Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Photo-induced nickel-mediated cross-electrophile coupling for

alkylated allenes via electron donor-acceptor complexes

Zhao-Zhao Zhou,*^{a\$} Xiao-Feng Zhai,^{b\$} Shu-Liang Zhang,^b Ke-Jian Xia,^a Haixin Ding,*^b Xian-Rong Song,^b Wan-Fa Tian,^b Yong-Min Liang^c and Qiang Xiao*^b

^a College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P.R. China. ^b Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P.R. China. ^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

E-mail: zhouzz@lzu.edu.cn, xiaoqiang@tsinghua.org.cn

Table of Contents

- S1. General Information and Materials
- S2. General Procedure for the photo-induced nickel-mediated cross-electrophile coupling for alkylated allenes
- S3. Preparation of Starting Materials
- S4. Optimization of Reaction Conditions
- S5. Mechanism Characterization
- S6. References
- S7. Characterization Data of Products 1aa-1oa
- S8. Characterization Data of Products 2aa-2oa, 3aa, 3ba-3bb
- S9. ¹H NMR and ¹³C NMR Spectra of the Products **1aa-1oa**
- S10. ¹H NMR and ¹³C NMR Spectra of the Products 2aa-2oa, 3aa, 3ba-3bb

1. General Information and Materials:

For product purification by flash column chromatography, silica gel (200~300 mesh) and *n*-pentane were used. ¹H NMR spectra were recorded on 400 MHz in CDCl₃, ¹³C NMR spectra were recorded on 100 MHz in CDCl₃, ¹⁹F NMR spectra were recorded on 376 MHz in CDCl₃ using TMS as internal standard. Melting points were determined on a microscopic apparatus and were uncorrected. All products were further characterized by HRMS (high-resolution mass spectra). Copies of their ¹H NMR and ¹³C NMR spectra were provided. The starting materials were purchased from Sigma-Aldrich, Acros, TCI, Admas or J&K Chemicals and used without further purification. Kessil brand 390 (\pm 15) nm LED was used in a reaction box equipped cooling fan to keep reaction temperature between 15 °C and 25 °C.

2. General Procedure for photo-induced nickel-mediated crosselectrophile coupling for alkylated allenes:

In a 10.0 mL snap vial with Teflon cover and magnetic stirring bar the internal propargylic carbonates **1a** (0.2 mmol), alkyl NHP ester **1b** (0.5 mmol, 2.5 equiv), NiCl₂·dtbbpy (0.04 mmol, 20 mol %), HE (0.4 mmol, 2.0 equiv), TBAI (0.2 mmol, 1.0 equiv), Li₂CO₃ (0.4 mmol, 2.0 equiv) were filled. After degassing with argon by syringe needle for 5 minutes and dissolving with 2.0 mL DMA, the reaction mixture was stirred for 10 minutes to become clear. Then, the vial was irradiated in reactor with cooling device using a Kessil brand 390 (\pm 15) nm LED (50 W). The reaction progress was monitored by TLC and GC-MS analysis. After full conversion (generally 24 hours), the reaction mixture was transferred into a separating funnel and 10 mL of distilled water and 2 mL of brine were added. Then the resulting mixture was extracted with EtOAc (10 mL*2) and final combined organic layer were dried over MgSO₄, filtered and concentrated in vacuum. Purification of the crude product was achieved by flash column chromatography using *n*-pentane as eluents on silica gel.

3. Preparation of Starting Materials:

All of propargylic carbonates and benzyl alkyl NHP ester were synthesized according to the previous literatures, and the NMR spectroscopy and GC-MS data were in full accordance with the data in the reported literatures.^{1,2,3}

4. Optimization of Reaction Conditions:

a) Screening of nickel catalysis and solvents:

1a + O + O + H = (2.0 equiv) $1b + B = (2.0 equiv)$ $1b + B = (2.0 equiv)$ $1b + H = (2.0 equiv)$ $0 + H = (2.0 equiv)$ 0							
entries	Catalyst	Reductant	Base	Light	Solvent	vield $(\%)^a$	
	(20 mol %)	(2.0 equiv)	(2.0 equiv)	-		/	
1	$NiBr_2 \cdot dtbbpy$	HE	-	440 nm	DMA	25	
2	$NiBr_2 \cdot bpy$	HE	-	440 nm	DMA	16	
3	NiBr ₂ ·dMeObpy	HE	-	440 nm	DMA	20	
4	NiCl ₂ ·dtbbpy	HE	-	440 nm	DMA	36	
5	NiCl ₂ ·dtbbpy	HE	-	390 nm	DMA	45	
6	NiCl ₂ ·dtbbpy	HE	-	390 nm	DMF	23	
7	NiCl ₂ ·dtbbpy	HE	-	390 nm	MeCN	trace	
8	NiCl ₂ ·dtbbpy	HE	-	390 nm	THF	trace	
9	NiCl ₂ ·dtbbpy	HE	-	390 nm	Acetone	trace	

^{a.} yield of **1aa**.

b) Screening of base:

