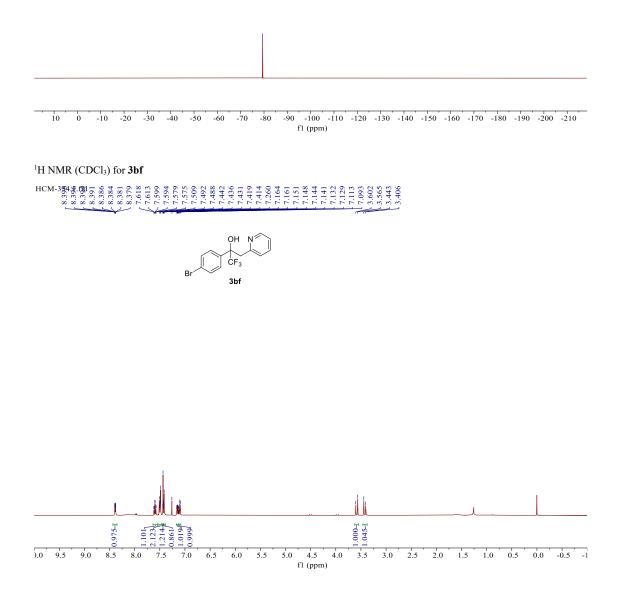
316c.1.fid

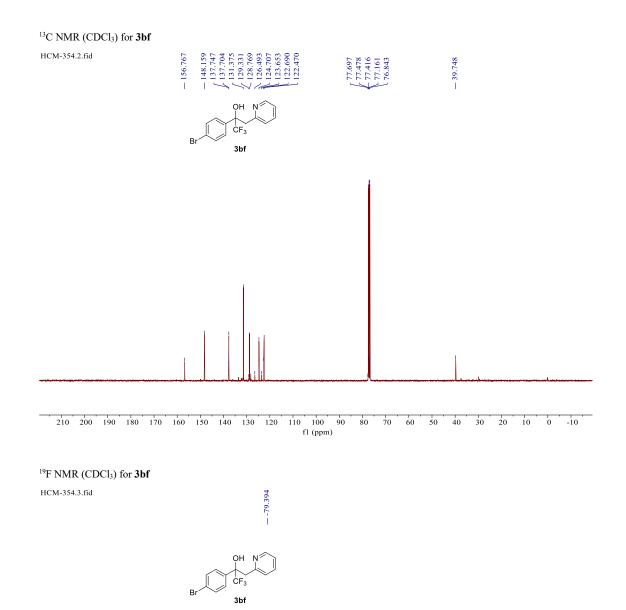


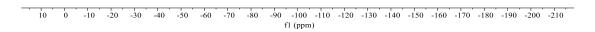


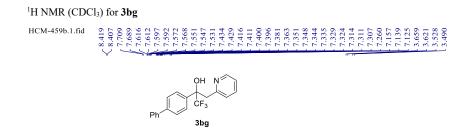
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

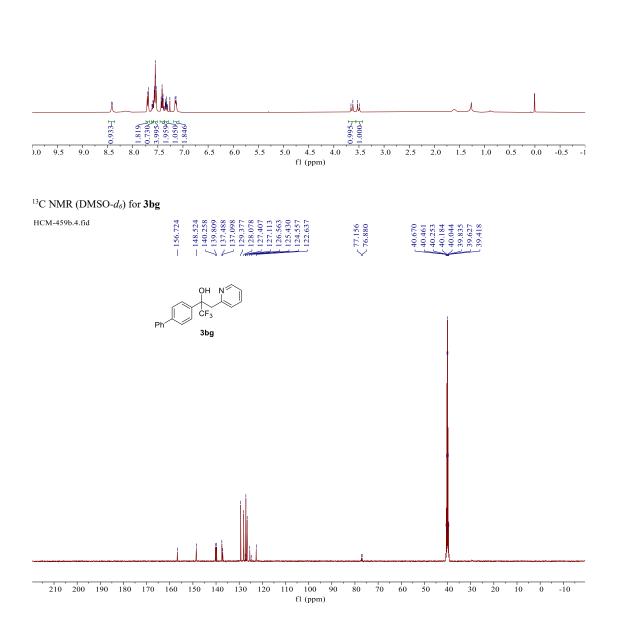


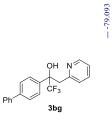


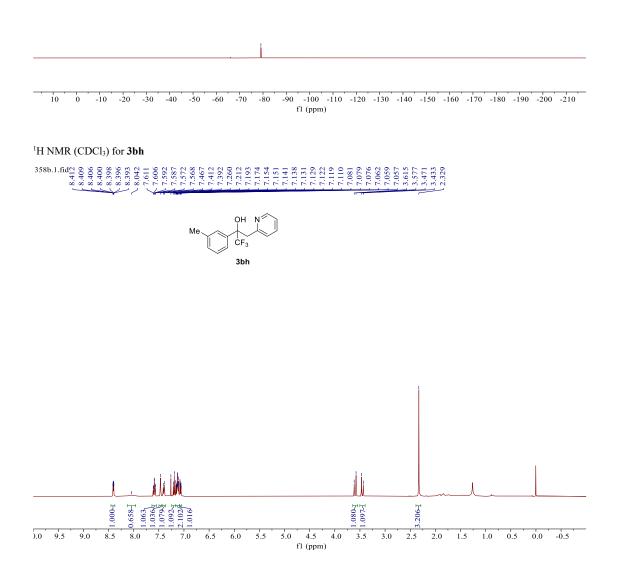



¹⁹F NMR (CDCl₃) for **3be**


316b.1.fid

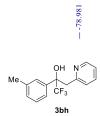


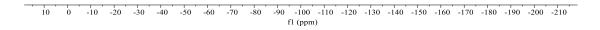


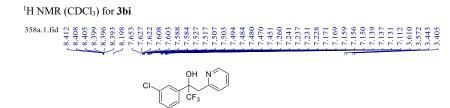


 ^{19}F NMR (CDCl₃) for **3bg**

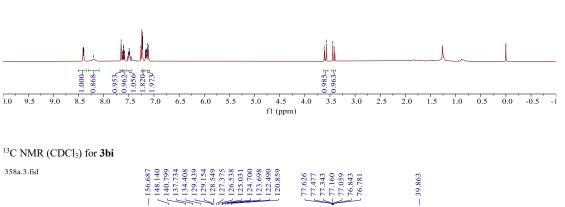
HCM-459b.3.fid

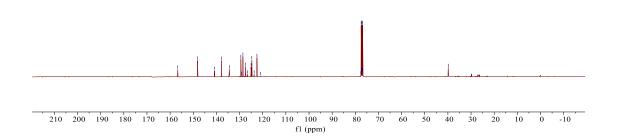




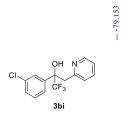

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

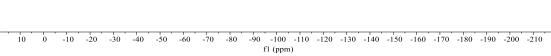
^{19}F NMR (CDCl₃) for **3bh**

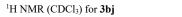

358b.2.fid



3bi

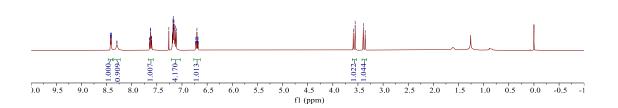


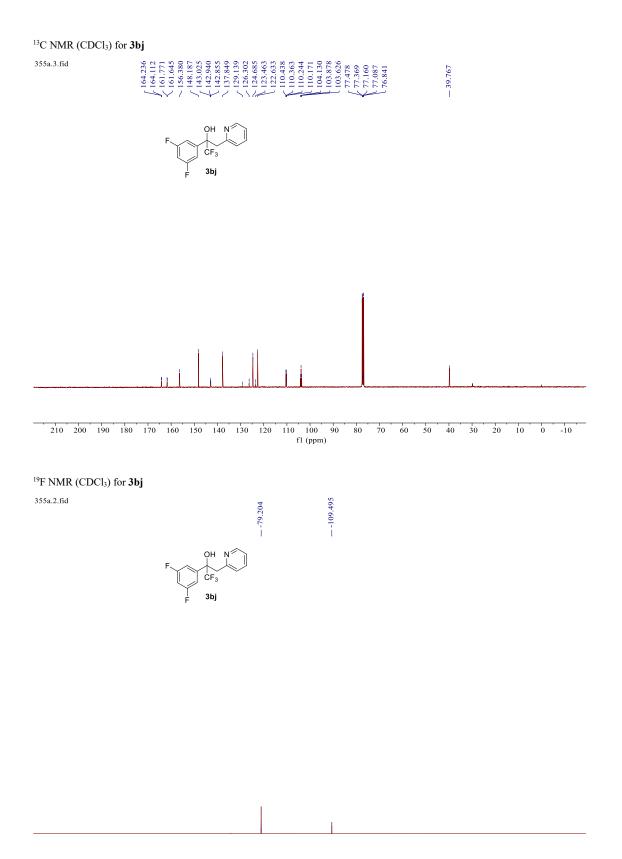


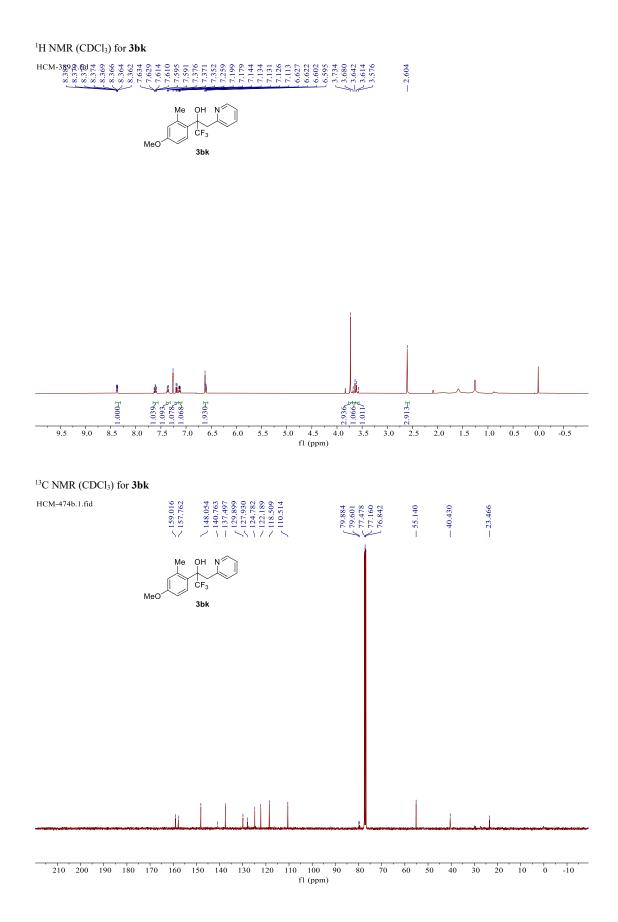


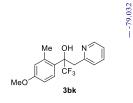
¹⁹F NMR (CDCl₃) for **3bi**

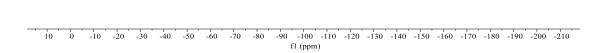
358a.2.fid



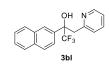


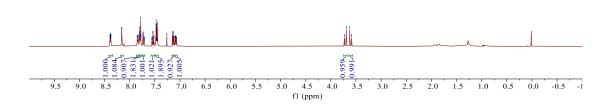

25 8.4.4.2 8.4.4.2 8.8.4.4.2 8.8.4.4.2 8.8.4.0 8.8.4.0 8.8.4.0 8.8.4.0 8.8.4.0 7.7.15 1.7.

