Electronic Supporting Information

for

Palladium-Catalyzed C-H Amination Using Aluminum Nitrate as the Oxidant

Kai Jia $\ddagger \ddagger$ Yuan Xue, \ddagger Daoquan Tu*, Jun Luo* and Chao Jiang*
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
The Research Academy of Jiangsu Hansoh Pharmaceutical Co., Ltd., Dongjin Road, Huaguoshan Avenue, Lianyungang, Jiangsu 222069, China.
Email: chaojiang@njust.edu.cn, luojun@njust.edu.cn, tudq@hspharm.com

Table of content

General Information S3
Experimental Section S3
Preparation of Substrate S3
Optimization of Reaction Conditions S11
Procedure for the Palladium Catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-H Amidation S14
Scale up Experiment on Gram Scale S21
Procedure of Auxiliary Removal and Derivatization S21
Procedure for the Synthesis of Novel Polycyclic Compounds S24
Procedure for Mechanism Studies S27
Preparation of the Required Substrate S27
Stepwise Control of the Reaction S28
Directing Group Modification Control Reaction S28
Intramolecular Competition KIE Study S29
Characterization of $\mathrm{C}-\mathrm{H}$ insertion palladium complexes S30
References S34
X-Ray Crystallographic Data of 2a and 3a S35
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S38

General Information

All reagents and metal catalysts were obtained from commercial sources without further purification. Analytical thin layer chromatography was performed on 0.5 mm silica gel. Visualization was carried out with UV light. Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography. ${ }^{1} \mathrm{H}$ NMR was recorded on Bruker AV-500 instrument (500 MHz) or Bruker AMX-400 instrument $(400 \mathrm{MHz})$. Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants, J, were reported in Hertz unit (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV-500 instrument (126 MHz) or Bruker AMX-400 instrument (101 MHz) and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to either the center line of a triplet at 77.16 ppm of chloroform- d_{1} or the center line of a multiplet at 39.52 ppm of DMSO-d6. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Experimental Section

Preparation of Substrate

without further purification

General procedure:
Step 1: To a 100 mL round bottom flask under a nitrogen atmosphere was added carboxylic acid ${ }^{1}$ ($10 \mathrm{mmol}, 1.0$ equiv) and 50 mL dichloromethane. To the resulting stirred solution was added oxalyl chloride ($1 \mathrm{~mL}, 12 \mathrm{mmol} .1 .2$ equiv) and 3 drops DMF. The mixture was stirred at room temperature for 4 hours until all gas evolution ceased, which was used for the next step without any further purification.

Step 2: To a solution of 5-chloro-8-aminoquinoline ${ }^{2}(1.96 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(2.8 \mathrm{~mL}$, $20.0 \mathrm{mmol}, 2.0$ equiv) in dichloromethane (10 mL), the solution of fresh prepared acid chloride was added dropwise. The resulting mixture was stirred at room temperature for 30 min . Then, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, and was extracted with 100 mL dichloromethane for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After
filtration and evaporation, the amide was purified by column chromatography on silica gel (hexane/ethyl acetate $=10: 1$).

N-(5-chloroquinolin-8-yl)-2-methyl-2-phenylpropanamide (1a): White solid. Yield: 89%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79$ (s, 1H), 8.70 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (dd, $J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{1 7 5 . 9}, 148.6,144.7,139.2,134.0,133.1,128.9,127.2$, 127.1, 126.4, 125.8, 124.0, 122.2, 115.9, 48.4, 27.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 325.1107$, found 325.1106 .

2-(4-chlorophenyl)- N -(5-chloroquinolin-8-yl)-2-methylpropanamid e (1b): White solid. Yield: 80%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80$ (s, $1 \mathrm{H}), 8.75-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49$ (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,148.7$, 143.3, 139.1, 133.8, 133.3, 133.1, 129.0, 127.8, 127.2, 125.8, 124.3, 122.3, 116.0, 48.1, 26.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 359.0718$, found 359.0714 .

403.0215.

2-(4-bromophenyl)- N -(5-chloroquinolin-8-yl)-2-methyIpropanamide (1c): White solid. Yield: 75%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80$ (s, 1H), 8.68 (dd, $J=4.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.50$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,148.7,143.9,139.1,133.8,133.2$, 131.9, 128.2, 127.1, 125.8, 124.3, 122.3, 121.2, 116.0, 48.2, 26.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+403.0213$, found

The procedure for the synthesis of substrate (1d)

Following the general procedure, compound 1d' was synthesized smoothly. Under argon, a 100 mL Schlenk flask was charged successively with $1 \mathbf{d d}^{\prime}(1.0 \mathrm{mmol})$, dry DCM (5 mL) and
$\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{mmol})$. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and treated with dropwise addition of triflic anhydride (1.2 mmol). The resulting mixture was slowly warmed up to $25{ }^{\circ} \mathrm{C}$ and kept stirred for additional 5 hours. At the end of the reaction (monitored by TLC), the mixture was passed through a pad of silica gel with $1: 30$ ethyl acetate/hexane washings, until no more aryl triflate was eluted out. The filtrate was concentrated on a rotary evaporator and the residue was subjected to flash silica gel chromatography to afford the desired aryl triflate 1d.

4-(1-((5-chloroquinolin-8-yl)amino)-2-methyl-1-oxopropan-2-yl)phe nyl trifluoromethanesulfonate (1d): pale yellow oil. Yield: $62 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 9.79 (s, 1H), 8.66 (dd, $J=12.4,5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 8.50 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49$ (dd, $J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,148.8,148.6,145.4,139.2$, 133.6, 133.3, 128.5, 127.1, 125.9, 124.5, 122.4, 121.7, 120.1, 117.5, 116.0, 48.3, 27.0. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{CIF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 473.0550$, found 473.0552 .

N-(5-chloroquinolin-8-yl)-2-methyl-2-(p-tolyl)propanamide
(1e): white solid. Yield: 71\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81$ (s, 1H), 8.70 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=8.5,1.4$ Hz, 1H), 7.56 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 176.1,148.6,141.7,139.2,136.8,134.0$, 133.1, 129.6, 127.2, 126.2, 125.8, 124.0, 122.2, 115.9, 48.1, 27.0, 21.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{CIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 339.1264$, found 339.1260.

2-([1,1'-biphenyl]-4-yl)-N-(5-chloroquinolin-8-yl)-2-methylpropanam ide (1f): White solid. Yield: 86%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87$ (s, $1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 7 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 1 H), 1.82 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,148.6,143.8$, $140.7,140.0,139.2,134.0,133.2,128.9,127.5,127.4,127.2,127.1$, 126.9, 125.9, 124.1, 122.2, 116.0, 48.3, 27.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{CIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+401.1421$, found 401.1420.

N-(5-chloroquinolin-8-yl)-2-methyl-2-(4'-(trifluoromethyl)-[1,1'-biph enyl]-4-yl)propenamide (1g): White solid. Yield: 56\%. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dd}, J=4.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.50 (dd, J = 8.5, 1.5 Hz, 1H), 7.70 (s, 4H), 7.64 (s, 4H), $7.58(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,148.6,144.9,144.2,139.2,138.5$, $133.9,133.2,129.4(\mathrm{~d}, J=32.6 \mathrm{~Hz}), 127.7$, 127.3, 127.2, 127.1, 125.9, 125.8 (q, $J=3.8 \mathrm{~Hz}$), 124.2, 122.2, 116.0, 48.3, 26.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+469.1295$, found 469.1293.

