Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

A Modular and Divergent Approach for the Total Synthesis of Elaeocarpus Alkaloids

Guang Tian,^{a,b} Yi-Chi Zhang,^b Chuanguang Qin*^a and Jie Wang*^{b,c}

^aDepartment of Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, MOE Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemical & Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.

^bDepartment of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

General information	3
Experimental Procedures and Characterization Data	4
Compound 12	4
Compound S1	4
Compound 13	4
Compound S2	5
Compound 14a	5
Compound 14b	6
(±)-Oxoelaeocarpine (3) and (±)-oxoisoelaeocarpine (4)	7
Compound 18	8
Compound 15	8
(±)-Elaeocarpine (1)	9
Compound 16	9
Compound 17	10
Compound S4	10
(±)-Elaeocarfoline A (6)	11
Compound 20	11
(±)-isoelaeocarpine (2)	12
Compound S5	12
Compound S6	13
(±)-Elaeocarfoline B (7)	13
NMR Data Comparison between Synthetic and Isolated Natural Products	15
Table S1. Elaeocarpine (1)	15
Table S2. Isoelaeocarpine (2)	16
Table S3. Oxoelaeocarpine (3)	17
Table S4. Oxoisoelaeocarpine (4)	18
Table S5. Elaeocarfoline A (6)	19
Table S6. Elaeocarfoline B (7)	20
X-Ray Crystallographic Data for Compound 18	21
References	23
NMR Spectra	24
Compound S1 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	24
Compound S1 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	25
Compound 13 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	26
Compound 13 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	27
Compound S2 ¹ H NMR (500 MHz, Chloroform- <i>d</i>)	28
Compound S2 ¹³ C NMR (126 MHz, Chloroform- <i>d</i>)	29
Compound 14a ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	30

Table of Contents

Compound 14b ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	
Compound 14b ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	
Compound 3 ¹ H NMR (400 MHz, Methanol- <i>d</i> ₄)	
Compound 3^{13} C NMR (101 MHz, Methanol- d_4)	
Compound 4 ¹ H NMR (400 MHz, Methanol- <i>d</i> ₄)	
Compound 4 ¹³ C NMR (400 MHz, Methanol- <i>d</i> ₄)	
Compound 18 ¹ H NMR (400 MHz, Methanol- <i>d</i> ₄)	
Compound 18 ¹³ C NMR (101 MHz, Methanol-d ₄)	39
Compound 18 COSY (Methanol-d ₄)	40
Compound 18 NOESY (Methanol-d ₄)	
Compound 18 HMBC (Methanol-d ₄)	
Compound 15 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	
Compound 15 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	44
Compound 1 ¹ H NMR (400 MHz, Methanol- <i>d</i> ₄)	
Compound 1 ¹³ C NMR (101 MHz, Methanol- <i>d</i> ₄)	
Compound 17 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	
Compound 17 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	
Compound S4 ¹ H NMR (400 MHz, Acetone- <i>d</i> ₆)	49
Compound S4 ¹³ C NMR (101 MHz, Acetone- <i>d</i> ₆)	50
Compound S4 HSQC (Acetone- <i>d</i> ₆)	51
Compound S4 HMBC (Acetone-d ₆)	52
Compound S4 COSY (Acetone- <i>d</i> ₆)	53
Compound S4 NOESY (Acetone- d_6)	54
Compound 6 ¹ H NMR (500 MHz, Acetone- <i>d</i> ₆)	55
Compound 6 ¹³ C NMR (126 MHz, Acetone- d_6)	56
Compound 20 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	57
Compound 20 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	58
Compound 2 ¹ H NMR (400 MHz, Methanol- <i>d</i> ₄)	59
Compound 2^{13} C NMR (101 MHz, Methanol- d_4)	60
Compound S5 ¹ H NMR (400 MHz, Chloroform- <i>d</i>)	61
Compound S5 ¹³ C NMR (101 MHz, Chloroform- <i>d</i>)	
Compound S6 ¹ H NMR (400 MHz, Acetone- <i>d</i> ₆)	
Compound S6 ¹³ C NMR (101 MHz, Acetone- <i>d</i> ₆)	64
Compound S6 HSQC (Acetone- <i>d</i> ₆)	65
Compound S6 COSY (Acetone- d_6)	66
Compound S6 NOESY (Acetone- d_6)	67
Compound 7 ¹ H NMR (500 MHz, Acetone- <i>d</i> ₆)	68

General information.

All moisture and oxygen sensitive reactions were performed in flame-dried glassware under a slight nitrogen overpressure. All reactions were stirred magnetically. Sensitive solutions, solvents or reagents were transferred via cannula or syringe. Reactions were monitored by thin-layer chromatography (TLC) or NMR of the crude mixture. Evaporations were conducted under reduced pressure at temperatures less than 35 °C, unless otherwise noted. Further dryings of the residues were accomplished using a high vacuum pump. All solvents were purchased as the highest available grade from Sinopharm Chemical, Damas-beta, Macklin, General Reagent. All other reagents were used as received from Energy Chemical, Sinopharm Chemical, Accela, Bidepharm, Macklin, 3Achem, unless otherwise noted. Thin-layer chromatography was carried out on pre-coated Leyan HPTLC Silica Gel 60 GF254 to monitor all reactions. The detection of spots was first performed by using a UV (254 nm) lamp followed by visualization by an iodine based TLC stain. Preparative column chromatography was performed with silica gel from SiliaFlash (0.040-0.063 µm, 240-400 mesh). All NMR spectra were measured on Bruker Avance III 400 or Avance III 500. Chemical shifts are given in ppm and referenced to the solvent residual peaks (Chloroform- d^{-1} H, $\delta = 7.26$ ppm, ¹³C, $\delta = 77.16$ ppm, Methanol- d_4 ¹H, $\delta = 3.31$ ppm, ¹³C, $\delta = 49.00$ ppm; Acetone- d_6 ¹H, $\delta = 2.05$ ppm, ¹³C, $\delta = 29.84$ ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant J, integration. High-resolution mass spectra were measured on Agilent 1290/6545 UHPLC-QTOF/MS. Melting points were recorded on a SGWX-4A melting point apparatus (Shanghai instrument physical optics instrument Co., LTD.) and are uncorrected.

Experimental Procedures and Characterization Data

Compound 12

3-(2,5-dioxopyrrolidin-1-yl) propanal

The following protocols were applied according to that described in literature.^[1] Succinimide **10** (19.8 g, 200.0 mmol, 1.0 equiv) was added to a solution of EtONa (136 mg, 1 mol%) in absolute EtOH (40 mL) to give a white suspension. A solution of acrolein (13.5 mL, 1.0 equiv) in EtOH (40 mL) was then added at a rate such that the internal temperature was maintained below 30 °C (water bath). After additional 2 hours at room temperature, glacial acetic acid (0.8 mL) was added. The mixture was filtered over silica gel (20 g, 100-200 mesh), evaporated and purified by flash column chromatography (silica gel, 1:20 EtOAc:CH₂Cl₂) to give **12** as semipure viscous oil (21.4 g, 45% purity by NMR), which was directly used in the next step without further purification.

Compound S1

1-(3-hydroxy-5-(2-hydroxy-6-methylphenyl)-5-oxopentyl) pyrrolidine-2,5-dione

A solution of acetophenone 9 (5.2 g, 34.7 mmol, 1.0 equiv) in THF (70 mL) under argon was cooled to 0 °C and LDA (2.0 M in THF, 35.0 mL, 2.0 equiv) was added dropwise. After 1 hour, compound 12 (12.0 g, 1.0 equiv) was added dropwise. The resulting mixture was further stirred at 0 °C for 5 hours before quenched with saturated NH₄Cl (50 mL) and extracted with EtOAc (30 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:50 MeOH:CH₂Cl₂) to afford compound **S1** (8.7 g, 82%).

