Supporting Information for

Enantiomeric pairs of meroterpenoids with 11/5/6 spiro-

heterocyclic systems from Hypericum kouytchense

Jin-Chang Huang,^{*a,b*} Li Sheng,^{*c*} Jian-Fa Zong,^{*b*} Yu-Bo Zhou,^{*c*} Jia Li,^{*c*} and Ai-Jun Hou^{*,*a,b*}

^a School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
^b School of Pharmacy, Fudan University, Shanghai, 201203, China
^cNational Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

^{*} E-mail: ajhou@sjtu.edu.cn

Contents

Table S1. X-ray crystallographic data for (-)-hyperkouytin A (1a).	1
Table S2. X-ray crystallographic data for (+)-hyperkouytin B (2b)	2
Table S3. X-ray crystallographic data for (+)-hyperkouytin D (4b)	3
Table S4. X-ray crystallographic data for (+)-hyperkouytin E (5b).	4
Table S5. X-ray crystallographic data for (-)-hyperkouytin F (6a)	5
Scheme S1. Hypothetical biosynthetic pathways for 1a/1b-6a/6b	6
Fig. S1. Key ¹ H- ¹ H COSY and HMBC correlations of 2, 3, 5, and 6	7
Fig. S2. Key NOESY correlations of 2, 3, 5, and 6.	7
Original Spectroscopic Data	8
Fig. S3. Positive HR-ESIMS spectrum of hyperkouytin A (1)	8
Fig. S4. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1)	8
Fig. S5. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1)	9
Fig. S6. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin A (1)	9
Fig. S7. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin A (1)	10
Fig. S8. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1).	10
Fig. S9. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1).	11
Fig. S10. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1)	11
Fig. S11. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1).	12
Fig. S12. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1).	12
Fig. S13. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin A (1)	13
Fig. S14. IR spectrum of hyperkouytin A (1).	13
Fig. S15. UV spectrum of hyperkouytin A (1).	14
Fig. S16. Positive HR-ESIMS spectrum of hyperkouytin B (2).	14
Fig. S17. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2)	15
Fig. S18. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2)	15
Fig. S19. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin B (2)	16
Fig. S20. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin B (2)	16
Fig. S21. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2).	17
Fig. S22. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2).	17
Fig. S23. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2)	18

Fig. S24. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2).	18
Fig. S25. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2)	19
Fig. S26. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin B (2)	19
Fig. S27. IR spectrum of hyperkouytin B (2).	20
Fig. S28. UV spectrum of hyperkouytin B (2)	20
Fig. S29. Positive HR-ESIMS spectrum of hyperkouytin C (3).	21
Fig. S30. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3)	21
Fig. S31. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3)	22
Fig. S32. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin C (3)	22
Fig. S33. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin C (3)	23
Fig. S34. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3).	23
Fig. S35. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3).	24
Fig. S36. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3)	24
Fig. S37. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3).	25
Fig. S38. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3).	25
Fig. S39. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin C (3)	26
Fig. S40. IR spectrum of hyperkouytin C (3).	26
Fig. S41. UV spectrum of hyperkouytin C (3)	27
Fig. S42. Positive HR-ESIMS spectrum of hyperkouytin D (4)	27
Fig. S43. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	
Fig. S44. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	
Fig. S45. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin D (4)	29
Fig. S46. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin D (4)	29
Fig. S47. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4).	
Fig. S48. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4).	
Fig. S49. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	31
Fig. S50. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	31
Fig. S51. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	32
Fig. S52. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin D (4)	
Fig. S53. IR spectrum of hyperkouytin D (4).	
Fig. S54. UV spectrum of hyperkouytin D (4).	

Fig. S55. Positive HR-ESIMS spectrum of hyperkouytin E (5).	34
Fig. S56. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	34
Fig. S57. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	35
Fig. S58. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin E (5)	35
Fig. S59. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin E (5)	
Fig. S60. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	
Fig. S61. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	
Fig. S62. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	
Fig. S63. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5).	
Fig. S64. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5).	
Fig. S65. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin E (5)	
Fig. S66. IR spectrum of hyperkouytin E (5)	
Fig. S67. UV spectrum of hyperkouytin E (5)	40
Fig. S68. Positive HR-ESIMS spectrum of hyperkouytin F (6).	40
Fig. S69. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	41
Fig. S70. ¹ H NMR (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	41
Fig. S71. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin F (6)	42
Fig. S72. ¹³ C NMR and DEPT (150 MHz, CDCl ₃) spectra of hyperkouytin F (6)	42
Fig. S73. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	43
Fig. S74. HSQC (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	43
Fig. S75. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	44
Fig. S76. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	44
Fig. S77. HMBC (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	45
Fig. S78. NOESY (600 MHz, CDCl ₃) spectrum of hyperkouytin F (6)	45
Fig. S79. IR spectrum of hyperkouytin F (6).	46
Fig. S80. UV spectrum of hyperkouytin F (6).	46