1a + O O O O O O O O O O O O O O O O O O							
entries	Catalyst	Reductant	Base	Light	Solvent	yield $(\%)^a$	
	(20 mol %)	(2.0 equiv)	(2.0 equiv)	-		• • • •	
1	$NiCl_2$ ·dtbbpy	HE	Na ₂ CO ₃	390 nm	DMA	61 (30:70)	
2	$NiCl_2$ ·dtbbpy	HE	NaHCO ₃	390 nm	DMA	52 (65:35)	
3	$NiCl_2 \cdot dtbbpy$	HE	K ₂ CO ₃	390 nm	DMA	mixture	
4	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	DMA	56 (100:0)	

^{a.} ratio of **1aa:1ab**

c) Screening of additive and loading:

1a +		NiCl ₂ •dtbbpy (2 HE (2.0 e TBAI (1.0 e Li ₂ CO ₃ (2.0 DMA, Ar 390 ni	20 mol %) quiv) equiv) ; r.t. m ON	P J Ne 1aa	h H + OMe	Ph 1ab
entries	Catalyst (20 mol %)	Reductant (2.0 equiv)	Base (2.0 equiv)	Light	additive (1.0 equiv)	yield (%) ^a

1	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	NaI	72
2	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	TBAI	75
3	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	DIPEA	58
4	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	$TBAI^{b}$	61
5	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	TBAI	88 ^c
6	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	TBAI	69 ^{<i>d</i>}

a. yield of **1aa**. ^{b.} TBAI (0.5 equiv) ^{c.} With NHP ester **1b** (2.5 equiv). ^{d.} With NHP ester **1b** (2.5 equiv) and NiCl₂·dtbbpy (15 mol %).

d) Control experiment:

1a	+ 0 0 -N 1b 0	NiCl ₂ •dtbbpy (; HE (2.0 e TBAI (1.0 e Li ₂ CO ₃ (2.0 DMA, Ar 390 ni	20 mol %) quiv) equiv) equiv) ; r.t. m	ome 1aa	h H + OMe	Ph 1ab
entries	Catalyst	Reductant	Base	Light	additive	vield $(\%)^a$
	(20 mol %)	(2.0 equiv)	(2.0 equiv)	0	(1.0 equiv)	5 ()
1	-	HE	Li ₂ CO ₃	390 nm	TBAI	N.D.
2	$NiCl_2 \cdot dtbbpy$	-	Li ₂ CO ₃	390 nm	TBAI	trace
3	$NiCl_2 \cdot dtbbpy$	HE	Li ₂ CO ₃	390 nm	TBAI	N.D. ^b

a. yield of 1aa. b. no light

5. Mechanism characterization:

a) Clock experiment and radical capture experiment:

Radical capture experiment with TEMPO revealed the involvement of a radical

intermediate during the reaction process. Furthermore, radical clock experiment indicated the formation of alkyl radicals intermediate from NHP esters.

b) UV/Vis absorption spectroscopy:

Figure A: UV/vis absorption spectra measured in DMA (0.05 M) unless otherwise noted. NHPI Ester = 1b.

According to the result of UV/Vis absorption spectroscopy, the intermolecular EDA complex was generated by the interaction of NHP ester **1b** with HE and TBAI. Moreover, Li_2CO_3 exhibited no influence on NHP ester **1b**.

For propargylic carbonate 1a, the result of UV/Vis absorption spectroscopy revealed the interaction of 1a with Li₂CO₃. A distinctive bathochromic displacement with a small absorption in the visible-light region (brown line) revealed the possible role of Li₂CO₃ in the establishment of a EDA complex with 1a. Moreover, HE and TBAI exhibited no influence on propargylic carbonate 1a.

c) Confirmation experiments for radical from propargylic carbonates 1a:

Propargylic radical capture product **3ba** was detected by NMR analysis only in the presence of both nickel and light, which indicated that excited-state HE* would reduce Ni(II) and then oxidative addition between **1a** and Ni(0) proceeded *via* SET generated a hybrid propargylic Ni(I) intermediate and allenyl Ni(I) intermediate.

The EDA complex or interaction between 1a and Li_2CO_3 was also preliminarily confirmed by HRMS. With 390nm purple light, detection of propargyl radical elimination product 3ca stated this EDA complex photoactivation process, which revealed the addition of Li_2CO_3 promoted the one electron reduction process of 1a.

d) Plausible mechanism:

A hypothetical mechanism for this cross-electrophile coupling was proposed. Initially, the EDA complex generated by the interaction of NHP ester with HE and TBAI produced the alkyl radical **A** via a photo-induced SET process. Next, low-valent nickel species, reduced from Ni(II) by excited-state HE*, proceeded a single electron oxidation addition with **1a** to generate a hybrid allenyl-Ni(I) intermediate, namely allenyl radical **B**⁴, which then captured alkyl radical **A** to generate the desired radicalradical coupling product **1aa**. Notably, the addition of Li₂CO₃ promoted this one electron reduction process of **1a**. Finally, the complete catalytic system was achieved with the reduction of Ni(I) complex to Ni(0) by extra excited-state HE*. However, despite with reductive reaction atmosphere and an allenyl radical process revealed by radical capture experiment, the mechanism processing reductive elimination of Ni(III) species, which generated from alkyl radical with allenyl Ni(II) species, could not be fully ruled out