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.20 (t, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 6.69 (d, *J* = 7.5 Hz, 1H), 4.22 - 4.14 (m, 1H), 3.72 - 3.66 (m, 2H), 3.16 (dd, *J* = 16.8, 8.9 Hz, 1H), 2.87 (dd, *J* = 16.7, 3.2 Hz, 1H), 2.71 (s, 4H), 2.42 (s, 3H), 1.82 - 1.71 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 207.3, 178.1, 159.4, 138.2, 133.6, 124.4, 123.1, 116.0, 66.2, 50.7, 35.5, 34.5, 28.3, 22.9.

HRMS (ESI-TOF): calculated for C₁₆H₂₀NO₅⁺ [M+H]⁺: 306.1336; found: 306.1332.

Compound 13

1-(2-(5-methyl-4-oxochroman-2-yl) ethyl) pyrrolidine-2,5-dione

Compound S1 (11.7 g, 38.4 mmol, 1.0 equiv), *p*-TsOH (730 mg, 0.1 equiv) and toluene (150 mL) were successively added to a Dean-stark apparatus equipped with a stir bar and the mixture was heated at reflux for 3 hours. After cooled to room temperature, the reaction mixture was neutralized with saturated NaHCO₃ (30 mL) and extracted with CH_2Cl_2 (100 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:1 EtOAc:PE) to afford **13** (8.27 g, 75%). **Physical State:** yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.29 (t, *J* = 7.9 Hz, 1H), 6.79 (t, *J* = 8.3 Hz, 2H), 4.45 – 4.36 (m, 1H), 3.85 – 3.70 (m, 2H), 2.78 – 2.63 (m, 2H), 2.71 (s, 4 H), 2.60 (s, 3H), 2.16 – 2.05 (m, 1H), 2.02 – 1.93 (m, 1H).
¹³C NMR (101 MHz, Chloroform-*d*): δ 193.0, 177.0, 162.1, 141.7, 134.4, 124.5, 119.3, 115.6, 74.9, 43.9, 34.9, 32.3, 28.0, 22.6.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₄⁺ [M+H]⁺: 288.1230; found: 288.1230.

Compound S2

(E)-1-(5-(2-hydroxy-6-methylphenyl)-5-oxopent-3-en-1-yl)pyrrolidine-2,5-dione

Hydroxyketone **S1** undergoes a dehydration/oxa-Michael process to afford chromaone **13**. Enone **S2** was identified as the intermediate. Control experiments showed that the reaction is temperature dependent.

^aDetermined by crude ¹H NMR using (CHCl₂)₂ as an internal standard

 a Determined by crude 1 H NMR using (CHCl₂)₂ as an internal standard

Physical State: yellow oil.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 10.29 (s, 1H), 7.25 (t, *J* = 7.8 Hz, 1H), 6.82 (dt, *J* = 15.1, 6.9 Hz, 1H), 6.80 (d, *J* = 8.3 Hz, 1H), 6.73 (d, *J* = 7.5 Hz, 1H), 6.64 (dt, *J* = 15.4, 1.4 Hz, 1H), 3.70 (t, *J* = 7.1 Hz, 2H), 2.70 (s, 4H), 2.60 (qd, *J* = 7.1, 1.4 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 196.8, 177.1, 160.2, 143.6, 138.3, 133.8, 133.1, 123.1, 122.9, 115.5, 37.2, 30.8, 28.3, 22.9.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₄⁺ [M+H]⁺: 288.1230; found: 288.1225.

Compound 14a

5-hydroxy-1-(2-(5-methyl-4-oxochroman-2-yl) ethyl) pyrrolidin-2-one

A mixture of compound **13** (2.18 g, 7.6 mmol, 1.0 equiv) and *p*-TsOH (144 mg, 0.1 equiv) in MeOH (16 mL) and CH(OMe)₃ (32 mL) was heated at 80 °C. After complete consumption of **13** as indicated by TLC, solvents were removed under reduced pressure. The residual was then redissolved in THF (38 mL) and added to a solution of LiBH₄ (250 mg, 11.4 mmol, 1.5 equiv) in THF (12 mL) under argon at room temperature. After 5 hours, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc (50 mL × 3). The organic layers were combined, washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was redissolved in THF (38 mL), and concentrated HCl (4 mL) was added. After stirring at room temperature for 1 hour, the mixture was neutralized with saturated NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (50 mL × 3). The organic layers were combined, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 2:1 EtOAc:PE) to afford hemiaminal **14a** (1.71 g, 78%) as mixture of diastereomers.

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.29 (dd, *J* = 8.3, 7.5 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 5.25 (t, *J* = 6.4 Hz, 1H), 4.53 – 4.37 (m, 1H), 3.94 (d, *J* = 8.0 Hz, 0.55H), 3.87 (d, *J* = 7.9 Hz, 0.45H), 3.67 – 3.46 (m, 2H), 2.76 – 2.61 (m, 2H), 2.60 (s, 3H), 2.58 – 2.51 (m, 1H), 2.39 – 2.25 (m, 2H), 2.15 – 1.88 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 193.84 (193.76), 175.21 (175.18), 162.44 (162.38), 142.25 (142.24), 134.9, 124.91 (124.90), 119.6, 115.9 (115.8), 84.1 (83.8), 75.2, 44.43 (44.40), 36.92 (36.85), 33.2 (33.0), 29.02 (28.99), 28.6 (28.5), 22.9. (The data in parentheses are peaks observed for diastereomers) HRMS (ESI-TOF): calculated for $C_{16}H_{19}NNaO_4^+$ [M+Na]⁺: 312.1206; found: 312.1201.

Compound 14b

5-methoxy-1-(2-(5-methyl-4-oxochroman-2-yl) ethyl) pyrrolidin-2-one

To a 250 mL flask equipped with a stir bar were added hemiaminal **14a** (1.15 g, 4.0 mmol, 1.0 equiv), *p*-TsOH (76 mg, 0.1 equiv) and MeOH (40 mL). The mixture was allowed to stir at room temperature overnight. After neutralizing with saturated NaHCO₃ (10 mL), the reaction mixture was extracted with CH₂Cl₂ (30 mL \times 3). The organic layers were combined, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:1 EtOAc:PE) to afford compound **14b** (1.14 g, 94%) as mixture of diastereomers.

Physical State: pale-yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.31 – 7.25 (m, 1H), 6.82 (d, *J* = 8.2 Hz, 0.45 H), 6.81 (d, *J* = 8.2 Hz, 0.55 H), 6.77 (d, *J* = 7.4 Hz, 0.55 H), 6.76 (d, *J* = 7.4 Hz, 0.45 H), 4.95 – 4.90 (m, 1H), 4.48 – 4.34 (m, 1H), 3.69

- 3.60 (m, 1H), 3.48 - 3.38 (m, 1H), 3.27 (s, 1.65 H), 3.25 (s, 1.35 H), 2.76 - 2.63 (m, 2H), 2.60 (s, 3H), 2.55 - 2.45 (m, 1H), 2.35 - 2.26 (m, 1H), 2.19 - 1.93 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 193.6 (193.5), 175.3 (175.2), 162.5 (162.4), 142.22 (142.15), 134.71 (134.69), 124.8 (124.7), 119.69 (119.65), 115.9 (115.8), 91.0 (90.5), 75.1 (75.0), 53.1 (53.0), 44.5, 37.3, 33.2 (33.0), 29.01 (28.96), 24.03 (23.98), 22.9. (Data in parentheses are peaks observed for diastereomers) HRMS (ESI-TOF): calculated for $C_{17}H_{21}NNaO_4^+$ [M+Na]⁺: 326.1363; found: 326.1356.

