Electronic supplementary information

A Substrate-controlled Ru(II)-catalyzed C-H Activation/[5+2] Annulation Cascade and Unusual Acyl Migration to Diversified Indoline Scaffolds

Miao Zheng,^{*a,b*} Jianhui Zhou,^{*b*} Feifei Fang,^{*b*} Zichao Xu,^{*b*} Fuqiang Zheng,^{*b*} Zhidong Jiang,^{*b*} Tao Liu,^{*a,b*} Hong Liu,^{**b,c*} Linxiang Zhao,^{**a*} Yu Zhou,^{*b,c*}

^{*a*}Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

^bShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

*E-mail: hliu@simm.ac.cn (Hong Liu); linxiang.zhao@vip.sina.com (Linxiang Zhao); zhouyu@simm.ac.cn (Yu Zhou)

Contents

I. General Information	3
II. Synthesis of Substrates	3
III. Optimization of Reaction Conditions	4
IV. General procedures for the reaction	6
V. Characterization Data for Substrates	6
VI. Characterization Data for Products	. 13
VII. Gram-scale Preparation and Conversion of the Product	. 33
VIII. Mechanistic Studies	. 35
IX. X-ray Crystallographic Data	. 39
X. References	. 40
XI. NMR Spectra and HR-MS Spectra of Substrates and Products	. 41

I. General Information

Unless otherwise specified, commercially available reagents were purchased from commercial sources and used without further purification. Analytical thin layer chromatography (TLC) was performed on HSGF 254 (0.15-0.2 mm thickness), visualized by irradiation with UV light (254 nm). Column chromatography was performed on silica gel FCP 200-400 or 300-400 using ethyl acetate (EA)/petroleum ether (PE). All products were characterized by their NMR and HRMS spectra. ¹H and ¹³C NMR spectra were recorded on a 500, or 600 MHz instrument. The chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane (TMS). Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), and broad (br). High-resolution mass spectra (HRMS) were measured on a Micromass Ultra Q-TOF spectrometer.

II. Synthesis of Substrates

(a) The known substrates $1w^1$ was not characterized. The substrates 1a-1t and 1w were synthesized according to the reported procedure².

Anhydrous AlCl₃ (3.88 g, 29.09 mmol) was added slowly to a mixture of indoline (4.16 g, 34.91 mmol) and benzonitrile (3 g, 29.09 mmol) at room temperature in a 25 mL round-bottomed flask, under an argon atmosphere. The resulting mixture was heated to 120 $^{\circ}$ C (oil bath temperature) for 12 h. The mixture was treated with NaOH aqueous solution, filtered with diatomite, and extracted with ethyl acetate for 3 times. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to remove the solvent. The residue was purified by flash column chromatography on silica gel (PE/EA = 4:1) to afford the desired product.

The substrates 1u and 1v were synthesized according to the following procedure.

A pressure tube was charged with indoline (1.0 g, 8.39 mmol) and acetonitrile (689 mg, 16.78 mmol) and hydrochloric acid 1,4-dioxane (20 mL). The reaction mixture was stirred at 110 $^{\circ}$ C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by reslurry using EA to afford the desired product.

(b) General procedure for the preparation of diazo compounds.

The known substrates $2a-2d^3$, $2e^4$ and $2f^3$ were not characterized. The substrate 4a was purchased from commercial sources, and used without further purification. The known substrates $4b^5$, $4c^3$, $4d^6$, $4e^7$, and $4f^4$ were not characterized.

To a solution of β -ketoester (5 mmol, 1.0 equiv.) and 4-methylbenzenesulfonyl azide (6 mmol, 1.2 equiv.) in 20 mL CH₃CN at 0 °C was added triethylamine (6 mmol, 1.2 equiv.). The resulting solution was stirred at 0 °C for 3 h and slowly brought to r.t. Upon completion as indicated by thin layer chromatography (TLC), the reaction was quenched with water, extracted with ethyl acetate, and dried over anhydrous Na₂SO₄. The reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography.

O HN catalyst Ο additives, solvent Ν₂ temp, time 1a 4a 5aa entry Ag salt additive solvent yield $(\%)^b$ 1 HOAc DCE 32 2 38 CsOAc DCE

III. Optimization of Reaction Conditions^a

3	AgOTf	CsOAc	DCE	40
4	AgNTf ₂	CsOAc	DCE	38
5	AgCO ₂ CF ₃	CsOAc	DCE	42
6	$AgSbF_6$	Zn(OAc) ₂	DCE	trace
7	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	DCE	trace
8 ^c	$AgSbF_6$	CsOAc	DCE	46
9^d	$AgSbF_6$	CsOAc	DCE	40
10^e	$AgSbF_6$	CsOAc+ HOAc	DCE	58
11	$AgSbF_6$	NaOAc	DCE	57
12	$AgSbF_6$	KOAc	DCE	61
13	AgOTf	KOAc	DCE	55
14	AgCO ₃ CF ₃	KOAc	DCE	55
15	AgBF ₄	KOAc	DCE	60
16	AgOAc	KOAc	DCE	40
17	$AgSbF_6$	KOAc	Acetone	57
18	$AgSbF_6$	KOAc	Toluene	20
19	$AgSbF_6$	KOAc	DMF	trace
20	$AgSbF_6$	KOAc	CH ₃ CN	42
21	$AgSbF_6$	KOAc	MeOH	0
22	$AgSbF_6$	KOAc	1,4-Dioxane	10
23 ^{<i>f</i>}	$AgSbF_6$	KOAc	DCE	30
24 ^g	$AgSbF_6$	KOAc	DCE	63
25 ^{<i>h</i>}	AgSbF ₆	KOAc	DCE	66
26 ^{<i>i</i>}	$AgSbF_6$	KOAc+HOAc	DCE	64
27	$AgSbF_6$	KOPiv	DCE	45
28	$AgSbF_6$	NaOPiv	DCE	50
29	$AgSbF_6$	CsOPiv	DCE	25

^{*a*}General reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), [Ru(*p*-cymene)Cl₂]₂ (4 mol %), Ag salt (20 mol %), additive (0.2 mmol), in solvent (2 mL) at 80 °C in oil bath, under air, for 12 h. ^{*b*}Determined by crude ¹H NMR spectroscopy using CH₂Br₂ as an internal standard. ^{*c*}[Cp*RhCl₂]₂ (4 mol %). ^{*d*}[Cp*IrCl₂]₂ (4 mol %). ^{*e*}Additive (CsOAc 0.2 mmol+HOAc 0.05 mmol). ^{*f*}Additive (0.05 mmol). ^{*g*}Additive (0.1 mmol). ^{*h*}Additive (0.3 mmol). ^{*i*}Additive (KOAc 0.2 mmol+HOAc 0.05 mmol). DCE: 1,2-dichloroethane. THF: tetrahydrofuran.

IV. General procedures for the reaction

(a) General procedure for the synthesis of **3aa**

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (9.8 mg, 4 mol %), HOAc (48 mg, 0.8 mmol), indolin-1-yl(phenyl)methanimine **1a** (88.9 mg, 0.4 mmol), dimethyl diazomalonate **2a** (94.9 mg, 0.6 mmol) and DCE (4 mL). The reaction mixture was stirred at 60 °C for 2 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 2:1 to afford the product **3aa**. (b) General procedure for the synthesis of **5aa**

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (9.8 mg, 4 mol %), AgSbF₆ (27.5 mg, 20 mol %), KOAc (117.8 mg, 1.2 mmol), indolin-1-yl(phenyl)methanimine **1a** (88.9 mg, 0.4 mmol), ethyl diazoacetate **4a** (93.7 mg, 0.6 mmol) and DCE (4 mL). The reaction mixture was stirred at 80 °C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 3:1 to afford the product **5aa**.

V. Characterization Data for Substrates

indolin-1-yl(phenyl)methanimine (1a)

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.76 (s, 1H), 7.52 – 7.44 (m, 3H), 7.44 – 7.39 (m, 2H), 7.16 (d, *J* = 7.3 Hz, 1H), 6.85 (t, *J* = 7.7 Hz, 1H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.54 (s, 1H), 3.89 (t, *J* = 8.4 Hz, 2H), 3.04 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.4, 145.0, 138.6, 132.8, 129.9, 129.2, 127.3, 126.8, 125.3, 121.2, 114.1, 50.9, 27.5; **HRMS (ESI) m/z:** calculated for C₁₅H₁₅N₂ (M+H)⁺: 223.123, found: 223.1234. (4-fluoroindolin-1-yl)(phenyl)methanimine (1b)

F ¹**H NMR (500 MHz, DMSO-***d*₆) δ 10.33 (s, 1H), 7.79 – 7.73 (m, 1H), 7.71 – 7.62 (m, 4H), 7.00 – 6.91 (m, 2H), 5.53 (d, *J* = 7.4 Hz, 1H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.33 (t, *J* = 7.9 Hz, 2H); ¹³**C NMR (125 MHz, DMSO-***d*₆) δ 161.5, 158.6 (d, *J* = 244.5 Hz), 142.9 (d, *J* = 8.7 Hz), 132.9, 129.4, 129.0 (d, *J* = 7.9 Hz), 128.7, 128.6, 121.5 (d, *J* = 23.5 Hz), 112.2 (d, *J* = 19.9 Hz), 112.0 (d, *J* = 3.3 Hz), 53.2, 23.5; **HRMS (ESI) m/z:** calculated for C₁₅H₁₄FN₂ (M+H)⁺: 241.1136, found: 241.1133.

(4-chloroindolin-1-yl)(phenyl)methanimine (1c)

Cl ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.82 – 7.75 (m, 1H), 7.75 – 7.60 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 8.2 Hz, 1H), 5.87 (d, *J* = 8.4 Hz, 1H), 4.43 – 4.35 (m, 2H), 3.41 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (150 MHz, Methanol-*d*₄) δ 162.8, 141.5, 133.4, 133.2, 131.4, 129.5, 128.7, 128.4, 128.3, 125.8, 114.6, 52.0, 26.7; HRMS (ESI) m/z: calculated for C₁₅H₁₄ClN₂ (M+H)⁺: 257.084, found: 257.0837.

(4-bromoindolin-1-yl)(phenyl)methanimine (1d)

br ¹**H** NMR (600 MHz, DMSO-*d*₆) δ 10.29 (s, 1H), 7.78 – 7.73 (m, 1H), 7.72 – 7.60 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 1H), 6.88 (t, *J* = 8.2 Hz, 1H), 5.68 (s, 1H), 4.34 (t, *J* = 7.9 Hz, 2H), 3.27 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 162.1, 142.0, 135.9, 133.5, 129.9, 129.3, 129.2, 129.0, 128.7, 120.2, 115.4, 52.7, 29.4; HRMS (ESI) m/z: calculated for C₁₅H₁₄BrN₂ (M+H)⁺: 301.0335, found: 301.0332.