6. References:

[1] (a) Z.-S. Chen, X.-H. Duan, L.-Y. Wu, S. Ali, K.-G. Ji, P.-X. Zhou, X.-Y. Liu and Y.-M. Liang, *Chem. Eur. J.*, 2011, **17**, 6918; (b) Y. Miyazaki, B. Zhou, H. Tsuji and M. Kawatsura, *Org. Lett.*, 2020, **22**, 2049; (c) P. Wu, M. Jia, W. Lin and S. Ma, *Org. Lett.*, 2018, **20**, 554; (d) C. R. Reddy, S. Z. Mohammed and P. Kumaraswamya, *Org. Biomol. Chem.*, 2015, **13**, 8310.

[2] (a) Z.-Z. Zhou, R.-Q. Jiao, K. Yang, X.-M. Chen and Y.-M. Liang, *Chem. Commun.*, 2020, 56, 12957; (b) Z.-Z. Zhou, X.-R. Song, S. Du, K.-J. Xia, W.-F. Tian, Q. Xiao and Y.-M. Liang, *Chem. Commun.*, 2021, 57, 9390.

[3] X. Zhu and H. Fu, Chem. Commun., 2021, 57, 9656–9671.

[4] (a) B. J. Shields and A. G. Doyle, J. Am. Chem. Soc., 2016, 138, 12719; (b) T. T. Tsou, J. K. Kochi, J. Am. Chem. Soc., 1979, 101, 6319; (c) A. J. Oelke, J. Sun and G. C. Fu, J. Am. Chem. Soc., 2012, 134, 6, 2966.

7. Characterization Data of Products 1aa-1oa:

1aa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.07-1.09 (d, *J* = 8.0 Hz, 6H), 2.39-2.45 (m, 2H), 2.64-2.80 (m, 3H), 3.80 (s, 3H), 5.52-5.56 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.82-6.84 (d, *J* = 8.0 Hz, 2H), 7.19-7.29 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 27.9, 31.2, 35.6, 55.3, 94.7, 112.8, 113.7, 125.8, 127.4, 128.3, 128.5, 129.4, 141.9, 158.2, 202.3;

HRMS (ESI) calcd for $C_{21}H_{24}O [M+H]^+ m/z 293.1900$, found 293.1903.

1ab: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 2.40-2.50 (m, 2H), 2.75-2.84 (m, 2H), 3.79 (s, 3H), 5.53-5.58 (dd, $J_I = 4.0$ Hz, $J_2 = 12.0$ Hz, 1H), 6.07-6.09 (m, 1H), 6.79-6.81 (d, J = 8.0 Hz, 2H), 7.06-7.09 (d, J = 12.0 Hz, 2H), 7.20-7.24 (m, 3H), 7.26-7.30 (m, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 30.7, 35.4, 55.3, 94.3, 94.4, 114.0, 125.9, 127.1, 127.7, 128.3, 128.6, 141.6, 158.5, 204.6;

HRMS (ESI) calcd for $C_{18}H_{18}O [M+H]^+ m/z 251.1430$, found 251.1433.

1ba: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.94-0.97 (t, *J* = 8.0 Hz, 3H), 1.10-1.12 (dd, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 6H), 1.46-1.53 (m, 2H), 2.04-2.10 (m, 2H), 2.71-2.81 (m, 2H), 3.80 (s, 3H), 5.49-5.52 (m, 1H), 6.84-6.87 (d, *J* = 12.0 Hz, 2H), 7.30-7.33 (d, *J* = 12.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 13.9, 22.2, 22.6, 27.9, 31.5, 55.3, 95.3, 112.3, 113.7, 127.4, 129.8, 158.1, 202.3;

HRMS (ESI) calcd for $C_{16}H_{22}O [M+H]^+ m/z 231.1743$, found 231.1745.

1ca: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.89 (t, *J* = 8.0 Hz, 3H), 1.09-1.12 (m, 6H), 1.27-1.36 (m, 6H), 1.42-1.49 (m, 2H), 2.06-2.11 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 2H), 2.73-2.80 (m, 1H), 3.80 (s, 3H), 5.49-5.54 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.85-6.87 (d, *J* = 8.0 Hz, 2H), 7.30-7.32 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.1, 22.2, 22.6, 22.7, 27.9, 29.0, 29.4, 31.7, 55.3, 95.5, 112.3, 113.7, 127.4, 129.8, 158.1, 202.2;

HRMS (ESI) calcd for C₁₉H₂₈O [M+H]⁺ m/z 273.2213, found 273.2217.