(±)-Oxoelaeocarpine (3) and (±)-oxoisoelaeocarpine (4)

NbCl₅ (278 mg, 1.0 mmol, 0.6 equiv) in CH₂Cl₂ (4 mL) was cooled to 0 °C under argon and a solution of **14b** (521 mg, 1.72 mmol, 1.0 equiv) in CH₂Cl₂ (6 mL) was added dropwise. After stirring at 0 °C for 30 minutes, the reaction mixture was allowed to raise to room temperature and stirred for another 24 hours. The reaction was neutralized with saturated NaHCO₃ (10 mL) and extracted with EtOAc (20 mL \times 3). The organic layers were combined, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:20 E₂O:CH₂Cl₂) to afford (±)-oxoelaeocarpine (**3**, 182 mg, 39%) and (±)-oxoisoelaeocarpine (**4**, 168 mg, 36%).

(±)-oxoelaeocarpine (3):

Physical State: white solid.

m.p.: 205 - 206 °C.

¹**H NMR (400 MHz, Methanol-***d***4):** δ 7.35 (t, *J* = 7.9 Hz, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 6.9 Hz, 1H), 4.41 (td, *J* = 12.5, 4.4 Hz, 1H), 4.17 (dd, *J* = 13.5, 3.8 Hz, 1H), 3.78 (dt, *J* = 10.1, 7.3 Hz, 1H), 2.82 (t, *J* = 13.0 Hz, 1H), 2.73 – 2.63 (m, 1H), 2.67 (dd, *J* = 12.8, 10.4 Hz, 1H), 2.58 (s, 3H), 2.52 – 2.35 (m, 2H), 2.25 (d, *J* = 12.4 Hz, 1H), 2.02 – 1.90 (m, 1H), 1.89 – 1.76 (m, 1H).

¹³C NMR (101 MHz, Methanol-*d*₄): δ 194.8, 176.3, 163.3, 142.7, 135.9, 125.6, 120.5, 116.7, 78.6, 56.9, 56.1, 37.8, 31.5, 31.4, 26.3, 22.7.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₃⁺ [M+H]⁺: 272.1281; found: 272.1287.

(±)-oxoisoelaeocarpine (4):

Physical State: white solid.

m.p.: 160 - 162 °C.

¹**H NMR (400 MHz, Methanol-***d***4**): δ 7.39 (t, *J* = 7.9 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 4.75 (d, *J* = 3.1 Hz, 1H), 4.01 (dd, *J* = 13.4, 5.8 Hz, 1H), 3.79 (dt, *J* = 11.2, 6.9 Hz, 1H), 3.19 (t, *J* = 12.0 Hz, 1H), 2.59 (s, 3H), 2.44 (br, d, *J* = 11.5 Hz, 1H), 2.42 – 2.29 (m, 2H), 2.17 (d, *J* = 14.6 Hz, 1H), 2.10 – 1.99 (m, 2H), 1.86 – 1.74 (m, 1H).

¹³C NMR (101 MHz, Methanol-*d*₄): δ 194.9, 176.3, 163.9, 143.7, 136.4, 126.1, 119.2, 117.1, 75.1, 55.2, 54.5, 35.6, 30.7, 29.1, 23.3, 23.1.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₃⁺ [M+H]⁺: 272.1281; found: 272.1278.

See the following section for a full comparison of NMR data between synthetic and isolated natural products.

Compound 18

To a 100 mL flask equipped with a stir bar were added hemiaminal **14a** (1.15 g, 4.0 mmol, 1.0 equiv), *p*-TsOH (76 mg, 0.1 equiv) and MeOH (40 mL). The reaction was heated to reflux and stirred for one hour. After neutralizing with saturated NaHCO₃ (20 mL), the reaction mixture was extracted with CH₂Cl₂ (30 mL × 3). The organic layers were combined, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:20 E₂O:CH₂Cl₂) to afford (\pm)-oxoisoelaeocarpine (**4**, 249 mg, 23%) and compound **18** (325 mg, 30%).

Physical State: white solid.

m.p.: 157 - 158 °C.

¹**H NMR (400 MHz, Methanol-***d***4):** δ 7.30 (t, *J* = 7.9 Hz, 1H), 6.76 (d, *J* = 2.1 Hz, 1H), 6.75 (d, *J* = 3.3 Hz, 1H), 4.86 (t, *J* = 4.9 Hz, 1H), 4.10 (ddd, *J* = 13.5, 5.6, 1.7 Hz, 1H), 3.82 (dt, *J* = 10.5, 3.5 Hz, 1H), 3.44 – 3.41 (m, 1H), 3.00 – 2.94 (m, 1H), 2.88 – 2.82 (m, 1H), 2.50 (s, 3H), 2.47 – 2.43 (m, 1H), 2.43 – 2.38 (m, 1H), 2.25 – 2.30 (m, 1H), 1.84 – 1.80 (m, 1H), 1.77 – 1.71 (m, 1H).

¹³C NMR (101 MHz, Methanol-*d*4): δ 195.3, 176.7, 161.0, 141.9, 136.0, 125.1, 120.6, 116.9, 77.8, 58.3, 58.2, 38.0, 31.7, 25.6, 22.4, 21.5.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₃⁺ [M+H]⁺: 272.1281; found: 272.1280.

Compound 15

11-methyl-3-thioxo-1,2,3,5,6,6a,12a,12b-octahydro-12H-chromeno[2,3-g]indolizin-12-one

To a 25 mL flask equipped with a stir bar were added (\pm)-oxoelaeocarpine **3** (542 mg, 2.0 mmol, 1.0 equiv), Lawesson's reagent (444 mg, 0.55 equiv), CH₂Cl₂ (6 mL) and toluene (10 mL). After stirring at 60 °C for 20 minutes, the mixture was evaporated and purified by flash column chromatography (silica gel, 1:5 EtOAc:PE) to afford thioamide **15** (433 mg, 75%).

Physical State: white solid.

m.p.: 203 - 205 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.34 (t, *J* = 8.0, 1H), 6.84 (t, *J* = 7.8, 2H), 5.10 (ddd, *J* = 14.0, 5.1, 2.2 Hz, 1H), 4.40 (ddd, *J* = 12.8, 11.2, 4.5 Hz, 1H), 3.96 (dt, *J* = 10.2, 7.7 Hz, 1H), 3.19 – 2.99 (m, 2H), 2.98 – 2.89 (m, 1H), 2.86 – 2.76 (m, 1H), 2.60 (s, 3H), 2.59 (dd, *J* = 12.8, 2.6 Hz, 1H), 2.41 – 2.33 (m, 1H), 2.07 – 1.81 (m, 2H).
¹³C NMR (101 MHz, Chloroform-*d*): δ 201.6, 192.6, 161.8, 142.1, 135.2, 125.1, 119.2, 115.7, 76.7, 62.7, 55.1, 44.3, 41.9, 30.1, 27.3, 22.7.

HRMS (ESI-TOF): calculated for $C_{16}H_{18}NO_2S^+$ [M+H]⁺: 288.1053; found: 288.1052.

(±)-Elaeocarpine (1)

$$\begin{array}{c|c} Me & O & H & Me_{3}OBF_{4} (3.0 \text{ equiv}) \\ \hline H & MeCN, r.t. \\ \hline H & MeOH, r.t. \\ 15 & 63\% & (\pm)-elaeocarpine (1) \end{array}$$

A solution of thioamide **15** (72 mg, 0.25 mmol, 1.0 equiv) in CH₃CN (2.5 mL) was cooled to 0 °C under argon and Me₃OBF₄ (111 mg, 3.0 equiv) was added. The mixture was allow to warm to room temperature and stirred for 2 hours. Solvent was evaporated under reduced pressure and the residue was redissolved in MeOH (2.5 mL). NaBH₃CN (32 mg, 2.0 equiv) was added and the resulting mixture was allowed to stir at room temperature for 1 hour. After quenching with saturated NH₄Cl (10 mL), the reaction mixture was extracted with EtOAc (10 mL × 3). The organic layers were combined, washed with brine (20 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford (\pm)-elaeocarpine (1, 41 mg, 63%). **Physical State:** white solid.

m.p.: 81 - 82 °C.