N-(5-chloroquinolin-8-yl)-2-(2',4'-difluoro-[1,1'-biphenyl]-4-yl)-2-met hylpropanamide (1h): Yellow oil. Yield: 68%. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=4.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.46$ (dd, $J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (t, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,161.1$ (ddd, $J=262.4,249.7,11.6 \mathrm{~Hz}$), 148.6, 144.3, 139.2, 133.9, 133.8, 133.2, 131.4 (dd, $J=9.5,5.0 \mathrm{~Hz}$), 129.4 (d, $J=2.8 \mathrm{~Hz}$), 127.2, 126.7, 125.9, 124.9 (dd, $J=13.9,3.8 \mathrm{~Hz}$), 124.2, 122.2, 116.0, 111.7 (d, $J=17.4 \mathrm{~Hz}$), $104.8-104.2(\mathrm{~m}), 48.3$, 27.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 437.1232$, found 437.1230.

2-(3-chlorophenyl)- N-(5-chloroquinolin-8-yl)-2-methylpropanami de (1i): White solid. Yield: 86%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83$ (s, $1 \mathrm{H}), 8.74-8.64(\mathrm{~m}, 2 \mathrm{H}), 8.49$ (dd, $J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.49$ (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27$ (m, 2H), 1.76 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 174.9,148.7,146.9,139.2,134.8,133.8,133.2,130.1$, 127.4, 127.1, 126.7, 125.9, 124.8, 124.3, 122.3, 116.0, 48.4, 26.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 359.0718$, found 359.0716.

N -(5-chloroquinolin-8-yl)-2-methyl-2-(3-(trifluoromethyl)phenyl)p ropanamide (1j): Yellow oil, 88%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83$ (s, 1H), $8.73-8.58$ (m, 2H), 8.49 (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (s, $1 \mathrm{H}), 7.71$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.46$ (m, 2H), 1.81 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,148.6,145.8$, 139.0, 133.6, 133.1, 131.2 (q, $J=32.1 \mathrm{~Hz}$), 130.2, 129.4, 127.0, 125.7, 124.3, 124.1 (q, $J=3.7 \mathrm{~Hz}$), 123.0 (q, $J=3.8 \mathrm{~Hz}$), 122.2, 116.0, 48.4, 26.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 393.0982$, found 393.0980.

N -(5-chloroquinolin-8-yl)-2-methyl-2-phenylbutanamide
(1k):
White solid. Yield: $88 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78$ (s, 1H), 8.71 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.64 (dd, $J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.48 (dd, $J=$ $8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (td, $J=8.6,2.7 \mathrm{~Hz}, 3 \mathrm{H})$, 7.39 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dq, $J=14.7,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19$ (dq, $J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 175.5,148.6,143.7,139.2,134.0,133.1,128.8,127.2$, 127.1, 126.9, 125.8, 124.0, 122.2, 115.9, 52.3, 31.7, 23.0, 9.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+339.1264$, found 339.1266.

N-(5-chloroquinolin-8-yl)-2-cyclopentyl-2-phenylpropanamide (1I): White solid. Yield: 78\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85$ (s, 1H), 8.71 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54 (dd, $J=10.7,8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.86$ (m, 1H), 1.74 (s, 3H), $1.65-1.51$ (m, 6H), $1.34-1.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.2,148.6,144.0,139.2,134.1,133.2,128.6,127.2,127.0,126.9$, 125.8, 123.8, 122.2, 115.9, 54.3, 46.4, 28.6, 28.3, 26.0, 25.8, 19.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 379.1577$, found 379.1573.

\mathbf{N}-(5-chloroquinolin-8-yl)-2-methyl-2,3-diphenylpropanamide (1m): White solid. Yield: 72\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 9.82 (s, $1 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64-8.57(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=8.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12$ (q, $J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.2,148.6,142.9,139.2,137.5,133.9,133.2,130.7,128.7,127.8,127.3,127.3$, 127.2, 126.4, 125.7, 124.1, 122.2, 116.0, 52.9, 45.2, 22.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+$ 401.1421, found 401.1420.

\mathbf{N}-(5-chloroquinolin-8-yl)-2,2-diphenylpropanamide (1n): White solid. Yield: 90%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.07$ (s, 1H), 8.81 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 8 \mathrm{H})$, $7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$. The spectral data of the starting material was in accordance with the reported in the literature ${ }^{3}$.

\mathbf{N}-(5-chloroquinolin-8-yl)-2,2-diphenylbutanamide (10): White solid. Yield: 81%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09$ (s, 1H), 8.74 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.59 (dd, $J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47$ (dd, $J=8.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,148.6,142.9$, 139.3, 134.0, 133.1, 129.3, 128.4, 127.1, 127.0, 125.8, 124.1, 122.2, 115.9, 62.6, 31.5, 10.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 401.1421$, found 401.1420.

2-butyl- N -(5-chloroquinolin-8-yl)-2-phenylhexanamide (1p): White solid. Yield: 86%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.73$ (s, 1H), 8.70 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64$ (dd, $J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (dd, J $=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H})$, 7.36 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 2.16$ (ddt, $J=18.4$, $13.7,6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.22-1.16(\mathrm{~m}, 2 \mathrm{H})$, $1.16-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 175.2,148.6,143.4,139.2,134.1,133.1,128.6,127.2,127.1,126.9,125.8,123.8$, 122.1, 115.9, 55.4, 34.8, 26.2, 23.3, 14.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{CIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 409.2047, found 409.2049.

N -(5-chloroquinolin-8-yl)-1-phenylcyclopropane-1-carboxamide
(1q): White solid. Yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86$ (s, $1 \mathrm{H}), 8.64$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.25$ (dd, $J=6.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) 172.7, 148.5, 139.2, 139.1, 134.0, 133.0, 131.4, 129.2, 128.2, 127.1, 125.7, 124.0, 122.1, 115.6, 32.0, 16.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 323.0951$, found 323.0953.

N-(5-chloroquinolin-8-yl)-1-phenylcyclobutane-1-carboxamide (1r): White solid. Yield: 75%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77$ (s, 1H), 8.73 $-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=11.9,9.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.71-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.03 - 1.93 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 174.5, 148.6, 144.2, 139.2, 134.0, 133.2, 128.9, 127.1, 127.0, 126.4, 125.8, 124.0, 122.2, 115.8, 54.5, 32.3, 16.7. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 337.1108$, found 337.1106.

N-(5-chloroquinolin-8-yl)-1-phenylcyclopentane-1-carboxamide
(1s): White solid. Yield: 77%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H})$, 8.68 (dd, $J=4.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (dd, $J=8.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (dt, $J=13.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.8,148.6,143.7,139.2,134.1,133.1,128.9,127.1,127.1,127.0$, 125.8, 123.9, 122.2, 115.8, 61.0, 36.7, 24.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1264$, found 351.1260 .

1-(4-chlorophenyl)-N-(5-chloroquinolin-8-yl)cyclopentane-1-carbo xamide (1t): White solid. Yield: 78%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84$ (s, 1H), $8.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=11.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (dd, $J=7.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 174.1,148.7,142.3,139.1,133.9,133.2,133.0,129.0,128.4$, 127.1, 125.8, 124.1, 122.3, 115.8, 60.6, 36.7, 23.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 385.0874$, found 385.0870.

2-(4-bromophenyl)-N-(5-chloroquinolin-8-yl)-2,3-dihydro-1H-ind ene-2-carboxamide (1u): White solid. Yield: 70%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=4.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.19 (dd, $J=5.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.52 (d, $J=$ $15.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.3$, 148.7, 142.5, 140.7, 139.1, 133.7, 133.3, 132.0, 128.6, 127.1, 127.0, 125.8, 124.3, 124.3, 122.3, 121.3, 116.1, 60.9, 43.3. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{BrClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 477.0369, found 477.0373.