(5-methoxyindolin-1-yl)(phenyl)methanimine (1e)

MeO ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 – 7.39 (m, 5H), 6.79 – 6.71 (m, 1H), 6.40 (dd, J = 8.8, 2.7 Hz, 1H), 6.22 (s, 1H), 4.07 (t, J = 8.3 Hz, 2H), 3.71 (s, 3H), 3.09 (t, J = 8.3 Hz, 2H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 165.3, 154.8, 138.2, 138.1, 134.1, 129.7, 128.9, 127.0, 114.5, 111.4, 111.4, 55.7, 50.8, 27.9; HRMS (ESI) m/z: calculated for C₁₆H₁₇N₂O (M+H)⁺: 253.1335, found: 253.1328.

(5-methylindolin-1-yl)(phenyl)methanimine (1f)

Me ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.39 (m, 5H), 6.98 (s, 1H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.04 (d, *J* = 8.3 Hz, 1H), 4.09 (t, *J* = 8.4 Hz, 2H), 3.08 (t, *J* = 8.3 Hz, 2H), 2.22 (s, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 165.5, 142.0, 138.3, 132.8, 130.8, 129.7, 128.9, 127.1, 127.0, 125.7, 113.6, 50.7, 27.6, 20.7; HRMS (ESI) m/z: calculated for C₁₆H₁₇N₂ (M+H)⁺: 237.1386, found: 237.1389.

(5-nitroindolin-1-yl)(phenyl)methanimine (1g)

^{O₂N⁻¹H NMR (500 MHz, DMSO-*d*₆) δ 8.61 (s, 1H), 8.05 – 8.01 (m, 1H), 7.89 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.54 – 7.43 (m, 5H), 6.96 (s, 1H), 3.99 (t, *J* = 8.6 Hz, 2H), 3.15 (t, *J* = 8.6 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.4, 151.2, 140.9, 137.4, 134.6, 130.4, 129.4, 127.3, 124.6, 120.8, 113.3, 52.1, 26.8; HRMS (ESI) m/z: calculated for C₁₅H₁₄N₃O₂ (M+H)⁺: 268.1081, found: 268.1079.}

(5-fluoroindolin-1-yl)(phenyl)methanimine (1h)

F ¹**H NMR (500 MHz, Methanol-***d***4**) δ 7.81 – 7.76 (m, 1H), 7.72 – 7.63 (m, 4H), 7.21 – 7.12 (m, 1H), 6.68 (s, 1H), 5.88 (s, 1H), 4.36 (t, *J* = 7.8 Hz, 2H), 3.40

(t, J = 7.8 Hz, 2H); ¹³C NMR (125 MHz, Methanol-*d*₄) δ 161.4, 160.4 (d, J = 241.6 Hz), 137.2 (d, J = 8.5 Hz), 135.7, 132.6, 129.1, 128.1, 127.9, 116.9 (d, J = 8.9 Hz), 112.9 (d, J = 24.4 Hz), 112.4 (d, J = 24.4 Hz), 52.2, 26.8; HRMS (ESI) m/z: calculated for C₁₅H₁₄FN₂ (M+H)⁺: 241.1136, found: 241.1133.

(5-chloroindolin-1-yl)(phenyl)methanimine (1i)

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.89 (s, 1H), 7.50 – 7.45 (m, 3H), 7.44 – 7.37 (m, 2H), 7.25 – 7.18 (m, 1H), 6.95 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.82 (s, 1H), 3.87 (t, *J* = 8.5 Hz, 2H), 3.04 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 164.4, 144.1, 138.3, 135.3, 130.0, 129.3, 127.2, 126.6, 125.2, 124.7, 115.4, 51.3, 27.4; HRMS (ESI) m/z: calculated for C₁₅H₁₄ClN₂ (M+H)⁺: 257.084, found: 257.0839.

(5-bromoindolin-1-yl)(phenyl)methanimine (1j)

Br ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.51 – 7.34 (m, 5H), 7.24 (d, J = 2.1 Hz, 1H), 6.94 (dd, J = 8.6, 2.1 Hz, 1H), 6.18 (d, J = 8.6 Hz, 1H), 4.07 (t, J = 8.5 Hz, 2H), 3.09 (t, J = 8.5 Hz, 2H); ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 165.5, 143.6, 137.8, 134.9, 129.9, 129.5, 129.0, 127.9, 126.9, 115.3, 113.5, 50.8, 27.4; **HRMS (ESI) m/z:** calculated for C₁₅H₁₄BrN₂ (M+H)⁺: 301.0335, found: 301.033.

(6-chloroindolin-1-yl)(phenyl)methanimine (1k)

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.52 – 7.47 (m, 3H), 7.44 – 7.40 (m, 2H), 7.16 (d, *J* = 7.9 Hz, 1H), 6.92 (s, 1H), 6.83 (dd, *J* = 7.8, 2.0 Hz, 1H), 3.87 (t, *J* = 8.5 Hz, 2H), 3.02 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.4, 146.3, 138.0, 131.9, 131.2, 130.1, 129.3, 127.2, 126.2, 120.9, 114.6, 51.6, 27.1; HRMS (ESI) m/z: calculated for C₁₅H₁₄ClN₂ (M+H)⁺: 257.084, found: 257.0843.

(6-bromoindolin-1-yl)(phenyl)methanimine (11)

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.29 (s, 1H), 7.82 – 7.76 (m, 1H), 7.70 – 7.65 (m, 4H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.25 (dd, *J* = 8.0, 1.7 Hz, 1H), 5.73 (s, 1H), 4.31 (t, *J* = 8.0 Hz, 2H), 3.25 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 162.0, 142.4, 135.0, 133.4, 130.0, 129.2, 129.1, 128.6, 128.1, 119.3, 119.2, 53.6, 27.4; HRMS (ESI) m/z: calculated for C₁₅H₁₄BrN₂ (M+H)⁺: 301.0335, found: 301.0338.

(5,6-dimethoxyindolin-1-yl)(phenyl)methanimine (1m)

¹H NMR (600 MHz, Methanol-*d*₄) δ 7.83 – 7.77 (m, 1H), 7.77 – 7.66 (m, 4H), 6.99 (s, 1H), 5.44 (s, 1H), 4.35 (t, *J* = 7.7 Hz, 2H), 3.80 (s, 3H), 3.34 (d, *J* = 7.8 Hz, 2H), 3.26 (s, 3H); ¹³C NMR (150 MHz, Methanol-*d*₄) δ 160.3, 148.4, 147.9, 132.8, 132.6, 129.5, 129.0, 128.6, 126.9, 108.6, 100.9, 55.4, 54.6, 52.6, 27.1; HRMS (ESI) m/z: calculated for C₁₇H₁₉N₂O₂ (M+H)⁺: 283.1441, found: 283.144.

(5,6-difluoroindolin-1-yl)(phenyl)methanimine (1n)

F ¹**H NMR (500 MHz, Methanol-***d***4)** δ 7.85 – 7.80 (m, 1H), 7.73 – 7.68 (m, 4H), 7.37 – 7.30 (m, 1H), 5.70 (s, 1H), 4.38 (t, *J* = 7.9 Hz, 2H), 3.39 – 3.35 (m, 2H); ¹³**C NMR (125 MHz, Methanol-***d***4)** δ 161.8, 148.1 (d, *J* = 245.2, 14.1 Hz), 147.9 (d, *J* = 247.7, 13.7 Hz), 135.6 (d, *J* = 9.8, 3.1 Hz), 132.9, 131.2 (dd, *J* = 6.9, 3.0 Hz), 129.2, 127.9, 127.7, 113.9 (d, *J* = 20.0 Hz), 105.3 (d, *J* = 24.7 Hz), 52.6, 26.4; **HRMS (ESI) m/z:** calculated for C₁₅H₁₃F₂N₂ (M+H)⁺: 259.1041, found: 259.1049.

(5-bromo-4-fluoroindolin-1-yl)(phenyl)methanimine (10)

F ¹H NMR (500 MHz, Methanol-*d*4) δ 7.82 – 7.76 (m, 1H), 7.71 – 7.64 (m, 4H), 7.18 (dd, *J* = 8.8, 6.9 Hz, 1H), 5.66 (d, *J* = 8.4 Hz, 1H), 4.41 (td, *J* = 8.0, 2.7 Hz, 2H), 3.43 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (125 MHz, Methanol-*d*4) δ 162.5, 155.0 (d, *J* = 246.9 Hz), 141.6 (d, *J* = 7.5 Hz), 132.8, 131.5, 129.1, 128.0, 127.8, 122.7 (d, *J* = 26.9 Hz), 112.6 (d, *J* = 3.4 Hz), 104.5 (d, *J* = 19.8 Hz), 52.4, 23.2; HRMS (ESI) m/z: calculated for C₁₅H₁₃BrFN₂ (M+H)⁺: 319.0241, found: 319.0238.

phenyl(spiro[cyclopentane-1,3'-indolin]-1'-yl)methanimine (1p)

¹H NMR (600 MHz, DMSO-*d*₆) δ 10.19 (s, 1H), 7.79 – 7.74 (m, 1H), 7.71 – 7.63 (m, 4H), 7.41 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.9 Hz, 1H), 5.67 (s, 1H), 4.15 (s, 2H), 2.03 – 1.94 (m, 2H), 1.95 – 1.85 (m, 4H), 1.82 – 1.72 (m, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 161.6, 142.2, 140.2, 133.5, 130.0, 129.2, 129.2, 127.6, 126.7, 124.2, 115.9, 65.6, 51.4, 39.9, 24.7; HRMS (ESI) m/z: calculated for C₁₉H₂₁N₂ (M+H)⁺: 277.1699, found: 277.1702.

indolin-1-yl(4-methoxyphenyl)methanimine (1q)

¹H NMR (500 MHz, Methanol-*d*4) δ 7.67 – 7.61 (m, 2H), 7.38 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.18 – 7.14 (m, 2H), 7.12 (td, *J* = 7.5, 0.9 Hz, 1H), 6.99 – 6.93 (m, 1H), 6.15 (d, *J* = 8.3 Hz, 1H), 4.32 (t, *J* = 7.9 Hz, 2H), 3.93 (s, 3H), 3.37 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (125 MHz, Methanol-*d*4) δ 163.9, 162.1, 140.4, 134.9, 130.7, 126.7, 126.0, 125.8, 120.3, 116.2, 114.7, 54.9, 52.8, 27.4; HRMS (ESI) m/z: calculated for C₁₆H₁₇N₂O (M+H)⁺: 253.1335, found: 253.1335.

(4-fluorophenyl)(indolin-1-yl)methanimine (1r)

¹H NMR (600 MHz, Methanol-*d*₄) δ 7.82 – 7.73 (m, 2H), 7.44 – 7.37 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 9.6 Hz, 1H), 6.00 (s, 1H), 4.34 (t, *J* = 7.8 Hz, 2H), 3.39 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, Methanol-*d*₄) δ 165.1 (d, *J* = 253.8 Hz), 160.6, 139.4, 134.6, 131.0 (d, *J* = 9.2 Hz), 126.3, 125.9, 125.5, 124.5, 116.2 (d, *J* = 22.8 Hz), 115.7, 52.2, 26.8; HRMS (ESI) m/z: calculated for C₁₅H₁₄FN₂ (M+H)⁺: 241.1136, found: 241.1136.