¹**H NMR (400 MHz, Methanol-***d***4**): δ 7.31 (t, *J* = 7.9 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 4.19 (ddd, *J* = 12.6, 10.9, 5.0 Hz, 1H), 3.17 (ddd, *J* = 11.7, 4.2, 2.7 Hz, 1H), 3.04 (td, *J* = 9.2, 3.7 Hz, 1H), 2.60 (dd, *J* = 13.1, 6.4 Hz, 1H), 2.55 (s, 3H), 2.57 – 2.50 (m, 1H), 2.28 – 2.16 (m, 3H), 2.15 – 2.03 (m, 2H), 1.91 – 1.81 (m, 2H), 1.64 – 1.51 (m, 1H).

¹³C NMR (101 MHz, Methanol-*d*₄): δ 195.4, 163.4, 142.6, 135.5, 125.5, 120.6, 116.6, 79.6, 63.4, 55.1, 53.5, 49.7, 32.1, 31.0, 22.8, 22.7.

HRMS (ESI-TOF): calculated for C₁₆H₂₀NO₂⁺ [M+H]⁺: 258.1489; found: 258.1484.

See the following section for a full comparison of NMR data between synthetic and isolated natural products.

Compound 16

2-bromo-1-(2-methoxy-6-methylphenyl) ethan-1-one

To a 100 mL flask equipped with a stir bar were added acetophenone **9** (4.3 g, 28.7 mmol, 1.0 equiv), MeI (3.6 mL, 2.0 equiv), K_2CO_3 (7.9 g, 2.0 equiv) and DMF (58 mL). The mixture was stirred at room temperature for 6 hours. EtOAc (150 mL) was added and the resulting mixture washed with water (50 mL × 3) and brine (50 mL) successively. The organic layer was then dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:10 EtOAc:PE) to afford compound **S3** (3.2 g, 68%) as yellow oil.

S3 (1.53 g, 9.33 mmol, 1.0 equiv), $CuBr_2$ (4.2 g, 2.0 equiv) and EtOAc (75 mL) were added to a 100 mL flask equipped with a stir bar. The resulting mixture was heated to reflux and stirred for 3 hours. After cooling to room temperature, the reaction mixure was filtered over a pad of celite. The filtrate was washed with brine, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:10 EtOAc:PE) to afford bromide **16** (1.67 g, 74%) as brown oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.26 (t, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 4.36 (s, 2H), 3.82 (s, 3H), 2.27 (s, 3H).

Spectroscopic data are in accordance with that reported in the literature.^[2]

Compound 17

(6aR,12aR,12bR,E)-3-(2-(2-methoxy-6-methylphenyl)-2-oxoethylidene)-11-methyl-1,2,3,5,6,6a,12a,12b-octahydro-12H-chromeno[2,3-g]indolizin-12-one

To a 25 mL flask equipped with a stir bar were added thioamide **15** (574 mg, 2.0 mmol, 1.0 equiv), bromide **16** (726 mg, 1.5 equiv), NaI (30 mg, 0.1 equiv) and CH₂Cl₂ (5 mL). After stirring for 5 minutes, CH₂Cl₂ was removed under reduced pressure and the resulting mixture was stirred at 30 °C for 48 hours. A solution of PPh₃ (786 mg, 1.5 equiv) in CH₂Cl₂ (20 mL) were added and stirred for 0.5 hour before Et₃N (830 μ l, 3.0 equiv) was added. After stirring for another 3 hours, the reaction was diluted with CH₂Cl₂ (30 mL) and washed with brine (30 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:1 EtOAc:PE) to afford enaminone **17** (614 mg, 74%).

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.32 (t, *J* = 7.9 Hz, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 6.9 Hz, 1H), 6.77 (d, *J* = 7.7, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 5.33 (s, 1H), 4.30 (td, *J* = 12.5, 12.0, 4.5 Hz, 1H), 3.80 (dd, *J* = 13.8, 3.3 Hz, 1H), 3.78 (s, 3H), 3.71 – 3.33 (m, 2H), 3.15 – 2.95 (m, 1H), 2.88 (t, *J* = 12.2 Hz, 1H), 2.80 – 2.73 (m, 1H), 2.60 (s, 3H), 2.50 (dd, *J* = 12.7, 10.0 Hz, 1H), 2.26 (s, 3H), 2.29 – 2.22 (m, 1H), 2.02 – 1.90 (m, 1H), 1.83 – 1.70 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d): δ 193.0, 192.4, 164.7, 161.7, 155.6, 142.0, 135.4, 134.9, 134.5, 128.3, 124.9, 122.6, 119.3, 115.6, 108.4, 93.5, 77.2, 59.8, 55.9, 54.6, 40.2, 32.8, 30.2, 28.5, 22.7, 19.2.
HRMS (ESI-TOF): calculated for C₂₆H₂₈NO₄⁺ [M+H]⁺: 418.2013; found: 418.2018.

Compound S4

3-(2-(2-methoxy-6-methylphenyl)-2-oxoethyl)-11-methyl-1,2,3,5,6,6a,12a,12b-octahydro-12H-chromeno[2,3-g]indolizin-12-one

To a solution of enaminone 17 (354 mg, 0.85 mmol, 1.0 equiv) in CH₃CN (17 mL) was added NaBH(OAc)₃ (216 mg, 1.2 equiv). The mixture was stirred at room temperature overnight. The reaction mixture was diluted with saturated NH₄Cl (10 mL) and extracted with EtOAc (20 mL \times 3). The organic layers were combined, washed with

brine (30 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford methylated elaeocarfoline A (**S4**, 255 mg, 72%).

Physical State: pale-yellow oil.

¹**H NMR (400 MHz, Acetone-***d*₆**):** δ 7.34 (t, *J* = 7.9 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 6.81 (t, *J* = 7.9 Hz, 3H), 4.20 (ddd, *J* = 12.4, 5, 1.2 Hz, 1H), 3.86 (s, 3H), 3.20 – 3.17 (m, 1H), 3.17 – 3.14 (m, 1H), 2.82 – 2.67 (m, 2H), 2.54 (s, 3H), 2.48 (dd, *J* = 9.6, 3.2 Hz, 1H), 2.46 – 2.42 (m, 1H), 2.20 (s, 3H), 2.20 – 2.13 (m, 2H), 2.13 – 2.07 (m, 1H), 2.03 (d, *J* = 4.0 Hz, 1H), 1.91 (m, 1H), 1.57 – 1.43 (m, 2H).

¹³C NMR (101 MHz, Acetone-d₆): δ 206.2, 194.8, 162.8, 157.3, 141.9, 136.3, 134.9, 132.1, 130.8, 125.0, 123.7, 120.5, 116.3, 109.5, 79.5, 63.2, 59.5, 56.0, 55.3, 49.8, 47.6, 32.4, 30.7, 29.3, 22.6, 19.2.

HRMS (ESI-TOF): calculated for $C_{26}H_{30}NO_4^+$ [M+H]⁺: 420.2169; found: 420.2163.

(±)-Elaeocarfoline A (6)

Compound S4 (132 mg, 0.32 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (3.6 mL) and cooled to -78 °C under argon. BBr₃ (1.0 M in CH₂Cl₂, 480 μ L, 1.5 equiv) was added dropwise. After stirring at -78 °C for 5 hours, the reaction was quenched by addition of saturated NaHCO₃ (10 mL) and extracted with EtOAc (10 mL × 3). The organic layers were combined, washed with brine (20 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford (±)-elaeocarfoline A (**6**, 75 mg, 59%). **Physical State:** pale-yellow oil.

