# Atom-economic synthesis of 1,2-bis(phosphine oxide)ethanes from calcium carbide with straightforward access to deuterium- and <sup>13</sup>C-labeled bidentate phosphorus ligands and metal complexes

Kristina A. Lotsman,<sup>[a]</sup> Konstantin S. Rodygin,<sup>[a]</sup> Irina Skvortsova,<sup>[a]</sup> Anastasia M. Kutskaya,<sup>[a]</sup> Mikhail E. Minyaev <sup>[b]</sup> and Valentine P. Ananikov<sup>\*[a, b]</sup>

- <sup>[a]</sup> Saint Peterburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia. E-mail: k.rodygin@spbu.ru
- <sup>[b]</sup> N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia. E-mail: val@ioc.ac.ru.

# Contents

| S1. Materials and methods                                           | 3   |
|---------------------------------------------------------------------|-----|
| S2. General procedures                                              | 5   |
| S3. Spectral data and characterization                              | 8   |
| S4. NMR spectra                                                     | 14  |
| S5. Calculations                                                    | 61  |
| S6. Single-crystal X-ray structure determination                    | 87  |
| S7. Powder XRD                                                      | 99  |
| S8. NMR experiment with <sup>13</sup> C <sub>2</sub> -DPPE and DPPE | 101 |
| S9. References                                                      | 107 |

#### S1. Materials and methods

Materials. Calcium carbide (granulated, particle size 0.1-1 mm, 75 % of acetylene (gasvolumetric as indicated by the supplier)), isobutyl bromide (99%), carbon-13 and PdCl<sub>2</sub> were purchased from Sigma Aldrich and used without further purification. 4-Bromotoluene (99%) and di-tert-butylphosphine 0.5 M (10 wt.%) solution in hexanes were purchased from Acros Organics and used as received. o-Bromotoluene (99%) and 3-bromotoluene (98%) were from Macklin. 4-Bromoanisole (99%), *n*-butvl purchased bromide (99%). dicyclohexylphosphine (98%), diethyl phosphite (99%), diphenylphosphineoxide (97%), and nickel(II) bromide anhydrous (99%) were purchased from Alfa Aesar, Chemical Line, abcr GmbH&Co, Energy-chemical and Bide Pharmatech Ltd., respectively. KF, *n*-butyl bromide, and magnesium (turnings) were purchased from Vekton, Reakhim and Ruskhim (Russia).

 $K_2PdCl_4$  was prepared from  $PdCl_2$  and  $KCl.^1$  A solution of 6.72 g of KCl was mixed with a solution of 4 g of  $PdCl_2$ . The mixture was heated and cooled. As a result, 5.9 g of  $K_2PdCl_4$  was isolated. KF was dried and grinded before use.  ${}^{13}C_2Ca$  was prepared from carbon-13 and calcium metal according to previous procedure.<sup>2</sup> All the solvents were purified by standard procedures. THF was predried over 4 Å molecular sieves and distilled from sodium/benzophenone. Toluene was distilled from sodium and stored over 4 Å molecular sieves.

**Instrumentation.** The NMR spectra were recorded on Bruker Avance III 400 and Bruker Avance III 500 NMR spectrometers at 25 °C (at 400 or 500, 100 or 126, 162, and 61 or 77 MHz for <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>2</sup>H NMR spectra, respectively). Chemical shifts are given in  $\delta$  values [ppm] referenced to the residual signals of deuterated solvent (CHCl<sub>3</sub>):  $\delta$  7.26 (<sup>1</sup>H), 77.2 (<sup>13</sup>C); deuterated solvent (CDCl<sub>3</sub>):  $\delta$  7.26 (<sup>2</sup>H); or 85% H<sub>3</sub>PO<sub>4</sub>  $\delta$  0.0 ppm (<sup>31</sup>P). The deuterium incorporation (DI) was calculated using <sup>1</sup>H NMR spectroscopy by decrease the intensity of the signal of the corresponding hydrogen atom. The data were processed using MestReNova (version 6.0.2) desktop NMR data processing software. High-resolution mass spectra were registered on a Bruker Micro-TOF mass spectrometer (ESI-MS).

**Computational details.** Quantum chemical, spin restricted calculations were performed using the ORCA 5.0.1 software package. The molecular structures of the reactants, transition states, intermediates and products were optimized by DFT calculations at the B3LYP/6-31+G\* level of theory. Calculations of vibrational frequencies were performed at the same level of theory. A tight convergence criterion for the Kohn-Sham self-consistent field procedure (TightSCF) was selected. An integration grid (DefGRID3) with disabled double integration grid procedure (NOFINALGRID) was used to calculate the energies.