(3,5-dimethylphenyl)(indolin-1-yl)methanimine (1s)

¹H NMR (600 MHz, DMSO-*d*₆) δ 10.05 (s, 1H), 7.42 – 7.35 (m, 2H), 7.29 (s, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 7.9 Hz, 1H), 5.79 (s, 1H), 4.29 (t, *J* = 7.9 Hz, 2H), 3.30 (t, *J* = 7.9 Hz, 2H), 2.34 (s, 6H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 161.5, 140.7, 139.4, 135.4, 134.6, 129.3, 127.2, 126.6, 126.3, 126.2, 116.1, 53.1, 27.6, 21.2; HRMS (ESI) m/z: calculated for C₁₇H₁₉N₂ (M+H)⁺: 251.1543, found: 251.155. indolin-1-vl(thiophen-2-vl)methanimine (1t)

¹H NMR (600 MHz, Methanol-*d*₄) δ 8.04 (d, *J* = 5.0 Hz, 1H), 7.76 – 7.73 (m, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 4.4 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.05 (s, 1H), 6.31 (s, 1H), 4.36 (t, *J* = 7.7 Hz, 2H), 3.38 – 3.34 (m, 2H); ¹³C NMR (150 MHz, Methanol-*d*₄) δ 156.1, 140.0, 135.1, 133.9, 133.3, 128.3, 127.6, 126.8, 126.5, 125.9, 116.2, 53.6, 27.5; HRMS (ESI) m/z: calculated for C₁₃H₁₃N₂S (M+H)⁺: 229.0794, found: 229.0796.

1-(indolin-1-yl)ethan-1-imine (1u)

¹H NMR (500 MHz, DMSO-*d*₆) δ 9.64 (s, 1H), 7.52 (d, *J* = 8.2 Hz, 1H), 7.41 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.31 (td, *J* = 7.8, 1.4 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 4.11 (t, *J* = 8.1 Hz, 2H), 3.23 (t, *J* = 8.0 Hz, 2H), 2.66 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 162.1, 140.1, 134.7, 127.5, 126.1, 125.9, 116.4, 51.1, 26.9, 19.9; HRMS (ESI) m/z: calculated for C₁₀H₁₃N₂ (M+H)⁺: 161.1073, found: 161.1072.

cyclopropyl(indolin-1-yl)methanimine (1v)

HN

¹H NMR (500 MHz, DMSO-*d*₆) δ 9.34 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 7.41 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.30 (td, *J* = 7.8, 1.4 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 4.17 (t, *J* = 8.0 Hz, 2H), 3.23 (t, *J* = 7.9 Hz, 2H), 2.34 – 2.23 (m, 1H), 1.43 – 1.34 (m, 2H), 1.30 – 1.23 (m, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.9, 140.1, 135.0, 127.4, 126.0, 125.9, 116.7, 52.4, 27.1, 13.9, 8.9; HRMS (ESI) m/z: calculated for C₁₂H₁₅N₂ (M+H)⁺: 187.123, found: 187.1227.

VI. Characterization Data for Products

methyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carbox ylate (3aa)

Following by general procedure for the synthesis of **3aa**. White solid, 120.5 mg, yield: 94% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.66 (dt, *J* = 6.7, 1.6 Hz, 2H), 7.52 – 7.42 (m, 3H), 7.32 – 7.26 (m, 2H), 7.20 – 7.13 (m, 1H), 5.04 (s, 1H), 4.34 (q, *J* = 10.0 Hz, 1H), 4.00 – 3.90 (m, 1H), 3.59 (s, 3H), 3.30 – 3.20 (m, 1H), 3.15 – 3.06 (m, 1H); ¹³C NMR (125 MHz, Chloroform-*d***)** δ 167.7, 163.1, 153.5, 139.9, 136.3, 134.5, 130.7, 128.7, 128.4, 128.2, 127.5, 124.8, 118.8, 63.0, 55.0, 52.7, 28.1; HRMS (ESI) m/z: calculated for C₁₉H₁₇N₂O₃ (M+H)⁺: 321.1234, found: 321.1232. methyl 10-fluoro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carboxylate (3ba)

F Following by general procedure for the synthesis of **3aa**. White solid, 109.6 mg, yield: 81% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.68 – 7.61 (m, 2H), 7.53 – 7.43 (m, 3H), 7.14 (dd, J = 8.7, 4.9 Hz, 1H), 7.01 (t, J = 8.3 Hz, 1H), 5.01 (s, 1H), 4.38 (q, J = 10.2 Hz, 1H), 3.99 (ddd, J = 10.8, 9.2, 3.3 Hz, 1H), 3.60 (s, 3H), 3.25 – 3.14 (m, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.2, 162.6, 158.2 (d, J = 247.7 Hz), 152.9, 141.7 (d, J = 8.7 Hz), 135.5, 130.5, 130.0 (d, J = 8.2 Hz), 128.3, 127.7, 119.7 (d, J = 22.7 Hz), 114.2 (d, J = 21.3 Hz), 114.1 (d, J = 3.2 Hz), 61.8, 54.8, 52.4, 24.1; HRMS (ESI) m/z: calculated for C₁₉H₁₆FN₂O₃ (M+H)⁺: 339.1139, found: 339.1142.

methyl 10-chloro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7 -carboxylate (3ca)

Cl Following by general procedure for the synthesis of **3aa**. White solid, 110.7 mg, yield: 78% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-d**) δ 7.70 – 7.64 (m, 2H), 7.55 – 7.46 (m, 3H), 7.30 – 7.28 (m, 1H), 7.14 (d, J = 8.3 Hz, 1H), 5.03 (s, 1H), 4.44 – 4.36 (m, 1H), 4.00 (ddd, J = 11.0, 9.5, 3.3 Hz, 1H), 3.63 (s, 3H), 3.29 – 3.15 (m, 2H); ¹³C NMR (125 MHz, Chloroform-d) δ 167.4, 162.8, 153.4, 141.1, 135.9, 132.7, 130.9, 130.8, 129.9, 128.7, 128.2, 127.2, 116.9, 62.5, 54.5, 52.8, 27.6; HRMS (ESI) m/z: calculated for C₁₉H₁₆ClN₂O₃ (M+H)⁺: 355.0844, found: 355.0853.

methyl 10-bromo-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7 -carboxylate (3da)

Br Following by general procedure for the synthesis of **3aa**. White solid, 121.4 mg, yield: 76% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-d) δ 7.68 – 7.61 (m, 2H), 7.53 – 7.49 (m, 1H), 7.49 – 7.44 (m, 2H), 7.42 (d, J = 8.3 Hz, 1H), 7.05 (d, J = 8.3 Hz, 1H), 5.00 (s, 1H), 4.41 – 4.32 (m, 1H), 3.97 (ddd, J = 11.0, 9.7, 3.0 Hz, 1H), 3.60 (s, 3H), 3.24 – 3.17 (m, 1H), 3.12 (ddd, J = 16.6, 9.9, 3.0 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-d) δ 166.9, 162.2, 153.1, 140.4, 135.4, 134.6, 130.5, 129.7, 128.3, 127.7, 119.0, 116.9, 62.1, 53.8, 52.4, 29.2; HRMS (ESI) m/z: calculated for C₁₉H₁₆BrN₂O₃ (M+H)⁺: 399.0339, found: 399.0351.

methyl 9-methoxy-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carboxylate (3ea)

MeO Following by general procedure for the synthesis of **3aa**. White solid, 67.3 mg, yield: 48% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, DMSO-d₆) δ 7.58 – 7.49 (m, 5H), 7.06 – 6.99 (m, 1H), 6.94 (d, J = 2.6 Hz, 1H), 5.06 (s, 1H), 4.31 (q, J = 9.7 Hz, 1H), 3.96 – 3.89 (m, 1H), 3.79 (s, 3H), 3.52 (s, 3H), 3.27 – 3.18 (m, 1H), 3.07 (ddd, J = 16.3, 9.5, 2.5 Hz, 1H); ¹³C NMR (150 MHz, DMSO-d₆) δ 167.1, 161.7, 159.1, 151.7, 137.1, 136.1, 132.9, 130.5, 128.5, 128.0, 119.5, 111.7, 111.6, 62.1, 55.7, 55.1, 52.4, 28.0; HRMS (ESI) m/z: calculated for C₂₀H₁₉N₂O₄ (M+H)⁺: 351.1339, found: 351.1336.

methyl 9-methyl-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3fa)

Me Following by general procedure for the synthesis of **3aa**. White solid, 104.3 mg, yield: 78% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-d**) δ 7.66 (dt, J = 6.6, 1.5 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.11 (s, 1H), 6.97 (s, 1H), 4.99 (s, 1H), 4.33 (q, J = 10.0 Hz, 1H), 3.95 (ddd, J = 10.8, 9.5, 2.5 Hz, 1H), 3.59 (s, 3H), 3.26 – 3.15 (m, 1H), 3.05 (ddd, J = 16.1, 9.5, 2.5 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (**125 MHz, Chloroform-d**) δ 167.8, 163.2, 153.2, 137.9, 137.6, 136.3, 134.6, 130.7, 128.6, 128.2, 125.7, 118.5, 62.9, 55.1, 52.7, 28.1, 21.1; HRMS (ESI) m/z: calculated for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.139, found: 335.1384.

methyl 9-nitro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ga)

Following by general procedure for the synthesis of **3aa**. Light yellow solid, 106.7 mg, yield: 73% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-d) δ 8.17 – 8.07 (m, 2H), 7.67 – 7.62 (m, 2H), 7.56 – 7.51 (m, 1H), 7.50 – 7.46 (m, 2H), 5.10 (s, 1H), 4.44 (q, *J* = 10.2 Hz, 1H), 4.08 – 3.97 (m, 1H), 3.62 (s, 3H), 3.34 (dt, *J* = 16.4, 9.9 Hz, 1H), 3.23 (ddd, *J* = 16.5, 9.9, 3.2 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-d) δ 167.0, 162.3, 153.5, 145.8, 145.4, 136.1, 135.3, 131.3, 128.9, 128.2, 125.4, 120.1, 118.1, 62.7, 55.5, 53.1, 27.6; HRMS (ESI) m/z: calculated for C₁₉H₁₆N₃O₅ (M+H)⁺: 366.1084, found: 366.1075.

methyl 9-fluoro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ha)