¹**H NMR (500 MHz, Acetone-***d*₆): δ 9.40 (s, 1H), 7.34 (t, *J* = 7.9 Hz, 1H), 7.13 (t, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 4.20 (ddd, *J* = 12.6, 11.1, 5.0 Hz, 1H), 3.28 (dd, *J* = 16.2, 3.8 Hz, 1H), 3.22 – 3.17 (m, 1H), 2.92 (dd, *J* = 16.2, 8.3 Hz, 1H), 2.84 – 2.78 (m, 1H), 2.54 (s, 3H), 2.52 (dd, *J* = 12.7, 9.6 Hz, 1H), 2.49 – 2.43 (m, 1H), 2.26 (s, 3H), 2.24 – 2.19 (m, 1H), 2.19 – 2.14 (m, 1H), 2.14 – 2.07 (m, 2H), 1.92 (qd, *J* = 11.9, 4.4 Hz, 1H), 1.65 – 1.55 (m, 1H), 1.55 – 1.45 (m, 1H). ¹³**C NMR (126 MHz, Acetone-***d*₆): δ 206.8, 194.8, 162.9, 155.9, 142.0, 137.2, 135.0, 131.3, 130.0, 125.0, 122.8, 120.5, 116.3, 114.8, 79.5, 63.4, 60.0, 55.3, 49.5, 47.8, 32.3, 30.5, 29.5, 22.6, 20.1.

HRMS (ESI-TOF): calculated for C₂₅H₂₈NO₄⁺ [M+H]⁺: 406.2013; found: 406.2012.

See the following section for a full comparison of NMR data between synthetic and isolated natural products.

Compound 20

11-methyl-3-thioxo-1,2,3,5,6,6a,12a,12b-octahydro-12H-chromeno[2,3-g]indolizin-12-one

To a 25 mL flask equipped with a stir bar were added (\pm)-oxoisoelaeocarpine **4** (227 mg, 0.84 mmol, 1.0 equiv), Lawesson's reagent (186 mg, 0.55 equiv), CH₂Cl₂ (3 mL) and toluene (5 mL). After stirring at 60 °C for 20 minutes,

the mixture was evaporated and purified by flash column chromatography (silica gel, 1:5 EtOAc:PE) to afford thioamide **20** (172 mg, 72%).

Physical State: white solid.

m.p.: 162 - 164 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.37 (t, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.85 (d, *J* = 7.4 Hz, 1H), 4.90 (dd, *J* = 13.5, 5.0 Hz, 1H), 4.73 (d, *J* = 2.6 Hz, 1H), 4.08 (dt, *J* = 11.1, 7.2 Hz, 1H), 3.43 (t, *J* = 13.8 Hz, 1H), 3.15 – 3.05 (m, 1H), 3.02 – 2.89 (m, 1H), 2.62 (s, 3H), 2.41 (dd, *J* = 11.2, 2.3 Hz, 1H), 2.35 – 2.26 (m, 1H), 2.15 – 2.07 (m, 2H), 1.95 – 1.82 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 200.9, 192.5, 162.4, 143.0, 135.5, 125.5, 118.1, 116.1, 73.0, 60.3, 54.3, 43.3, 39.7, 28.3, 23.8, 23.1.

HRMS (ESI-TOF): calculated for C₁₆H₁₈NO₂S⁺ [M+H]⁺: 288.1053; found: 288.1050.

(±)-isoelaeocarpine (2)

A solution of thioamide **20** (86 mg, 0.3 mmol, 1.0 equiv) in CH₃CN (3 mL) was cooled to 0 °C under argon and Me₃OBF₄ (134 mg, 3.0 equiv) was added. The mixture was allow to warm to room temperature and stirred for 2 hours. Solvent was evaporated under reduced pressure and the residue was redissolved in MeOH (3 mL). NaBH₃CN (38 mg, 2.0 equiv) was added and the resulting mixture was stirred at room temperature for 1 hour. After quenching with saturated NH₄Cl (10 mL), the reaction mixture was extracted with EtOAc (10 mL × 3). The organic layers were combined, washed with brine (20 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford (±)-isoelaeocarpine (**2**, 45 mg, 58%). **Physical State:** white solid.

m.p.: 51 - 52 °C.

¹**H NMR (400 MHz, Methanol-***d***4):** δ 7.35 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 8.3 Hz, 1H), 6.81 (d, *J* = 7.3 Hz, 1H), 4.65 (s, 1H), 3.08 (t, *J* = 9.0 Hz, 1H), 3.03 (dd, *J* = 11.2, 4.4 Hz, 1H), 2.63 – 2.54 (m, 1H), 2.57 (s, 3H), 2.39 (d, *J* = 11.0 Hz, 1H), 2.33 – 2.25 (m, 1H), 2.23 – 2.17 (m, 1H), 2.17 – 2.10 (m, 1H), 2.01 – 1.90 (m, 1H), 1.85 – 1.75 (m, 1H), 1.75 – 1.60 (m, 3H).

¹³C NMR (101 MHz, Methanol-*d*₄): δ 195.9, 163.8, 143.3, 136.2, 125.8, 119.4, 117.0, 75.0, 60.2, 55.1, 54.5, 48.0, 30.5, 29.2, 23.1, 21.2.

HRMS (ESI-TOF): calculated for C₁₆H₂₀NO₂⁺ [M+H]⁺: 258.1489; found: 258.1488.

See the following section for a full comparison of NMR data between synthetic and isolated natural products.

Compound S5

To a 25 mL flask equipped with a stir bar were added thioamide **20** (143 mg, 0.5 mmol, 1.0 equiv), bromide **16** (182 mg, 1.5 equiv), NaI (8 mg, 0.1 equiv) and CH₂Cl₂ (2 mL). After stirring for 5 minutes, CH₂Cl₂ was removed under reduced pressure and the resulting mixture was stirred at 30 °C for 48 hours. A solution of PPh₃ (197 mg, 1.5 equiv) in CH₂Cl₂ (5 mL) were added and stirred for 0.5 hour before Et₃N (208 μ l, 3.0 equiv) was added. After stirring for another 3 hours, the reaction was diluted with CH₂Cl₂ (10 mL) and washed with brine (10 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:1 EtOAc:PE) to afford enaminone **S5** (150 mg, 72%).

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-d):** δ 7.33 (t, *J* = 7.9 Hz, 1H), 7.13 (t, *J* = 7.9 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.82 (d, *J* = 7.4 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 5.34 (s, 1H), 4.70 (d, *J* = 2.3 Hz, 1H), 3.76 (s, 3H), 3.72 - 3.60 (m, 2H), 3.58 - 3.31 (m, 2H), 3.13 - 2.85 (m, 1H), 2.61 (s, 3H), 2.35 (dd, *J* = 11.0, 2.2 Hz, 1H), 2.24 (s, 3H), 2.22 - 2.14 (m, 1H), 2.06 - 1.90 (m, 2H), 1.89 - 1.78 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 193.2, 192.4, 164.8, 162.2, 155.6, 142.8, 135.3, 135.2, 134.5, 128.2, 125.3, 122.6, 118.1, 115.9, 108.4, 93.8, 73.3, 57.2, 55.8, 53.9, 38.1, 31.8, 28.0, 25.5, 23.0, 19.1.

HRMS (ESI-TOF): calculated for $C_{26}H_{28}NO_4^+$ [M+H]⁺: 418.2013; found: 418.2013.

Compound S6

To a solution of enaminone **S5** (184 mg, 0.44 mmol, 1.0 equiv) in CH₃CN (8 mL) was added NaBH(OAc)₃ (112 mg, 1.2 equiv). The mixture was stirred at room temperature overnight. The reaction mixture was diluted with saturated NH₄Cl (5 mL) and extracted with EtOAc (5 mL \times 3). The organic layers were combined, washed with brine (10 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford methylated elaeocarfoline B (**S6**, 122 mg, 66%).

Physical State: pale-yellow oil.