1ca: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.85-0.89 (t, *J* = 8.0 Hz, 3H), 1.09-1.12 (dd, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 6H), 1.26-1.33 (m, 8H), 1.42-1.47 (m, 2H), 2.06-2.11 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 2H), 2.73-2.80 (m, 1H), 3.80 (s, 3H), 5.48-5.52 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.84-6.87 (d, *J* = 12.0 Hz, 2H), 7.30-7.33 (d, *J* = 12.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.1, 22.2, 22.6, 22.6, 27.9, 29.2, 29.3, 29.4, 31.9, 55.3, 95.4, 112.3, 113.7, 127.4, 129.8, 158.1, 202.2;

HRMS (ESI) calcd for C₂₀H₃₀O [M+H]⁺ m/z 287.2369, found 287.2371.

OMe

1ea, 77%

1ea: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 0.94-0.97 (m, 3H), 1.10-1.12 (m, 6H), 1.67-1.11 (m, 1H), 1.982.02 (m, 2H), 2.72-2.79 (m, 2H), 3.80 (s, 3H), 5.43-5.48 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.84-6.86 (d, J = 8.0 Hz, 2H), 7.30-7.32 (d, J = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm):22.2, 22.5, 22.5, 22.6, 28.0, 28.8, 39.0, 55.3, 94.1, 111.7, 113.7, 127.4, 129.7, 158.1, 202.7;

HRMS (ESI) calcd for $C_{17}H_{24}O [M+H]^+ m/z 245.1900$, found 245.1901.

1fa, 79%

1fa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 0.96 (s, 9H), 1.10-1.13 (d, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 6H), 2.00-2.03 (dd, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 2H), 2.72-2.80 (m, 1H), 3.80 (s, 3H), 5.45-5.50 (dt, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 1H), 6.84-6.86 (d, J = 8.0 Hz, 2H), 7.30-7.32 (d, J = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.3, 22.6, 28.0, 29.3, 31.1, 44.4, 55.3, 92.2, 111.2, 113.7, 127.5, 129.8, 158.1, 203.3;

HRMS (ESI) calcd for $C_{18}H_{26}O \ [M+H]^+ \ m/z \ 259.2056$, found 259.2061.

1ga, 83%

1ga: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.10-1.12 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 6H), 1.17-1.33 (m, 4H), 1.63-1.74 (m, 4H), 1.82 (m, 2H),2.02-2.10 (m, 1H), 2.73-2.80 (m, 1H), 3.80 (s, 3H), 5.50-5.52 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.85-6.87 (d, J = 8.0 Hz, 2H), 7.32-7.34 (d, J = 8.0 Hz, 2H); **¹³C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.7, 26.2, 26.2, 27.7, 33.3, 33.4, 38.1, 55.3, 101.5, 113.1, 113.7, 127.3, 129.7, 158.1, 200.9;

HRMS (ESI) calcd for $C_{19}H_{26}O \ [M+H]^+ \ m/z \ 271.2056$, found 271.2063.

1ha, 58%

1ha: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.82-0.84 (d, J = 8.0 Hz, 3H), 1.06-1.08 (d, J = 8.0 Hz, 3H), 2.61-2.68 (m, 1H), 3.79 (s, 3H), 4.85-4.86 (d, J = 4.0 Hz, 1H), 5.99-6.01 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.81-6.83 (d, J = 8.0 Hz, 2H), 7.17-7.19 (m, 4H), 7.25-7.28 (m, 8H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.0, 22.2, 28.4, 51.8, 55.2, 99.0, 113.7, 114.4, 126.3, 127.5, 128.2, 128.6, 128.6, 143.7, 158.3, 203.2;

HRMS (ESI) calcd for $C_{26}H_{26}O [M+H]^+ m/z 355.2056$, found 355.2061

1ia, 68%

1ia: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.09-1.12 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 6H), 1.27-1.36 (m, 10H), 1.41-1.46 (m, 2H), 2.00-2.11 (m, 4H), 2.72-2.80 (m, 1H), 3.79 (s, 3H), 4.91-5.01 (m, 2H), 5.48-5.52 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 5.75-5.86 (m, 1H), 6.84-6.86 (d, J = 8.0 Hz, 2H), 7.30-7.32 (d, J = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.6, 27.9, 28.9, 29.1, 29.3, 29.3, 29.4, 29.5, 33.8, 55.2, 95.4, 112.3, 113.7, 114.1, 127.4, 129.7, 139.2, 158.1, 202.2;

HRMS (ESI) calcd for $C_{23}H_{34}O [M+H]^+ m/z 327.2682$, found 327.2689.

1ja, 85%

1ja: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.09-1.12 (m, 6H), 1.59-1.65 (m, 2H), 1.80-1.87 (m, 2H), 2.10-2.16 (m, 2H), 2.73-2.80 (m, 1H), 3.51-3.55 (t, *J* = 8.0 Hz, 2H), 3.80 (s, 3H), 5.48-5.52 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.85-6.87 (d, *J* = 8.0 Hz, 2H), 7.29-7.31 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 26.5, 27.9, 28.6, 32.2, 44.9, 55.3, 94.7, 112.8, 113.8, 127.4, 129.4, 158.2, 202.3;

HRMS (ESI) calcd for C₁₇H₂₃ClO [M+H]⁺ m/z 279.1510, found 279.1515.