Following by general procedure for the synthesis of 3aa. White

solid, 123.2 mg, yield: 91% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.59 – 7.50 (m, 5H), 7.37 – 7.26 (m, 2H), 5.14 (s, 1H), 4.35 (q, *J* = 9.9 Hz, 1H), 3.96 (td, *J* = 10.1, 2.7 Hz, 1H), 3.53 (s, 3H), 3.30 – 3.23 (m, 1H), 3.12 (ddd, *J* = 16.6, 9.5, 2.7 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 166.8, 161.5, 161.0 (d, *J* = 243.3 Hz), 152.3, 138.1 (d, *J* = 9.7 Hz), 136.0, 135.9, 130.7, 128.6, 128.0, 119.7 (d, *J* = 9.6 Hz), 113.8 (d, *J* = 24.4 Hz), 112.6 (d, *J* = 24.7 Hz), 61.6, 55.3, 52.6, 27.9; HRMS (ESI) m/z: calculated for C₁₉H₁₆FN₂O₃ (M+H)⁺: 339.1139, found: 339.114. methyl 9-chloro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ia)

Following by general procedure for the synthesis of **3aa**. White solid,113.5 mg, yield: 80% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-d)** δ 7.67 – 7.59 (m, 2H), 7.52 – 7.42 (m, 3H), 7.26 (d, J = 2.1 Hz, 1H), 7.19 – 7.14 (m, 1H), 4.96 (s, 1H), 4.35 (q, J = 10.2 Hz, 1H), 4.01 – 3.92 (m, 1H), 3.59 (s, 3H), 3.23 (dt, J = 16.2, 9.9 Hz, 1H), 3.09 (ddd, J = 16.3, 9.6, 2.6 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-d) δ 166.7, 162.1, 152.9, 138.2, 136.0, 135.4, 132.1, 130.5, 128.3, 127.7, 127.6, 124.7, 119.1, 62.1, 54.7, 52.4, 27.6; **HRMS (ESI) m/z**: calculated for C₁₉H₁₆ClN₂O₃ (M+H)⁺: 355.0844, found: 355.0848.

methyl 9-bromo-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ja)

Br['] Following by general procedure for the synthesis of **3aa**. White solid, 140.5 mg, yield: 88% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-d)** δ 7.64 (d, J = 7.0 Hz, 2H), 7.52 – 7.40 (m, 4H), 7.32 (s, 1H), 4.96 (s, 1H), 4.36 (q, J = 10.2 Hz, 1H), 3.96 (td, J = 11.3, 10.6, 2.6 Hz, 1H), 3.60 (s, 3H), 3.25 (dt, J = 16.3, 9.9 Hz, 1H), 3.10 (ddd, J = 16.2, 9.6, 2.6 Hz, 1H); ¹³**C NMR** **(150 MHz, Chloroform-***d***)** δ 166.8, 162.1, 152.9, 138.7, 136.2, 135.4, 130.5, 130.5, 128.3, 127.7, 127.5, 119.6, 119.5, 62.0, 54.7, 52.4, 27.6; **HRMS (ESI) m/z:** calculated for C₁₉H₁₆BrN₂O₃ (M+H)⁺: 399.0339, found: 399.0339.

methyl 8-chloro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ka)

Following by general procedure for the synthesis of **3aa**. White solid, 78.1 mg, yield: 55% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, DMSO-***d*₆) δ 7.61 – 7.49 (m, 6H), 7.42 (d, *J* = 8.0 Hz, 1H), 5.50 (s, 1H), 4.36 (q, *J* = 10.1 Hz, 1H), 3.95 (td, *J* = 10.1, 2.3 Hz, 1H), 3.55 (s, 3H), 3.28 – 3.16 (m, 1H), 3.13 – 3.03 (m, 1H); ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 166.8, 161.9, 153.4, 141.6, 136.2, 135.5, 131.3, 131.0, 129.1, 128.4, 127.6, 126.3, 116.5, 59.5, 56.2, 53.3, 27.7; HRMS (ESI) m/z: calculated for C₁₉H₁₆ClN₂O₃ (M+H)⁺: 355.0844, found: 355.0845. methyl 8-bromo-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-

carboxylate (3la)

Following by general procedure for the synthesis of **3aa**. White solid, 47.9 mg, yield: 30% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.67 – 7.59 (m, 2H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.13 (d, *J* = 7.9 Hz, 1H), 5.79 (s, 1H), 4.32 (q, *J* = 10.4 Hz, 1H), 3.95 (ddd, *J* = 11.1, 9.7, 2.3 Hz, 1H), 3.61 (s, 3H), 3.24 – 3.14 (m, 1H), 3.02 (ddd, *J* = 16.1, 9.5, 2.3 Hz, 1H); ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 167.2, 162.9, 153.7, 141.5, 136.2, 134.3, 131.1, 131.0, 128.8, 128.2, 125.7, 123.0, 118.9, 62.2, 55.7, 53.0, 27.9; HRMS (ESI) m/z: calculated for C₁₉H₁₆BrN₂O₃ (M+H)⁺: 399.0339, found: 399.0345.

methyl 8,9-dimethoxy-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*] indole-7-carboxylate (3ma)

MeO Following by general procedure (last for 12 h) for the synthesis of **3aa**. White solid, 41.1 mg, yield: 27% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 – 7.59 (m, 2H), 7.49 – 7.40 (m, 3H), 6.91 (s, 1H), 5.56 (s, 1H), 4.39 – 4.25 (m, 1H), 3.95 – 3.90 (m, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.58 (s, 3H), 3.27 – 3.14 (m, 1H), 3.01 (ddd, J = 15.7, 9.4, 2.1 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.2, 163.1, 152.3, 151.7, 144.9, 135.8, 133.3, 130.1, 129.0, 128.1, 127.7, 114.1, 109.2, 61.5, 56.0, 55.2, 55.0, 52.2, 28.0; HRMS (ESI) m/z: calculated for C₂₁H₂₁N₂O₅ (M+H)⁺: 381.1445, found: 381.1437.

methyl 8,9-difluoro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*] indole -7-carboxylate (3na)

F F Following by general procedure for the synthesis of **3aa**. White solid, 125.4 mg, yield: 88% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, DMSO-***d*₆) δ 7.62 – 7.55 (m, 4H), 7.55 – 7.50 (m, 2H), 5.25 (s, 1H), 4.40 (q, *J* = 10.0 Hz, 1H), 3.96 (td, *J* = 10.1, 2.5 Hz, 1H), 3.56 (s, 3H), 3.30 – 3.21 (m, 1H), 3.13 – 3.05 (m, 1H); ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 166.4, 161.4, 152.8, 148.4 (dd, *J* = 245.1, 13.8 Hz), 145.9 (dd, *J* = 243.7, 14.7 Hz), 136.8, 136.0, 132.1 (dd, *J* = 7.6, 3.8 Hz), 131.3, 129.1, 128.5, 114.5 (d, *J* = 20.0 Hz), 108.7 (d, *J* = 17.6 Hz), 56.1, 55.1, 53.4, 28.0; HRMS (ESI) m/z: calculated for C₁₉H₁₅F₂N₂O₃ (M+H)⁺: 357.1045, found: 357.1046. methyl 9-bromo-10-fluoro-6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*] indole-7-carboxylate (30a)

F Following by general procedure for the synthesis of **3aa**. White solid, 103.5 mg, yield: 62% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.68 – 7.61 (m, 2H), 7.53 – 7.49 (m, 1H), 7.49 – 7.44 (m, 2H), 7.38 (d, *J* = 6.2 Hz, 1H), 4.95 (s, 1H), 4.41 (q, *J* = 10.2 Hz, 1H), 4.00 (ddd, *J* = 11.0, 9.1, 3.6 Hz, 1H), 3.61 (s, 3H), 3.31 – 3.15 (m, 2H); ¹³C NMR (**125 MHz, Chloroform-***d***)** δ 167.2, 162.7, 154.9 (d, *J* = 248.1 Hz), 153.2, 141.5 (d, *J* = 7.8 Hz), 135.7, 133.3, 131.1, 128.8, 128.2, 121.6 (d, *J* = 23.6 Hz), 115.4 (d, *J* = 3.8 Hz), 107.0 (d, *J* = 21.2 Hz), 61.9, 55.4, 52.9, 24.9; HRMS (ESI) m/z: calculated for C₁₉H₁₅BrFN₂O₃ (M+H)⁺: 417.0245, found: 417.0241.

methyl 6'-oxo-4'-phenyl-6',7'-dihydro-2'H-spiro[cyclopentane-1,1'-[1,3]diazepino [6,7,1-*hi*]indole] -7'-carboxylate (3pa)

Following by general procedure for the synthesis of **3aa**. White solid, 112.3 mg, yield: 75% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.70 – 7.62 (m, 2H), 7.52 – 7.43 (m, 3H), 7.32 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 5.05 (s, 1H), 4.13 (d, J = 10.7 Hz, 1H), 3.69 (d, J = 10.7 Hz, 1H), 3.59 (s, 3H), 2.23 – 2.15 (m, 1H), 1.90 – 1.74 (m, 4H), 1.73 – 1.66 (m, 1H), 1.62 – 1.52 (m, 2H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.7, 163.1, 153.3, 143.0, 139.0, 136.2, 130.7, 128.7, 128.4, 128.2, 127.9, 122.2, 118.8, 68.8, 63.0, 52.7, 51.6, 41.7, 38.3, 25.3, 25.0; HRMS (ESI) m/z: calculated for C₂₃H₂₃N₂O₃ (M+H)⁺: 375.1703, found: 375.1705.

methyl 4-(4-methoxyphenyl)-6-oxo-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole -7-carboxylate (3qa)

Following by general procedure for the synthesis of 3aa.