¹**H NMR (400 MHz, Acetone-***d*₆) δ 7.37 (t, *J* = 7.9 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.82 (d, *J* = 7.5 Hz, 2H), 4.68 (s, 1H), 3.86 (s, 3H), 3.23 – 3.14 (m, 1H), 3.03 (ddd, *J* = 10.9, 4.9, 1.8 Hz, 1H), 2.81 – 2.77 (m, 1H), 2.76 – 2.70 (m, 1H), 2.56 (s, 3H), 2.44 – 2.36 (m, 1H), 2.36 – 2.28 (m, 2H), 2.19 (s, 3H), 2.09 (dd, *J* = 14.3, 2.4 Hz, 1H), 1.97 – 1.80 (m, 2H), 1.57 – 1.44 (m, 3H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 206.2, 194.8, 163.2, 157.3, 142.5, 136.3, 135.4, 132.1, 130.8, 125.2, 123.7, 119.3, 116.7, 109.5, 74.8, 60.9, 60.0, 56.0, 55.6, 49.8, 46.0, 30.9, 29.2, 28.1, 22.9, 19.2.

HRMS (ESI-TOF): calculated for C₂₆H₃₀NO₄⁺ [M+H]⁺: 420.2169; found: 420.2170.

(±)-Elaeocarfoline B (7)

Compound S6 (121 mg, 0.29 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (2.9 mL) and cooled to -78 °C under argon. BBr₃ (1.0 M in CH_2Cl_2 , 440 µL, 1.5 equiv) was added dropwise. After stirring at -78 °C for 5 hours, the reaction was quenched by addition of saturated NaHCO₃ (5 mL) and extracted with EtOAc (5 mL × 3). The organic layers were combined, washed with brine (10 mL), dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, 1:3 EtOAc:PE) to afford (±)-elaeocarfoline A (7, 73 mg, 62%). **Physical State:** pale-yellow oil.

¹**H** NMR (500 MHz, Acetone- d_6) δ 7.37 (t, J = 7.9 Hz, 1H), 7.12 (t, J = 7.9 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 7.4 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.71 (d, J = 7.4 Hz, 1H), 4.69 (q, like, J = 2.3 Hz, 1H), 3.29 (dd, J = 16.1, 3.8 Hz, 1H), 3.04 (ddd, J = 11.0, 5.0, 2.0 Hz, 1H), 2.91 (dd, J = 16.2, 8.3 Hz, 1H), 2.84 – 2.78 (m, 1H), 2.56 (s, 3H), 2.43 (td, J = 12.0, 11.3, 2.8 Hz, 1H), 2.36 – 2.31 (m, 2H), 2.24 (s, 3H), 2.11 – 2.06 (m, 1H), 1.97 – 1.90 (m, 1H), 1.90 – 1.81 (m, 1H), 1.60 – 1.51 (m, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ 206.8, 194.7, 163.3, 156.0, 142.6, 137.3, 135.5, 131.4, 130.0, 125.3, 122.8, 119.3, 116.7, 114.9, 74.8, 61.4, 60.3, 55.5, 49.6, 46.3, 30.8, 29.1, 28.1, 22.9, 20.1.

HRMS (ESI-TOF): calculated for C₂₅H₂₈NO₄⁺ [M+H]⁺: 406.2013; found: 406.2010.

See the following section for a full comparison of NMR data between synthetic and isolated natural products.

NMR Data Comparison between Synthetic and Isolated Natural Products

Table S1. Elaeocarpine (1)

No.	$\delta_{\rm H}$ (isolated) (500 MHz, Methanol- d_4) ^[5]	$\delta_{\rm H}$ (synthetic) (400 MHz, Methanol- d_4)	Δ	$\delta_{\rm C}$ (isolated) (125 MHz, Methanol- d_4) ^[5]	$\delta_{\rm C}$ (synthetic) (101 MHz, Methanol- d_4)	Δ
1α	1.88, m	1.91 – 1.81, m		30.2	31.0	0.8
1β	1.57, m	1.64 – 1.51, m				
2α	1.71, m	1.91 – 1.81, m		22.0	22.7	0.7
2β	2.12, m	2.28 – 2.16, m				
3	3.02, t (8.8)	3.04, td (9.2, 3.7)	0.02	54.3	55.1	0.8
	2.18, m	2.28 – 2.16, m				
5α	3.15, dd (13.2, 3.6)	3.17, ddd (11.7, 4.2, 2.7)	0.02	48.7	49.7	1.0
5β	2.20, m	2.28 – 2.16, m				
6	2.06, m	2.15 – 2.03, m		31.3	32.1	0.8
7	4.13, m	4.19, ddd (12.6, 10.9, 5.0)	0.06	78.5	79.6	1.1
8	2.56, m	2.60, (dd, 13.1, 6.4)	0.04	52.7	53.5	0.8
9	2.53, m	2.57 – 2.50, m		61.9	63.4	1.5
10				194.5	195.4	0.9
11				119.4	120.6	1.2
12				161.9	163.4	1.5
13	6.78, d (8.4)	6.81, d (8.4)	0.03	115.4	116.6	1.2
14	7.26, t (8.4)	7.31, t (7.9)	0.05	134.1	135.5	1.4
15	6.74, d (7.6)	6.79, d (7.6)	0.05	124.3	125.5	1.2
16				141.6	142.6	1.0
17	2.60, s	2.55, s	0.05	22.6	22.8	0.2

Table S2. Isoelaeocarpine (2)

	$\delta_{\rm H}$ (isolated)	$\delta_{\rm H}$ (synthetic)		$\delta_{\rm C}$ (isolated)	$\delta_{\rm C}$ (synthetic)	
No.	(400 MHz,	(400 MHz,	Δ	(100 MHz,	(101 MHz,	Δ
	Methanol- d_4) ^[5]	Methanol- <i>d</i> ₄)		Methanol- d_4) ^[5]	Methanol- <i>d</i> ₄)	
1α	1.63, m	1.75 – 1.60, m		30.8	30.5	-0.3
1β	2.17, m	2.17 – 2.10, m				
2	1.73, m	1.75 – 1.60, m		21.5	21.2	-0.3
3	3.07, dd (11.5, 5)	3.03, dd (11.2, 4.4)	-0.04	55.2	55.1	-0.1
	2.22, m	2.23 – 2.17, m				
5α	3.15, t (8.0)	3.08, t (9.0)	-0.07	54.6	54.5	-0.1
5β	2.33, m	2.33 – 2.25, m				
6	2.02, m	2.01 – 1.90, m		29.3	29.2	-0.1
	1.87, m	1.85 – 1.75, m				
7	4.66, d (2.5)	4.65, s	-0.01	74.9	75.0	0.1
8	2.48 d (10.0)	2.39 d (11.0)	-0.09	47.9	48.0	0.1
9	2.63, m	2.63 – 2.54, m		59.9	60.2	0.3
10				195.5	195.9	0.4
11				119.5	119.4	-0.1
12				163.3	163.8	0.5
13	6.85, d (8.5)	6.86, d (8.3)	0.01	116.8	117.0	0.2
14	7.32, t (7.5)	7.35, t (7.8)	0.03	135.6	136.2	0.6
15	6.80, d (7.0)	6.81, d (7.3)	0.01	125.7	125.8	0.1
16				143.5	143.3	-0.2
17	2.63, s	2.57, s	-0.06	23.8	23.1	-0.7

Table S3. Oxoelaeocarpine (3)