N-(5-chloroquinolin-8-yl)-1-phenylcyclohexane-1-carboxamide (1v): White solid. Yield: $72 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97$ (s, $1 \mathrm{H}), 8.79-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.52$ (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (dd, $J=$ $13.8,5.1 \mathrm{~Hz}, 3 \mathrm{H}$), 7.51 (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (dd, $J=10.6,5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}$, $2 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.48$ (ddd, $J=16.7,8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 174.4,148.6,143.3,139.2,134.0,133.2$, 129.0, 127.2, 126.9, 126.6, 125.8, 123.9, 122.2, 115.9, 52.4, 34.6, 25.9, 23.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{CIN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 365.1421$, found 365.1424.

The procedure for the synthesis of substrate (1w)

Following the general procedure, compound 1w' was synthesized smoothly. To a solution of compound $\mathbf{1 w}$ ' ($1 \mathrm{mmol}, 368 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$, TCCA ($0.4 \mathrm{mmol}, 93 \mathrm{mg}$) was added stirred at room temperature for 6 h . At the end of the reaction (monitored by TLC), the mixture was concentrated on a rotary evaporator and the residue was subjected to flash silica gel chromatography to afford the desired substrate $\mathbf{1 w}$.

N-(3-bromo-5-chloroquinolin-8-yl)-2-methyl-2-phenylpropanamide (1w): White solid. Yield: 60%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53$ (s, $1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{q}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=8.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (dd, $J=10.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (t, J = 7.3 Hz, 1H), 1.76 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.9, 149.7, 144.4, 137.1, 134.5, 134.2, 129.0, 128.4, 127.3, 126.6, 126.4, 122.8, 118.9, 116.3, 48.5, 26.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$403.0213, found 403.0210.

N-(5-chloroquinolin-8-yl)-2-phenylacetamide (1x): White solid. Yield: 79%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.64(\mathrm{~m}, 2 \mathrm{H})$, 8.51 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=8.5,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.42 ($\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.35 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H})$. The spectral data of the starting material was in accordance with the reported in the literature ${ }^{4}$.

Optimization of Reaction Conditions

Table S1. Screening of directing groups ${ }^{\text {a,b }}$

Entry	Change from a	Recover yield [\%] (1)	Yield [\%] (1'/2)
1	1a $\mathrm{R}=\mathrm{Cl}$	0	trace/80 ${ }^{\text {c }}$
2	1aa $\mathrm{R}=\mathrm{H}$	90	trace/0
3	1ab $\mathrm{R}=\mathrm{OCH}_{3}$	0	trace/0
4	1ac $\mathrm{R}=\mathrm{NO}_{2}$	45	8/0

${ }^{a}$ Conditions: Substrate 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (2.5 equiv), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, $100{ }^{\circ} \mathrm{C}$, under air, 24 h . ${ }^{5}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using $1,3,5$-trimethoxybenzene as internal standard. ${ }^{\text {c Isolated yield. }}$

Table S2. Screening of the oxidants ${ }^{\text {a,b }}$

${ }^{a}$ Conditions: Substrate 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, oxidants (2.5 equiv), $\mathrm{CH}_{3} \mathrm{CN}(2$ mL), $100{ }^{\circ} \mathrm{C}$, under air, 24 h . ${ }^{b}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using $1,3,5$-trimethoxybenzene as internal standard. ${ }^{\text {I }}$ solated yield. ${ }^{\circ} \mathrm{CAN}=$ ceric ammonium nitrate.

Table S3. Screening of metal catalysts ${ }^{a, b}$

${ }^{a}$ Conditions: Substrate 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv), catalysts ($10 \mathrm{~mol} \%$), $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (2.5 equiv), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}), 100{ }^{\circ} \mathrm{C}$, under air, 24 h . ${ }^{\text {b }}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. ${ }^{\text {I I }}$ solated yield.

Table S4. Optimization of temperature and atmospherea, ${ }^{a} b$

${ }^{a}$ Conditions: Substrate $\mathbf{1 a}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (2.5 equiv), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, 24 h . ${ }^{\text {T }}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. ${ }^{\text {I Isolated yield. }}$

Table S5. Optimization of solvents ${ }^{a, b}$

${ }^{a}$ Conditions: Substrate 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (2.5 equiv), solvent (2 mL), $100{ }^{\circ} \mathrm{C}$, under air, 24 h . ${ }^{\text {b }}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. ${ }^{\circ}$ Isolated yield.

Table S6. Optimization of reaction time and stoichiometric quantity ${ }^{a, b}$

	$\xrightarrow[\text { CH }]{\begin{array}{c} \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \end{array}} \begin{aligned} & \mathrm{Cl}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(2.5 \text { equiv }) \\ & \mathrm{CH}_{3} \mathrm{CN}, \text { air, time } \end{aligned}$		
Entry	Time [h]	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (equiv)	Yield [\%] (1/2)
1	24	2.5	trace/80 ${ }^{\text {c }}$
2	12	2.5	45/40
3	18	2.5	40/48
4	30	2.5	0/75
5	24	1.0	85/10
6	24	1.5	70/20
7	24	2.0	20/55
8	24	3.0	0/76

${ }^{a}$ Conditions: Substrate 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}), 100{ }^{\circ} \mathrm{C}$, under air. ${ }^{6}$ The yields were detected by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. ${ }^{\circ}$ Isolated yield.

\mathbf{N}-(5-chloro-7-nitroquinolin-8-yl)-2-methyl-2-phenylpropanamide (1a'): Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39$ (s, 1H), 8.73 (dd, J $=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J$ $=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.2,150.6$, 143.9, 141.1, 139.6, 133.4, 129.0, 127.6, 127.5, 127.4, 126.6, 125.9, 124.5, 121.8, 48.2, 26.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{CIN}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 370.0958$, found 370.0953 .

N-(5,7-dinitroquinolin-8-yl)-2-methyl-2-phenylpropanamide (1ac'): Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83$ (s, 1H), 9.21 (d, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dd, $J=8.8,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) δ 175.3, 150.1, 144.1, 140.7, 140.4, 136.2, 129.4, 128.9, 128.2, 127.4, 126.6, 123.7, 122.6, 122.1, 48.2, 26.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 381.1199$, found 381.1198 .

Procedure for the Palladium Catalyzed C(sp²)-H Amidation

General Procedure: In a 25 mL sealed tube, equipped with a stir bar, was charged with substrates 1 (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol}, 93.8 \mathrm{mg})$ and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The tube was capped, and then the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h. Upon completion, ethyl acetate was added to dilute the mixture and then filtered through a pad of silica gel. The solvent was evaporated under reduced pressure and then purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to obtain the pure product.

1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-one
Yellow solid. Yield: $80 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00$ (dd, $J=4.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=$ $8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.25$ (m, 1H), 1.61 (s, 3H), $1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2$, 153.4, 146.8, 144.9, 142.7, 135.6, 133.6, 133.4, 129.7, 127.5, 126.8, 124.9, 123.2, 122.7, 121.7, 109.6, 44.8, 24.7, 24.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$368.0802, found 368.0805.

6-chloro-1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-on e (2b): Yellow solid. Yield: 72%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.6$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (s, 1H), 1.59 (s, 3H), 1.54 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.0$, 153.6, 146.7, 144.7, 143.8, 134.1, 134.0, 133.5, 133.2, 129.8, 126.1, 125.1, 123.6, 123.1, 121.8, 110.4, 44.5, 24.6, 24.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+402.0412$, found 402.0415.

6-bromo-1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-on e (2c): Yellow solid. Yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.05-$ 8.97 (m, 1H), 8.70 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.36 (s, 1H), 7.73 (dd, $J=8.6$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.42 (s, 1H), 1.59 (s, 3H), 1.54 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) δ 180.5, 154.6, 147.3, 144.5, 144.3, 134.5, 134.0, 133.7, 129.7, 126.4, 126.1, 125.4, 125.2, 122.2, 120.9, 113.7, 44.4, 24.4, 24.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 445.9907$, found 445.9905 .