White solid, 134.5 mg, yield: 96% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 – 7.59 (m, 2H), 7.33 – 7.23 (m, 2H), 7.19 – 7.11 (m, 1H), 7.01 – 6.90 (m, 2H), 5.02 (s, 1H), 4.39 (q, *J* = 10.1 Hz, 1H), 4.02 (ddd, *J* = 10.9, 9.6, 2.6 Hz, 1H), 3.85 (s, 3H), 3.58 (s, 3H), 3.24 (dt, *J* = 15.7, 9.8 Hz, 1H), 3.10 (ddd, *J* = 16.0, 9.6, 2.6 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.7, 162.8, 161.7, 153.3, 140.0, 134.4, 130.2, 128.5, 128.4, 127.3, 124.7, 118.8, 113.9, 63.0, 55.5, 55.1, 52.6, 28.2; HRMS (ESI) m/z: calculated for C₂₀H₁₉N₂O₄ (M+H)⁺: 351.1339, found: 351.1346.

methyl 4-(4-fluorophenyl)-6-oxo-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ra)

Following by general procedure for the synthesis of **3aa**. White solid, 115.0 mg, yield: 85% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.72 – 7.64 (m, 2H), 7.33 – 7.27 (m, 2H), 7.20 – 7.11 (m, 3H), 5.03 (s, 1H), 4.34 (q, *J* = 10.1 Hz, 1H), 3.97 (ddd, *J* = 10.8, 9.6, 2.5 Hz, 1H), 3.59 (s, 3H), 3.27 (dt, *J* = 15.7, 9.8 Hz, 1H), 3.12 (ddd, *J* = 15.9, 9.6, 2.5 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.7, 164.1 (d, *J* = 251.5 Hz), 162.9, 152.5, 139.8, 134.4, 132.4 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.7 Hz), 128.5, 127.6, 124.9, 118.8, 115.8 (d, *J* = 21.9 Hz), 62.9, 55.0, 52.7, 28.2; HRMS (ESI) m/z: calculated for C₁₉H₁₆FN₂O₃ (M+H)⁺: 339.1139, found: 339.1138.

methyl 4-(3,5-dimethylphenyl)-6-oxo-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*] indole-7-carboxylate (3sa)

Following by general procedure for the synthesis of **3aa**. White solid, 111.5 mg, yield: 80% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.32 – 7.28 (m, 4H), 7.20 – 7.16 (m, 1H), 7.14 (s, 1H), 5.06 (s, 1H), 4.37 (q, J = 10.2 Hz, 1H), 4.00 (ddd, J = 11.0, 9.6, 2.6 Hz, 1H), 3.63 (s, 3H), 3.26 (dt, J = 15.7, 9.8 Hz, 1H), 3.12 (ddd, J = 16.0, 9.6, 2.6 Hz, 1H), 2.38 (s, 6H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.7, 163.1, 153.9, 139.9, 138.4, 136.2, 134.4, 132.4, 128.4, 127.4, 125.9, 124.8, 118.8, 63.0, 55.0, 52.7, 28.1, 21.2; HRMS (ESI) m/z: calculated for C₂₁H₂₁N₂O₃ (M+H)⁺: 349.1547, found: 349.1553.

methyl 6-oxo-4-(thiophen-2-yl)-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate (3ta)

Following by general procedure for the synthesis of **3aa**. White solid, 104.4 mg, yield: 80% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.52 (ddd, J = 14.8, 4.4, 1.1 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.14 (dd, J = 6.9, 2.0 Hz, 1H), 7.09 (dd, J = 5.1, 3.7 Hz, 1H), 4.97 (s, 1H), 4.63 – 4.55 (m, 1H), 4.44 (ddd, J = 10.6, 9.5, 2.5 Hz, 1H), 3.55 (s, 3H), 3.29 (dt, J = 15.8, 9.8 Hz, 1H), 3.15 (ddd, J = 16.0, 9.5, 2.4 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.5, 162.6, 147.2, 139.8, 138.5, 134.3, 130.7, 130.3, 128.4, 127.6, 127.6, 124.8, 119.0, 62.9, 55.4, 52.6, 28.4; HRMS (ESI) m/z: calculated for C₁₇H₁₅N₂O₃S (M+H)⁺: 327.0798, found: 327.0802.

ethyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carboxylate (3ab)

Following by general procedure for the synthesis of **3aa**. White solid, 121.7 mg, yield: 91% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-***d***)** δ 7.66 (dt, J = 6.8, 1.6 Hz, 2H), 7.50 – 7.42 (m, 3H), 7.31 – 7.27 (m, 2H), 7.19 – 7.14 (m, 1H), 5.02 (s, 1H), 4.33 (q, J = 10.2 Hz, 1H), 4.07 – 4.00 (m, 2H), 3.95 (ddd, J = 10.9, 9.6, 2.5 Hz, 1H), 3.24 (dt, J = 15.8, 9.8 Hz, 1H), 3.09 (ddd, J = 15.9, 9.6, 2.5 Hz, 1H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.1, 163.2, 153.4, 139.9, 136.3, 134.4, 130.7, 128.6, 128.4, 128.2, 127.5, 124.8, 118.9, 63.2, 61.7, 55.0, 28.2, 13.9; HRMS (ESI) m/z: calculated for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.139, found: 335.1395.

isopropyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7carboxylate(3ac)

Following by general procedure for the synthesis of **3aa**. White solid, 103.1 mg, yield: 74% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 – 7.63 (m, 2H), 7.50 – 7.41 (m, 3H), 7.29 (d, J = 4.7 Hz, 2H), 7.20 – 7.13 (m, 1H), 5.00 (s, 1H), 4.90 – 4.77 (m, 1H), 4.34 (q, J = 10.2 Hz, 1H), 4.03 – 3.89 (m, 1H), 3.25 (dt, J = 15.7, 9.9 Hz, 1H), 3.10 (ddd, J = 15.8, 9.5, 2.5 Hz, 1H), 1.19 (d, J = 6.3 Hz, 3H), 0.97 (d, J = 6.2 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 166.6, 163.4, 153.2, 139.9, 136.2, 134.3, 130.7, 128.5, 128.5, 128.3, 127.4, 124.7, 119.0, 69.4, 63.5, 55.0, 28.2, 21.6, 21.1; HRMS (ESI) m/z: calculated for C₂₁H₂₁N₂O₃ (M+H)⁺: 349.1547, found: 349.1551.

tert-butyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carbox ylate (3ad)

Following by general procedure for the synthesis of 3aa. White

solid, 53.6 mg, yield: 37% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 – 7.63 (m, 2H), 7.49 – 7.41 (m, 3H), 7.30 – 7.27 (m, 2H), 7.18 – 7.13 (m, 1H), 4.97 (s, 1H), 4.36 (q, *J* = 10.2 Hz, 1H), 4.03 – 3.89 (m, 1H), 3.24 (dt, *J* = 15.8, 9.8 Hz, 1H), 3.09 (ddd, *J* = 15.9, 9.5, 2.3 Hz, 1H), 1.28 (s, 9H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 166.0, 163.8, 153.1, 140.0, 136.2, 134.2, 130.6, 128.6, 128.4, 128.4, 127.4, 124.6, 119.1, 82.1, 64.3, 54.9, 28.2, 27.7; HRMS (ESI) m/z: calculated for C₂₂H₂₃N₂O₃ (M+H)⁺: 363.1703, found: 363.1715.

butyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carboxylate (3ae)

Following by general procedure for the synthesis of **3aa**. White solid, 101.5 mg, yield: 70% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.71 – 7.62 (m, 2H), 7.52 – 7.40 (m, 3H), 7.35 – 7.26 (m, 2H), 7.16 (t, *J* = 4.5 Hz, 1H), 5.03 (s, 1H), 4.35 (q, *J* = 10.2 Hz, 1H), 4.03 (dt, *J* = 10.6, 6.5 Hz, 1H), 3.99 – 3.90 (m, 2H), 3.25 (dt, *J* = 15.8, 9.9 Hz, 1H), 3.10 (ddd, *J* = 15.9, 9.6, 2.4 Hz, 1H), 1.48 – 1.39 (m, 2H), 1.23 – 1.15 (m, 2H), 0.70 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.2, 163.2, 153.4, 139.9, 136.2, 134.4, 130.7, 128.6, 128.4, 128.3, 127.5, 124.7, 118.9, 65.5, 63.2, 55.0, 30.4, 28.2, 18.8, 13.5; HRMS (ESI) m/z: calculated for C₂₂H₂₃N₂O₃ (M+H)⁺: 363.1703, found: 363.1698. benzyl 6-oxo-4-phenyl-1,2,6,7-tetrahydro-[1,3]diazepino[6,7,1-*hi*]indole-7-carboxyla te (3af)

Following by general procedure for the synthesis of **3aa**. White solid, 145.9 mg, yield: 92% (purified by silica gel chromatography using PE/EA

white solid, 145.5 mg, yield. 5276 (purified by since ger enrollatography using 112/E/A 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 4.7 Hz, 2H), 7.25 – 7.05 (m, 6H), 5.10 (s, 1H), 5.03 (s, 2H), 4.30 (q, J = 10.2 Hz, 1H), 3.94 (td, J = 10.2, 2.4 Hz, 1H), 3.24 (dt, J = 15.9, 9.8 Hz, 1H), 3.09 (ddd, J = 15.9, 9.6, 2.4 Hz, 1H); ¹³C NMR (150 MHz, Chloroform*d*) δ 166.9, 162.9, 153.4, 139.9, 136.1, 135.2, 134.4, 130.6, 128.6, 128.5, 128.3, 128.3, 128.2, 127.9, 127.5, 124.8, 118.8, 67.2, 63.2, 55.0, 28.2; HRMS (ESI) m/z: calculated for $C_{25}H_{21}N_2O_3$ (M+H)⁺: 397.1547, found: 397.1545.

ethyl 2-(1-((acetylimino)(phenyl)methyl)indolin-7-yl)acetate (5aa)

Following by general procedure for the synthesis of **5aa**. White solid, 89.7 mg, yield: 64% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 – 7.41 (m, 5H), 7.18 – 7.14 (m, 1H), 7.12 – 7.08 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.79 (t, *J* = 7.5 Hz, 2H), 3.74 (s, 2H), 2.99 (t, *J* = 7.5 Hz, 2H), 1.99 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 183.8, 171.3, 158.5, 142.0, 135.5, 135.0, 130.9, 129.8, 129.0, 128.2, 125.8, 125.4, 123.7, 60.8, 54.5, 39.7, 29.9, 27.0, 14.2; HRMS (ESI) m/z: calculated for C₂₁H₂₃N₂O₃ (M+H)⁺: 351.1703, found: 351.1696.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-4-fluoroindolin-7-yl)acetate (5ba)

Following by general procedure for the synthesis of 5aa. Yellow

solid, 88.4 mg, yield: 60% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.52 – 7.41 (m, 5H), 7.08 (dd, *J* = 8.6, 5.4 Hz, 1H), 6.82 (t, *J* = 8.3 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.81 (t, *J* = 7.6 Hz, 2H), 3.70 (s, 2H), 3.00 (t, *J* = 7.6 Hz, 2H), 1.98 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 183.2, 170.7, 157.6, 157.6 (d, *J* = 245.4 Hz), 143.8 (d, *J* = 7.5 Hz), 134.2, 131.0 (d, *J* = 7.8 Hz), 130.6, 128.6, 127.7, 121.0 (d, *J* = 21.5 Hz), 120.7 (d, *J* = 3.5 Hz), 112.1 (d, *J* = 20.5 Hz), 60.4, 54.2, 38.7, 26.4, 25.5, 13.7; HRMS (ESI) m/z: calculated for C₂₁H₂₂FN₂O₃ (M+H)⁺: 369.1609, found: 369.1604.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-4-chloroindolin-7-yl)acetate (5ca)

CIFollowing by general procedure for the synthesis of **5aa**.Yellow solid, 98.5 mg, yield: 64% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-d) δ 7.54 – 7.39 (m, 5H), 7.15 – 7.02 (m, 2H), 4.13(q, J = 7.1 Hz, 2H), 3.81 (t, J = 7.6 Hz, 2H), 3.70 (s, 2H), 3.02 (t, J = 7.6 Hz, 2H), 1.99 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-d) δ 183.2, 170.5, 157.7, 142.8, 134.1, 133.4, 130.8, 130.7, 128.8, 128.6, 127.7, 125.1, 123.3, 60.4, 53.5, 38.8, 28.7, 26.4, 13.7; HRMS (ESI) m/z: calculated for C₂₁H₂₂ClN₂O₃ (M+H)⁺: 385.1313, found: 385.1305.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-4-bromoindolin-7-yl)acetate (5da)