Empirical formula	$C_{48}H_{64}O_5$	
Formula weight	720.99	
Temperature	173.01 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 9.7093(5) Å	α= 90 °.
	b = 18.6794(10) Å	β= 90 °.
	c = 23.1009(13) Å	$\gamma = 90$ °.
Volume	4189.7(4) Å ³	
Z	4	
Density (calculated)	1.143 Mg/m ³	
Absorption coefficient	0.361 mm ⁻¹	
F(000)	1568	
Crystal size	0.1 x 0.06 x 0.05 mm ³	
Theta range for data collection	3.915 to 54.872 °.	
Index ranges	-8<=h<=11, -22<=k<=22, -28<=l<=28	
Reflections collected	41441	
Independent reflections	7901 [R(int) = 0.0327]	
Completeness to theta = 53.594°	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.6456	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7901 / 0 / 488	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0814	
R indices (all data)	R1 = 0.0367, wR2 = 0.0837	
Absolute structure parameter	0.05(6)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.180 and -0.199 e.Å ⁻³	

Table S1. X-ray crystallographic data for (-)-hyperkouytin A $(1a)^a$.

^{*a*}Crystals of **1a** were obtained from a mixed solvent (MeOH/H₂O, 5:1).

Empirical formula	C ₄₃ H ₅₆ O ₅	
Formula weight	652.87	
Temperature	173.0 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 9.2293(5) Å	$\alpha = 90$ °.
	b = 23.5572(14) Å	β= 90 °.
	c = 34.549(2) Å	$\gamma = 90$ °.
Volume	7511.5(8) Å ³	
Z	8	
Density (calculated)	1.155 Mg/m ³	
Absorption coefficient	0.372 mm ⁻¹	
F(000)	2832	
Crystal size	0.1 x 0.06 x 0.05 mm ³	
Theta range for data collection	3.449 to 54.974 °.	
Index ranges	-11<=h<=5, -28<=k<=23, -41<=l<=42	
Reflections collected	47528	
Independent reflections	14111 [R(int) = 0.0514]	
Completeness to theta = 53.594°	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.5413	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	14111 / 0 / 884	
Goodness-of-fit on F ²	1.070	
Final R indices [I>2sigma(I)]	R1 = 0.0526, wR2 = 0.1128	
R indices (all data)	R1 = 0.0740, wR2 = 0.1309	
Absolute structure parameter	0.06(11)	
Extinction coefficient	0.00150(12)	
Largest diff. peak and hole	0.234 and -0.200 e.Å ⁻³	

Table S2. X-ray crystallographic data for (+)-hyperkouytin B $(2b)^a$.

^{*a*}Crystals of **2b** were obtained from a mixed solvent (MeOH/H₂O, 5:1).

Empirical formula	C ₄₈ H ₆₄ O ₅		
Formula weight	720.99		
Temperature	173.0 K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 9.4449(13) Å	$\alpha = 90$ °.	
	b = 18.494(3) Å	$\beta = 90$ °.	
	c = 24.612(4) Å	$\gamma = 90$ °.	
Volume	4299.0(10) Å ³		
Z	4		
Density (calculated)	1.114 Mg/m ³		
Absorption coefficient	0.352 mm ⁻¹	0.352 mm ⁻¹	
F(000)	1568	1568	
Crystal size	0.1 x 0.05 x 0.05 mm	0.1 x 0.05 x 0.05 mm ³	
Theta range for data collection	4.362 to 54.950 °.		
Index ranges	-9<=h<=11, -22<=k<=22, -30<=l<=30		
Reflections collected	46312		
Independent reflections	8130 [R(int) = 0.0462]		
Completeness to theta = 53.594°	99.7 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.6274	0.7508 and 0.6274	
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	8130 / 24 / 488	8130 / 24 / 488	
Goodness-of-fit on F ²	1.063	1.063	
Final R indices [I>2sigma(I)]	R1 = 0.0664, wR2 = 0	R1 = 0.0664, wR2 = 0.1927	
R indices (all data)	R1 = 0.0721, $wR2 = 0.2024$		
Absolute structure parameter	0.08(8)		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.172 and -0.454 e.Å ⁻³		

Table S3. X-ray crystallographic data for (+)-hyperkouytin D $(4b)^a$.

^aCrystals of **4b** were obtained from a mixed solvent (MeOH/H₂O, 5:1).

Empirical formula	C ₄₈ H ₆₄ O ₅	
Formula weight	720.99	
Temperature	296 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	C 1 2 1	
Unit cell dimensions	a = 46.394(4) Å	α= 90 °.
	b = 9.7640(8) Å	β= 105.973(5) °.
	c = 19.7131(15) Å	$\gamma = 90$ °.
Volume	8585.0(12) Å ³	
Z	8	
Density (calculated)	1.116 Mg/m ³	
Absorption coefficient	0.353 mm ⁻¹	
F(000)	3136	
Crystal size	0.1 x 0.02 x 0.01 mm ³	
Theta range for data collection	3.487 to 55.200 °.	
Index ranges	-56<=h<=55, -11<=k<=11, -24<=l<=24	
Reflections collected	54815	
Independent reflections	16239 [R(int) = 0.0685]	
Completeness to theta = 53.594 $^{\circ}$	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.4572	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	16239 / 1 / 975	
Goodness-of-fit on F ²	1.004	
Final R indices [I>2sigma(I)]	R1 = 0.0661, wR2 = 0.1679	
R indices (all data)	R1 = 0.1007, wR2 = 0.1958	
Absolute structure parameter	0.06(13)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.506 and -0.319 e.Å ⁻³	

Table S4. X-ray crystallographic data for (+)-hyperkouytin E $(5b)^a$.