1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethyl-2-oxoindolin-6-yl trifluoromethanesulfonate (2d): Yellow solid. Yield: 78\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99$ (dd, $J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.72 (dd, $J=8.6,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.36 (s, 1H), 7.74 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02$ (dd, $J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.21 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.60 (s, 3H), 1.55 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,153.4,148.8$, 146.6, 144.4, 144.2, 135.5, 134.3, 133.6, 129.8, 125.4, 125.1, 123.7, 121.8, 115.5, 104.2, 44.5, 24.5, 24.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{CIF}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 516.0244, found 516.0240.

1-(5-chloro-7-nitroquinolin-8-yl)-3,3,6-trimethylindolin-2-one (2e): Yellow solid. Yield: 65\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (d, $J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.70$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.35 (s, 1H), 7.71 (dd, $J=8.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.19$ (s, 3H), 1.59 (s, 3H), 1.54 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 181.5, 153.4, 146.8, 145.0, 142.8, 137.6, 133.6, 133.4, 132.8, 129.7, 127.0, 124.9, 123.8, 122.4, 121.7, 110.3, 44.6, 24.8, 24.4, 21.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 382.0958$, found 382.0956.

1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethyl-6-phenylindolin-2-on e (2f): Yellow oil. Yield: 73\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (d, J= $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6,4.1$ Hz, 1H), 7.39 (dd, $J=15.6,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.32$ (dd, $J=12.5,7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 181.3,153.5,146.9,145.0,143.3,141.3$, 141.1, 134.7, 133.8, 133.4, 129.7, 128.6, 127.4, 127.2, 126.7, 124.9, 122.9, 122.3, 121.8, 108.5, 44.7, 24.8, 24.4. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 444.1115$, found 444.1112 .

1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethyl-6-(4-(trifluoromethy I)phenyl)indolin-2-one (2g): Yellow oil, Yield: 85\%. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01$ (dd, $\left.J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.71$ (dd, $J=8.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.36$ (s, 1H), 7.72 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=$ 7.7, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,153.5,146.9,144.9,144.5,143.5,139.8,135.7$, 133.9, 133.5, 129.8, 128.4, 127.5, 126.5, 125.6 (dd, $J=7.6,3.8 \mathrm{~Hz}$), 125.0, 123.2, 122.5, 121.8, 108.6, 44.7, 24.7, 24.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$512.0989, found 512.0987.

1-(5-chloro-7-nitroquinolin-8-yl)-6-(2,4-difluorophenyl)-3,3-dimeth ylindolin-2-one (2h): Yellow oil, Yield: 82\%. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$, 7.71 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21$ (m, 2H), 6.81 (dt, $J=19.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.40 (s, 1H), 1.65 (s, 3H), 1.59 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,160.9$ (ddd, $J=262.5$, $249.8,11.7 \mathrm{~Hz}$), 153.4, 146.8, 144.8, 142.9, 135.2, 134.5, 133.8, 133.4, 131.5 (dd, $J=9.5,4.8 \mathrm{~Hz}$), 129.7, 126.5, 125.0, 124.0, 122.7, 121.7, 111.7 - 111.2 (m), 110.3 (d, J = 2.8 Hz), 104.5 - $104.0(\mathrm{~m})$, 44.8, 24.7, 24.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{CIF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 480.0927$, found 480.0924 .

5-chloro-1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-one (2i): Yellow solid. Yield: 77%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00$ (d, $J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J$ $=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.22 (d, J= $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.60 (s, 3H), 1.55 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $180.6,153.5,146.7,144.7,141.3,137.2,133.9,133.5,129.7$, 128.5, 127.5, 126.3, 125.0, 123.3, 121.7, 110.8, 45.1, 24.6, 24.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 402.0412$, found 402.0415.

1-(5-chloro-7-nitroquinolin-8-yl)-3,3-dimethyl-5-(trifluoromethyl)ind olin-2-one (2j): Yellow oil. Yield: 51%. ${ }^{1 \mathrm{H}}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (s, 1H), 7.73 (dd, $J=$ $8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (s, 1H), 7.39 (d, J= $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.8$, 153.5, 146.7, 145.6, 144.7, 136.1, 134.2, 133.5, 129.8, 126.0, 125.6 (d, J $=9.4 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 125.1,121.8,119.9(\mathrm{dd}, J=7.5,3.5 \mathrm{~Hz})$, 109.6, 44.8, 24.5, 24.2. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$436.0676, found 436.0672.

1-(5-chloro-7-nitroquinolin-8-yl)-3-ethyl-3-methylindolin-2-one (2k): Yellow solid. Yield: $45 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $9.00-$ 8.92 (m, 1H), 8.68 (dd, $J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (s, 1H), 7.68 (dd, $J=$ $8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.31 (dd, $J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.10(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (dq, $J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.60(\mathrm{~s}, 3 \mathrm{H}), 0.86$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.0,153.4,147.5,144.8,143.7,133.9$, 133.8, 133.4, 129.7, 127.5, 126.8, 124.8, 123.1, 123.0, 121.5, 109.4, 49.7, 31.3, 24.5, 9.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 382.0958$, found 382.0955 .

1-(5-chloro-7-nitroquinolin-8-yl)-3-cyclopentyl-3-methylindolin-2one (21): Yellow oil, Yield: $57 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (dd, $J=$ $8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=17.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, 1H), $1.79-1.73$ (m, 1H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) ס 181.3, 153.4, 147.9, 144.7, 143.8, 133.9, 133.8, 133.4, 129.7, 127.4, 126.6, 124.8, 123.7, 122.8, 121.3, 109.3, 50.7, 47.7, 27.8, 27.1, 25.2, 25.1, 23.3. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+422.1271$, found 422.1271.

3-benzyl-1-(5-chloro-7-nitroquinolin-8-yl)-3-methylindolin-2-on e (2m): Yellow solid. Yield: $55 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76$ (dd, $J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H})$, 7.64 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.04$ (m, $4 \mathrm{H}), 6.20-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 179.9,153.0$, 146.3, 144.8, 143.2, 136.4, 133.4, 133.1, 133.0, 130.7, 129.8, 129.5, 128.1, 127.8, 127.6, 126.5, 126.4, 124.7, 123.9, 122.7, 121.7, 109.6, 50.2, 43.8, 23.5. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+444.1115$, found 444.1113.

1-(5-chloro-7-nitroquinolin-8-yl)-3-methyl-3-phenylindolin-2-one (2n): Yellow solid. Yield: 53%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (dd, J $=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}$, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, J=7.4 Hz, 1H), $7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.34$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3$, $153.4,146.6,145.0,143.1,140.9,135.7,133.8,133.4,129.7,128.6$, 128.2, 128.1, 127.8, 127.3, 127.1, 126.7, 125.0, 124.2, 123.5, 121.8, 109.7, 52.9, 22.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+430.0958$, found 430.0955 .

1-(5-chloro-7-nitroquinolin-8-yl)-3-ethyl-3-phenylindolin-2-one
(20): Yellow solid. Yield: 58\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99$ (dd, $J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.70$ (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.34(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,153.2,147.0,144.9,144.3,134.0,133.8$, 133.4, 132.5, 129.7, 128.6, 127.9, 127.6, 127.4, 126.8, 125.1, 124.9, 123.2, 121.7, 109.6, 58.0, 31.0, 9.3. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+444.1115$, found 444.1113 .