1ma: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **1H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.90 (dt, J_I = 4.0 Hz, J_2 = 8.0 Hz, 3H), 1.06-1.07 (d, J = 4.0 Hz, 3H), 1.25-1.52 (m, 4H), 2.39-2.44 (m, 2H), 2.58-2.59 (m, 1H), 2.75-2.80 (dd, J_I = 4.0 Hz, J_2 = 12.0 Hz, 2H), 3.79 (m, 3H), 5.51-5.54 (t, J = 4.0 Hz, 1H), 6.81-6.83 (d, J = 8.0 Hz, 2H), 7.20-7.30 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.3, 14.3, 20.1, 20.5, 20.5, 31.2, 31.3, 33.0, 33.0, 35.7, 35.8, 38.4, 38.7, 55.3, 94.5, 94.6, 111.7, 111.8, 113.7, 125.8, 125.8, 127.4, 128.3, 128.3, 128.5, 129.7, 129.8, 141.8, 158.2, 202.6, 202.7;

HRMS (ESI) calcd for $C_{23}H_{28}O [M+H]^+ m/z 321.2213$, found 321.2215.

1na, 64%

1na: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.04-1.38 (m, 6H), 1.67-1.85 (m, 4H), 2.31-2.34 (dt, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 1H), 2.39-2.45 (dd, J_1 = 8.0 Hz, J_2 = 16.0 Hz, 2H), 2.76-2.80 (t, J = 4.0 Hz, 2H), 3.79 (s, 3H), 5.49-5.53 (dt, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 1H), 6.81-6.83 (d, J = 8.0 Hz, 2H), 7.20-7.29 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 26.4, 26.7, 26.7, 31.2, 32.8, 33.1, 35.6, 37.8, 55.3, 94.3, 111.8, 113.7, 125.8, 127.4, 128.3, 128.6, 129.3, 141.9, 158.2, 202.8;

HRMS (ESI) calcd for $C_{24}H_{28}O [M+H]^+ m/z 333.2213$, found 333.2214.

10a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.85-2.16 (m, 6H), 2.39-2.45 (m, 2H), 2.66-2.68 (m, 1H), 2.77-2.82 (m, 2H), 3.78-3.79 (m, 3H), 5.52-5.58 (m, 1H), 5.69 (m, 2H), 6.79-6.84 (m, 2H), 7.19-7.27 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 25.6, 25.8, 28.5, 28.6, 30.7, 31.2, 31.3, 31.7, 33.6, 33.7, 35.4, 35.6, 55.3, 94.4, 94.7, 111.0, 111.2, 113.8, 114.0, 126.5, 126.6, 126.8, 127.4, 127.4, 127.7, 128.3, 128.3, 128.5, 141.6, 141.8, 158.3, 158.5, 202.8, 204.6;

HRMS (ESI) calcd for $C_{24}H_{26}O \ [M+H]^+ \ m/z \ 331.2056$, found 331.2058.

8. Characterization Data of Products 2aa-2oa, 3aa, 3ba-3bb:

2aa, 89%

2aa: according to General Procedure; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.08-1.10 (d, J = 8.0 Hz, 6H), 2.41-2.47 (m, 2H), 2.77-2.81 (m, 3H), 5.55-5.59 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 7.15-7.22 (m, 4H), 7.26-7.32 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 27.7, 31.1, 35.6, 94.8, 113.3, 125.8, 126.3, 126.4, 128.3, 128.3, 128.5, 137.1, 141.8, 202.8; **HDMS** (FSD) = 1.15 - C. H. [M+H]⁺ / 262 1704 from 1262 1707

HRMS (ESI) calcd for $C_{20}H_{22}$ [M+H]⁺ m/z 263.1794, found 263.1797.

2ba, 73%

2ba: according to General Procedure; colorless oil; Eluent: *n*-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.04-1.06 (d, *J* = 8.0 Hz, 3H), 1.10-1.12 (d, *J* = 8.0 Hz, 3H), 2.73-2.84 (m, 1H), 3.45-3.46 (d, *J* = 4.0 Hz, 2H), 5.67-5.71 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.17-7.22 (m, 2H), 7.25-7.32 (m, 6H), 7.35-7.37 (m, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 36.0, 94.9, 113.6, 126.1, 126.4, 126.5, 128.3, 128.3, 128.7, 137.1, 140.4, 203.4;

HRMS (ESI) calcd for C₁₉H₂₀ [M+H]⁺ m/z 249.1638, found 249.1641.

2ca, 68%

2ca: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.03-1.05 (d, *J* = 8.0 Hz, 3H), 1.08-1.10 (d, *J* = 8.0 Hz, 3H), 2.32 (s, 3H), 2.71-2.80 (m, 1H), 3.43-3.45 (d, *J* = 8.0 Hz, 2H), 5.64-5.68 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.10-7.12 (m, 2H), 7.18-7.31 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.0, 22.2, 22.5, 28.0, 36.1, 94.7, 113.4, 126.1, 126.4, 128.3, 128.7, 129.0, 134.1, 136.1, 140.5, 203.1;

HRMS (ESI) calcd for C₂₀H₂₂ [M+H]⁺ m/z 263.1794, found 263.1797.