Br Following by general procedure for the synthesis of **5aa**. White solid, 125.4 mg, yield: 73% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (**500 MHz, Chloroform-d**) δ 7.52 – 7.43 (m, 5H), 7.24 (s, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 3.81 (t, *J* = 7.5 Hz, 2H), 3.68 (s, 2H), 3.01 (t, *J* = 7.6 Hz, 3Hz), 3.81 (t, *J* = 7.5 Hz), 3.81 (t, J = 7.5 H 2H), 2.00 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 183.6, 170.8, 158.3, 143.1, 136.0, 134.5, 131.5, 131.2, 129.1, 128.5, 128.2, 124.4, 118.1, 60.9, 53.7, 39.3, 31.3, 26.9, 14.2; HRMS (ESI) m/z: calculated for C₂₁H₂₂BrN₂O₃ (M+H)⁺: 429.0808, found: 429.0804.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-5-methylindolin-7-yl)acetate (5fa)

Me⁻ Following by general procedure for the synthesis of **5aa**. Yellow oil, 83.1 mg, yield: 57% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.44 (dt, J = 14.2, 7.4 Hz, 5H), 6.98 (s, 1H), 6.92 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.77 (t, J = 7.5 Hz, 2H), 3.70 (s, 2H), 2.94 (t, J = 7.5Hz, 2H), 2.31 (s, 3H), 1.99 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 183.8, 171.4, 158.7, 139.7, 135.7, 135.6, 135.1, 130.9, 130.4, 129.0, 128.2, 125.0, 124.5, 60.8, 54.7, 39.6, 29.9, 27.0, 21.1, 14.2; HRMS (ESI) m/z: calculated for C₂₂H₂₅N₂O₃ (M+H)⁺: 365.186, found: 365.1866.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-5-nitroindolin-7-yl)acetate (5ga)

Following by general procedure for the synthesis of 5aa.

Yellow solid, 98.1mg, yield: 62% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 (d, J = 2.3 Hz, 1H), 8.03 – 7.99 (m, 1H), 7.53 – 7.49 (m, 1H), 7.46 (d, J = 4.0 Hz, 4H), 4.15 (q, J = 7.1 Hz, 2H), 3.87 (t, J = 7.8 Hz, 2H), 3.82 (s, 2H), 3.10 (t, J = 7.8 Hz, 2H), 2.00 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 183.4, 170.1, 157.2, 148.0, 145.0, 137.0, 133.9, 131.5, 129.3, 128.1, 126.6, 125.4, 119.1, 61.2, 54.7, 39.8, 29.3, 26.8, 14.1; HRMS (ESI) m/z: calculated for C₂₁H₂₂N₃O₅ (M+H)⁺: 396.1554, found: 396.155.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-5-chloroindolin-7-yl)acetate (5ia)

Following by general procedure for the synthesis of **5aa**. Yellow solid, 120.1 mg, yield: 78% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-d)** δ 7.49 – 7.40 (m, 5H), 7.11 (dd, J = 13.2, 2.3 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.77 (t, J = 7.5 Hz, 2H), 3.69 (s, 2H), 2.95 (t, J = 7.5 Hz, 2H), 1.96 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-d) δ 183.7, 170.7, 158.3, 140.9, 137.4, 134.6, 131.1, 130.7, 129.7, 129.1, 128.1, 126.6, 123.8, 61.0, 54.6, 39.4, 29.8, 27.0, 14.2; HRMS (ESI) m/z: calculated for C₂₁H₂₂ClN₂O₃ (M+H)⁺: 385.1313, found: 385.1314.

Br Following by general procedure for the synthesis of **5aa**. White solid, 116.8 mg, yield: 68% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.53 – 7.44 (m, 5H), 7.31 (d, J = 1.9 Hz, 1H), 7.29 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.81 (t, J = 7.6 Hz, 2H), 3.72 (s, 2H), 3.00 (t, J = 7.5 Hz, 2H), 2.01 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 183.7, 170.6, 158.2, 141.5, 137.7, 134.6, 132.6, 131.1, 129.1, 128.2, 127.1, 126.8, 118.4, 61.0, 54.5, 39.4, 29.7, 26.9, 14.2; **HRMS (ESI) m/z:** calculated for C₂₁H₂₂BrN₂O₃ (M+H)⁺: 429.0808, found: 429.0796.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-6-chloroindolin-7-yl)acetate (5ka)

Following by general procedure for the synthesis of **5aa**. Yellow solid, 55.4 mg, yield: 36% (purified by silica gel chromatography using PE/EA 5:11:1). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.51 – 7.42 (m, 5H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 2H), 3.80 (t, *J* = 7.5 Hz, 2H), 2.95 (t, *J* = 7.5 Hz, 2H), 1.98 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 183.7, 170.2, 158.4, 144.1, 134.6, 134.5, 134.3, 131.1, 129.1, 128.1, 126.7, 124.5, 124.2, 60.9, 55.0, 36.9, 29.7, 26.8, 14.1; HRMS (ESI) m/z: calculated for C₂₁H₂₂ClN₂O₃ (M+H)⁺: 385.1313, found: 385.1310.

ethyl 2-(1-((acetylimino)(phenyl)methyl)-5,6-difluoroindolin-7-yl)acetate (5na)

Following by general procedure for the synthesis of 5aa. White

solid, 111.3 mg, yield: 72% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.49 – 7.41 (m, 5H), 6.98 (dd, J = 9.0, 7.6 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.83 – 3.73 (m, 4H), 2.93 (t, J = 7.5 Hz, 2H), 1.96 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 183.7, 169.7, 158.3, 148.7 (dd, J = 244.1, 13.4 Hz), 148.4 (dd, J = 245.1, 13.4 Hz), 138.5 (d, J = 5.3 Hz), 134.5, 131.2, 130.5 (dd, J = 6.9, 3.4 Hz), 129.1, 128.0, 116.2 (d, J = 16.2 Hz), 112.0 (d, J = 19.3 Hz), 61.1, 54.9, 33.0, 29.6, 26.8, 14.1; **HRMS (ESI) m/z:** calculated for C₂₁H₂₁F₂N₂O₃ (M+H)⁺: 387.1515, found: 387.1519.

ethyl 2-(1'-((acetylimino)(phenyl)methyl)spiro[cyclopentane-1,3'-indolin]-7'yl)acetate (5pa)

Following by general procedure for the synthesis of 5aa.

Yellow solid, 113.3 mg, yield: 70% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.42 (m, 5H), 7.17 – 7.08 (m, 3H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 2H), 3.54 (s, 2H), 1.98 (s, 3H), 1.87 – 1.77 (m, 4H), 1.73 – 1.66 (m, 2H), 1.60 – 1.51 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz,

Chloroform-*d***)** δ 183.7, 171.3, 158.7, 143.8, 141.6, 135.2, 130.8, 129.6, 129.1, 128.1, 126.2, 125.4, 120.9, 67.2, 60.7, 53.0, 39.4, 38.1, 27.0, 25.1, 14.2; **HRMS (ESI) m/z:** calculated for C₂₅H₂₉N₂O₃ (M+H)⁺: 405.2173, found: 405.2179.

ethyl 2-(1-((acetylimino)(4-fluorophenyl)methyl)indolin-7-yl)acetate (5ra)

Following by general procedure for the synthesis of 5aa.

Yellow oil, 84.0 mg, yield: 57% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.48 (dd, *J* = 8.1, 5.2 Hz, 2H), 7.19 – 7.09 (m, 5H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.79 (t, *J* = 7.5 Hz, 2H), 3.72 (s, 2H), 3.00 (t, *J* = 7.5 Hz, 2H), 2.01 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 183.6, 171.2, 164.1 (d, *J* = 251.8 Hz), 157.5, 141.9, 135.5, 131.1, 130.4 (d, *J* = 8.7 Hz), 129.9, 125.9, 125.3, 123.7, 116.3 (d, *J* = 22.0 Hz), 60.8, 54.5, 39.7, 29.9, 27.0, 14.2; **HRMS (ESI) m/z:** calculated for C₂₁H₂₂FN₂O₃ (M+H)⁺: 369.1609, found: 369.1604.

ethyl 2-(1-((acetylimino)(3,5-dimethylphenyl)methyl)indolin-7-yl)acetate (5sa)

Following by general procedure for the synthesis of 5aa.

Yellow solid, 98.4 mg, yield: 65% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.15 (dd, *J* = 7.3, 1.5 Hz, 1H), 7.13 – 7.07 (m, 3H), 7.05 (d, *J* = 1.8 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.78 (t, *J* = 7.5 Hz, 2H), 3.73 (s, 2H), 2.96 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 6H), 1.98 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 183.9, 171.4, 159.0, 142.1, 138.7, 135.5, 135.1, 132.6, 129.6, 125.8, 125.7, 125.4, 123.6, 60.7, 54.6, 39.6, 29.9, 27.0, 21.3, 14.2; **HRMS (ESI) m/z:** calculated for C₂₃H₂₇N₂O₃ (M+H)⁺: 379.2016, found: 379.2017.

ethyl-2-(1-((acetylimino)(cyclopropyl)methyl)indolin-7-yl)acetate (5va)

Following by general procedure for the synthesis of **5aa**. White solid, 20.1 mg, yield: 16% (purified by silica gel chromatography using PE/EA 2:1-1:1). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.15 – 7.11 (m, 1H), 7.04 – 6.98 (m, 2H), 4.48 – 4.41 (m, 1H), 4.16 – 4.09 (m, 1H), 4.05 – 3.98 (m, 1H), 3.90 – 3.81 (m, 1H), 3.69 (s, 1H), 3.14 – 3.04 (m, 1H), 2.89 – 2.81 (m, 1H), 1.83 – 1.77 (m, 1H), 1.68 (s, 3H), 1.30 – 1.20 (m, 1H), 1.10 (t, *J* = 7.1 Hz, 3H), 1.05 – 1.00 (m, 1H), 0.89 – 0.84 (m, 1H), 0.77 – 0.71 (m, 1H), 0.61 – 0.55 (m, 1H). ¹³**C NMR (125 MHz, Chloroform-***d***)** δ 173.4, 169.0, 157.7, 141.9, 135.3, 132.6, 127.1, 123.5, 122.7, 66.6, 58.5, 50.6, 29.0, 20.3, 14.1, 13.3, 8.4, 8.2. **HRMS (ESI) m/z:** calculated for C₁₈H₂₃N₂O₃ (M+H)⁺: 315.1703, found: 315.1701.