3,3-dibutyl-1-(5-chloro-7-nitroquinolin-8-yl)indolin-2-one (2p): Yellow solid. Yield: 81%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93$ (dd, J $=4.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, $6.39-6.20(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36$ $-1.10(\mathrm{~m}, 7 \mathrm{H}), 0.86$ (dd, $J=15.7,7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.5,152.9,147.4,144.9,144.2,133.6,133.3$, $132.8,129.5,127.3,126.8,124.7,123.2,122.8,121.5,109.2,53.7,38.7,38.1,26.8,26.3,23.2$, 23.1, 14.2, 13.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 452.1741$, found 452.1740.

1'-(5-chloro-7-nitroquinolin-8-yl)spiro[cyclopropane-1,3'-indolin]-2'one (2q): Yellow solid. Yield: 40%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.77-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.6,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.07$ (m, 2H), 6.96 (dd, $J=5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, $J=$ $5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,153.4,146.8,145.0,143.4,133.6,133.4,130.6$, 129.6, 126.6, 124.8, 122.9, 121.8, 118.7, 109.7, 27.8, 20.5, 20.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 366.0645$, found 366.0647 .

1'-(5-chloro-7-nitroquinolin-8-yl)spiro[cyclobutane-1,3'-indolin]-2'-o ne (2r): Yellow solid. Yield: 65%. ${ }^{1 H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (dd, J $=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70$ (dd, $J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (dd, J $=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=7.5,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.76$ (m, $2 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5,153.3,146.6,145.0,142.9,133.9$, 133.4, 129.6, 127.6, 126.9, 124.9, 123.4, 122.8, 121.8, 109.4, 48.8, 32.3, 31.4, 16.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+380.0802$, found 380.0797 .

1'-(5-chloro-7-nitroquinolin-8-yl)spiro[cyclopentane-1,3'-indolin]-2'one (2s): Yellow solid. Yield: 75%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02$ (s, $1 \mathrm{H}), 8.69$ (d, J= $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.34 (s, 1H), 7.71 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-$ 2.33 (m, 2H), 2.12-2.05 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 182.0, 153.3, 146.7, 145.0, 142.9, 136.4, 133.5, 133.4, 129.6, 127.2, 127.0, 124.9, 123.3, 122.7, 121.8, 109.4, 54.5, 38.9, 38.7, 26.8, 26.7. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+394.0958$, found 394.0956 .

6'-chloro-1'-(5-chloro-7-nitroquinolin-8-yl)spiro[cyclopentane-1,3'-i ndolin]-2'-one (2t): Yellow solid. Yield: 78\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.70 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (d, $J=4.8 \mathrm{~Hz}$, 1 H), 7.72 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (dd, $J=$ 8.0, 1.2 Hz, 1H), $6.25(\mathrm{~s}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.9,153.5,146.6,144.7,144.0,134.7$, 133.9, 133.5, 132.9, 129.7, 126.3, 125.1, 123.6, 123.2, 121.8, 110.2, 54.1, 38.8, 38.7, 26.8, 26.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+428.0569$, found 428.0573 .

6'-bromo-1'-(5-chloro-7-nitroquinolin-8-yl)-1,3-dihydrospiro[inde ne-2,3'-indolin]-2'-one (2u): Yellow solid. Yield: 60\%. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (s, 1H), 7.76 (dd, $J=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=16.2,6.2 \mathrm{~Hz}, 4 \mathrm{H}$), $7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{t}$, $J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.9,153.7$, 146.6, 144.7, 143.9, 140.9, 140.8, 134.9, 134.2, 133.6, 129.8, 127.3, 127.2, 126.3, 125.2, 124.9, 124.8, 124.6, 123.3, 121.9, 121.3, 113.1, 54.4, 44.5, 44.1, 43.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{BrClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+520.0064$, found 520.0062.

1'-(5-chloro-7-nitroquinolin-8-yl)spiro[cyclohexane-1,3'-indolin]-2' -one (2v): Yellow solid. Yield: 78%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02$ -8.95 (m, 1H), 8.69 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=7.7,3.8 \mathrm{~Hz}$, 2 H), 6.27 (dd, $J=5.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.13-1.95$ (m, 4H), $1.95-1.88$ (m, 1H), $1.85-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 180.4,153.4,146.8,144.9,142.9,135.2,133.5,133.4$, 129.6, 127.3, 126.8, 124.9, 124.1, 122.7, 121.7, 109.6, 47.9, 33.4, 33.0, 25.3, 21.2, 21.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+408.1115$, found 408.1118.

1-(3-bromo-5-chloro-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-0
ne (2w): Yellow solid. Yield: 71%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.84 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.37 (s, 1H), $7.38-7.30$ (m, 1H), $7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, 1.55 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 181.1, 154.7, 146.7, 143.1, 142.5, 135.6, 134.9, 132.4, 130.4, 127.6, 127.1, 123.3, 123.0, 122.8, 122.7, 109.5, 44.8, 24.7, 24.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 445.9907$, found 445.9908 .

Scale up Experiment on Gram Scale

In a 100 mL sealed tube, equipped with a stir bar, was charged with substrates $1 \mathrm{a}(0.97 \mathrm{~g}$, $3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(67.2 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(2.82 \mathrm{~g}, 7.5 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(30$ mL). The tube was capped, and then the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion, ethyl acetate was added to dilute the mixture and then filtered through a pad of silica gel. The solvent was evaporated under reduced pressure and then purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to obtain the pure product $\mathbf{2 a}$ as a yellow solid (0.77 g , isolated yield: 70%)

Procedure of Auxiliary Removal and Derivatization

1-(7-amino-5-chloroquinolin-8-yl)-3,3-dimethylindolin-2-one (2aa)

Oxindole 2a ($0.2 \mathrm{mmol}, 73 \mathrm{mg}$) was dissolved in 10 mL of acetic acid, and the iron powder $\left(1.4 \mathrm{mmol}, 78.4 \mathrm{mg}\right.$,) was added to the solution. The mixture was heated to $70^{\circ} \mathrm{C}$ for 2 h under nitrogen. The reaction was filtered through a Celite pad, and washed with ethyl acetate. The filtrate was basified by 4 M NaOH aq. until $\mathrm{pH}=10$, extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude amine was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to give 2aa as a white solid in 95% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66$ (dd, $J=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.37 (dd, $J=$ $8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.02$ (m, 2H), 6.37 (dd, $J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) δ 181.5, 152.0, 147.9, 146.8, 143.6, 136.4, 132.8, 131.6, 127.8, 123.0, 122.4, 119.2, 119.0, 118.4, 109.5, 109.3, 44.3, 25.8, 24.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{CIN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 338.1060, found 338.1063.

In a 25 mL sealed tube, a mixture of 2aa ($0.1 \mathrm{mmol}, 34 \mathrm{mg}$) and CAN ($0.3 \mathrm{mmol}, 164 \mathrm{mg}$) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was stirred in oil bath at $70^{\circ} \mathrm{C}$ for 4 h . Then, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with ethyl acetate (20 mL) for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the crude product was purified by column chromatography on silica gel to give 4 as a white solid in 62% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{HNMR}$ spectral data was in accordance with the reported data in the literature. ${ }^{6}$

1-(5-chloro-7-(ethylthio)quinolin-8-yl)-3,3-dimethylindolin-2-one (5)

A mixture of $\mathbf{2 a}(0.1 \mathrm{mmol}, 36.7 \mathrm{mg})$, NaSEt ($0.2 \mathrm{mmol}, 16.8 \mathrm{mg}$), and DMSO (2 mL) was stirred in a reaction tube at $80^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was then quenched with water. The mixture was extracted with ethyl acetate for three times, and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give 5 as a grey solid in 85% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (s, 1H), 7.43 (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.25$ (dd, $J=5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.10-2.96(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 181.2,152.3,145.5,142.7,140.9,135.9,133.1,132.9,127.5$, 125.1, 124.8, 122.6, 122.6, 121.7, 109.4, 44.8, 26.5, 25.0, 24.6, 14.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 383.0985$, found 383.0981.