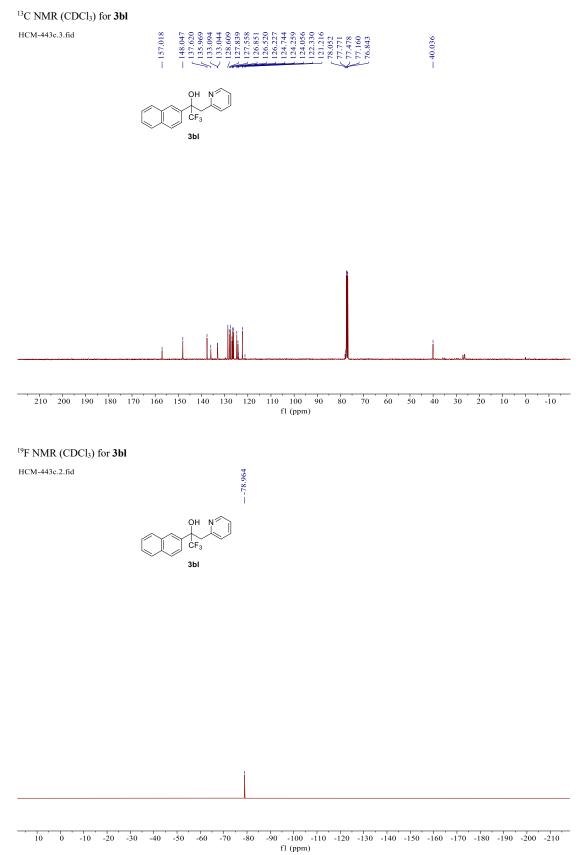



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

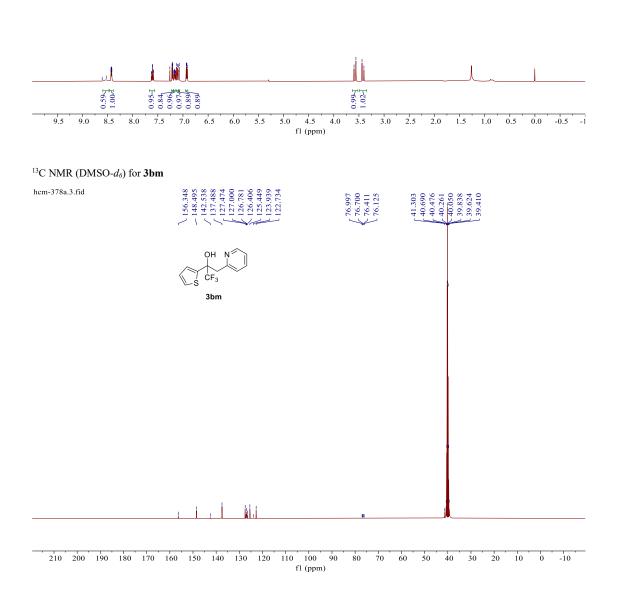
¹⁹F NMR (CDCl₃) for **3bk**

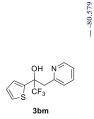

HCM-443b.3.fid

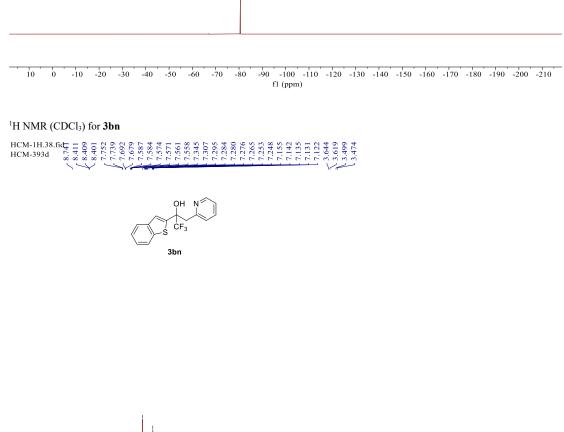


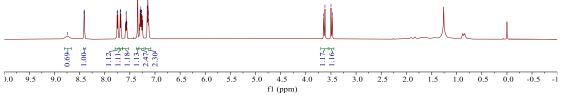


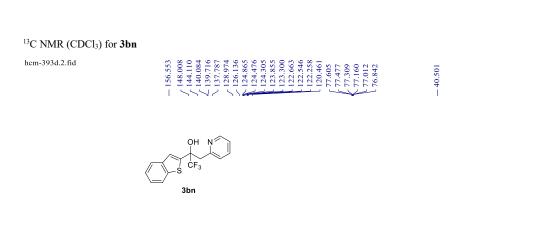
 ^{1}H NMR (CDCl₃) for **3bl**

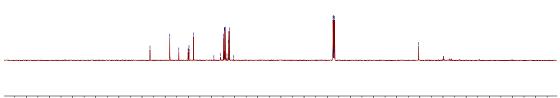


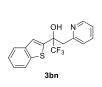


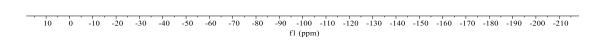




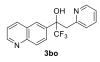


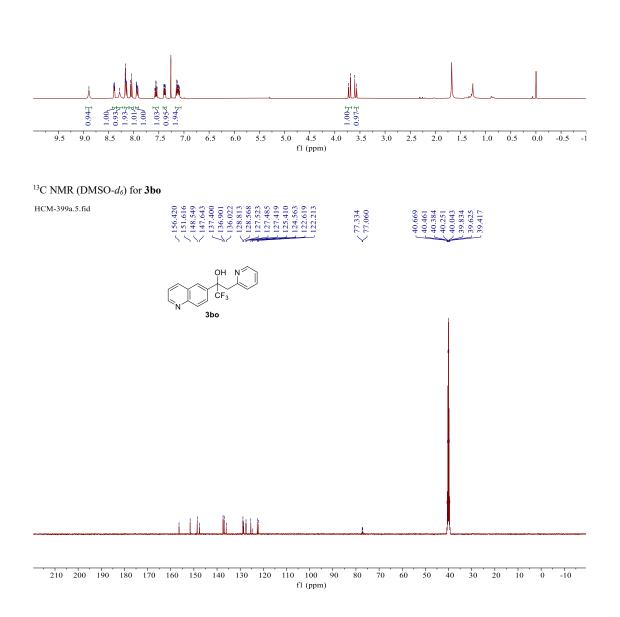

 $^{19}\mathrm{F}$ NMR (CDCl₃) for **3bm**

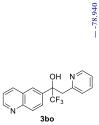


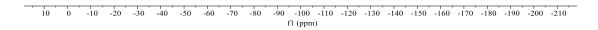


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

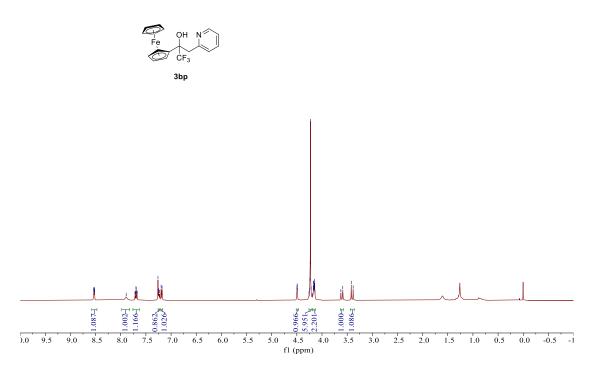

¹⁹F NMR (CDCl₃) for **3bn**

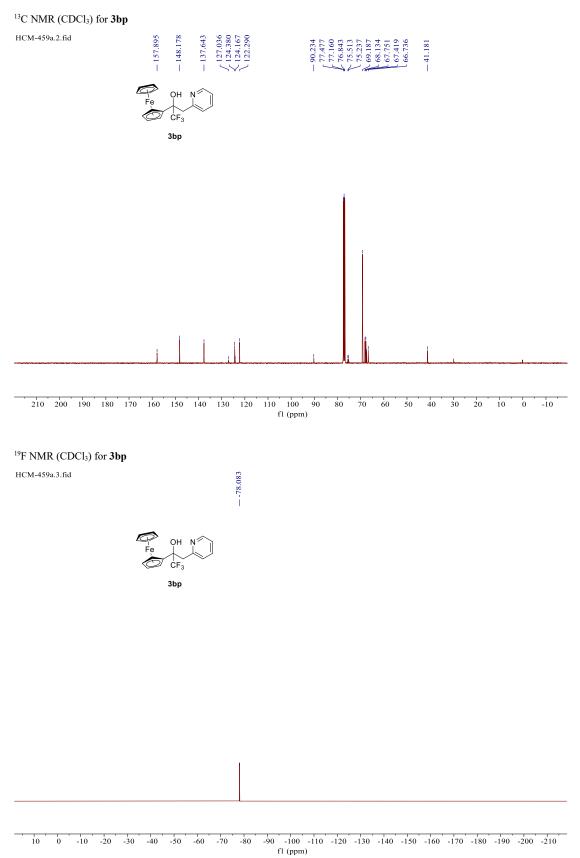

hem-393d.1.fid



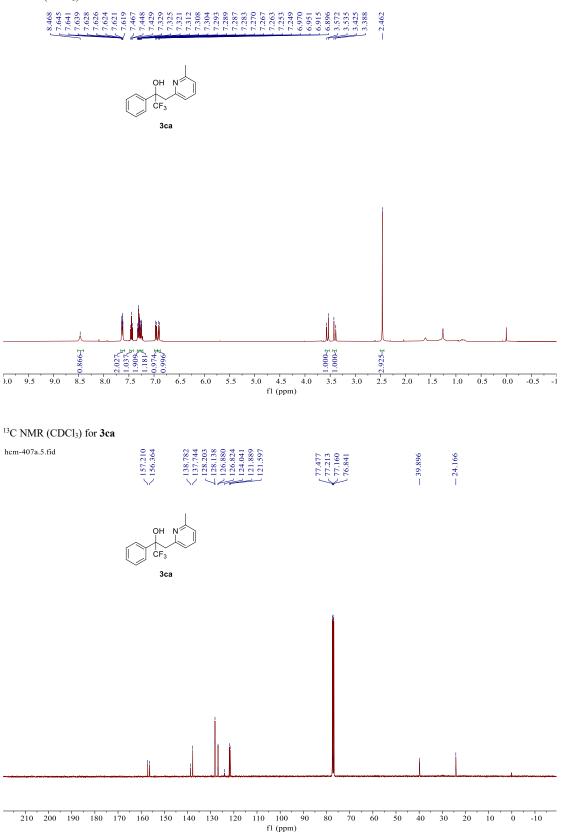


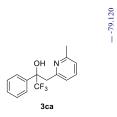
 ^{19}F NMR (CDCl₃) for **3bo**

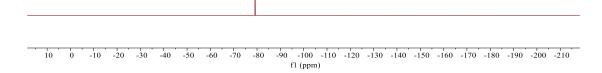

HCM-399a.2.fid

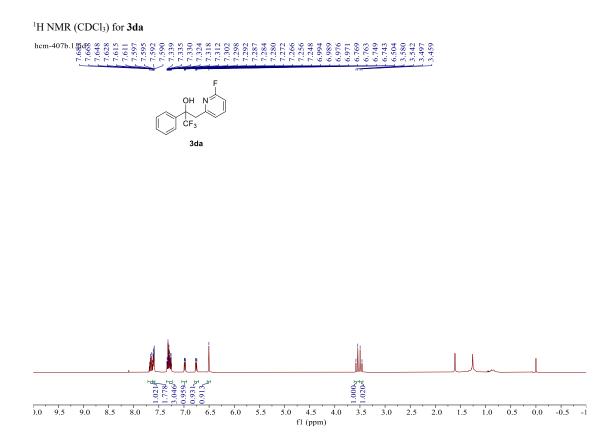


 1 H NMR (CDCl₃) for **3bp**

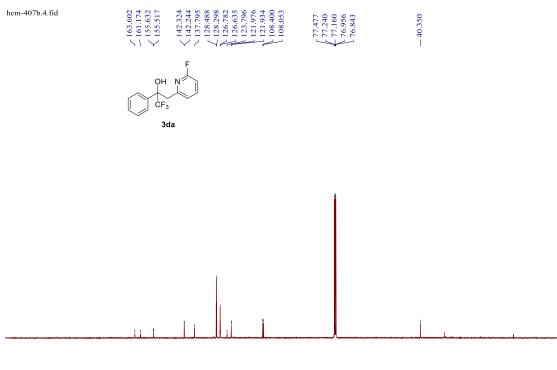

 $\begin{array}{c} 8.537\\ 8.534\\ 8.534\\ 8.523\\ 8.523\\ 8.523\\ 7.511\\ 7.712\\ 7.712\\ 7.674\\ 7.703\\ 7.674\\ 7.7230\\ 7.7230\\ 7.7230\\ 7.7230\\ 7.7249\\ 7.7233\\ 7.7$

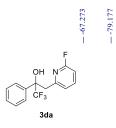

¹H NMR (CDCl₃) for 3ca

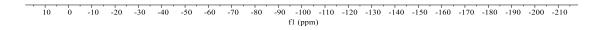




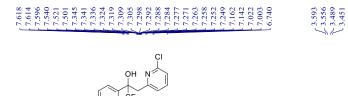
¹⁹F NMR (CDCl₃) for 3ca


hcm-407a.3.fid

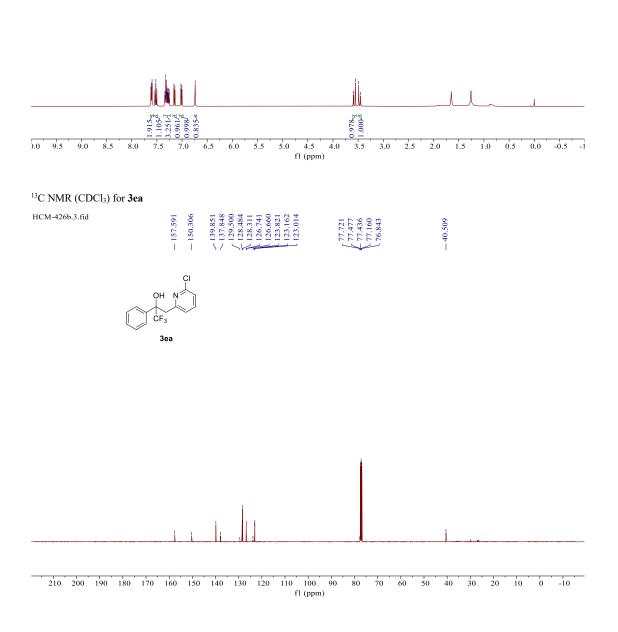


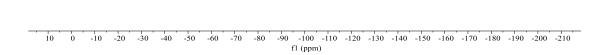


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)