Following by general procedure for the synthesis of 5aa. White

solid, 103.5 mg, yield: 71% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.55 – 7.35 (m, 5H), 7.20 – 7.01 (m, 3H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.83 – 3.69 (m, 4H), 2.98 (q, *J* = 10.8, 9.0 Hz, 2H), 2.23 (q, *J* = 7.5 Hz, 2H), 1.23 (t, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, Chloroform *d*) δ 186.8, 170.9, 157.6, 141.7, 135.1, 134.8, 130.4, 129.2, 128.5, 127.7, 125.2, 124.9, 123.2, 60.3, 54.0, 39.3, 32.4, 29.4, 13.8, 8.7; HRMS (ESI) m/z: calculated for C₂₂H₂₅N₂O₃ (M+H)⁺: 365.186, found: 365.1859.

ethyl 2-(1-((benzoylimino)(phenyl)methyl)indolin-7-yl)acetate (5ac)

Following by general procedure for the synthesis of 5aa. White

solid, 82.5 mg, yield: 50% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.48 – 7.34 (m, 8H), 7.23 (dd, *J* = 6.5, 2.1 Hz, 1H), 7.18 – 7.13 (m, 2H), 3.98 – 3.89 (m, 4H), 3.72 (s, 2H), 3.06 (t, *J* = 7.5 Hz, 2H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.0, 171.3, 161.8, 142.0, 136.1, 135.4, 134.6, 131.9, 130.8, 130.0, 129.6, 128.8, 128.3, 128.0, 125.9, 125.8, 123.6, 60.7, 54.7, 39.4, 29.9, 14.1; HRMS (ESI) m/z: calculated for C₂₆H₂₅N₂O₃ (M+H)⁺: 413.186, found: 413.1856.

butyl 2-(1-((acetylimino)(phenyl)methyl)indolin-7-yl)acetate (5ad)

Following by general procedure for the synthesis of 5aa.

Yellow oil, 112.0 mg, yield: 74% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.40 (m, 5H), 7.15 (dd, *J* = 5.9, 2.8 Hz, 1H), 7.11 – 7.06 (m, 2H), 4.07 (t, *J* = 6.8 Hz, 2H), 3.82 – 3.70 (m, 4H), 2.97 (t, *J* = 7.5 Hz, 2H), 1.97 (s, 3H), 1.60 – 1.54 (m, 2H), 1.36 – 1.28 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 183.7, 171.3, 158.4, 142.1, 135.5, 135.1, 130.9, 129.8, 129.0, 128.2, 125.7, 125.5, 123.6, 64.7, 54.5, 39.7, 30.6, 29.9, 27.0, 19.1, 13.7; HRMS (ESI) m/z: calculated for C₂₃H₂₇N₂O₃ (M+H)⁺: 379.2016, found: 379.2016.

isobutyl 2-(1-((acetylimino)(phenyl)methyl)indolin-7-yl)acetate (5ae)

Following by general procedure for the synthesis of **5aa**. Yellow oil, 93.9 mg, yield: 62% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.49 – 7.40 (m, 5H), 7.15 (dd, J = 6.2, 2.6 Hz, 1H), 7.12 – 7.06 (m, 2H), 3.85 (d, J = 6.7 Hz, 2H), 3.81 – 3.71 (m, 4H), 2.97 (t, J = 7.5 Hz, 2H), 1.97 (s, 3H), 1.92 – 1.85 (m, 1H), 0.87 (d, J = 6.8 Hz, 6H); ¹³C NMR (150 MHz, Chloroform-*d***)** δ 183.9, 171.4, 158.5, 142.0, 135.6, 135.0, 131.0, 129.8, 129.1, 128.2, 125.8, 125.5, 123.7, 70.9, 54.6, 39.6, 29.9, 27.7, 27.0, 19.1; HRMS (ESI) m/z: calculated for $C_{23}H_{27}N_2O_3$ (M+H)⁺: 379.2016, found: 379.2012.

benzyl 2-(1-((acetylimino)(phenyl)methyl)indolin-7-yl)acetate (5af)

Following by general procedure for the synthesis of **5aa**. Yellow solid, 107.2 mg, yield: 65% (purified by silica gel chromatography using PE/EA 5:1-1:1). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.49 – 7.38 (m, 5H), 7.35 – 7.28 (m, 5H), 7.18 (t, *J* = 4.4 Hz, 1H), 7.11 (d, *J* = 3.7 Hz, 2H), 5.12 (s, 2H), 3.83 (s, 2H), 3.73 (t, *J* = 7.5 Hz, 2H), 2.98 (t, *J* = 7.5 Hz, 2H), 1.96 (s, 3H); ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 183.9, 171.1, 158.4, 142.0, 136.0, 135.6, 135.0, 130.9, 129.9, 129.0, 128.5, 128.4, 128.2, 125.8, 125.2, 123.8, 66.6, 54.5, 39.8, 29.9, 27.0; **HRMS (ESI) m/z:** calculated for C₂₆H₂₅N₂O₃ (M+H)⁺: 413.186, found: 413.1858.

VII. Gram-scale Preparation and Conversion of the Product

(a) Gram-scale preparation of product

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (110.2 mg, 4 mol %), HOAc (540.5 mg, 9 mmol), **1a** (1 g, 4.5 mmol), **2a** (1.07 g, 6.75 mmol) and DCE (50 mL). The reaction mixture was stirred at 60 °C for 2 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 2:1 to afford the product **3aa** (1.23 g, yield: 85%).

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (110.2 mg, 4 mol %), AgSbF₆ (309.3 mg, 20 mol %), KOAc (1.32 g, 13.5 mmol), **1a** (1 g, 4.5 mmol), **4a** (1.05 g, 6.75 mmol) and DCE (50 mL). The reaction mixture was stirred at 80 °C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 3:1 to afford the product **5aa** (1.03 g, yield: 65%).

(b) Transformations of product

(1) Transformations of **3aa** to 6^8

Dissolved **3aa** (50 mg, 0.16 mmol) with THF (10 mL) and DMF (2 ml) in a threenecked flask, added NaH (37.5 mg, 0.94 mmol) under argon protection, and stirred for 10 minutes at 0°C. Then, allyl bromide (56.7 mg, 0.47 mmol) was added and stirred for 4 h at room temperature. After the reaction was completed, added methanol to the system for quenching, and the solvent was removed under reduced pressure, then extracted with DCM (30 mL×3). The organic layer was then dried with Na₂SO₄ and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography to give **6** (20 mg, yield: 36%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.59 – 7.51 (m, 5H), 7.44 – 7.38 (m, 3H), 5.92 – 5.81 (m, 1H), 5.25 (dd, *J* = 17.1, 1.9 Hz, 1H), 5.12 (dd, *J* = 10.3, 2.0 Hz, 1H), 4.31 (q, *J* = 10.1 Hz, 1H), 4.00 – 3.92 (m, 1H), 3.41 (s, 3H), 3.31 – 3.21 (m, 2H), 3.21 – 3.13 (m, 1H), 3.09 (ddd, *J* = 16.1, 9.5, 2.2 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.2, 162.9, 151.8, 139.7, 135.8, 135.1, 133.5, 130.6, 128.5, 127.9, 127.5, 124.5, 124.1, 121.6, 118.6, 64.7, 54.9, 52.2, 36.3, 27.9; HRMS (ESI) m/z: calculated for C₂₂H₂₁N₂O₃ (M+H)⁺: 361.1547, found: 361.1543.

(2) Transformations of **3aa** to 7^8

Dissolved **3aa** (80 mg, 0.25 mmol) with THF (15 mL) and DMF (3 ml) in a threenecked flask, added NaH (60 mg, 1.5 mmol) under argon protection, and stirred for 10 minutes at 0°C. Then, (*E*)-3-bromo-1-phenyl-1-propene (147.8 mg, 0.75 mmol) was added and stirred for 4 h at room temperature. After the reaction was completed, added methanol to the system for quenching, and the solvent was removed under reduced pressure, then extracted with DCM (40 mL×3). The organic layer was then dried with Na₂SO₄ and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography to give **7** (35 mg, yield: 32%). ¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.59 – 7.49 (m, 6H), 7.47 – 7.42 (m, 2H), 7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 2H), 7.23 – 7.19 (m, 1H), 6.62 (d, *J* = 15.8 Hz, 1H), 6.29 (dt, *J* = 15.6, 7.2 Hz, 1H), 4.31 (q, *J* = 10.1 Hz, 1H), 4.00 – 3.92 (m, 1H), 3.40 (s, 3H), 3.39 – 3.33 (m, 2H), 3.31 – 3.25 (m, 1H), 3.10 (ddd, *J* = 16.2, 9.5, 2.2 Hz, 1H); ¹³C **NMR (125 MHz, DMSO-***d*₆) δ 169.3, 163.0, 152.0, 139.6, 136.8, 135.8, 135.1, 133.0, 130.6, 128.6, 128.5, 127.9, 127.7, 127.4, 125.9, 125.0, 124.5, 124.2, 121.8, 65.1, 54.9, 52.3, 35.5, 27.9; **HRMS (ESI) m/z:** calculated for C₂₈H₂₅N₂O₃ (M+H)⁺: 437.186, found: 437.1859.

VIII. Mechanistic Studies

(a) H/D exchange

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (9.8 mg, 4 mol %), CD₃COOD (128.2 mg, 2 mmol), **1a** (88.9 mg, 0.4 mmol) and DCE (4 mL). The reaction mixture was stirred at 60 °C for 2 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford the product **D**_n-**1a**.

7.55

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (9.8 mg, 4 mol %), CD₃COOD (128.2 mg, 2 mmol), **1a** (88.9 mg, 0.4 mmol), **2a** (94.9 mg, 0.6 mmol) and DCE (4 mL). The reaction mixture was stirred at 60 °C for 2 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford the product **D**_n-**3aa**.

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (9.8 mg, 4 mol %), AgSbF₆ (27.5 mg, 20 mol %), KOAc (117.8 mg, 1.2 mmol), **1a** (88.9 mg, 0.4 mmol), **4a** (93.7 mg, 0.6 mmol), D₂O (80.1 mg, 4 mmol) and DCE (4 mL). The reaction mixture was stirred at 80 °C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford the product **D**_n-**5aa**.

(b) Competition experiment

A pressure tube was charged with an equimolar mixture of **1h** (48.1 mg, 0.2 mmol) and **1f** (47.3 mg, 0.2 mmol) were allowed to react with **2a** (47.4 mg, 0.3 mmol) in DCE (4 mL) in the presence of $[Ru(p-cymene)Cl_2]_2$ (4.9 mg, 4 mol %), HOAc (24 mg, 0.4 mmol). The reaction mixture was stirred at 60 °C for 2 h. After that, the solvent was removed under

reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 2:1 to afford the crude mixed products. The mixture of products **3ha** and **3fa** was determined to be 1.84/1 by ¹H NMR spectra (see as below).