1-(5-(2,4-difluorophenyl)-7-nitroquinolin-8-yl)-3,3-dimethylindolin-2-one (6)

A mixture of 2a ($0.2 \mathrm{mmol}, 73.4 \mathrm{mg}$), $\mathrm{Pd}(\mathrm{acac}) 2(5 \mathrm{~mol} \%, 3.4 \mathrm{mg})$, BrettPhos (20 mol \%, 21.5 mg), boronic acid ($0.3 \mathrm{mmol}, 57.0 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(0.6 \mathrm{mmol}, 127.2 \mathrm{mg}$) in 1,4-dioxane (3 mL) was stirred at $130{ }^{\circ} \mathrm{C}$ in a 25 mL sealed tube for 4 h . After completed, cooling to room temperature, the opaque solution was filtered through Celite and the filtrate was concentrated in vacuo. Column purification ($5: 1$ petroleum ether /ethyl acetate) gave 6 as a yellow oil (Yield: $80 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00-8.93(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56 (dd, $J=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dd, $J=14.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-7.31$ (m, 1H), $7.19-7.01$ $(\mathrm{m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=37.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $181.4,164.7(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 152.8,146.7,144.6,142.9,135.7(\mathrm{~d}, J=$ $19.8 \mathrm{~Hz}), 134.5,133.0,130.4,127.5,124.3,123.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 122.6,120.6(\mathrm{~d}, J=12.4 \mathrm{~Hz})$, 112.6, 112.4, 109.9, 109.7, 104.8, 104.6, 44.9, 24.7, 24.4. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+446.1316$, found 446.1314 .

Procedure for the Synthesis of Novel Polycyclic Compounds

General procedure:
Step 1: Oxindole substrates 2 (0.2 mmol) was dissolved in 10 mL of acetic acid, and the iron powder ($1.4 \mathrm{mmol}, 78.4 \mathrm{mg}$) was added to the solution. The mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 2 h under nitrogen. The reaction was filtered through a Celite pad, and washed with ethyl acetate. The filtrate was basified by 4 M NaOH aq. until $\mathrm{pH}=10$, extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude amine was used for next step without further purification.

Step 2: Crude amine was dissolved in 10 mL toluene, and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}, 114 \mathrm{mg})$ was added to the solution. The mixture was heated to $105^{\circ} \mathrm{C}$ for 24 h . After the reaction completed, diluted with 30 mL ethyl acetate, the solution was basified by 1 N NaOH aq. until pH $=10$, extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel.

5-chloro-8,8-dimethyl-8H-indolo[1',2':1,2]imidazo[4,5-h]quinoline (3a): White solid. Yield: $86 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.40$ (d, J= $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 9.07 (dd, $J=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.71 (dd, $J=8.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}$, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 167.1$, 149.1, 146.7, 143.5, 137.9, 133.6, 128.3, 125.8, 125.5, 125.3, 123.1, 122.9, 121.1, 120.1, 116.7, 40.5, 26.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{CIN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 320.0955 , found 320.0953 .

5-chloro-8,8-dimethyl-8H-indolo[1',2':1,2]imidazo[4,5-h]quinolin-11 -yl trifluoromethanesulfonate (3b): White solid. Yield: 72%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.22 ($\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (s, 6 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 167.0,149.5,149.3,146.9,143.6,139.0,137.8,134.0,126.3$, 125.6, 124.1, 123.6, 121.2, 120.7, 118.0, 110.7, 40.8, 25.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 468.0396$, found 468.0395 .

5'-chlorospiro[cyclobutane-1,8'-indolo[1',2':1,2]imidazo[4,5-h]quinol ine] (3c): White solid. Yield: $87 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.30$ (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.03-8.99(\mathrm{~m}, 1 \mathrm{H}), 8.66(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ $-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,149.2,146.9,141.9,138.1,137.9,133.7,128.4$, 125.9, 125.5, 123.2, 121.2, 120.4, 116.3, 44.6, 33.1, 17.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN} \mathrm{N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 332.0955$, found 332.0952 .

5'-chlorospiro[cyclopentane-1,8'-indolo[1',2':1,2]imidazo[4,5-h]quin oline] (3d): White solid. Yield: 80%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 9.05 (dd, $J=4.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.69$ (dd, $J=8.5,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.08$ (s, 1H), $7.55-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.32(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1$, 149.2, 147.0, 143.8, 138.3, 138.0, 133.7, 128.1, 125.8, 125.4, 123.2, 123.2, 121.2, 120.1, 116.4, 50.4, 39.4, 26.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]+346.1111$, found 346.1106 .

11'-bromo-5'-chloro-1,3-dihydrospiro[indene-2,8'-indolo[1',2':1,2]imidazo[4,5-h]quinoline] (3e): White solid. Yield: $83 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.11$ (dd, $J=4.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.73$ (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (s, 1H), 7.58 (dd, $J=8.5$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dq}, J=6.3,4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (d, $J=15.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.38 (d, $J=15.8 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,149.5,146.9,142.7,140.8$, 138.8, 137.8, 133.9, 128.4, 127.4, 126.1, 125.9, 124.8, 123.6, 123.4, 122.0, 121.2, 120.5, 119.9, 50.0, 44.9. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{BrCIN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 472.0216, found 472.0218.

5'-chlorospiro[cyclohexane-1,8'-indolo[1',2':1,2]imidazo[4,5-h]quin oline] (3f): White solid. Yield: 78%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.46$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $9.06(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.31$ ($\mathrm{m}, 2 \mathrm{H}$), $2.06-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.85$ (d, $J=10.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.55(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,149.1,146.8,143.3,138.0$, 138.0, 133.7, 128.1, 125.7, 125.3, 125.1, 123.5, 123.2, 121.4, 120.1, 116.6, 44.7, 35.0, 25.6, 22.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 360.1268$, found 360.1265 .

3-bromo-5-chloro-8,8-dimethyl-8H-indolo[1',2':1,2]imidazo[4,5-h] quinoline (3g): White solid. Yield: 85%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,150.2,147.1,143.5,137.7$, 136.0, 135.5, 128.4, 125.7, 125.6, 124.5, 124.3, 123.1, 122.3, 116.5, 40.6, 26.0. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 398.0060 , found 398.0063 .

8-benzyl-5-chloro-8-methyl-8H-indolo[1',2':1,2]imidazo[4,5-h]qu inoline (3h): White solid. Yield: 78%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.21 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (dd, $J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.66$ (dd, $J=$ $8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 165.5,149.1,146.6,140.8,138.5,137.9,135.9,133.6$, 129.8, 128.4, 127.6, 126.5, 125.7, 125.5, 124.9, 124.0, 123.2, 121.2, 120.1, 116.5, 46.0, 45.7, 24.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{CIN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 396.1268$, found 396.1265.

Procedure for Mechanism Studies

Preparation of the Required Substrate

The procedure for the synthesis of substrate 1ad

To a solution of 1aa ($1 \mathrm{mmol}, 290 \mathrm{mg}$) and NCS ($3 \mathrm{mmol}, 400 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 12 h . The solvents were removed under reduced pressure. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate $=10: 1$).

N-(5,7-dichloroquinolin-8-yl)-2-methyl-2-phenylpropanamide (1ad): White solid. Yield: 80%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77$ (dd, $J=4.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (dd, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.78 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.7, 150.6, 144.8, 143.9, 133.0, 131.5, 129.9, 128.8, 128.6, 128.2, 127.3, 126.9, 125.0, 122.1, 48.3, 48.3, 27.2, 27.1. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 359.0718$, found 359.0716.