A search for the geometry of the transition state was performed by scanning a potential energy surface (geom scan option) of a structure prereaction complex. Received transition states are located on first-order saddle points on the potential energy surface, which is local maxima in exactly one direction. Each found transition state is characterized by having exactly one vibrational mode with an imaginary frequency.

A continuum model CPCM was used to simulate the reaction medium; the model solvent was DMSO. The cavity was built using the GEPOL approach<sup>3</sup> with an electrostatic scale factor  $\alpha = 1.1$ .<sup>4</sup> For the calculation, the dielectric constant for DMSO  $\varepsilon = 46.8$  was used. The calculations of the Gibbs free energy of solvation  $\Delta G_{solv}^A$  were performed as a separate optimization of the

geometry of the molecule, preoptimized at the B3LYP/ $6-31+G^*$  theory level, and calculated as the difference of the Gibbs energy of the molecule in the solvent medium and in the gas phase.

The standard Gibbs free energy of species A in solution was calculated according to the equation:

$$G^A = H^A - T \cdot S_{\text{sol}} + \Delta G^A_{\text{solv}}$$

where  $S_{sol}$  is entropy in the DMSO solution, according to the Wertz approach,<sup>5, 6</sup> which takes into account the change of state of the system from an ideal gas at 1 atm pressure and temperature 298.15 K (or 403.15 K) to 1 M DMSO solution at the same temperature as follows:  $S_{sol} = 0.74S_{harm} - 3.21 \text{ cal} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}.$ 

### **S2.** General procedures

#### Preparation of phosphine oxides:

#### Synthetic procedure for phosphine oxides (1a-d, g).

Phosphine oxides (**1a-d**, **g**) were obtained using Grignard reagents from the corresponding bromides and diethyl phosphite according to the procedure.<sup>7</sup> The procedure was carried out under argon atmosphere. Magnesium turnings (0.367 g, 15.1 mmol) were loaded into a flask, and activated with iodine. Then, a solution of the corresponding bromide (15.1 mmol) in 2 ml of anhydrous THF was added dropwise. The reaction mixture was stirred at 65 °C for 15 hours. After that, the mixture was cooled to 0 °C and a solution of diethyl phosphite (593  $\mu$ l, 4.6 mmol) in 2 ml of anhydrous THF was slowly added dropwise. The reaction was continued for 2 hours at room temperature. Then, 10 ml of 0.1 N HCl solution was added to the mixture and filtered through Celite. The organic layer was separated, and the aqueous layer was additionally extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 ml). The combined organic layers were dried over MgSO<sub>4</sub> and the solvent was evaporated. The resulting crude product was further purified.

Crude di-*n*-hexyl and di-*n*-butyl phosphine oxides (**1b** and **1c**) were recrystallized from hexane.

Di-*i*-butyl phosphine oxide (1d) was purified on silica gel (Et<sub>2</sub>O:MeOH (97:3)).

Di-*p*-tolyl phosphine oxide (**1g**) was purified on silica gel (DCM:MeOH = 40:1-20:1)).

#### Synthetic procedure for phosphine oxide (1e).

Di-*o*-tolyl phosphine oxide (**1e**) was obtained using Grignard reagents from the corresponding bromides and diethyl phosphite according to the procedure.<sup>8</sup> The procedure was carried out under argon atmosphere. Magnesium turnings (0.345 g, 14.2 mmol) and anhydrous THF (10 mL) were loaded into a flask, and Mg was activated with iodine. Then, *o*-bromotoluene (2.5 g, 14.2 mmol) was added dropwise. The reaction mixture was refluxed for 30 minutes. After that, the mixture was cooled to 0 °C and a solution of diethyl phosphite (554  $\mu$ l, 4.3 mmol) in 2 ml of anhydrous THF was slowly added dropwise. The reaction was continued for 2 hours at room temperature. Then, 10 ml of 0.1 N HCl solution was slowly added to the mixture at 0 °C followed by additionally stirring for 20 min. After that, 10 ml of MTBE was added to the reaction mixture, followed by additionally stirring for 5 minutes. The organic layer was separated (decantation), and 15 ml of CH<sub>2</sub>Cl<sub>2</sub> was added to the remaining gel and stirred for 5 minutes. The resulting mixture was filtered through a Celite pad and washed with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were dried over MgSO<sub>4</sub> and the solvent was evaporated. The crude product was triturated with hexane.