A pressure tube was charged with an equimolar mixture of 1g (53.5 mg, 0.2 mmol) and 1f (47.3 mg, 0.2 mmol) were allowed to react with 4a (46.8 mg, 0.3 mmol) in DCE (4 mL) in the presence of $[Ru(p-cymene)Cl_2]_2$ (4.9 mg, 4 mol %), AgSbF₆ (13.7 mg, 20 mol %), KOAc (58.9 mg, 0.6 mmol). The reaction mixture was stirred at 80 °C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA = 3:1 to afford the crude mixed products. The mixture of products 5ga and 5fa was determined to be 0.55/1 by ¹H NMR spectra (see as below).

IX. X-ray Crystallographic Data

(a) The Single Crystal Structure of **3aa**

X-ray Single Crystal Structure Analysis of 3aa: X-ray crystallographic data of 3aa were solutions at T = 170.0 K, C₁₉H₁₆N₂O₃, Mr = 320.34, triclinic, space group: P-1, a = 8.9991(5) Å, b = 9.6163(5) Å, c = 10.1420(6) Å, α = 75.919(2)°, β = 78.998(2)°, γ = 69.344(2)°, V = 791.22(8) Å³, Z = 2. Displacement ellipsoids are drawn at the 50% probability level.

(b) The Single Crystal Structure of 5sa

X-ray Single Crystal Structure Analysis of 5sa: X-ray crystallographic data of 5sa were solutions at T = 298 K, C₂₃H₂₆N₂O₃, Mr = 378.46, triclinic, space group: P-1, a = 8.6896(13) Å, b = 8.6893(12) Å, c = 14.548(2) Å, $\alpha = 94.344(5)^{\circ}$, $\beta = 100.076(4)^{\circ}$, $\gamma = 96.441(4)^{\circ}$, V = 1069.6(3) Å³, Z = 2. Displacement ellipsoids are drawn at the 50% probability level.

X. References

- J. Zhou, J. Li, Y. Li, C. Wu, G. He, Q. Yang, Y. Zhou and H. Liu, Direct Synthesis of 3-Acylindoles through Rhodium(III)-Catalyzed Annulation of N-Phenylamidines with α-Cl Ketones, *Org. Lett.*, 2018, 20, 7645.
- 2. P. A. Koutentis and S. I. Mirallai, Tetrahedron, 2010, 66, 5134.
- 3. N. Jha, R. P. Singh, P. Saxena and M. Kapur, Iridium(III)-Catalyzed C(3)–H Alkylation of Isoquinolines via Metal Carbene Migratory Insertion, *Org. Lett.*, 2021, **23**, 8694.
- 4. R. B. Dateer and S. Chang, Rh(III)-Catalyzed C-H Cyclization of Arylnitrones with Diazo Compounds: Access to N-Hydroxyindolines, *Org. Lett.*, 2016, **18**, 68.
- 5. X. Chen, Y. Xie, X. Xiao, G. Li, Y. Deng, H. Jiang and W. Zeng, Rh(iii)-catalyzed chelation-assisted intermolecular carbenoid functionalization of α-imino Csp3–H bonds, *Chem. Commun.*, 2015, **51**, 15328.
- 6. M. Regitz, J. Hocker and A. Liedhegener, Synthesis of Diazoacetic Esters and Amides from Corresponding Acetoacetic Acid Derivatives, *Org. Prep. Proced.*, 1969, **1**, 99.
- L. Egger, L. Guénée, T. Bürgi and J. Lacour, Regioselective and Enantiospecific Synthesis of Dioxepines by (Cyclopentadienyl)ruthenium-Catalyzed Condensations of Diazocarbonyls and Oxetanes, *Adv. Synth. Catal.*, 2017, **359**, 2918.
- X. Wei, X. Liang, Y. Li, Q. Liu, X. Liu, Y. Zhou and H. Liu, I2-induced cascade cyclization and dearomatization of indoles for the highly efficient synthesis of iodinated and vinylic spiroindolenines, *Green Chem.*, 2021, 23, 9165.

XI. NMR Spectra and HR-MS Spectra of Substrates and Products

(a) ¹H NMR and ¹³C NMR Spectra

¹³C NMR spectrum of **1b** (125 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **1e** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1f** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1h** (125 MHz, Methanol- d_4)

¹H NMR spectrum of **1i** (600 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **1i** (150 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **1j** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1k** (125 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **11** (125 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **1m** (150 MHz, Methanol- d_4)

¹H NMR spectrum of 1n (500 MHz, Methanol- d_4)

¹³C NMR spectrum of **1n** (125 MHz, Methanol- d_4)

¹³C NMR spectrum of **10** (125 MHz, Methanol- d_4)

110 100 fl (ppm)

80 70 60 50

90

40

30

20

10

-1

ò

Exact Mass: 276.1626 Molecular Weight: 276.3830

160 150

140 130 120

0 200 190 180 170

S56

7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.74 7.7.73 7.7.73 7.7.73 7.7.73 7.7.74

 $\overbrace{\begin{array}{c} 4.33 \\ 4.32 \\ -3.93 \\ 3.35 \\ 3.35 \\ 3.35 \\ 3.35 \end{array}}$

¹H NMR spectrum of 1q (500 MHz, Methanol- d_4)

¹³C NMR spectrum of 1q (125 MHz, Methanol- d_4)

(1712) (1772) (1772) (1773) (1773) (1774) (1774) (1742) (1742) (1742) (1742) (1742) (1742) (1742) (1742) (1742) (1742) (1742) (1773)

¹³C NMR spectrum of 1r (150 MHz, Methanol- d_4)

¹³C NMR spectrum of **1s** (150 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **1t** (150 MHz, Methanol- d_4)

¹³C NMR spectrum of **1u** (125 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **3aa** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ba** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ca** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3da** (150 MHz, Chloroform-*d*)

-5.06 -5.06

¹³C NMR spectrum of **3ea** (150 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **3fa** (125 MHz, Chloroform-*d*)

¹H NMR spectrum of **3ga** (500 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ga** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ha** (150 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **3ia** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ka** (125 MHz, DMSO-*d*₆)

77 (5)

¹³C NMR spectrum of **3la** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ma** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3na** (125 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **30a** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3pa** (125 MHz, Chloroform-*d*)

77 85 77 75 76 75 77 75 76 75 77 75 76 75 77 75 76 75 76 75 77 75 76

¹³C NMR spectrum of **3qa** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ra** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3sa** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ta** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ab** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ac** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3ad** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3af** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5aa** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ba** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ca** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5da** (125 MHz, Chloroform-*d*)

7.48 7.45 7.45 7.45 7.45 7.45 7.45 7.45 6.98 6.98 $\begin{array}{c} 4.15\\ 4.14\\ 4.12\\ 3.79\\ 3.79\\ 3.70\\ 3.70\\ 2.95\\ 2.95\\ 2.95\\ 2.95\\ 1.22\\ 1.23\\ 1.22\\ 1.22\end{array}$

¹³C NMR spectrum of **5ga** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ja** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ka** (125 MHz, Chloroform-*d*)

$\begin{array}{c} & (1,2,2) \\ (1,2,2) \\ (1,2,2) \\ (2,2) \\$

¹³C NMR spectrum of **5na** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5pa** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5sa** (150 MHz, Chloroform-*d*)

77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.1.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.4
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.7
77.7.

¹³C NMR spectrum of **5va** (125 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ab** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5ac** (125 MHz, Chloroform-*d*)

рана стана стана

¹³C NMR spectrum of **5ad** (125 MHz, Chloroform-*d*)

7.448 7.448 7.447

¹³C NMR spectrum of **5ae** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **5af** (150 MHz, Chloroform-*d*)

¹³C NMR spectrum of **6** (125 MHz, DMSO-*d*₆)

(b) HRMS (ESI) Spectra

Compound 1b

Compound 1c

Compound 1d

Compound 1e

Compound 1f

Compound 1g

Compound 1h

Compound 1i

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
301.033	301.0335	0.44	1.46	C15 H14 Br N2	(M+H)+

Compound 1j

Compound 1k

Compound 11

Compound 1m

Compound 1n

Compound 1o

m/z		Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
	277.1702	277.1699	-0.29	-1.03	C19 H21 N2	(M+H)+

Compound 1p

User Spectra

Formula Calculator Results Calc m/z

253 1335

m/z

Diff (mDa)

0.06

253 1335

Diff (ppm)

Ion

(M+H)+

Ion Formula

0.23 C16 H17 N2 O

Compound 1r

Compound 1s

229.0794

-0.17

Compound 1u

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
187.1227	187.123	0.29	1.53	C12 H15 N2	(M+H)+

Compound 1v

Compound 3aa

Compound 3ba

User Spectra

Compound 3ca

Compound 3ea

User Spectra

User Spectra

Compound 3fa

Compound 3ga

Compound 3ha

Compound 3ia

Compound 3ja

User Spectra Fragmentor Voltage 135 Collision Energy Ionization Mode ESI x10 ⁶ + Scan (rt: 0.211 min) ESIH202104038.d 1.4 355.0845 1.2 1 0.8 0.6 Chemical Formula: C₁₉H₁₅CIN₂O₃ Exact Mass: 354.0771 357.0830 0.4 Molecular Weight: 354.7900 356.0883 0.2 358.0854 362.3238 0 350 356 357 358 359 360 362 363 364 365 367 349 351 352 353 354 355 361 366 Counts vs. Mass-to-Charge (m/z) Formula Calculator Results Ion Formula -0.27 C19 H16 Cl N2 O3 m/z Calc m/z Diff (mDa) Diff (ppm) Ion (M+H)+ 355.0845 355.0844 -0.09

Compound 3ka

Compound 3la

 m/z
 Calc m/z
 Diff (mDa)
 Diff (ppm)
 Ion Formula
 Ion

 381.1437
 381.1445
 0.76
 2
 C21 H21 N2 O5
 (M+H)+

Compound 3ma

Compound 3na

Compound 3oa

Compound 3qa

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
339.1138	339.1139	0.11	0.34	C19 H16 F N2 O3	(M+H)+

Compound 3ra

Compound 3sa

Compound 3ta

Compound 3ab

Compound 3ac

Compound 3ad

Compound 3ae

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
397.1545	397.1547	0.19	0.48	C25 H21 N2 O3	(M+H)+

Spectra

Compound 3af

Compound 5aa

Compound 5ba

Compound 5ca

Compound 5da

Compound 5fa

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
396.155	396.1554	0.42	1.07	C21 H22 N3 O5	(M+H)+

Compound 5ga

Compound 5ia

Compound 5ja

Compound 5ka

Compound 5na

369.1604

Compound 5pa

Ion Formula 1.26 C21 H22 F N2 O3 0.46 369,1609 (M+H)+

Compound 5ra

Compound 5sa

Compound 5ua

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
315.1701	315.1703	0.23	0.72	C18 H23 N2 O3	(M+H)+

Compound 5va

Compound 5ab

Compound 5ac

Compound 5ad

Compound 5ae

User Spectra

Compound 5af

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
361.1543	361.1547	0.37	1.03	C22 H21 N2 O3	(M+H)+

Compound 6