No.	$ δ_{\rm H} (\text{isolated}) $ (500 MHz, Methanol- d_4) ^[6]	$\delta_{\rm H}$ (synthetic) (400 MHz, Methanol- d_4)	Δ	$\delta_{\rm C} \text{ (isolated)} \\ (126 \text{ MHz,} \\ \text{Methanol-} d_4)^{[6]}$	$\delta_{\rm C}$ (synthetic) (101 MHz, Methanol- d_4)	Δ
1α	2.68, m	2.73 – 2.63, m		26.3	26.3	0.0
1β	1.92, m	2.02 – 1.90, m				
2	2.42, m	2.52 – 2.35, m		31.4	31.4	0.0
3				176.3	176.3	0.0
5α	2.81, br dd (13.6, 13.6)	2.82, t (13.0)	0.01	37.8	37.8	0.0
5β	4.16, ddd (13.6, 5.2, 1.9)	4.17, dd (13.5, 3.8)	0.01			
6α	2.24, m	2.25, d (12.4)	0.01	31.5	31.5	0.0
6β	1.82, m	1.89 – 1.76, m				
7	4.40, ddd (12.8, 11.2, 4.4)	4.41, td (12.5, 4.4)	0.01	78.6	78.6	0.0
8	2.67, dd (12.8, 10.0)	2.67, dd (12.8, 10.4)	0.00	56.1	56.1	0.0
9	3.78, ddd (10.0, 7.0, 7.0)	3.78, dt (10.1, 7.3)	0.00	56.9	56.9	0.0
10				194.8	194.8	0.0
11				120.5	120.5	0.0
12				163.3	163.3	0.0
13	6.83, br d (8.1)	6.84, d (7.9)	0.01	116.7	116.7	0.0
14	7.34, dd (8.1 7.7)	7.35, t (7.9)	0.01	135.9	135.9	0.0
15	6.82, br d (7.7)	6.82, d (6.9)	0.00	125.6	125.6	0.0
16				142.7	142.7	0.0
17	2.57, s	2.58, s	0.01	22.7	22.7	0.0

Table S4. Oxoisoelaeocarpine (4)

 $\delta_{\rm H}$ (isolated) $\delta_{\rm H}$ (synthetic) $\delta_{\rm C}$ (isolated) $\delta_{\rm C}$ (synthetic) (400 MHz, No. (400 MHz, Δ (100 MHz, (101 MHz, Δ Methanol- d_4)^[7] Methanol- d_4)^[7] Methanol- d_4) Methanol- d_4) 1 2.13-1.99, m 2.10-1.99, m 23.4 23.3 -0.1 2 2.44-2.31, m 2.42-2.29, m 30.9 30.7 -0.2 3 176.5 176.3 -0.2 4.03, dd 4.01, dd 35.6 5β -0.02 35.8 -0.2 (13.3, 5.7)(13.4, 5.8)3.22, dd (13.3, 5α 3.19, t (12.0) -0.03 10.3) 2.18, d (14.6) -0.01 29.3 29.1 -0.2 6α 2.17, d (14.6) 1.88-1.74, m 1.86-1.74, m 6β 7 4.77, d (2.4) 4.75, d (3.1) -0.02 75.3 75.1 -0.2 2.47, dd (11.0, 2.45, br d 8 -0.02 55.2 -0.2 55.4 2.4) (11.5)3.83, dt (11.0, 3.79, dt (11.2, 9 -0.04 54.7 54.5 -0.2 6.9) 6.9) 10 195.1 194.9 -0.2 119.4 119.2 11 -0.2 12 164.2 163.9 -0.3 13 6.94, d (7.9) 6.92, d (8.4) -0.02 117.3 117.1 -0.2 14 7.40, t (7.9) 7.39, t (7.9) -0.01 136.6 136.4 -0.2 15 6.87, d (7.9) 6.86, d (7.5) -0.01 126.3 126.1 -0.2 16 143.8 143.7 -0.1 17 -0.01 23.3 23.1 -0.2 2.60, s 2.59, s

Table S5. Elaeocarfoline A (6)

26

2.27, s

 $\delta_{\rm H}$ (isolated) $\delta_{\rm C}$ (synthetic) $\delta_{\rm H}$ (synthetic) $\delta_{\rm C}$ (isolated) $(800 \text{ MHz}, \text{Acetone-} d_6)^{[6]}$ (500 MHz, $(201 \text{ MHz}, \text{Acetone-}d_6)^{[6]}$ (126 MHz, No. Δ Δ Acetone- d_6) Acetone- d_6) 2.48, m 29.5 29.5 1 2.49 - 2.43, m 0.0 1.50, m 1.55 - 1.45, m 0.0 2α 2.09, m 2.14 - 2.07, m 30.5 30.5 1.65 - 1.55, m2β 1.60, m 3 2.81, m 2.84 - 2.78, m 59.9 60.0 0.1 5α 2.12, m 2.14 – 2.07, m 47.7 47.8 0.1 5β 3.20, m 3.22 – 3.17, m 2.18, m 0.0 6α 2.19 - 2.14, m 32.3 32.3 1.92, qd (11.9 6β 1.92, qd (11.9 4.4) 0.00 4.7) 4.22, ddd (11.9 4.20, ddd (12.6 7 -0.02 79.5 79.5 0.0 11.1 5.0) 11.1 5.0) 2.54, dd (11.1 8 2.52, dd (12.7 9.6) -0.02 55.3 55.3 0.0 9.8) 2.22, ddd (11.1 9 2.24 – 2.19, m 63.4 63.4 0.0 9.8 6.0) 10 194.8 194.8 0.0 11 120.5 120.5 0.0 12 0.1 162.8 162.9 13 6.84, br d (8.2) 6.82, d (8.0) -0.02 116.3 116.3 0.0 14 -0.02 135.0 135.0 0.0 7.36, dd (8.2 7.5) 7.34, t (7.9) 15 6.83, br d (7.5) 6.81, d (7.2) -0.02 125.0 125.0 0.0 16 141.9 142.0. 0.1 17 -0.02 22.5 22.6 0.1 2.56, s 2.54, s 3.29, dd (16.3, 3.28, dd (16.2, 18 -0.01 49.5 49.5 0.0 3.8) 3.8) 2.93, dd (16.3 2.92, dd (16.2 8.3) -0.01 8.2) 19 206.8 206.8 0.0 20 130.0 130.0 0.0 21 155.9 9.40, s 155.8 0.1 6.77, d (8.2) 22 -0.01 114.7 0.1 6.78, br d (8.1) 114.8 23 -0.01 7.14, dd (8.1 7.6) 7.13, t (7.9) 131.3 131.3 0.0 24 -0.01 122.8 122.8 6.74, br d (7.6) 6.73, d (7.6) 0.0 25 137.2 137.2 0.0

-0.01

2.26, s

20.0

20.1

0.1

Table S6. Elaeocarfoline B (7)

 $\delta_{\rm H}$ (isolated) $\delta_{\rm H}$ (synthetic) $\delta_{\rm C}$ (isolated) $\delta_{\rm C}$ (synthetic) $(500 \text{ MHz}, \text{Acetone-} d_6)^{[6]}$ (400 MHz, No. (201 MHz, (126 MHz, Δ Δ <u>Acetone- d_6 </u>^[6] Acetone- d_6) Acetone- d_6) 1 1.54, m 1.60 - 1.51, m 28.1 28.1 0.0 1.97 – 1.90, m 29.0 29.1 2α 1.93, m 0.1 2β 1.51, m 1.60 - 1.51, m 3 2.80, m 2.84 – 2.78, m 61.3 61.4 0.1 2.42, ddd (12.0, 2.43, td (12.0, 11.3, 0.01 46.2 46.3 0.1 5α 11.1, 2.8) 2.8) 3.04, ddd (11.0, 5.2, 3.03, ddd (11.1, 0.01 5β 5.0, 2.1) 2.0)6α 2.07, m 2.11 - 2.06, m 30.8 30.8 0.0 6β 1.90 - 1.81, m 1.84, m 7 0.1 4.68, q like (2.7) 4.69, q like (2.3) 0.01 74.7 74.8 55.5 0.1 8 2.34, m 2.36 – 2.31, m 55.4 9 2.36 - 2.31, m0.1 2.36, m 60.2 60.3 194.7 10 194.7 0.0 11 119.2 119.3 0.1 12 163.2 163.3 0.1 13 6.86, br d (8.4) 6.87, d (8.3) 0.01 116.7 116.7 0.0 14 7.37^a, dd (8.4 7.4) 7.37, t (7.9) 0.00 135.4 135.5 0.1 15 0.01 125.2 125.3 0.1 6.82, br d (7.4) 6.83, d (7.4) 16 142.5 142.6 0.1 17 2.55, s 2.56, s 0.01 22.9 22.9 0.0 18 3.28, dd (16.0, 3.9) 3.29, dd (16.1, 3.8) 0.01 49.5 49.6 0.1 2.90, dd (16.0 8.3) 2.91, dd (16.2 8.3) 0.01 19 206.8 206.8 0.0 20 129.9 130.0 0.1 21 0.1 155.9 156.0 114.8 22 0.00 114.9 0.1 6.76, br d (8.2) 6.76, d (8.2) 23 7.12, dd (8.2 7.6) 0.00 131.3 131.4 0.1 7.12, t (7.9) 24 6.71, br d (7.6) 6.71, d (7.4) 0.00 122.7 122.8 0.1 25 137.2 137.3 0.1 26 2.23, s 0.01 20.0 20.1 0.1 2.24, s

elaeocarfoline B (7)