¹⁹F NMR (CDCl₃) for 3da

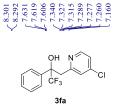
hem-407b.5.fid

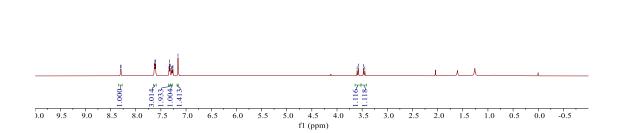


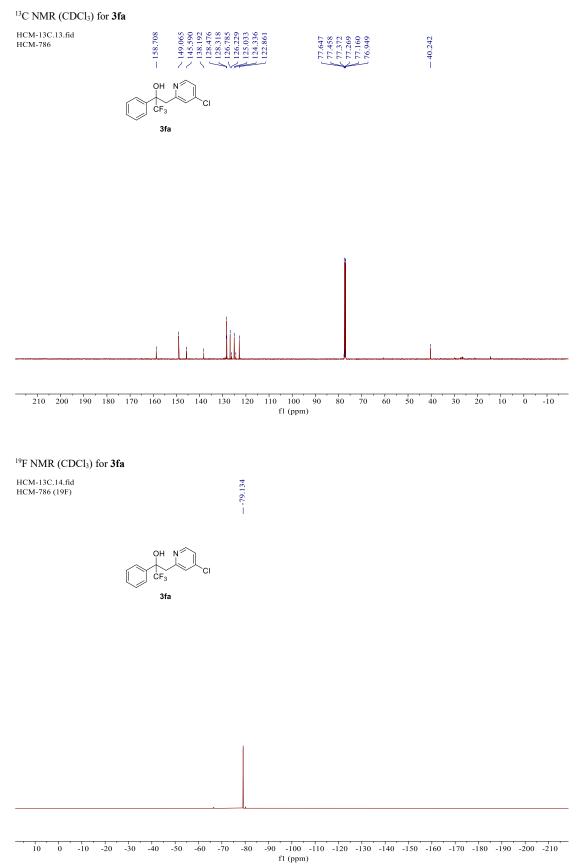


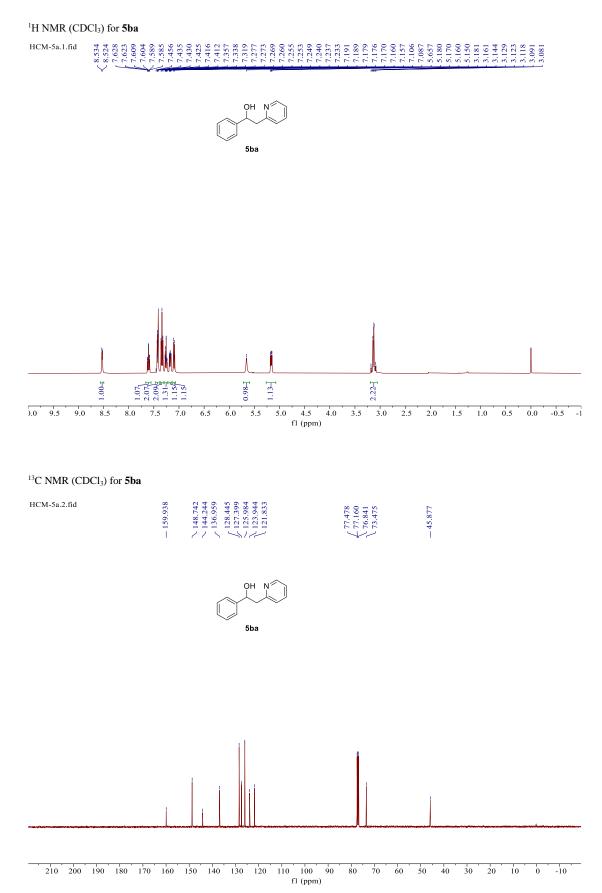
¹⁹F NMR (CDCl₃) for 3ea

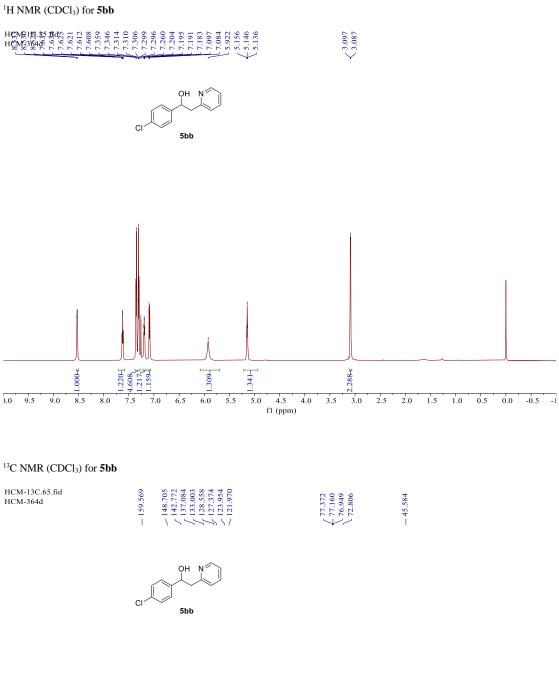
HCM-426b.2.fid

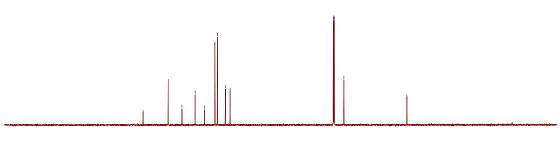


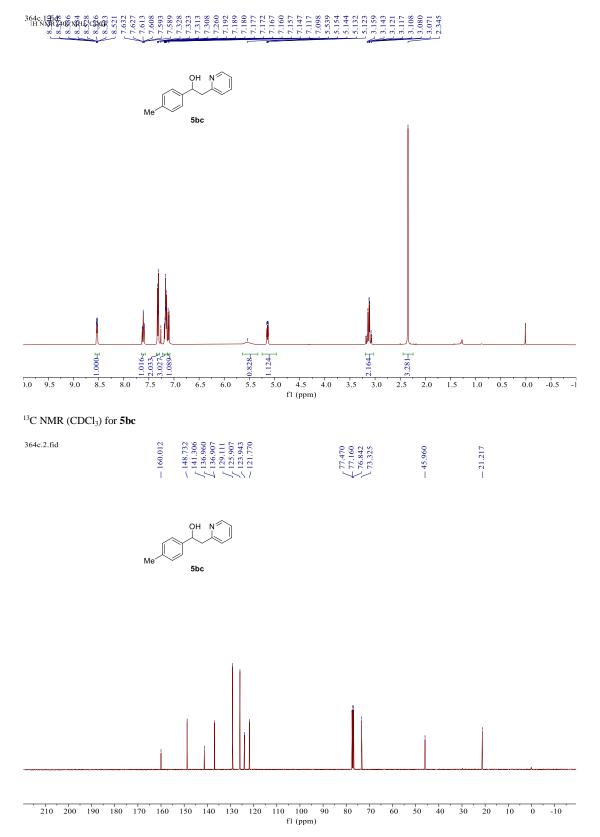


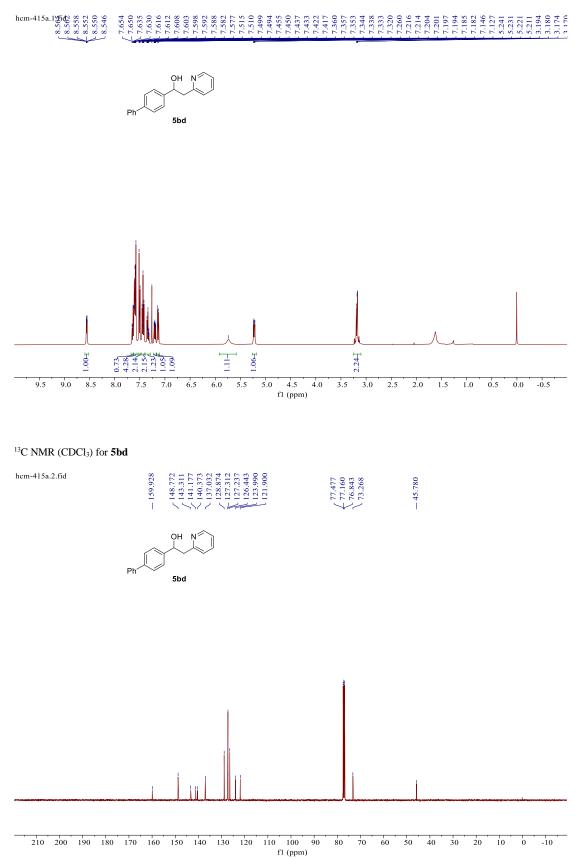


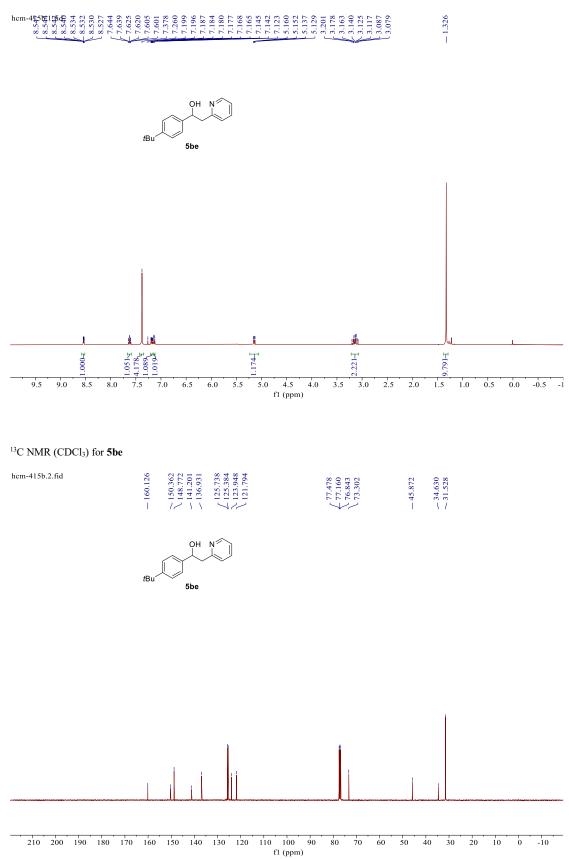

HCM-1H.6.fid HCM-786

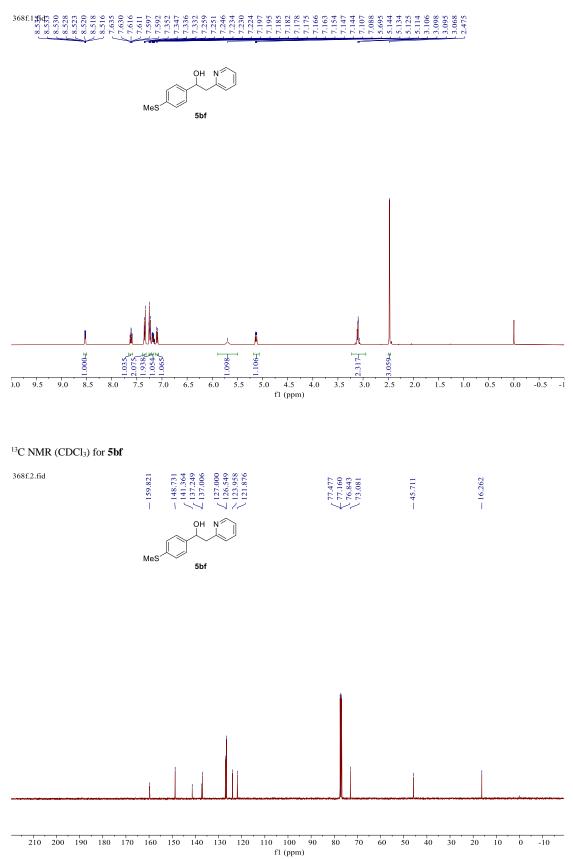




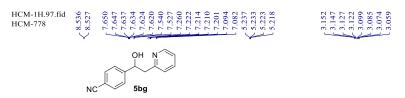


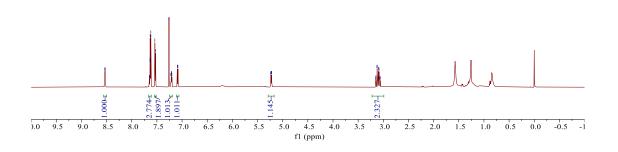


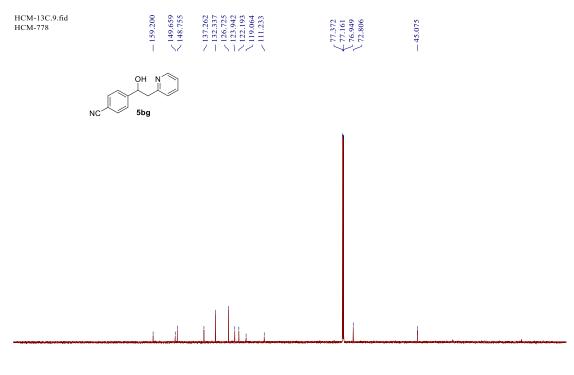




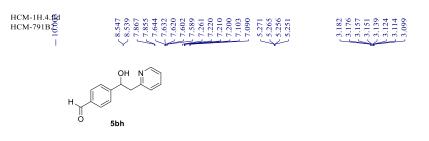
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) ¹H NMR (CDCl₃) for **5bc**