2da, 78%

2da: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.92-0.96 (t, *J* = 8.0 Hz, 3H), 1.04-1.06 (d, *J* = 8.0 Hz, 3H), 1.09-1.11 (d, *J* = 8.0 Hz, 3H), 1.59-1.68 (m, 2H), 2.54-2.58 (t, *J* = 8.0 Hz, 2H), 2.72-2.81 (m, 1H), 3.44-3.46 (d, *J* = 8.0 Hz, 2H), 5.65-5.69 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.11-7.13 (m, 2H), 7.19-7.32 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 13.9, 22.2, 22.5, 24.5, 28.0, 36.1, 37.7, 94.8, 113.4, 126.1, 126.3, 128.3, 128.4, 128.7, 134.3, 140.5, 141.0, 203.2;

HRMS (ESI) calcd for $C_{22}H_{26}$ [M+H]⁺ m/z 291.2107, found 291.2108.

2ea, 87%

2da: according to General Procedure; colorless oil; Eluent: *n*-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.87-0.91 (t, *J* = 8.0 Hz, 3H), 1.04-1.06 (d, *J* = 8.0 Hz, 3H), 1.09-1.11 (d, *J* = 8.0 Hz, 3H), 1.32-1.33 (m, 4H), 1.59-1.64 (m, 2H), 2.55-2.59 (t, *J* = 8.0 Hz, 2H), 2.73-2.81 (m, 1H), 3.44-3.45 (d, *J* = 4.0 Hz, 2H), 5.65-5.69 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.11-7.13 (m, 2H), 7.18-7.31 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.0, 22.2, 22.5, 22.6, 28.0, 31.2, 31.5, 35.5, 36.1, 94.8, 113.5, 126.1, 126.3, 128.3, 128.4, 128.7, 134.2, 140.5, 141.2, 203.2;

HRMS (ESI) calcd for $C_{24}H_{30}$ [M+H]⁺ m/z 319.2420, found 319.2421.

2fa, 83%

2fa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.05-1.07 (d, *J* = 8.0 Hz, 3H), 1.10-1.12 (d, *J* = 8.0 Hz, 3H), 1.32 (s, 9H), 2.75-2.82 (m, 1H), 3.44-3.46 (d, J = 8.0 Hz, 2H), 5.65-5.69 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 7.21-7.35 (m, 9H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.3, 22.6, 28.0, 31.3, 34.4, 36.1, 94.8, 113.3, 125.2, 126.1, 128.3, 128.6, 134.0, 140.5, 149.3, 203.3;

HRMS (ESI) calcd for $C_{23}H_{28}$ [M+H]⁺ m/z 305.2264, found 305.2269.

2ga, 45%

2ga: according to General Procedure; colorless oil; Eluent: *n*-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.07-1.09 (d, *J* = 8.0 Hz, 3H), 1.12-1.14 (d, *J* = 8.0 Hz, 3H), 2.77-2.87 (m, 1H), 3.46-3.48 (d, *J* = 8.0 Hz, 2H), 5.71-5.75 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.21-7.23 (m, 1H), 7.27-7.34 (m, 5H), 7.41-7.44 (m, 4H), 7.53-7.55 (d, *J* = 4.0 Hz, 2H), 7.59-7.61 (d, *J* = 4.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 27.9, 36.0, 95.1, 113.4, 126.1, 126.8, 126.9, 127.0, 127.1, 128.4, 128.7, 128.7, 136.1, 139.2, 140.4, 140.8, 203.6;

HRMS (ESI) calcd for $C_{25}H_{24}$ [M+H]⁺ m/z 329.1951, found 329.1955.

2ha: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.02-1.04 (d, *J* = 8.0 Hz, 3H), 1.08-1.10 (d, *J* = 8.0 Hz, 3H), 2.68-2.75 (m, 1H), 3.44-3.45 (d, *J* = 4.0 Hz, 2H), 5.66-5.70 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.96-7.01 (t, *J* = 8.0 Hz, 2H), 7.19-7.31 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.1, 22.3, 28.2, 36.0, 95.1, 112.8, 115.0, 115.2, 126.2, 127.9-128.0 (d, *J* = 7.0 Hz), 128.4-128.6 (d, *J* = 29.0 Hz), 133.0, 140.3, 160.4-162.8 (d, *J* = 244.0 Hz), 203.2;

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -116.6 (s, 1F);

HRMS (ESI) calcd for $C_{19}H_{19}F$ [M+H]⁺ m/z 267.1544, found 267.1547.

2ia, 80%

2ia: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.01-1.03 (d, *J* = 8.0 Hz, 3H), 1.07-1.09 (d, *J* = 8.0 Hz, 3H), 2.68-2.75 (m, 1H), 3.43-3.45 (d, *J* = 8.0 Hz, 2H), 5.68-5.72 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.19-7.31 (m, 9H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.0, 22.3, 28.0, 35.9, 95.4, 112.9, 126.2, 127.7, 128.4, 128.6, 132.0, 135.6, 140.1, 203.4;

HRMS (ESI) calcd for $C_{19}H_{19}Cl [M+H]^+ m/z 283.1248$, found 283.1252.