#### Synthetic procedure for phosphine oxide (1f, h).

Phosphine oxides (**1f**, **h**) were obtained using Grignard reagents from the corresponding bromides and diethyl phosphite according to the procedure.<sup>9</sup> The procedure was carried out under argon atmosphere. Magnesium (0.306 g, 12.6 mmol) and anhydrous THF (5 mL) were loaded into a flask, and Mg was activated with iodine. Then, a solution of the corresponding bromide (2.35 g, 12.6 mmol) in 5 ml of anhydrous THF was added dropwise. The reaction mixture was stirred at room temperature for 1 hours. If the reaction with bromide does not start spontaneously, then the reaction mixture (with a small amount of bromide) is shortly heated,

followed by cooling and addition of the residue. After the completion, the mixture was cooled to 0 °C and a solution of diethyl phosphite (491  $\mu$ l, 3.8 mmol) in 2 ml of anhydrous THF was slowly added dropwise. The reaction was continued for 2 hours at room temperature. Then, 10 ml of 10% NaHCO<sub>3</sub> solution was slowly added to the mixture at 0 °C and stirred for 20 min. The resulting mixture was filtered and extracted with EtOAc (3 × 10 ml). The organic layer was dried over MgSO<sub>4</sub> and the solvent was evaporated. The resulting crude product was further purified. Di-*m*-tolylphosphine oxide (**1f**) was purified on silica gel (DCM:MeOH (99:1)).

Bis-(4-methoxyphenyl)-phosphine oxide (1h) was purified on silica gel (DCM:MeOH = 40:1-20:1).

### Synthetic procedure for phosphine oxide (1i-j).

Phosphine oxides (**1i-j**) were obtained after oxidation of the corresponding phosphines according to the procedure (method A).<sup>10</sup> A phosphine (5 mmol) was stirred in air at room temperature for 15 hours. Then, the resulting crude product was further purified.

Di-*t*-butyl phosphine oxide (1i) was purified on silica gel ( $Et_2O:MeOH$  (97:3)).

Di-cyclohexyl phosphine oxide (1j) was triturated with hexane.

### General procedure for double addition of phosphine oxides to acetylene (Scheme 1):

Phosphine oxide (0.25 mmol), DMSO (0.5 mL), KF (17 mg, 0.3 mmol), CaC<sub>2</sub> (64 mg, 1 mmol) and H<sub>2</sub>O (36  $\mu$ L, 2 mmol) were loaded in a 5 mL pressure tube. Then, the tube was sealed, and the mixture was heated at 130 °C for 2 h with vigorous stirring. After cooling to 25 °C, the mixture was filtered, diluted with water (2 mL), extracted with DCM (3 × 2 mL), and treated with brine (3 × 2 mL), and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After solvent evaporation, the crude product was washed with diethyl ether (3 × 0.5 mL).

#### General procedure for preparation of d<sub>4</sub>-ligands ((2a-c, e, h, j)-d<sub>4</sub>) (Scheme 5):

Phosphine oxide (0.5 mmol), DMSO-d<sub>6</sub> (1 mL) (or 0.05 mL of DMSO-d<sub>6</sub> and 0.45 mL of dioxane), KF (35 mg, 0.6 mmol), CaC<sub>2</sub> (128 mg, 2 mmol) and D<sub>2</sub>O (80  $\mu$ L, 4 mmol) were loaded in a 5 mL pressure tube. Then, the tube was sealed, and the mixture was heated at 130 °C for 5 h with vigorous stirring. After cooling to 25 °C, the mixture was filtered, diluted with water (2 mL), extracted with DCM (3 × 2 mL), treated with brine (3 × 2 mL), and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After solvent evaporation, the crude product was washed with diethyl ether (3 × 0.5 mL).

# Preparation of <sup>13</sup>C-DPPEO<sub>2</sub> (<sup>13</sup>C<sub>2</sub>-2a):

Diphenylphosphine oxide (2.5 mmol) with  $Ca^{13}C_2$  (10 mmol) were placed into a 20 ml pressure tube followed by the addition of 5 ml of DMSO as a solvent and 0.02 mmol of H<sub>2</sub>O and heated up to 130 °C at constant stirring. After 20 h, the mixture was filtered to dispose of inorganic precipitates. The organic phase was separated, and to extract the product from the aqueous layer, 30 ml of CHCl<sub>3</sub> was used. The organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub>.