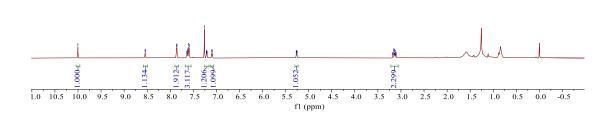


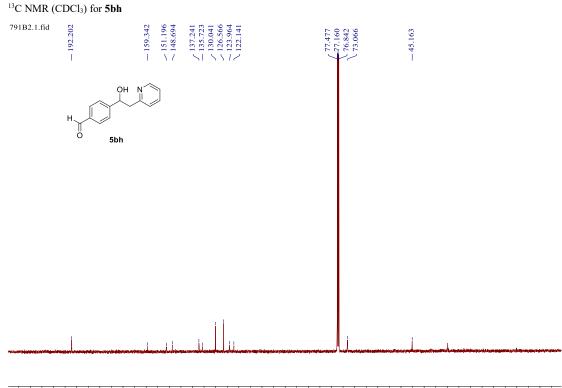


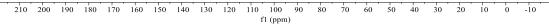


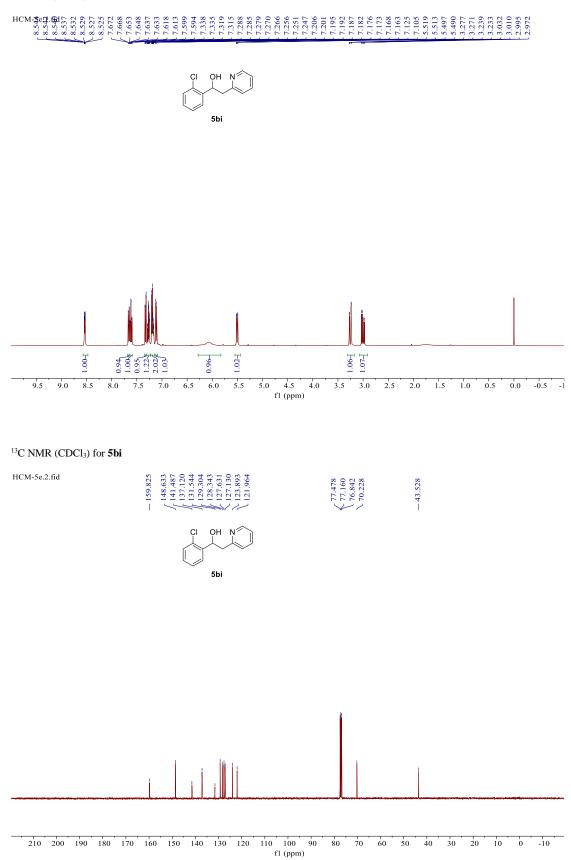
¹H NMR (CDCl₃) for **5bg**

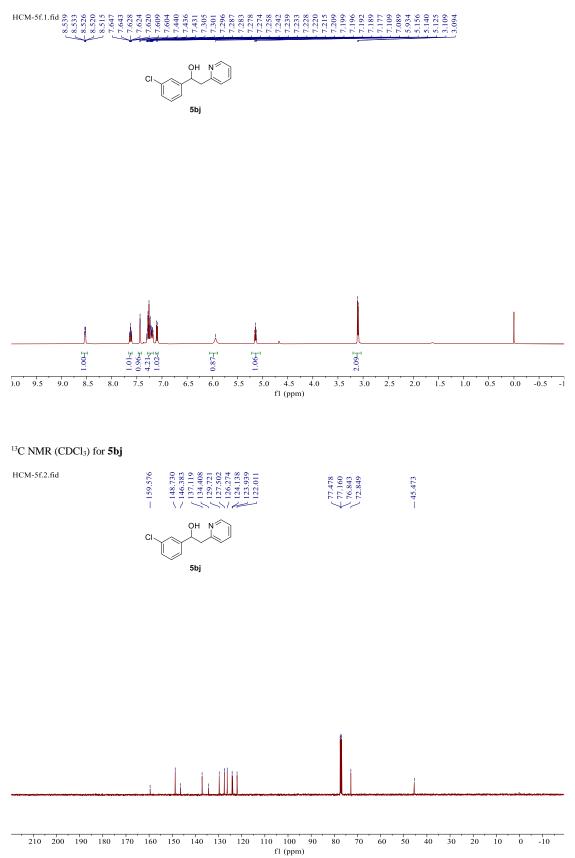


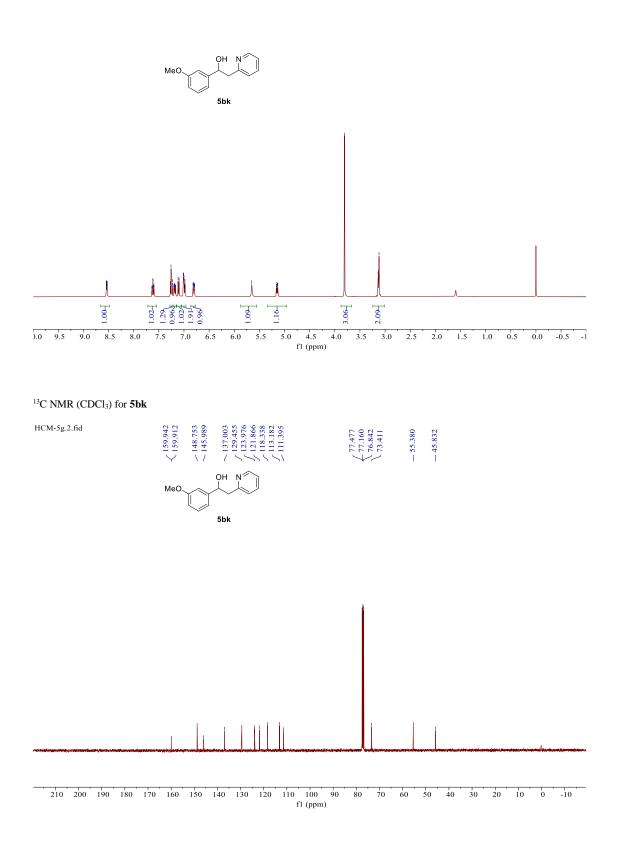

¹³C NMR (CDCl₃) for **5bg**

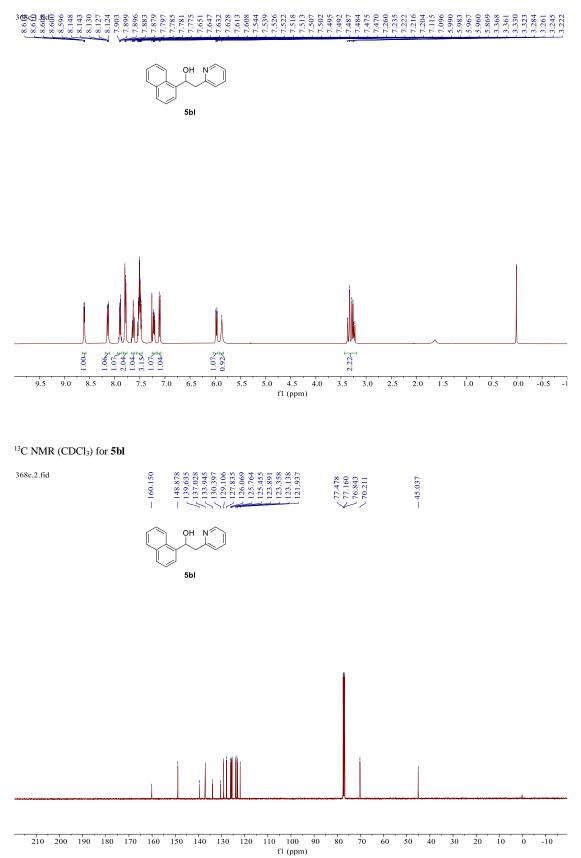


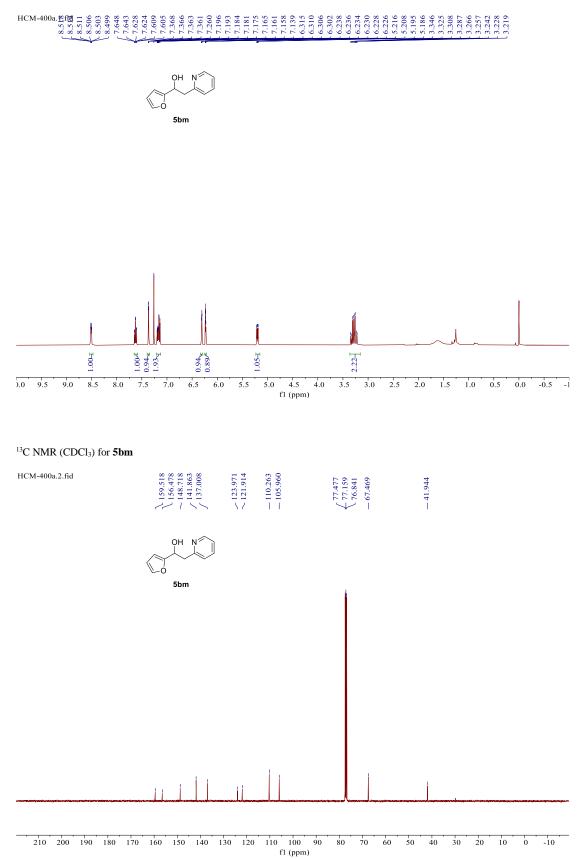

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)