Preparation of Deuterium-labeled Substrate 1a- \boldsymbol{d}_{1}

Step 1: In a 100 mL flask, 2-(2-iodophenyl)acetic acid ($2.6 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in THF (30 mL), then anhydrous $\mathrm{LiCl}(1.4 \mathrm{~g}, 33 \mathrm{mmol}$), $\mathrm{PrMgCl}(16.5 \mathrm{~mL}, 2 \mathrm{M}$ in THF, 33 mmol .) was added at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. After being stirred at the same temperature for 1 h , $\mathrm{D}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ was added dropwise to the reaction mixture under $-78{ }^{\circ} \mathrm{C}$ and the temperature was gradually raised to room temperature, and the mixture was stirred for another 1 h . The HCl $(2.0 \mathrm{M}, 10 \mathrm{~mL})$ was added then extracted with ether $(3 \times 50 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
solvent was evaporated in Rota-evaporator. The residue was purified by silica gel chromatography ($2 \%-10 \%$ ethyl acetate /petroleum ether) to provide corresponding deuterium-labeled acid.

Step 2: Followed by the reported procedure ${ }^{5}$ to provide the mono-methylation deuterium-labeled acid.

Step 3: Repeat the step 2 to provide the di-methylation deuterium-labeled acid.
Step 4: Followed by the general procedure for preparation of substrate to provide the $1 \mathrm{a}-\mathrm{d}_{1}$.

Stepwise Control of the Reaction

Step 1: In a 25 mL sealed tube, equipped with a stir bar, was charged with substrate 1a $(0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 37.5 \mathrm{mg})$, and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The tube was capped, and then the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 8 h . Upon completion, ethyl acetate was added to dilute the mixture and then filtered through a pad of silica gel. The solvent was evaporated under reduced pressure and then purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to obtain the nitrified intermediate 1a' in 84% yield.

Step 2: The previously obtained 1a' was mixed with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ ($0.15 \mathrm{mmol}, 56.3 \mathrm{mg}$) and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ in a clean 25 mL sealed tube equipped with a stir bar. The tube was capped, and then the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . Then, ethyl acetate was added to dilute the mixture and then filtered through a pad of silica gel. The solvent was evaporated under reduced pressure and then purified by column chromatography on silica gel with petroleum ether and ethyl acetate to obtain the oxindole $\mathbf{2 a}$ in 77% yield.

Directing Group Modification Control Reaction

The directing group modification control experiment followed the procedure for the palladium catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ amidation.

Intramolecular Competition KIE Study

In a 25 mL sealed tube, equipped with a stir bar, was charged with substrates $\mathbf{1 a}$ - \boldsymbol{d}_{1} (0.1 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol}, 93.8 \mathrm{mg})$ and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The tube was capped, and then the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . Then, ethyl acetate was added to dilute the mixture and then filtered through a pad of silica gel. The solvent was evaporated under reduced pressure and then purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to obtain the product $\mathbf{2 a}-\boldsymbol{d}_{1}$ in 53% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.70 (dd, $J=8.6,1.5 \mathrm{~Hz}$, 1 H), 8.35 (s, 1H), 7.71 (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,6.8 \mathrm{~Hz}, 0.57 \mathrm{H}), 7.17-7.05$ (m, 2H), 6.29 (dd, J = 7.1, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$. The KIE value was calculated as $\mathrm{k}_{H} / \mathrm{k}_{D}=1.33$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 a} \mathbf{a} \boldsymbol{d}_{\mathbf{1}}\left(\mathrm{K}_{H} / \mathrm{K}_{D}=1.33\right)$

Characterization of C-H insertion palladium complexes

Procedure for the synthesis of palladium complexes:
The acetonitrile solution of substrate $\mathbf{1}(0.2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc}) 2(0.2 \mathrm{mmol}, 45 \mathrm{mg})$ was placed in a 25 mL sealed tube equipped with a stir bar, covered with a stopper and stirred for 1 hour at room temperature. After complete substrate transformation, $\mathrm{PBu} 3(0.4 \mathrm{mmol}, 81 \mathrm{mg})$ was added to the mixture and stirred for 2 hours at room temperature. After the reaction, the mixture was filtered through a pad of Celite and washed with a small amount of ethyl acetate. The filtrate was concentrated under vacuum and then purified by PLC (20% ethyl acetate/ petroleum ether) to obtain the desired palladium complex. The obtained palladium complexes were recrystallized with a mixture of hexane and dichloromethane for X-ray single crystal diffraction analysis.

Characterization of complex 7: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.63 (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.46-8.40(\mathrm{~m}$, $1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=$ $8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dd, $J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (dd, $J=9.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dt, J $=14.7,5.4 \mathrm{~Hz}, 9 \mathrm{H}), 1.53(\mathrm{qd}, J=12.9,6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{dt}, J=$ 14.3, $7.2 \mathrm{~Hz}, 6 \mathrm{H}$), 0.92 (t, $J=7.3 \mathrm{~Hz}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 186.1,149.6,148.6,147.3,146.8,135.2,129.2,127.8$ (d, $J=13.1 \mathrm{~Hz}$), 126.4, 125.5, 121.1, 120.4, 120.0, 59.4, 29.8 (d, $J=6.2 \mathrm{~Hz}$), 29.2, 26.6, 24.5 (d, $J=13.1 \mathrm{~Hz}$), 23.3, 23.0, 13.8. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{CIN}_{2} \mathrm{OPPd}[\mathrm{M}+\mathrm{H}]^{+}$ 631.1836, found 631.1832.

Crystal data and structure refinement for 7. (CCDC 2192356)

Report date	2022-01-10	
Identification code	A1	
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{Cl} \mathrm{N}_{2} \mathrm{O} P \mathrm{Pd}$	
Formula weight	631.48	
Temperature	173.00 K	
Wavelength	0.71073 A	
Crystal system	monoclinic	
Space group	C2/c	
Unit cell dimensions	$\mathrm{a}=36.933(10) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=9.895(3) \AA$	$\beta=108.846(9)^{\circ}$
	$\mathrm{c}=18.155(5) \AA$	$Y=90^{\circ}$
Volume	6279(3) \AA^{3}	
Z	8	
Density (calculated)	$1.366 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.752 \mathrm{~mm}^{-1}$	
F(000)	2624.0	
Crystal size	$0.12 \times 0.11 \times 0.1 \mathrm{~mm}^{3}$	
Theta range for data collection	4.278 to 54.938°	

Index ranges
Reflections collected
Independent reflections
Completeness to theta $=53.594^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma(I]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$-45 \leq h \leq 47,-12 \leq k \leq 12,-23 \leq 1 \leq 23$
42235
$7144\left[R_{\text {int }}=0.0450, R_{\text {sigma }}=0.0309\right]$
99.4\%

Full-matrix least-squaares on F^{2}
7144/56/358
1.033
$R_{1}=0.0381, w R_{2}=0.0915$
$R_{1}=0.0582, w R_{2}=0.1043$
n/a
0.64 and $-0.47 e \cdot \AA^{-3}$

Characterization of complex 8: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70$ (dd, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (dd, $J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dd}, J=16.8,8.6 \mathrm{~Hz}$, $6 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{dd}, J=13.7,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}$, $3 \mathrm{H}), 1.35(\mathrm{qd}, J=14.4,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 178.9,149.8,148.5,147.6,145.3$ (d, J = $6.7 \mathrm{~Hz}), 144.5,141.8,135.8,135.3(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}), 129.4$, 125.7 (d, $J=4.2 \mathrm{~Hz}), 124.9,124.4,124.1,123.8,121.0,51.7,36.7,26.9,25.9,25.0,24.8,24.4(\mathrm{~d}, J=$ 13.5 Hz), 13.6. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{PPd}[\mathrm{M}+\mathrm{H}]^{+} 676.1687$, found 676.1683.