2ja, 90%

2ja: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.04-1.06 (d, *J* = 8.0 Hz, 3H), 1.09-1.11 (d, *J* = 8.0 Hz, 3H), 2.33 (s, 3H), 2.74-2.81 (m, 1H), 3.44-3.46 (d, *J* = 8.0 Hz, 2H), 5.65-5.69 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.00-7.01 (d, *J* = 4.0 Hz, 1H), 7.19-7.30 (m, 8H);

¹³C NMR (100 MHz, CDCl₃, δ ppm):21.5, 22.2, 22.5, 28.0, 36.1, 94.7, 113.7, 123.5, 126.1, 127.2, 127.3, 128.2, 128.3, 128.7, 137.1, 137.8, 140.5, 203.4;

HRMS (ESI) calcd for $C_{20}H_{22}O \ [M+H]^+ \ m/z \ 279.1743$, found 279.1749.

2ka: according to General Procedure; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.47-1.55 (m, 4H), 1.63-1.66 (m, 2H), 1.84-1.89 (m, 2H), 2.16 (m, 1H), 2.39-2.47 (m, 2H), 2.77-2.81 (m, 2H), 3.79 (s, 3H), 5.34-5.37 (t, *J* = 8.0 Hz, 0.55H), 5.53-5.58 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 0.45H), 6.07-6.09 (m, 0.45H), 6.78-6.81 (m, 2H), 7.20-7.30 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 28.8, 30.7, 31.4, 34.3, 35.4, 35.8, 37.0, 42.9, 44.6, 55.2, 55.3,

91.0, 94.3, 94.4, 101.5, 113.5, 114.0, 125.8, 125.9, 127.4, 127.7, 128.3, 128.6, 131.1, 141.6, 141.8, 158.0, 158.6, 204.6, 205.9; **HRMS** (ESI) calcd for C₂₉H₃₄O [M+H]⁺ m/z 399.2682, found 399.2685.

2la, 72%

21a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 0.93-0.97 (t, *J* = 8.0 Hz, 3H), 1.44-1.53 (m, 2H), 2.29-2.33 (t, *J* = 8.0 Hz, 2H), 2.40-2.46 (m, 2H), 2.76-2.80 (t, *J* = 8.0 Hz, 2H), 3.79 (s, 3H), 5.47-5.50 (m, 1H), 6.80-6.83 (d, *J* = 12.0 Hz, 2H), 7.19-7.23 (m, 5H), 7.26-7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.0, 21.1, 31.1, 32.2, 35.6, 55.3, 93.5, 105.3, 113.7, 125.8, 126.9, 128.3, 128.6, 129.6, 141.8, 158.2, 203.4;

HRMS (ESI) calcd for $C_{21}H_{24}O [M+H]^+ m/z 293.1900$, found 293.1903.

2ma, 77%

2ma: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 2.35-2.41 (m, 2H), 2.62-2.78 (m, 6H), 3.80 (s, 3H), 5.49-5.52 (m, 1H), 6.81-6.84 (d, *J* = 12.0 Hz, 2H), 7.19-7.31 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 30.9, 31.9, 34.2, 35.5, 55.3, 94.2, 105.0, 113.8, 125.8, 125.8, 126.9, 128.3, 128.3, 128.5, 128.6, 129.3, 141.7, 142.2, 158.3, 203.4; HRMS (ESI) calcd for C₂₆H₂₆O [M+H]⁺ m/z 355.2056, found 355.2056.

Ph ÓМе 2na, 68%

2na: according to General Procedure; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.87-0.97 (m, 2H), 1.12-1.20 (m, 2H), 1.42-1.50 (m, 1H), 1.64-1.79 (m, 4H), 2.21-2.24 (m, 2H), 2.40-2.45 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 2H), 2.76-2.80 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 2H), 3.79 (s, 3H), 5.41-5.45 (m, 1H), 6.80-6.82 (d, J = 8.0 Hz, 2H), 7.09-7.21 (m, 5H), 7.24-7.30 (m, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 26.3, 26.6, 31.2, 33.4, 33.5, 35.8, 36.1, 38.4, 55.3, 92.5, 103.5, 113.7, 125.8, 127.1, 128.3, 128.6, 129.7, 141.8, 158.2, 204.0;

HRMS (ESI) calcd for $C_{24}H_{28}O [M+H]^+ m/z 333.2213$, found 333.2214.