 ^1H NMR (CDCl₃) for **5bh**

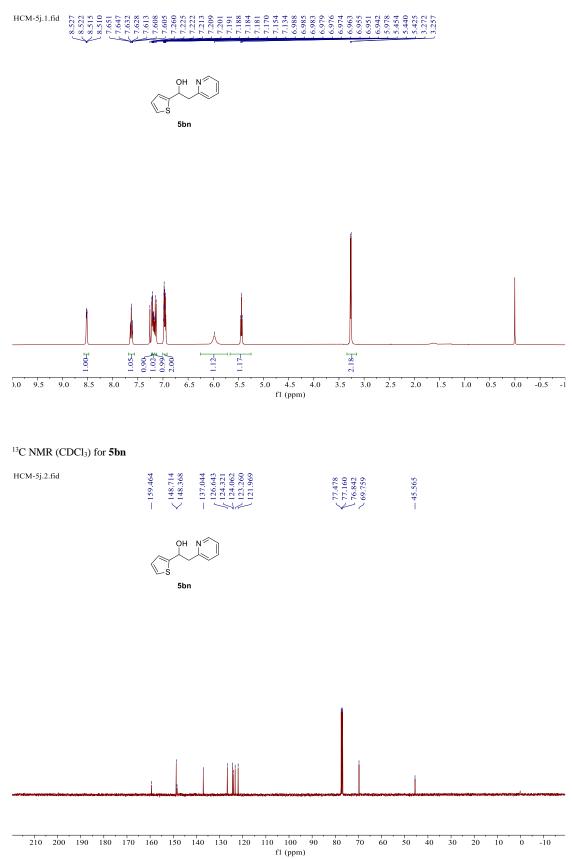


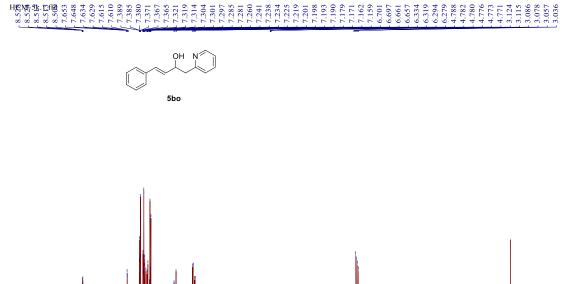


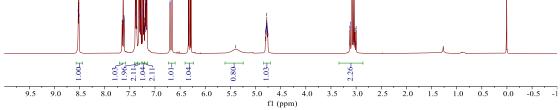




S72

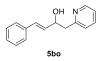


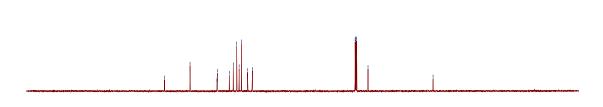


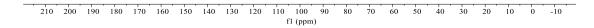


¹H NMR (CDCl₃) for **5bn**

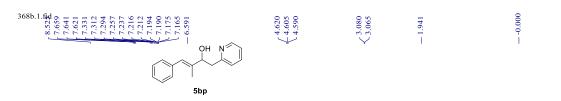
S76

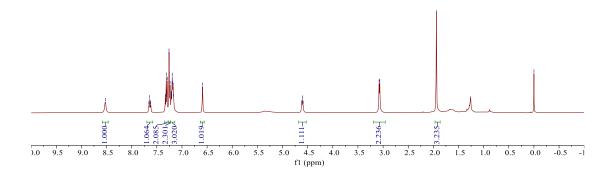




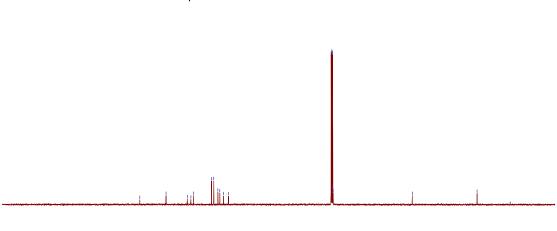

¹³C NMR (CDCl₃) for **5bo**

HCM-5k.2.fid

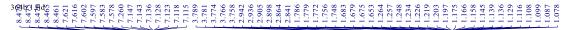


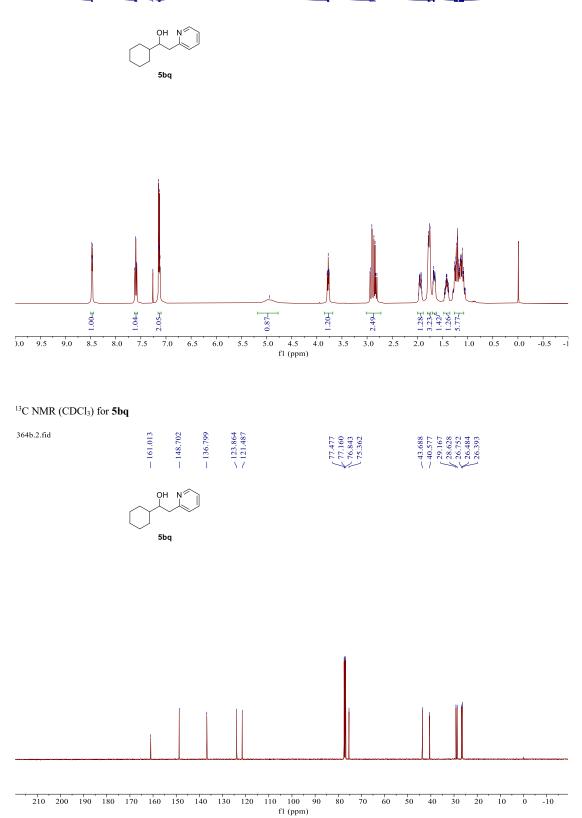


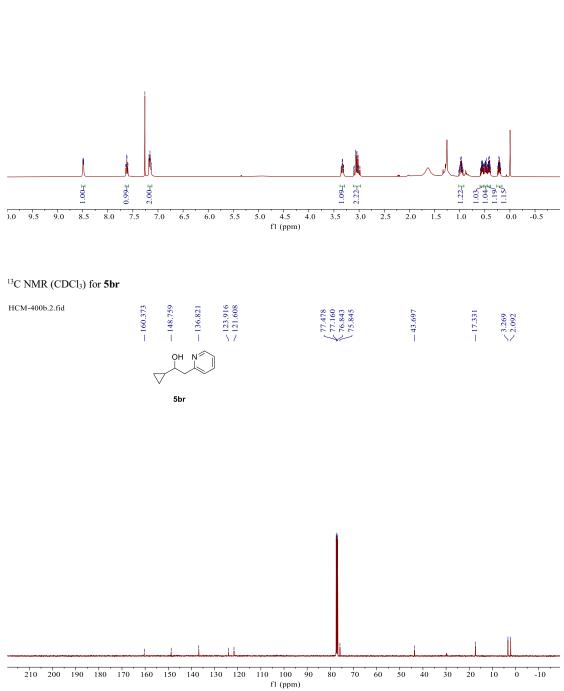
¹H NMR (CDCl₃) for **5bp**

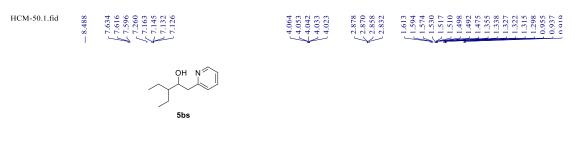


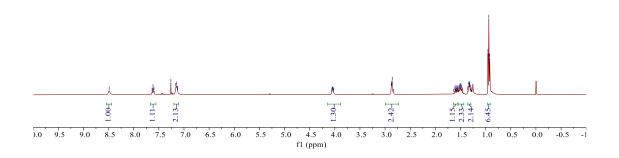
¹³C NMR (CDCl₃) for **5bp**

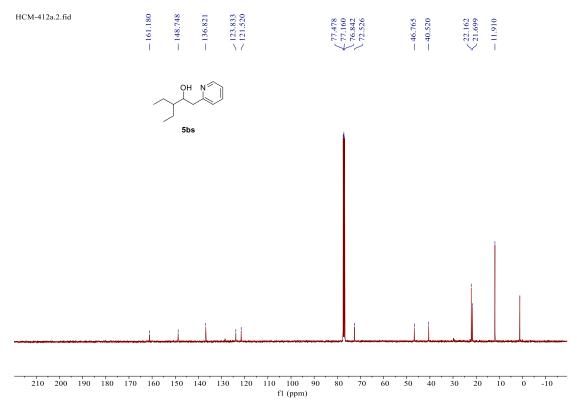

HCM-517a.1.fid



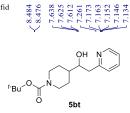

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

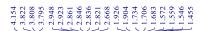


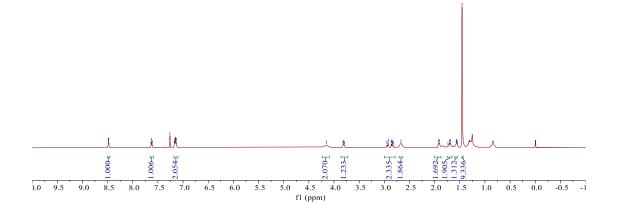


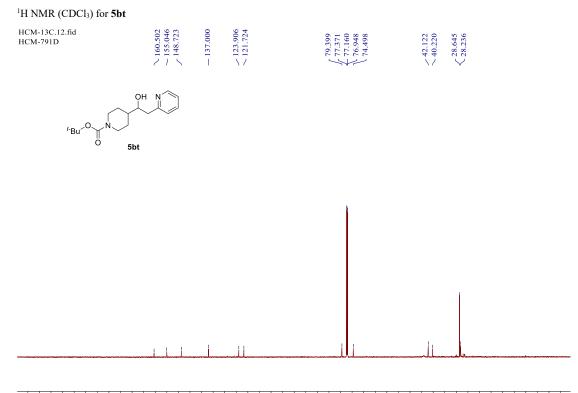


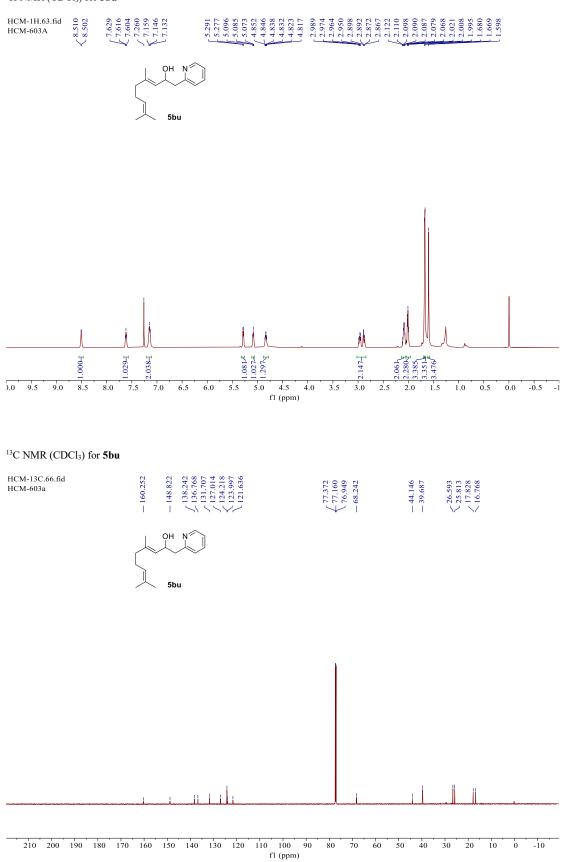
¹H NMR (CDCl₃) for 5bs

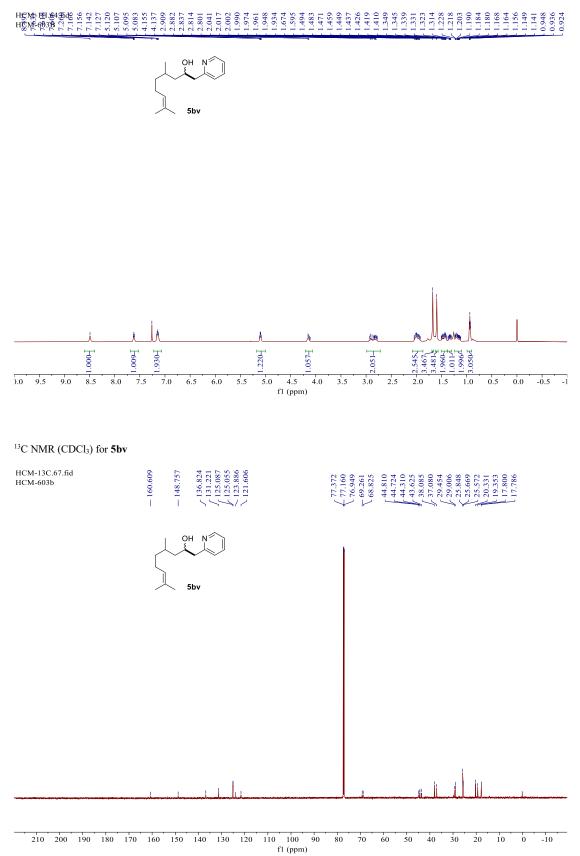



¹³C NMR (CDCl₃) for 5bs



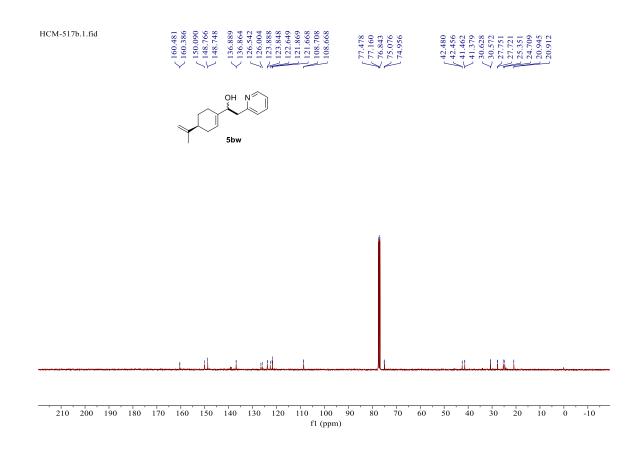

¹H NMR (CDCl₃) for 5bt

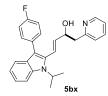


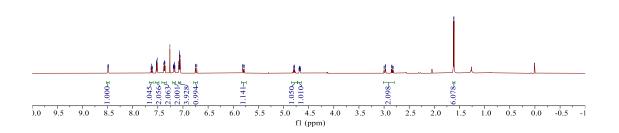


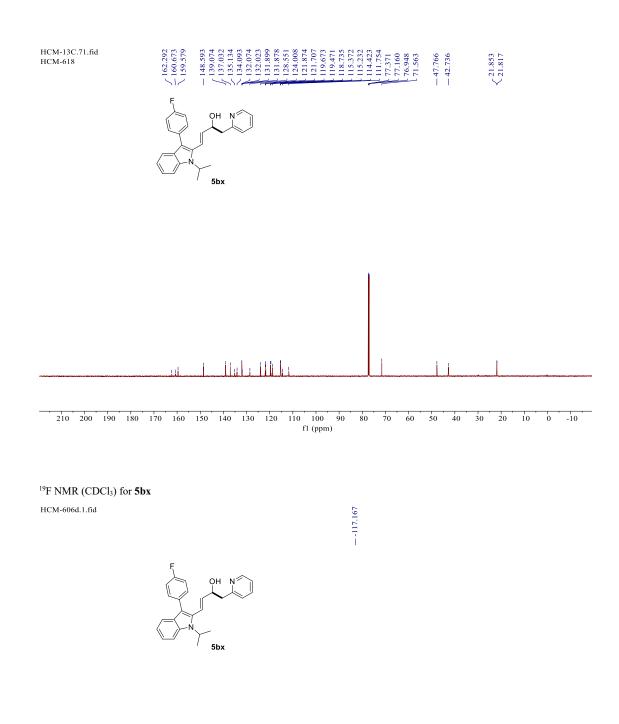


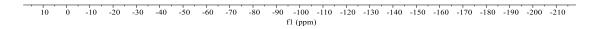
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) ¹H NMR (CDCl₃) for **5bu**

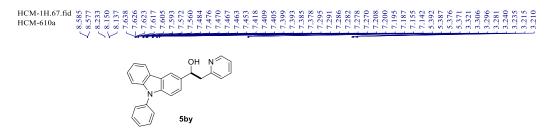


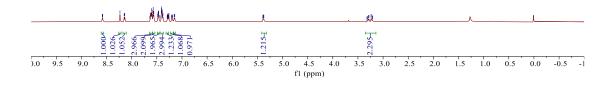


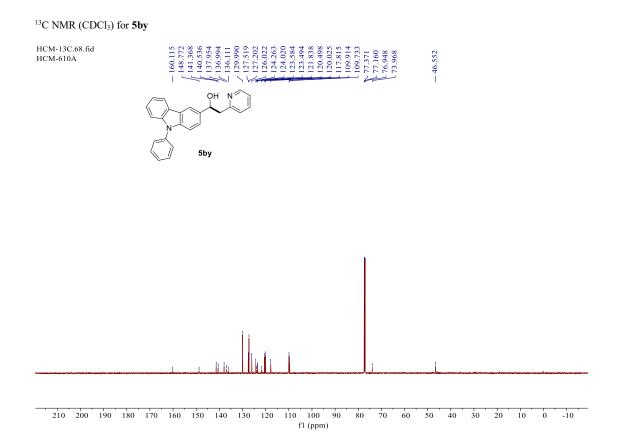

 ^{13}C NMR (CDCl_3) for 5bw

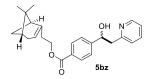

¹H NMR (CDCl₃) for **5bx**

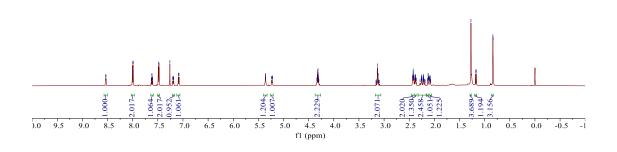

8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.45 7.55 7.55 7.55 7.55 7.55 7.56 7.56 7.56 7.56 7.56 7.57 7.56 7.56 7.56 7.56 7.57 7.56 7.57 7.56 7.57 7.56 7.56 7.57 7.56 7.57 7.56 7.57 7.56 7.57 7.56 7.57 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.57 7.156 7.56 7.56 7.57 7.57 7.57 7.57 7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.56 7.56 7.56 7.56 7.56 7.57 7.56 7.57 7.58