^{*a*}Crystals of **5b** were obtained from a mixed solvent (MeOH/H₂O, 5:1).

Empirical formula	C ₄₃ H ₅₆ O ₅	
Formula weight	652.87	
Temperature	296 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 13.7143(6) Å	α= 90 °.
	b = 9.7311(4) Å	β=96.506(3)°.
	c = 14.4170(6) Å	$\gamma = 90$ °.
Volume	1911.63(14) Å ³	
Z	2	
Density (calculated)	1.134 Mg/m ³	
Absorption coefficient	0.362 mm ⁻¹	
F(000)	708	
Crystal size	0.07 x 0.07 x 0.05 mm ³	
Theta range for data collection	2.684 to 55.162 °.	
Index ranges	-15<=h<=16, -11<=k<=11, -17<=l<=17	
Reflections collected	28908	
Independent reflections	7217 [R(int) = 0.0556]	
Completeness to theta = 53.594°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.5931	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7217 / 1 / 442	
Goodness-of-fit on F ²	1.177	
Final R indices [I>2sigma(I)]	R1 = 0.0742, wR2 = 0.1706	
R indices (all data)	R1 = 0.1331, $wR2 = 0.2020$	
Absolute structure parameter	0.03(16)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.228 and -0.232 e.Å ⁻³	

Table S5. X-ray crystallographic data for (-)-hyperkouytin F $(6a)^a$.

^aCrystals of **6a** were obtained from a mixed solvent (MeOH/H₂O, 5:1).

Scheme S1. Hypothetical biosynthetic pathways for 1a/1b–6a/6b.

1a/1b-6a/6b

Fig. S1. Key ¹H-¹H COSY and HMBC correlations of 2, 3, 5, and 6.

Fig. S2. Key NOESY correlations of 2, 3, 5, and 6.

Original Spectroscopic Data

Fig. S3. Positive HR-ESIMS spectrum of hyperkouytin A (1).

Fig. S4. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S5. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S6. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin A (1).

Fig. S7. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin A (1).

Fig. S8. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S9. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S10. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S11. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S12. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S13. NOESY (600 MHz, CDCl₃) spectrum of hyperkouytin A (1).

Fig. S14. IR spectrum of hyperkouytin A (1).

Fig. S15. UV spectrum of hyperkouytin A (1).

Fig. S16. Positive HR-ESIMS spectrum of hyperkouytin B (2).

Fig. S17. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S18. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S19. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin B (2).

Fig. S20. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin B (2).

Fig. S21. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S22. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S23. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S24. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S25. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin B (2).

Fig. S27. IR spectrum of hyperkouytin B (2).

Fig. S28. UV spectrum of hyperkouytin B (2).

Fig. S29. Positive HR-ESIMS spectrum of hyperkouytin C (3).

Fig. S30. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S32. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin C (3).

Fig. S33. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin C (**3**).

Fig. S34. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S35. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S36. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S37. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S38. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S39. NOESY (600 MHz, CDCl₃) spectrum of hyperkouytin C (3).

Fig. S40. IR spectrum of hyperkouytin C (3).

Fig. S41. UV spectrum of hyperkouytin C (3).

Fig. S42. Positive HR-ESIMS spectrum of hyperkouytin D (4).

Fig. S43. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S44. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S45. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin D (4).

Fig. S46. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin D (4).

Fig. S47. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S48. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S49. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S50. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S51. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S52. NOESY (600 MHz, CDCl₃) spectrum of hyperkouytin D (4).

Fig. S53. IR spectrum of hyperkouytin D (4).

Fig. S54. UV spectrum of hyperkouytin D (4).

Fig. S56. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S58. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin E (5).

Fig. S57. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S59. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin E (5).

Fig. S60. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S61. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S62. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S63. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S64. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S65. NOESY (600 MHz, CDCl₃) spectrum of hyperkouytin E (5).

Fig. S66. IR spectrum of hyperkouytin E (5).

Fig. S67. UV spectrum of hyperkouytin E (5).

Fig. S68. Positive HR-ESIMS spectrum of hyperkouytin F (6).

Fig. S69. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S70. ¹H NMR (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S72. ¹³C NMR and DEPT (150 MHz, CDCl₃) spectra of hyperkouytin F (6).

Fig. S73. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S74. HSQC (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S75. ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S76. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S77. HMBC (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S78. NOESY (600 MHz, CDCl₃) spectrum of hyperkouytin F (6).

Fig. S79. IR spectrum of hyperkouytin F (6).

Fig. S80. UV spectrum of hyperkouytin F (6).