20a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.12-1.23 (m, 2H), 1.48-1.77 (m, 8H), 1.98-2.05 (m, 1H), 2.32-2.36 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 2H), 2.41-2.46 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 2H), 2.77-2.81 (t, J = 8.0 Hz, 2H), 3.78 (s, 3H), 5.44-5.47 (m, 1H), 6.80-6.82 (d, J = 8.0 Hz, 2H), 7.09-7.21 (m, 5H), 7.24-7.30 (m, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 25.3, 31.2, 32.8, 35.7, 37.1, 38.2, 55.3, 93.0, 104.9, 113.7, 125.8, 127.0, 128.3, 128.6, 129.7, 141.8, 158.2, 203.9;

HRMS (ESI) calcd for $C_{25}H_{30}O [M+H]^+ m/z 347.2369$, found 347.2370.

3aa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 2.15-2.25 (m, 2H), 2.40-2.46 (m, 4H), 2.77-2.80 (t, *J* = 8.0 Hz, 2H), 3.79 (s, 3H), 4.97-5.06 (m, 2H), 5.50-5.57 (m, 1H), 5.83-5.93 (m, 1H), 6.81-6.83 (d, *J* = 8.0 Hz, 2H), 7.19-7.29 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 29.4, 31.1, 32.1, 35.6, 55.3, 94.1, 105.0, 113.8, 114.6, 125.8, 126.9, 128.3, 128.6, 129.5, 138.5, 141.8, 158.3, 203.4;

HRMS (ESI) calcd for $C_{22}H_{24}O [M+H]^+ m/z 305.1900$, found 305.1901.

3ba: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 50/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.11-1.57 (m, 18H), 2.12-2.18 (m, 2H), 2.80-2.96 (m, 2H), 3.81 (s, 3H), 4.61-4.64 (t, *J* = 8.0 Hz, 1H), 6.82-6.85 (d, *J* = 12.0 Hz, 2H), 7.16-7.30 (m, 5H), 7.36-7.38 (d, *J* = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 17.2, 20.3, 20.5, 31.7, 33.7, 34.7, 36.9, 40.1, 40.2, 55.3, 59.4, 60.4, 75.2, 86.5, 89.1, 113.8, 115.8, 125.8, 128.3, 128.5, 132.8, 142.0, 159.4; **HDMS** (ESD) colod for C. H. NO. [M+H][±] m/z 406 2741, found 406 2728

HRMS (ESI) calcd for $C_{27}H_{35}NO_2\ [M+H]^+\ m/z\ 406.2741,\ found\ 406.2738.$

3bb: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.88-1.95 (m, 2H), 2.39-2.42 (t, *J* = 8.0 Hz, 2H), 2.77-2.80 (t, *J* = 4.0 Hz, 2H), 3.80 (s, 3H), 6.81-6.83 (d, *J* = 8.0 Hz, 2H), 7.19-7.35 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 18.9, 30.4, 34.9, 55.3, 88.2, 113.8, 116.2, 125.9, 128.3, 128.6, 132.9, 141.7, 159.1;

HRMS (ESI) calcd for $C_{18}H_{18}O [M+H]^+ m/z 251.1430$, found 251.1432.

9. ¹H NMR and ¹³C NMR Spectra of the Products 1aa-1oa:

70

60 50 40 30

80

20

10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

1ea, 77%

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

-5000

-0

-10

ł

1fa, 79%

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) -4000 -3000 -2000

-1000 -0 --1000

20

10 0 -10

70

60 50 40 30

OMe

1ga, 83%

1ha, 58%

1ja, 85%

70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

zxf220413-7b.1.fid 7.25 7.28 7.28 7.28 7.28 7.21 7.21 7.21 7.21 7.21 6.83 6.54 5.51 5.51 30000 28000 -26000 -24000 11 22000 -20000 -18000 16000 -14000 12000 -10000 8000 -6000 -4000 -2000 1 M AA -0 1.17-3.11.≠ 3.02.≠ 7.08-<u>∓</u> 2.09-<u>≖</u> <1.51 1.54 → 2.08 A 100 --2000

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 f1 (ppm)

Ph OMe

1na, 64%

10. ¹H NMR and ¹³C NMR Spectra of Products 2aa-2oa, 3aa, 3ba-3bb:

2aa, 89%

2ba, 73%

Bn

2ca, 68%

Bn

2da, 78%

2ea, 87%

2fa, 83%

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) -3000 -2000 -1000

-0

70 60

20

10 0 -10

50 40 30

2ga, 45%

2ha, 79%

2ia, 80%

2ja, 90%

2la, 72%

70 60

50 40 30 20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

-200 -0 --200 --400

0 -10

10

Ph Ph Ph Ph

Ph

2na, 68% zxf220617-2.3.fid 7, 28 7, 28 7, 28 7, 28 7, 28 7, 28 7, 28 6, 80 6, 82 5.45 5.43 5.41 -3.79 -30000 28000 -26000 -24000 -22000 -20000 -18000 -16000 -14000 -12000 -10000 8000 -6000 -4000 -2000 I 1 11 mars -0 11.14 1.09-1 1.09-1 1.09-2 2.04 5.05 2.09 4 F-16.0 3.07-2.06± -2000 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 f1 (ppm)

3aa, 65%

-12000

-11000

-9000

-8000

6000

-5000

-3000

-2000

-1000

-0

-1000

-19000