#### General procedure for reduction of the prepared ligands:

The reduction was carried out according to the modified procedure.<sup>11</sup> A phosphine oxide (1 mmol), toluene (3.5 ml) and  $HSiCl_3$  (2 ml, 20 mmol) were placed under argon in a pressure

flask. The reaction mass was stirred for 5 hours at 100 °C. After that, 20 ml of 25% NaOH solution was added while cooling in an ice bath. The resulting mixture was left to stir overnight. Then, the organic layer was separated and the aqueous layer was extracted with diethyl ether and washed with brine. The organic layers were combined, dried over MgSO<sub>4</sub>, and the solvent was evaporated. The crude product was purified on silica gel (eluent DCM:MeOH (80:1) for **3a**, DCM – for **3e**).

#### Synthesis of Ni complexes:

Complexes with NiBr<sub>2</sub> were prepared according to the procedure<sup>12</sup> from anhydrous NiBr<sub>2</sub> and the corresponding reduced phosphorus ligands. NiBr<sub>2</sub> (82 mg, 0.375 mmol) was dissolved on heating in a minimal amount in methanol (3–4 ml). After that, the hot solution was added through a filter to a warm solution of the corresponding ligand (0.25 mmol) in 1 ml of toluene; in this case, change in the color of the solution from colorless to dark brown was observed. The resulting mixture was refluxed for 2 hours, while the growth of red crystals was observed. After cooling to 25 °C, the precipitate was filtered, washed with methanol, and dried in vacuum. Crystals suitable for XRD were obtained by slow evaporation of the solvent (a mixture of methylene chloride and diethyl ether).

### Synthesis of Pd complexes:

Complexes with  $PdCl_2$  were prepared according to the procedure<sup>13</sup> from  $K_2PdCl_4$  and the corresponding reduced phosphorus ligands.  $K_2PdCl_4$  (20 mg, 0.06 mmol) was dissolved with heating in DMF (1.25 ml). After that, the hot salt solution was added through a filter to a warm solution of DPPE (25 mg, 0.0625 mmol) in 2 ml of DCM, and color change of the solution from colorless to yellow was observed. The resulting mixture was refluxed for 2 hours, and the growth of white crystals was observed. After cooling to 25 °C, the precipitate was filtered, washed with water, diethyl ether, and dried in vacuum. Crystals suitable for XRD were obtained by slow evaporation from methylene chloride.

## S3. Spectral data and characterization

### DPPEO<sub>2</sub> (2a)

Yield 105 mg (98%), white solid, m.p. 272-273 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.62 (m, 8H), 7.50 (t, *J* = 7.2 Hz, 4H), 7.43 (t, *J* = 7.2 Hz, 8H), 2.51 (d, *J* = 2.2 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  132.2, 132.9 – 131.3 (m), 130.9 (t, *J* = 4.8 Hz), 128.9 (t, *J* = 5.9 Hz), 22.7 – 21.0 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  32.5.

Cf. lit. data.<sup>14</sup>

## $DHHEO_2(2b)$

Yield 106 mg (92%), white solid, m.p. 163-164 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.90 (d, J = 2.1 Hz, 4H), 1.81 – 1.62 (m, 8H), 1.63 – 1.47 (m, 8H), 1.45 – 1.34 (m, 8H), 1.35 – 1.20 (m, 16H), 0.97 – 0.76 (m, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  31.4, 31.0 (t, J = 7.0 Hz), 28.8 – 27.5 (m), 22.5, 21.9, 20.6 – 19.5 (m), 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  48.4. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>57</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 463.3828, found m/z 463.3830.

The compound has been previously synthesized.<sup>15</sup> However, NMR spectra were not presented in the work.

## **DBBEO**<sub>2</sub> (2c)

Yield 70 mg (80%), white solid, m.p. 173-174 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.89 (s, 4H), 1.80 – 1.60 (m, 8H), 1.59 – 1.46 (m, 8H), 1.45 – 1.31 (m, 8H), 0.90 (t, *J* = 7.2 Hz, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  28.6 – 27.1 (m), 24.3 (t, *J* = 7.1 Hz), 23.9, 20.7 – 19.1 (m), 13.7. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  48.7. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>18</sub>H<sub>41</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 251.2576, found m/z 251.2578.

The compound has been previously synthesized.<sup>16</sup> However, NMR spectra were not presented in the work.