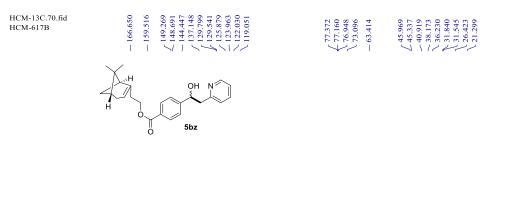


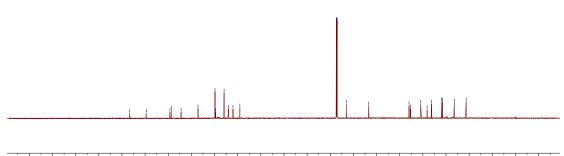

¹³C NMR (CDCl₃) for **5bx**

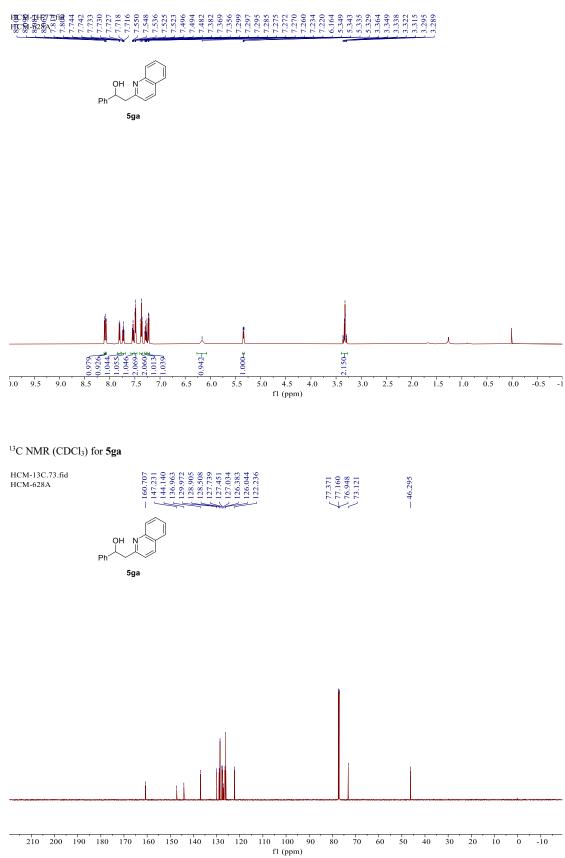



¹H NMR (CDCl₃) for 5by

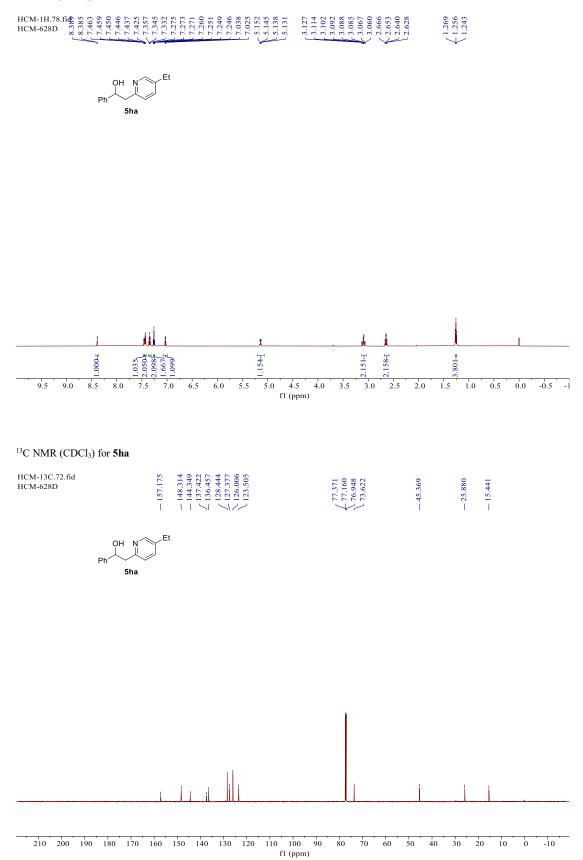


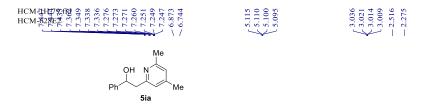


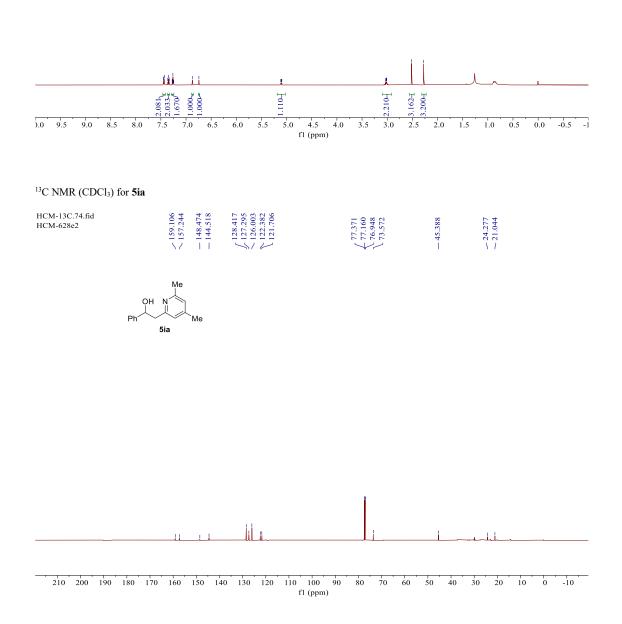




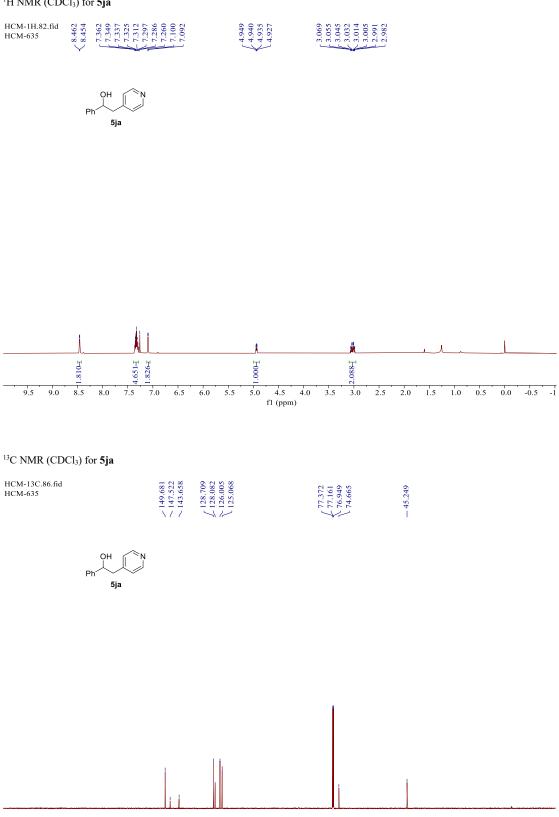
¹³C NMR (CDCl₃) for **5bz**

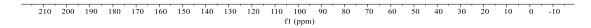


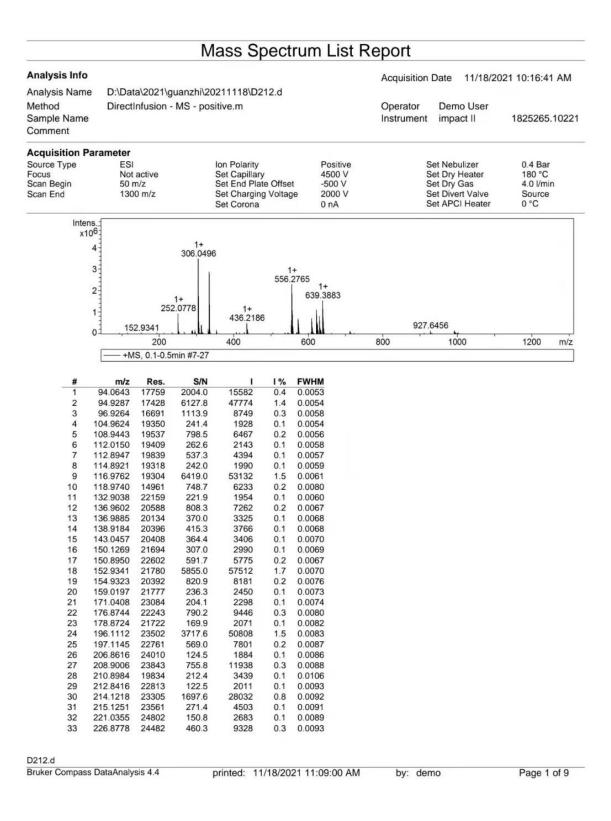

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)



¹H NMR (CDCl₃) for 5ha




¹H NMR (CDCl₃) for 5ia



¹H NMR (CDCl₃) for 5ja

IX. The HRMS for the mixture of mechanism studies (experiment c)

			N	lass S	pect	rum	List	Rep	oort
#	m/z	Res.	S/N	1	1%	FWHM			
34	228.8749	20105	86.0	1810	0.1	0.0114			
35	234.0672	24095	198.6	4470	0.1	0.0097			
36	236.1038	24142	2825.1	64834	1.9	0.0098			
37	237.1071	23923	420.2	9760	0.3	0.0099			
38	238.0291	24360	338.5	7887	0.2	0.0098			
39	242.2835	24726	824.8	19718	0.6	0.0098			
40	243.2868	23689	146.0	3530	0.1	0.0103			
41	248.8932	25089	76.6	1915	0.1	0.0099			
42	250.9322	25174	111.5	2808	0.1	0.0100			
43	252.0778	23413	37852.8	955643	27.5	0.0108			
44	252.8905	20075	83.8	2113	0.1	0.0126			
45	253.0811	23212	5797.0	146236	4.2	0.0109			
46	254.0766	21400	2883.1	72692	2.1	0.0119			
47	254.1128	13945	128.2	3232	0.1	0.0182			
48	255.0794	23283	444.6	11210	0.3	0.0110			
49	263.0574	25446	159.6	4218	0.1	0.0103			
50	264.8672	25361	253.6	6895	0.2	0.0104			
51	265.0729	23941	176.4	4823	0.1	0.0111			
52	266.8648	22027	93.4	2645	0.1	0.0121			
53	266.9062	25561	323.2	9157	0.3	0.0104			
54	268.0937	25402	2536.9	73304	2.1	0.0106			
55	268.9046	23605	71.6	2087	0.1	0.0114			
56 57	269.0969	25208	386.4	11265	0.3	0.0107			
58	279.1715	25205	166.2	5076	0.1 0.1	0.0111 0.0111			
59	281.2385 282.8408	25437	76.1 60.6	2368	0.1				
60	290.0757	16544 24868	4229.4	1930 148394	4.3	0.0171 0.0117			
61	291.0789	24292	660.3	23241	0.7	0.0120			
62	292.0805	20265	68.2	2414	0.1	0.0120			
63	295.2542	25044	85.0	3123	0.1	0.0118			
64	296.2496	25929	810.2	30111	0.9	0.0114			
65	297.2335	24924	2650.0	98992	2.8	0.0119			
66	298.2370	25111	521.9	19582	0.6	0.0119			
67	299.0648	26174	497.7	18729	0.5	0.0114			
68	299.2401	24884	52.2	1963	0.1	0.0120			
69	300.0681	27316	96.3	3639	0.1	0.0110			
70	305.8647	27673	75.9	3096	0.1	0.0111			
71	305.9921	8951	122.0	4980	0.1	0.0342			
72	306.0496	23978	85214.6	3481012	100.0	0.0128			
73	306.1086	15072	401.7	16415	0.5	0.0203			
74	306.1279	10067	315.3	12883	0.4	0.0304			
75	306.1742	27687	165.4	6756	0.2	0.0111			
76	306.1968	25152	1395.7	57027	1.6	0.0122			
77	306.8989	18858	98.7	4066	0.1	0.0163			
78	307.0530	24349	13433.0	553977	15.9	0.0126			
79	307.1652	9794	61.9	2555	0.1	0.0314			
80	307.1934	10552	53.8	2221	0.1	0.0291			
81	308.0486	21806	6451.8	267929	7.7	0.0141			
82	308.0851	20416	661.6	27475	0.8	0.0151			
83	308.1398	16896	119.8	4976	0.1	0.0182			
84	309.0513	24098	975.0	40581	1.2	0.0128			
85	309.0887	19847	119.2	4963	0.1	0.0156			
86	310.0540	23820	83.1	3463	0.1	0.0130			
87	311.2492 312.2524	26645	1018.3	42918	1.2	0.0117			
88		25230 25024	211.3	8999 419497	0.3	0.0124			
89	315.0388	25024 26075	9775.6		12.1	0.0126			
90 91	316.0421 317.0379	26075	1697.7 752.3	72965 32379	2.1 0.9	0.0121 0.0145			
91	317.0379	24673	191.4	8239	0.9	0.0145			
92 93	317.0748	24673	61.5	2648	0.2	0.0129			
93 94	318.0407	24865	132.2	5690	0.1	0.0143			
95	319.1664	25275	49.7	2148	0.1	0.0126			
	0.0.1004	20210	-0.7	2140	0.1	0.0120			