Crystal data and structure refinement for 8. (CCDC 2192358)

Theta range for data collection	2.087 to 53.939°
Index ranges	$-12 \leq h \leq 12,-21 \leq k \leq 21,-44 \leq 1 \leq 44$
Reflections collected	63633
Independent reflections	12801 [$\mathrm{Rint}_{\text {int }}=0.0880$]
Completeness to theta $=53.594^{\circ}$	99.9\%
Refinement method	Full-matrix least-squaares on F^{2}
Data / restraints / parameters	12801/0/794
Goodness-of-fit on F^{2}	1.024
Final R indices [l>2sigma(I)]	$\mathrm{R}_{\text {obs }}=0.0668, \mathrm{wR}_{\text {obs }}=0.1605$
R indices (all data)	$\mathrm{Rall}_{\text {all }}=0.1084, \mathrm{wR}_{\text {all }}=0.1854$
Extinction coefficient	n/a
Largest diff. peak and hole	2.290 and -1.429 e $\cdot \AA^{-3}$

References

1. (a) Yang, M.; Jiang, X.; Shi, W.-J.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2013, 15, 690-693; (b) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236-1239; (c) Crowley, D. C.; Lynch, D.; Maguire, A. R. J. Org. Chem. 2018, 83, 3794-3805.
2. Motati, D. R.; Uredia, D.; Watkins, E. B. Chem. Sci., 2018, 9, 1782-1788.
3. He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem. Int. Ed. 2013, 52, 11124 -11128.
4. Du, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2018, 83, 3403-3408.
5. Barczak, N. T.; Jarvo, E. J. Chem. Eur. J. 2011, 17, 12912-12916.
6. Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058-14059.

X-Ray Crystallographic Data of 2a and 3a

Crystal data and structure refinement for 2a. (CCDC 2192355)

Report date
Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size

2019-07-12
20190712zh_jc2_0m_a
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{3}$
367.78

197 K
$0.71073 \AA$
monoclinic
P 21/c

$$
\begin{array}{ll}
a=10.885(7) \AA & \alpha=90^{\circ} \\
b=10.488(6) \AA & \beta=93.959(11)^{\circ} \\
c=14.783(9) \AA & Y=90^{\circ}
\end{array}
$$

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=53.594^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
1.875 to 25.219°
$-8 \leq h \leq 13,-12 \leq k \leq 11,-17 \leq 1 \leq 17$
8952
3025 [Rint $=0.0750$]
99.8\%

Full-matrix least-squaares on F^{2}
3025/0/237
1.039
$R_{\text {obs }}=0.0639, w R_{\text {obs }}=0.1513$
$R_{\text {all }}=0.1025, w_{\text {all }}=0.1908$
n/a
0.308 and $-0.332 \mathrm{e} \cdot \AA^{-3}$

Crystal data and structure refinement for 3a. (CCDC 2192357)

Report date
Identification code
Empirical formula
Formula weight
Temperature
Wavelength

2019-07-10
20190710zh_jc3_0m_a
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl} \mathrm{N}_{3}$
319.78
296.15 K
$0.71073 \AA$

Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
$F(000)$
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=53.594^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
triclinic
P-1 (2)
$a=8.476(6) \AA \quad \alpha=86.626(10)^{\circ}$
$b=8.865(6) \AA \quad \beta=77.299(10)^{\circ}$
$C=10.558(7) \AA \quad Y=80.134(12)^{\circ}$
762.3(9) \AA^{3}

2
$1.393 \mathrm{~g} / \mathrm{cm}^{3}$
$0.253 \mathrm{~mm}^{-1}$
332
$0.15 \times 0.06 \times 0.04 \mathrm{~mm}^{3}$
1.978 to 27.367°
$-10 \leq h \leq 7,-11 \leq k \leq 10,-13 \leq 1 \leq 12$
4996
3409 [Rint $=0.0407$]
99.6\%

Full-matrix least-squaares on F^{2}
3409/0/210
1.006
$R_{\text {obs }}=0.0677, \mathrm{wR}_{\text {obs }}=0.1729$
$R_{\text {all }}=0.0951, w R_{\text {all }}=0.2020$
n/a
0.359 and $-0.543 \mathrm{e} \cdot \AA^{-3}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 a}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 a}$

$\stackrel{\stackrel{+}{\infty}}{\stackrel{\circ}{i}}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 b}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1b
N

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 c}$ ©

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 c}$

$\stackrel{\sim}{1}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 d}$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1d

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1 f

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1 f

$\stackrel{\infty}{1} \stackrel{\text { N }}{\substack{1}}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 g}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 g}$

$\stackrel{\infty}{\infty}$

$\stackrel{\circ}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 h}$
¢

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 i}$

+

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 j}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 j}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 k}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 k}$
M
Nị へ

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 m}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 m}$

ํํㅇ ก
Nั

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 10

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 10

$$
\stackrel{\oplus}{i}
$$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 p}$
N

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 q}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $1 \mathbf{q}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 r}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 r}$

帯

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1 s

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 t}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 u}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 v}$
 ○

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 v}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 w}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 w}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 x}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 a d}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1a'

1 If I Illi

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 a}{ }^{\text {' }}$

※゙

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 1ac'

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $1 \mathbf{a c}{ }^{\prime}$
M

1ac'
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2a

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2c

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2d

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2d品薄

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 f}$
(
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 g}$

$\stackrel{\circ}{\square}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 g}$

N N゙ N

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 h}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 i}$

1						1	1	1		1		1		1	1	1	1	1	1			
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

(500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 j}$

${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of $\mathbf{2 k}$

2k

${ }^{13} \mathrm{C}$ NMR（126 MHz， CDCl_{3} ）spectra of $\mathbf{2 k}$
$\stackrel{0}{\infty}$品品奖

ペ $\stackrel{m}{m} \underset{1}{\sim} \underset{i}{\text { N }}$

																						－10
210	200	190	180	170	160	150	140	130	120	110	$\mathrm{fl}_{1(\mathrm{ppm})}^{100}$	90	80	70	60	50	40	30	20	10	0	－10

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 l}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 I}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 m}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2 m
ค.
$\stackrel{\circ}{\sim}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 o}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 o}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 p}$

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) spectra of $\mathbf{2 p}$
ハ

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 q}$

1	1					1	1	1	1	1						1		1				1
210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{fl}(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 r}$
$\stackrel{\circ}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2s

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2s
©

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 t}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 t}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 u}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 u}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 v}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 v}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{2 w}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 2aa

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) spectra of 2aa

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 4

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 5

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 5

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 6

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 6

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 3a
 ®

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 b}$
○

1	1	1	1	1	1	1	,	1	1	1	1		1	1		1	1	1				
210	200	190	180	170	160	150	140	130	120	110	${ }_{\mathrm{fl}}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 3c

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 3c

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 3d

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 3d

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 e}$

 \int

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 e}$

	1	1	1	1	1	1	1	1	1	1	1	1		1		1		1		1		1
210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 f}$

ま

${ }^{3 f}$

1	1	1	1	1	1	1	1	1	1	1	1					1		1				
210	200	190	180	170	160	150	140	130	120	110	${ }_{\mathrm{fl}}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 g}$
(
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 g}$

$\stackrel{\text { ¢ }}{+}$

${ }_{39}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{3 h}$
年

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 7

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 7
$\bar{\circ}$
-

1	1					1		1	1	1	1							1				10
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 8

111111

8

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 8
$\stackrel{\infty}{\infty}$

8