#### $D(i-Bu)_2 EO_2 (2d)$

Yield 61 mg (70%), white solid, m.p. 155-157 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.21 – 2.02 (m, 4H), 1.92 (d, J = 2.4 Hz, 4H), 1.70 – 1.58 (m, 8H), 1.09 (d, J = 6.6 Hz, 12H), 1.08 (d, J = 6.6 Hz, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  39.2 – 37.4 (m), 25.2 – 24.8 (m), 23.8 (t, J = 1.7 Hz), 22.9 – 21.4 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  46.4. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>18</sub>H<sub>41</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 351.2576, found m/z 351.2577.

Cf. lit. data.<sup>17</sup>

## D(o-Tol)<sub>2</sub>EO<sub>2</sub> (2e)

Yield 89 mg (73%), white solid, m.p. 228-233 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 – 7.62 (m, 4H), 7.39 (t, J = 7.5 Hz, 4H), 7.32 – 7.20 (m, 4H), 7.17 (d, J = 7.4 Hz, 4H), 2.63 (d, J = 2.4 Hz, 4H), 2.23 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.8 (t, J = 4.4 Hz), 132.5 – 131.8 (m), 131.5 – 129.7 (m), 125.9 (t, J = 5.9 Hz), 21.2 (t, J = 2.0 Hz), 21.6 – 20.4 (m). <sup>31</sup>P NMR (162

MHz, CDCl<sub>3</sub>)  $\delta$  34.6. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>33</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 487.1950, found m/z 487.1953.

### $D(m-Tol)_2EO_2(2f)$

Yield 118 mg (97%), white solid, m.p. 174-178 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 – 7.53 (m, 4H), 7.47 – 7.42 (m, 4H), 7.32 – 7.27 (m, 8H), 2.49 (s, 4H), 2.33 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.9 (t, *J* = 5.8 Hz), 132.9, 132.7 – 131.5 (m), 131.4 (t, *J* = 4.6 Hz), 128.8 (t, *J* = 6.2 Hz), 127.8 (t, *J* = 4.8 Hz), 22.5 – 21.7 (m), 21.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  32.9. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>33</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 487.1950, found m/z 487.1950.

#### D(p-Tol)<sub>2</sub>EO<sub>2</sub> (2g)

Yield 101 mg (83%), white solid, m.p. 237-238 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 – 7.44 (m, 8H), 7.28 – 7.09 (m, 8H), 2.46 (s, 4H), 2.34 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  142.5, 130.9 (t, *J* = 4.8 Hz), 129.6 (t, *J* = 6.0 Hz), 129.1 – 128.5 (m), 23.3 – 21.2 (m), 21.7. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  33.1. HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>30</sub>H<sub>32</sub>O<sub>2</sub>P<sub>2</sub>Na<sup>+</sup>): m/z 509.1770, found m/z 509.1770.

#### $D(p-OMe(C_6H_4))_2EO_2(2h)$

Yield 118 mg (86%), white solid, m.p. 179-180 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.39 (m, 8H), 6.91 (d, *J* = 7.5 Hz, 8H), 3.79 (s, 12H), 2.41 (s, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.5, 132.7 (t, *J* = 5.2 Hz), 125.1 – 121.9 (m), 114.4 (t, *J* = 6.3 Hz), 55.4, 23.9 – 20.0 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  32.7. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>33</sub>O<sub>6</sub>P<sub>2</sub><sup>+</sup>): m/z 551.1747, found m/z 551.1747.

Cf. lit. data.<sup>18</sup>

#### $D(t-Bu)_2 EO_2(2i)$

Yield 60 mg (69%), white solid, m.p. 134-136 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.01 (s, 4H), 1.29 – 1.18 (m, 36H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  36.6 – 35.6 (m), 26.6, 14.6 – 13.7 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  60.7. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>18</sub>H<sub>41</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 351.2576, found m/z 351.2579.

Cf. lit. data.<sup>17</sup>

#### $D(Cy)_2EO_2\left(2j\right)$

Yield 76 mg (67%), white solid, m.p. 184-188 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.23 – 1.46 (m, 14H), 1.47 – 1.10 (m, 10H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  37.5 – 35.8 (m), 27.0 – 26.5 (m), 26.0, 25.8 (d, *J* = 22.0 Hz), 16.2 – 14.8 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  51.8. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>49</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 455.3202, found m/z 455.3201.

Cf. lit. data.<sup>19</sup>

## **DPPEO<sub>2</sub>-d<sub>4</sub> (2a-d<sub>4</sub>)**

Yield 107 mg (99%), white solid, m.p. 264-266 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 – 7.57 (m, 8H), 7.57 – 7.47 (m, 4H), 7.44 (t, *J* = 7.1 Hz, 8H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  132.1,

133.1 – 131.1 (m), 130.8 (t, J = 4.4 Hz), 128.9 (t, J = 5.7 Hz), 22.1 – 19.9 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  32.5. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  2.48 (s). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>21</sub>D<sub>4</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 435.1575, found m/z 435.1575.