D212.d

Bruker Compass DataAnalysis 4.4

printed: 11/18/2021 11:09:00 AM

Page 2 of 9

by: demo

#	m/z	Res.	S/N	1	1%	FWHM
96	319.2156	26827	719.6	31099	0.9	0.0119
97	320.2190	25613	135.6	5894	0.2	0.0125
98	322.8727	26805	318.9	14117	0.4	0.0120
99	323.2349	22172	41.1	1827	0.1	0.0146
100	324.0600	25987	64.3	2874	0.1	0.0125
101	324.8714	22792	110.8	4969	0.1	0.0143
102	332.0653	26487	271.8	12827	0.4	0.0125
103	333.0494	26295	2621.5	124719	3.6	0.0127
104	333.1459	20797	84.0	3999	0.1	0.0160
105	333.1737	25265	210.1	10002	0.3	0.0132
106	334.0529	26388	468.2	22450	0.6	0.0127
107	334.1773	24501	45.0	2158	0.1	0.0136
108	334.8724	19304	42.0	2018	0.1	0.0173
109	334.8963	15515	48.6	2337	0.1	0.0216
110	335.0487	16815	272.1	13090	0.4	0.0199
111	335.0839 335.1259	19310 12730	91.2 107.1	4389	0.1	0.0174
112 113	335.1259	24626	60000.8	5151 2886149	0.1 82.9	0.0263 0.0136
114	335.2492	8665	333.6	16049	0.5	0.0387
115	335.2703	10535	264.9	12742	0.4	0.0318
116	335.3441	20125	642.2	30896	0.9	0.0167
117	336.0514	11243	61.8	2981	0.1	0.0299
118	336.1332	15436	41.7	2012	0.1	0.0218
119	336.1930	25278	11984.4	578383	16.6	0.0133
120	336.3440	12217	50.4	2430	0.1	0.0275
121	337.1890	20893	4616.6	222868	6.4	0.0161
122	338.1914	24482	869.1	41981	1.2	0.0138
123	338.2268	16321	71.8	3467	0.1	0.0207
124	339.1944	23736	89.8	4333	0.1	0.0143
125	340.8487	20573	63.1	3040	0.1	0.0166
126	349.1688	26476	207.4	10240	0.3	0.0132
127	350.1721	26612	41.2	2039	0.1	0.0132
128	351.1677	17675	70.1	3478	0.1	0.0199
129	351.1837	24216	149.1	7398	0.2	0.0145
130	355.2868	26850	1973.4	99135	2.8	0.0132
131	356.2900	26132	427.5	21502	0.6	0.0136
132	357.2931	25280	50.0	2517	0.1	0.0141
133	361.1711	27507	126.1	6401	0.2	0.0131
134	363.1694	26253	58.6	2986	0.1	0.0138
135	364.0917	24791	51.0	2603	0.1	0.0147
136	364.9044	28060	44.4	2264	0.1	0.0130
137	366.8626	26642	40.8	2092	0.1	0.0138
138	372.0500	27554	53.9	2805	0.1	0.0135
139	375.1862	26188	339.6	17869	0.5	0.0143
140	376.1896	26138	70.9	3735	0.1	0.0144
141	377.1850	25741	143.2	7548	0.2	0.0147
142	378.8393	25994	52.0	2751	0.1	0.0146
143	380.8377	21648	38.8	2066	0.1	0.0176
144	380.8783	28059	150.0	7982	0.2	0.0136
145	381.1250	24650	67.3	3582	0.1	0.0155
146	381.1950	26426	94.3	5019	0.1	0.0144
147 148	382.8771 383.2859	25501 26906	43.9 39.1	2363 2115	0.1 0.1	0.0150 0.0142
140	384.1870	26908	220.5	11980	0.1	0.0142
150	385.1898	23667	52.4	2863	0.3	0.0144
151	385.3014	26476	57.2	3127	0.1	0.0103
152	386.0818	26305	233.9	12833	0.4	0.0148
153	386.1855	25845	106.3	5831	0.4	0.0149
154	386.2981	22843	65.5	3592	0.1	0.0169
155	387.0852	25135	49.2	2715	0.1	0.0154
	390.2914	26346	43.4	2437	0.1	0.0148
156						

printed: 11/18/2021 11:09:00 AM

by: demo

Page 3 of 9

	m/z	Res.	S/N	1	1%	FWHM	
# 8	396.3385	28023	46.7	2712	0.1	0.0141	
59	396.8146	19956	53.6	3110	0.1	0.0199	
160	404.8189	26039	29.5	1745	0.1	0.0155	
161	407.1355	27369	42.0	2531	0.1	0.0149	
162	408.0968	26700	970.5	58889	1.7	0.0153	
163 164	409.1000 410.0970	27138 21249	239.5 86.8	14626 5327	0.4 0.2	0.0151 0.0193	
165	410.1248	19702	34.4	2112	0.1	0.0208	
166	413.1432	24684	16.9	1055	0.0	0.0167	
167	413.2032	24086	10.5	654	0.0	0.0172	
168	413.2662	25378	10.3	645	0.0	0.0163	
169	417.0930	26785	415.7	26299	0.8	0.0156	
170 171	418.0965 419.0911	26922 28065	81.4 356.5	5180 22808	0.1 0.7	0.0155 0.0149	
172	420.0944	27126	67.5	4347	0.1	0.0155	
173	420.8709	27239	31.2	2018	0.1	0.0155	
174	421.0889	25947	84.5	5461	0.2	0.0162	
175	424.1225	28003	91.3	6002	0.2	0.0151	
176	426.1105	16455	91.5	6091	0.2	0.0259	
177 178	429.2399 430.2432	27654 26677	855.1 220.2	57680 14908	1.7 0.4	0.0155 0.0161	
179	431.2409	21601	78.8	5362	0.4	0.0200	
180	433.1877	27455	55.0	3751	0.1	0.0158	
181	436.2186	25916	7327.3	506520	14.6	0.0168	
182	436.8449	28499	117.5	8174	0.2	0.0153	
183	437.2219	26884	1946.9	135378	3.9	0.0163	
184	438.2172	25564	3366.4	235506	6.8	0.0171 0.0179	
185 186	438.8434 439.2202	24532 26362	55.0 852.2	3864 60037	0.1 1.7	0.0179	
187	440.2234	26810	111.3	7869	0.2	0.0164	
188	449.1618	28263	226.8	16394	0.5	0.0159	
189	449.2203	20542	40.5	2929	0.1	0.0219	
190	449.2358	19516	39.4	2849	0.1	0.0230	
191	450.1651	28352	51.0	3709	0.1	0.0159	
192 193	451.1612 454.8208	24561 23008	35.7 36.3	2615 2693	0.1 0.1	0.0184 0.0198	
194	463.2183	25115	27.5	2075	0.1	0.0184	
195	465.2098	19531	40.1	3035	0.1	0.0238	
196	466.9205	28986	26.9	2042	0.1	0.0161	
197	468.2635	26640	28.3	2157	0.1	0.0176	
198	474.3281	27619	85.6	6582	0.2	0.0172	
199	475.3313	27429	30.6	2357	0.1	0.0173	
200 201	489.1547 492.2814	25949 27749	22.0 55.5	1748 4445	0.1 0.1	0.0189 0.0177	
201	494.2800	27802	27.9	2248	0.1	0.0178	
203	494.8504	28234	47.7	3845	0.1	0.0175	
204	495.3228	25870	21.7	1751	0.1	0.0191	
205	499.2245	28179	28.0	2325	0.1	0.0177	
206	503.1914	27547	47.7	4128	0.1	0.0183	
207	505.1281	27992	41.4	3658	0.1	0.0180	
208 209	506.2195 507.2224	27781 26980	339.3 102.5	30239 9244	0.9 0.3	0.0182 0.0188	
210	508.2198	21825	35.7	3228	0.1	0.0233	
211	510.3495	27835	93.5	8560	0.2	0.0183	
212	510.7863	22179	23.2	2127	0.1	0.0230	
213	511.3529	27922	33.9	3136	0.1	0.0183	
214	519.1653	27531	48.5	4731	0.1	0.0189	
215	520.0179	27966	44.5	4373	0.1	0.0186	
216 217	522.0165 523.1041	27148 24027	24.4 22.5	2427 2243	0.1 0.1	0.0192 0.0218	
217	523.1041	29292	192.7	19706	0.1	0.0218	
	002.0014	LULUL	102.1	10100	0.0	0.0102	

printed: 11/18/2021 11:09:00 AM

by: demo

Page 4 of 9

	m/z	Res.	S/N	1	۱%	FWHM	
)	534.8429	29111	17.4	1795	0.1	0.0184	
221	535.1287	27003	19.0	1953	0.1	0.0198	
222	538.2658	28860	340.7	35332	1.0	0.0187	
223	539.2690	28212	118.1	12263 17165	0.4	0.0191	
224 225	540.2647 541.2675	27529 27916	164.8 56.5	5895	0.5 0.2	0.0196 0.0194	
226	542.1235	27872	27.0	2822	0.2	0.0195	
227	542.2676	20740	16.6	1743	0.1	0.0261	
228	546.3107	27764	261.1	27596	0.8	0.0197	
229	547.3141	28255	94.3	9981	0.3	0.0194	
230	548.3058	27222	309.4	32854	0.9	0.0201	
231	549.3089	28881	111.0	11815	0.3	0.0190	
232	550.3077	23352	36.6	3904	0.1	0.0236	
233	550.8172	29114	36.0	3841	0.1	0.0189	
234	552.8157	26214	23.1	2480	0.1	0.0211	
235	554.2607	27166	42.3	4562	0.1	0.0204	
236	555.2603	22369	28.5	3075	0.1	0.0248	
237 238	555.8169 555.8989	20293 24871	17.6 19.0	1898 2049	0.1 0.1	0.0274 0.0224	
239	556.0099	20254	25.3	2733	0.1	0.0224	
240	556.1684	19069	38.6	4174	0.1	0.0292	
241	556.2765	27371	21236.2	2295032	65.9	0.0203	
242	556.3809	13572	206.9	22360	0.6	0.0410	
243	556.4751	20043	237.9	25706	0.7	0.0278	
244	556.9334	19143	16.5	1783	0.1	0.0291	
245	557.0517	24897	17.3	1874	0.1	0.0224	
246	557.0807	24898	17.5	1894	0.1	0.0224	
247	557.1047	24898	16.7	1814	0.1	0.0224	
248	557.1635	25250	133.7	14495	0.4	0.0221	
249	557.2799	27448	7462.4	808855	23.2	0.0203	
250	557.4769	8790	35.9	3890	0.1	0.0634	
251 252	557.6104 557.6447	13587 24910	17.7 17.8	1914 1924	0.1 0.1	0.0410 0.0224	
253	557.6914	24910	17.0	1852	0.1	0.0224	
254	557.7379	18685	18.8	2041	0.1	0.0298	
255	557.7610	13082	16.9	1830	0.1	0.0426	
256	557.8138	26276	19.7	2135	0.1	0.0212	
257	557.8551	24915	19.1	2067	0.1	0.0224	
258	557.9233	12458	20.6	2233	0.1	0.0448	
259	557.9618	25354	21.5	2327	0.1	0.0220	
260	558.0625	24919	23.4	2536	0.1	0.0224	
261	558.0931	37380	23.5	2549	0.1	0.0149	
262	558.1170	14952	22.4	2431	0.1	0.0373	
263	558.1670	17156	60.8	6586	0.2	0.0325	
264	558.2756	25866	10166.1	1101827	31.7	0.0216	
265 266	558.4718 559.1690	18697 15585	53.8 20.4	5825 2204	0.2	0.0299 0.0359	
267	559.2783	27264	3364.5	363741	0.1 10.4	0.0359	
268	560.2813	28285	571.6	61691	1.8	0.0203	
269	561.2851	24891	70.9	7654	0.2	0.0225	
270	563.1340	27798	36.0	3891	0.1	0.0203	
271	563.3175	26226	18.4	1984	0.1	0.0215	
272	564.3216	26520	19.9	2152	0.1	0.0213	
273	566.1523	25737	16.9	1830	0.1	0.0220	
274	568.7930	24074	19.9	2177	0.1	0.0236	
275	569.2716	29279	598.1	65313	1.9	0.0194	
276	569.4329	24512	17.5	1909	0.1	0.0232	
277	570.2749	28673	212.8	23368	0.7	0.0199	
278	571.2706	26787	286.5	31639	0.9	0.0213	
279	572.2733	27320	104.2	11591	0.3	0.0209	
280 281	572.4509 573.1373	26991 28992	22.9 376.7	2545 42004	0.1 1.2	0.0212 0.0198	

printed: 11/18/2021 11:09:00 AM

by: demo

Page 5 of 9

						-
# 282	m/z 573.2759	Res. 20297	24.4	2718	0.1	FWHM 0.0282
283	574.1407	28869	129.5	14416	0.4	0.0202
284	574.4667	27556	6421.2	714721	20.5	0.0208
285	575.1389	22375	48.4	5386	0.2	0.0257
286	575.4700	28213	2543.5	282484	8.1	0.0204
287	576.1401	18240	15.8	1755	0.1	0.0316
288	576.4734	28950	477.2	52909	1.5	0.0199
289	577.4766	29487	63.9	7082	0.2	0.0196
290	582.1266	28568	61.6	6941	0.2	0.0204
291	583.1296	27465	21.9	2488	0.1	0.0212
292	583.3237	30251	21.9	2487	0.1	0.0193
293	586.3035	29522	116.7	13523	0.4	0.0199
294 295	587.3066	28445	42.9 30.0	4997 3517	0.1	0.0206
295	589.1008 591.0571	28082 25567	30.6	3614	0.1 0.1	0.0210 0.0231
297	591.1019	22382	15.3	1807	0.1	0.0264
298	592.4771	29016	18.8	2225	0.1	0.0204
299	593.0558	23734	16.7	1983	0.1	0.0250
300	593.4617	25856	57.5	6840	0.2	0.0230
301	594.4648	27546	22.7	2714	0.1	0.0216
302	596.0954	29068	19.7	2365	0.1	0.0205
303	602.2775	29451	219.7	26940	0.8	0.0205
304	603.2808	28436	78.5	9636	0.3	0.0212
305	604.2799	23756	27.9	3428	0.1	0.0254
306	608.8226	28342	24.9	3118	0.1	0.0215
307	609.2659	29415	458.8	57379	1.6	0.0207
308	610.2485	27340	5793.8	724334	20.8	0.0223
309	610.5149	12918	14.8	1855 1911	0.1	0.0473
310 311	610.8216 611.2526	18430 25947	15.3 2110.3	263731	0.1 7.6	0.0331 0.0236
312	612.2477	26379	2834.8	353828	10.2	0.0230
313	613.2503	28205	931.1	116273	3.3	0.0217
314	614.2533	27682	156.3	19512	0.6	0.0222
315	614.3371	13393	15.6	1952	0.1	0.0459
316	615.2563	26436	20.3	2534	0.1	0.0233
317	615.4434	29756	213.3	26677	0.8	0.0207
318	616.4467	30090	84.7	10600	0.3	0.0205
319	617.4500	28369	18.4	2304	0.1	0.0218
320	618.0776	29035	20.9	2617	0.1	0.0213
321	618.2413	26659	17.7	2213	0.1	0.0232
322	620.1917	28486	18.7	2357	0.1	0.0218
323	621.3775	28817	33.3	4203	0.1	0.0216
324	622.3812	26611	13.8	1745	0.1	0.0234
325	623.1961	27430	14.8	1884	0.1	0.0227
326 327	623.2443 623.2696	29022 10794	17.5 15.9	2222 2022	0.1 0.1	0.0215 0.0577
328	623.3934	27716	8794.9	1117308	32.1	0.0225
329	623.6019	19570	48.3	6143	0.2	0.0225
330	623.6676	13600	21.7	2760	0.1	0.0459
331	624.3968	28056	3477.3	440889	12.7	0.0223
332	624.7584	13033	18.4	2331	0.1	0.0479
333	625.2363	13417	17.6	2232	0.1	0.0466
334	625.3927	26101	4301.5	544613	15.6	0.0240
335	625.6666	9784	14.0	1769	0.1	0.0639
336	626.3953	28099	1587.1	200630	5.8	0.0223
337	627.3984	29436	295.1	37256	1.1	0.0213
338	628.4016	27021	37.1	4678	0.1	0.0233
339	629.4018	26622	44.4	5610	0.2	0.0236
340	630.2092	27481	13.9	1754	0.1	0.0229
341	630.4048	26195	18.3	2308	0.1	0.0241
342 343	631.4173 631.6941	27655	6642.8	838854	24.1	0.0228
		11385	15.8	1996	0.1	0.0555