^aThis number was corrected according to the spectrum reported in its Supporting Information^[6].

X-Ray Crystallographic Data for Compound 18

Table 1 Crystal data and strue	cture refinement for 18 .
Identification code	CCDC 2169386
Empirical formula	C ₁₆ H ₁₇ NO ₃
Formula weight	271.30
Temperature/K	170.0
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.002(3)
b/Å	9.389(3)
c/Å	25.890(7)
a/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2674.2(12)
Ζ	8
$\rho_{calc}g/cm^3$	1.348
μ/mm^{-1}	0.093
F(000)	1152.0
Crystal size/mm ³	$0.15 \times 0.07 \times 0.06$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/	° 4.86 to 52.76
Index ranges	$-13 \le h \le 13, -9 \le k \le 11, -32 \le l \le 30$
Reflections collected	18127
Independent reflections	2711 [$R_{int} = 0.0755, R_{sigma} = 0.0471$]
Data/restraints/parameters	2711/0/182
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0449, \mathrm{wR}_2 = 0.0964$
Final R indexes [all data]	$R_1 = 0.0713, wR_2 = 0.1116$

Fable 1 Crystal	data and	structure refinement	nt for 18 .

Largest diff. peak/hole / e Å⁻³ 0.16/-0.22

Atom	1 <i>x</i>	у	Z	U(eq)
03	6403.3(11)	1899.2(14)	2976.5(5)	37.7(3)
01	2045.5(11)	5740.1(14)	3362.3(5)	37.3(3)
02	4546.4(11)	3537.7(16)	4212.8(5)	45.2(4)
N1	5498.6(13)	4084.8(16)	3052.6(5)	30.2(4)
C7	2480.3(15)	4208.1(19)	4100.3(6)	26.7(4)
C16	6275.0(15)	3049(2)	3196.0(6)	29.2(4)
C6	1674.0(15)	4960(2)	3779.4(6)	30.3(4)
C8	3802.3(16)	4301(2)	4000.1(6)	29.6(4)
C2	1992.2(15)	3443(2)	4527.0(6)	29.7(4)
C9	4178.5(15)	5463.5(19)	3623.0(7)	29.9(4)
C12	5458.0(16)	5318(2)	3394.1(7)	31.9(4)
C3	752.0(16)	3498(2)	4617.0(7)	33.6(4)
C10	3267.8(16)	5515(2)	3177.2(7)	32.2(4)
C4	-20.6(17)	4262(2)	4295.5(7)	36.8(5)
C5	429.8(16)	4980(2)	3873.3(7)	35.3(5)
C1	2771.3(17)	2589(2)	4891.2(7)	38.2(5)
C15	6953.7(16)	3551(2)	3667.9(7)	36.0(5)
C11	3333.1(17)	4178(2)	2846.4(7)	35.6(4)
C13	4617.1(17)	3978(2)	2634.3(7)	38.0(5)
C14	6546.9(16)	5082(2)	3758.6(7)	37.2(5)

 a^3) for 3. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table 2 Fractional Atomic Coordinates (nem⁴) and Equivalent Isotropic Displacement Parameters (Å²×

References

- Taber, D. F., Hoerrner, R. S., Hagen, M. D. A practical preparation of the indolizidine nucleus: synthesis of (±)-elaeokanine A. *The Journal of Organic Chemistry*, **1991**, *56*, 1287-1289
- [2] Michael, J. P., Parsons, A. S. Chemoselective reactions of vinylogous amides, and the synthesis of two Peripentadenia alkaloids. *Tetrahedron*, **1996**, *52*, 2199-2216.
- [3] Neto, B. A., Lapis, A. A., Bernd, A. B., Russowsky, D. Studies on the Eschenmoser coupling reaction and insights on its mechanism. Application in the synthesis of Norallosedamine and other alkaloids. *Tetrahedron*, 2009, 65, 2484-2496.
- [4] Fischer, M., Harms, K., Koert, U. Total syntheses of 7, 20-oxa-bridged dinorditerpenes: antihepatitis C virus active (+)-elevenol from Flueggea virosa and (+)-przewalskin. *Organic letters*, **2016**, *18*, 5692-5695.
- [5] Wang, X. Y. Master's Thesis (2011). Institute of Modern Chinese Medicine (IMCM), College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China.
- [6] Hong, W., Zhang, Y., Yang, J., Xia, M. Y., Luo, J. F., Li, X. N., Wang, Y. H., Wang, J. S. Alkaloids from the Branches and Leaves of Elaeocarpus angustifolius. *Journal of natural products*, 2019, 82, 3221-3226.
- [7] Zhou, C. X., Wang, X. Y., Mo, J. X., Zhang, J., Gan, L. S. Optical resolution and structure determination of new indolizidine alkaloids from Elaeocarpus sphaericus. *Helvetica Chimica Acta*, 2011, 94, 347-354.

NMR Spectra

Compound S2¹³C NMR (126 MHz, Chloroform-d)

Compound 14a ¹H NMR (400 MHz, Chloroform-d)

Compound 14a ¹³C NMR (101 MHz, Chloroform-d)

Compound 14b ¹H NMR (400 MHz, Chloroform-*d*)

Compound 14b ¹³C NMR (101 MHz, Chloroform-d)

Compound 3¹H NMR (400 MHz, Methanol-d4)

Compound 3¹³C NMR (101 MHz, Methanol-d4)

Compound 4¹H NMR (400 MHz, Methanol-d4)

Compound 4¹³C NMR (400 MHz, Methanol-d4)

Compound 18¹H NMR (400 MHz, Methanol-d4)

Compound 18¹³C NMR (101 MHz, Methanol-d4)

Compound 18 COSY (Methanol-d4)

udd

Compound 18 NOESY (Methanol-d4)

mdd

Compound 18 HMBC (Methanol-d4)

mqq

42

Compound 17¹H NMR (400 MHz, Chloroform-d)

Compound 17¹³C NMR (101 MHz, Chloroform-d)

Compound S4¹H NMR (400 MHz, Acetone-*d*₆)

Г Т Т ppm

mdd

mdd

Compound S4 HMBC (Acetone-d₆)

20 210 200 190 180 170 160 10 150 140 130 120 . 110 100 90 80 70 . 60 . 50 $\frac{1}{40}$. 30 . 20 ppm

Compound 20¹H NMR (400 MHz, Chloroform-*d*)

Compound S5¹H NMR (400 MHz, Chloroform-d)

Compound S5¹³C NMR (101 MHz, Chloroform-d)

Compound S6¹³C NMR (101 MHz, Acetone-*d*₆)

mdd

Compound S6 HSQC (Acetone-d₆)

Compound S6 NOESY (Acetone-d₆)

fl (ppm)

Compound 7¹³C NMR (126 MHz, Acetone-*d*₆)