printed: 11/18/2021 11:09:00 AM

Page 6 of 9

by: demo

	m/z	Res.	S/N	1	۱%	FWHM	
44	632.0280	18991	17.7	2228	0.1	0.0333	
345	632.2092	13211	15.7	1980	0.1	0.0479	
346	632.4208	28122	2643.2	333469	9.6	0.0225	
347 348	633.4203	25061 29057	884.0	111298 187770	3.2	0.0253	
349	634.0515 634.4210	25698	1491.6 236.0	29671	5.4 0.9	0.0218 0.0247	
350	635.0547	29379	452.3	56848	1.6	0.0247	
351	635.4233	25377	44.2	5554	0.2	0.0250	
352	636.0503	27632	789.6	99116	2.8	0.0230	
353	636.2634	22754	18.6	2334	0.1	0.0280	
354	637.0532	28481	240.1	30126	0.9	0.0224	
355	637.3724	28304	60.5	7593	0.2	0.0225	
356	638.0518	24759	78.1	9802	0.3	0.0258	
357	638.3757	25368	25.3	3175	0.1	0.0252	
358 359	638.5196	23060 16767	19.1 31.4	2396 3939	0.1 0.1	0.0277	
360	639.0541 639.1930	13335	19.7	2465	0.1	0.0381 0.0479	
361	639.2640	19992	25.0	3132	0.1	0.0320	
362	639.3883	27786	12353.3	1548990	44.5	0.0230	
363	639.5997	15881	83.1	10418	0.3	0.0403	
364	639.6705	10159	28.3	3548	0.1	0.0630	
365	640.2668	26692	14.0	1758	0.1	0.0240	
366	640.3917	28078	4861.1	609410	17.5	0.0228	
367	640.6728	20025	18.7	2339	0.1	0.0320	
368	641.0701	26709	14.2	1781	0.1	0.0240	
369	641.0991	26709	14.3	1797	0.1	0.0240	
370 371	641.1465 641.2638	26710 20361	15.0 17.7	1880 2215	0.1	0.0240 0.0315	
372	641.3877	26395	6119.9	767544	22.0	0.0243	
373	641.6730	8607	19.4	2438	0.1	0.0746	
374	642.3903	27816	2181.6	273637	7.9	0.0231	
375	643.3934	29963	418.5	52462	1.5	0.0215	
376	644.3965	26977	53.9	6751	0.2	0.0239	
377	645.3968	28491	40.6	5090	0.1	0.0227	
378	646.4005	23411	14.6	1830	0.1	0.0276	
379	647.4106	25401	27.7	3476	0.1	0.0255	
380	648.2045	28813	97.4	12221	0.4	0.0225	
381 382	649.2076 650.2033	30451 27798	38.1 53.3	4777 6678	0.1	0.0213 0.0234	
383	651.2065	27953	18.4	2299	0.2	0.0234	
384	651.5146	30540	170.6	21352	0.6	0.0233	
385	652.5178	29050	71.1	8890	0.3	0.0225	
386	653.5209	28065	15.6	1953	0.1	0.0233	
387	655.3682	19324	103.2	12914	0.4	0.0339	
388	656.3713	18080	40.8	5114	0.1	0.0363	
389	657.3673	18646	55.4	6948	0.2	0.0353	
390	658.0751	30008	19.6	2454	0.1	0.0219	
391	658.3695	20892	21.2	2665	0.1	0.0315	
392	663.3995	29203	350.6	44167	1.3	0.0227	
393	664.4029	30281	149.5	18814	0.5	0.0219	
394	665.3989	26732	186.0	23397	0.7	0.0249	
395 396	666.4016 666.7877	27944 25200	71.4 15.7	8973 1970	0.3 0.1	0.0238 0.0265	
397	667.3701	26939	30.7	3857	0.1	0.0265	
398	667.4002	18717	26.8	3363	0.1	0.0357	
399	669.3694	25674	28.0	3505	0.1	0.0261	
400	677.4226	28759	17.9	2246	0.1	0.0236	
401	682.7636	24098	17.6	2181	0.1	0.0283	
402	697.3265	28125	21.5	2595	0.1	0.0248	
403	699.3247	26399	18.3	2212	0.1	0.0265	
404	704.3246	30565	73.9	8850	0.3	0.0230	
405	705.3277	28403	34.4	4116	0.1	0.0248	

printed: 11/18/2021 11:09:00 AM

by: demo

Page 7 of 9

ŧ	m/z	Res.	S/N	1	۱%	FWHM	
6	708.7790	28645	16.4	1956	0.1	0.0247	
407	712.3261	28898	678.4	80848	2.3	0.0246	
408	713.3285	27828	310.5	36974	1.1	0.0256	
409 410	714.3250 715.3270	28310 27243	664.2 268.9	79012 31948	2.3 0.9	0.0252 0.0263	
411	716.3247	26407	176.1	20915	0.6	0.0203	
412	717.3357	20075	102.4	12138	0.3	0.0357	
413	718.3424	22292	33.5	3966	0.1	0.0322	
414	719.3401	28435	63.9	7568	0.2	0.0253	
415	720.3451	27282	31.3	3700	0.1	0.0264	
416	721.2921	29063	188.5	22307	0.6	0.0248	
417 418	722.2956 722.3362	29527 19160	76.4 21.8	9038 2583	0.3 0.1	0.0245 0.0377	
419	722.7948	30108	31.5	3730	0.1	0.0240	
420	723.2903	28836	244.7	28960	0.8	0.0251	
421	724.2935	29314	94.5	11175	0.3	0.0247	
422	724.7936	27714	17.5	2069	0.1	0.0262	
423	725.2892	27580	103.2	12196	0.4	0.0263	
424	725.4676	29720	105.8	12506	0.4	0.0244	
425 426	726.2918 726.4711	27978 29111	37.1 47.2	4381 5572	0.1 0.2	0.0260 0.0250	
427	727.2887	24990	18.9	2226	0.2	0.0291	
428	727.4713	26080	18.2	2146	0.1	0.0279	
429	728.3208	27118	25.6	3020	0.1	0.0269	
430	730.3184	23896	27.9	3288	0.1	0.0306	
431	745.3897	27255	15.7	1824	0.1	0.0273	
432	746.4805	27237	19.0	2207	0.1	0.0274	
433 434	748.0238 750.0225	29731 28739	27.1 17.4	3155 2024	0.1 0.1	0.0252 0.0261	
435	761.3317	28671	22.6	2564	0.1	0.0266	
436	763.3308	27736	20.7	2350	0.1	0.0275	
437	796.7374	27509	24.1	2510	0.1	0.0290	
438	802.4476	29719	112.6	11451	0.3	0.0270	
439	803.4504	28436	58.7	5955	0.2	0.0283	
440	804.4505	24586	22.7	2300	0.1	0.0327	
441 442	810.4184 811.4217	29424 29072	121.8 61.1	12221 6126	0.4 0.2	0.0275 0.0279	
442	812.4183	27537	67.6	6763	0.2	0.0279	
444	813.4201	27776	30.1	3007	0.1	0.0293	
445	842.5673	29348	21.6	2040	0.1	0.0287	
446	850.5382	30368	129.8	11996	0.3	0.0280	
447	851.5414	30993	72.1	6656	0.2	0.0275	
448	852.5382	28363	75.6	6966	0.2	0.0301	
449	853.5407	28274	33.7	3097	0.1	0.0302	
450 451	898.4316 899.4346	30258 30332	177.8 97.2	14641 7985	0.4 0.2	0.0297	
452	900.4308	29295	186.8	15333	0.4	0.0207	
453	901.4334	30118	92.6	7598	0.2	0.0299	
454	902.4316	27187	55.9	4582	0.1	0.0332	
455	903.4327	27817	24.7	2019	0.1	0.0325	
456	911.6715	31037	509.1	40668	1.2	0.0294	
457	912.6749	29070	289.3	23099	0.7	0.0314	
458 459	913.6784 915.4619	30075 26657	91.2 45.9	7267 3644	0.2	0.0304 0.0343	
460	916.4664	26067	29.6	2351	0.1 0.1	0.0343	
461	917.4606	24387	40.2	3189	0.1	0.0376	
462	918.4626	27895	24.2	1915	0.1	0.0329	
463	927.6456	29800	2041.8	159312	4.6	0.0311	
464	928.6490	30222	1206.5	94097	2.7	0.0307	
465	929.6501	28431	468.0	36470	1.0	0.0327	
466	930.2796	30265	560.2	43648	1.3	0.0307	
467	930.6510	27026	147.0	11451	0.3	0.0344	

printed: 11/18/2021 11:09:00 AM

Page 8 of 9

by: demo

#	m/z	Res.	S/N	I.	1%	FWHM
468	931.2828	29784	281.0	21880	0.6	0.0313
469	931.6528	25746	36.9	2872	0.1	0.0362
470	932.2797	28749	340.8	26522	0.8	0.0324
471	933.2818	29381	153.3	11921	0.3	0.0318
472	934.2825	27480	53.1	4124	0.1	0.0340
473	943.6329	30009	239.0	18156	0.5	0.0314
474	944.4324	29254	25.5	1932	0.1	0.0323
475	944.6362	30308	152.4	11549	0.3	0.0312
476	945.6336	28057	142.7	10786	0.3	0.0337
477	946.6353	28303	75.9	5726	0.2	0.0334
478	947.6382	28016	23.2	1747	0.1	0.0338
479	952.4034	30990	166.0	12294	0.4	0.0307
480	953.4068	29893	85.5	6313	0.4	0.0319
	953.4008	29893	158.5		0.2	
481				11658		0.0327
482	955.4054	30531	85.2	6251	0.2	0.0313
483	956.4035	27330	53.5	3915	0.1	0.0350
484	992.5596	30707	1156.5	78540	2.3	0.0323
485	993.5628	30682	701.7	47641	1.4	0.0324
486	994.5592	29355	1214.5	82433	2.4	0.0339
487	995.5615	29716	634.5	43032	1.2	0.0335
488	996.5600	28049	376.6	25514	0.7	0.0355
489	997.5614	27750	164.6	11134	0.3	0.0359
490	998.5645	26019	48.8	3293	0.1	0.0384
491	1001.5253	31290	404.7	27157	0.8	0.0320
492	1002.5285	30827	235.3	15764	0.5	0.0325
493	1003.5243	29886	546.5	36535	1.0	0.0336
494	1004.5269	31163	299.7	20016	0.6	0.0322
495	1005.5240	27930	255.6	17049	0.5	0.0360
496	1006.5253	28722	122.7	8171	0.2	0.0350
497	1007.5248	26934	54.7	3629	0.1	0.0374
498	1008.5536	27823	96.8	6420	0.2	0.0362
499						
	1009.5562	28151	64.8	4286	0.1	0.0359
500	1010.5542	28473	97.4	6441	0.2	0.0355
501	1011.5554	29390	61.9	4086	0.1	0.0344
502	1012.5528	28042	55.2	3635	0.1	0.0361
503	1013.5544	26991	29.2	1923	0.1	0.0376
504	1041.5647	30618	134.9	8559	0.2	0.0340
505	1042.5681	29478	79.3	5027	0.1	0.0354
506	1043.5643	29603	140.4	8883	0.3	0.0353
507	1044.4814	29694	42.4	2679	0.1	0.0352
508	1044.5667	28960	81.8	5169	0.1	0.0361
509	1045.4839	27347	31.3	1975	0.1	0.0382
510	1045.5652	27235	51.1	3228	0.1	0.0384
511	1046.4813	28938	49.7	3135	0.1	0.0362
512	1047.4817	27317	36.9	2328	0.1	0.0383
513	1098.6758	30493	70.2	4038	0.1	0.0360
514	1099.6784	28493	47.8	2744	0.1	0.0386
515	1116.5970	29115		2012	0.1	0.0384
			36.2			
516	1272.7932	32100	201.0	9918	0.3	0.0397
517	1273.7967	30076	156.7	7725	0.2	0.0424
518	1274.7935	30222	240.3	11837	0.3	0.0422
519	1275.7957	31120	155.3	7648	0.2	0.0410
520	1276.7954	29451	93.7	4614	0.1	0.0434
521	1277.7957	28707	47.4	2333	0.1	0.0445
522	1288.7875	30629	46.9	2297	0.1	0.0421
523	1289.7919	29180	39.2	1918	0.1	0.0442
524	1290.7886	28281	53.1	2599	0.1	0.0456

printed: 11/18/2021 11:09:00 AM

by: demo

Page 9 of 9