## **DHHEO**<sub>2</sub>-**d**<sub>12</sub> (2**b**-**d**<sub>12</sub>)

Yield 107 mg (90%), white solid, m.p. 163-164 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.50 (s, 8H), 1.43 – 1.06 (m, 24H), 1.02 – 0.65 (m, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  31.4, 30.8 (t, *J* = 6.8 Hz), 28.6 – 26.5 (m), 22.5, 21.6, 20.2 – 18.0 (m), 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  48.3. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  1.83 (s, 4D), 1.66 (s, 8D). HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>26</sub>H<sub>44</sub>D<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Na<sup>+</sup>): m/z 497.4394, found m/z 497.4389.

## **DBBEO**<sub>2</sub>-**d**<sub>12</sub> (2**c**-**d**<sub>12</sub>)

Yield 55 mg (61%), white solid, m.p. 174-175 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.45 (s, 8H), 1.41 – 1.28 (m, 8H), 0.93 – 0.77 (m, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  28.1 – 26.2 (m), 24.4 – 24.0 (m), 23.6, 20.1 – 18.0 (m), 13.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  48.5. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  1.83 (s, 4D), 1.65 (s, 8D). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>18</sub>H<sub>29</sub>D<sub>12</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 363.3330, found m/z 463.3329.

## D(o-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>16</sub> (2e-d<sub>16</sub>)

Yield 93 mg (74%), white solid, m.p. 228-233 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (dd, J = 12.7, 6.8 Hz, 4H), 7.49 – 7.34 (m, 4H), 7.31 – 7.23 (m, 4H), 7.17 (d, J = 7.1 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.6, 132.2 – 132.0 (m), 131.4 – 129.9 (m), 125.9 (t, J = 5.9 Hz), 20.8 – 20.0 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  34.5. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  2.60 (s, 4D), 2.18 (s, 12D). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>17</sub>D<sub>16</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 503.2944, found m/z 503.2949.

## $D(o-Tol)_2EO_2-d_4$ (2e-d<sub>4</sub>)

Yield 98 mg (80%), white solid, m.p. 226-230 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (dd, J = 13.0, 6.6 Hz, 4H), 7.39 (t, J = 7.5 Hz, 4H), 7.31 – 7.22 (m, 4H), 7.17 (d, J = 7.4 Hz, 4H), 2.23 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.7 (t, J = 4.4 Hz), 132.8 – 131.7 (m), 131.4 – 129.7 (m), 125.9 (t, J = 5.8 Hz), 22.0 – 20.9 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  34.5. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  2.61 (s). HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>30</sub>H<sub>28</sub>D<sub>4</sub>O<sub>2</sub>P<sub>2</sub>Na<sup>+</sup>): m/z 513.2021, found m/z 513.2018.

## $D(p-OMe(C_6H_4))_2EO_2-d_4(2h-d_4)$

Yield 102 mg (74%), white solid, m.p. 181-182 °C. The intensity of integrals may be variable due to partial deuteration. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (s, 8H), 6.90 (d, *J* = 7.4 Hz, 5H), 3.78 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.5, 133.2 – 132.2 (m), 124.8 – 122.3 (m), 114.5 – 114.2 (m), 55.4, 22.1 – 21.5 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  32.8. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  7.63 (s, 1D), 6.96 (s, 2D), 2.40 (s, 4D). HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>30</sub>H<sub>25</sub>D<sub>7</sub>O<sub>6</sub>P<sub>2</sub>Na<sup>+</sup>): m/z 580.2004, found m/z 580.1975.

## $DCy_2EO_2$ -d<sub>4</sub> (2j-d<sub>4</sub>)

Yield 48 mg (42%), white solid, m.p. 198-199 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.03 – 1.56 (m, 24H), 1.45 – 1.09 (m, 20H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  38.4 – 34.9 (m), 27.37 – 26.24 (m), 26.0, 25.7 (d, *J* = 23.6 Hz), 16.1 – 13.3 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  50.8. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  1.84 (s). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>45</sub>D<sub>4</sub>O<sub>2</sub>P<sub>2</sub><sup>+</sup>): m/z 459.3453, found m/z 459.3454.

Cf. lit. data.<sup>20</sup>

## $^{13}$ C-DPPEO<sub>2</sub> ( $^{13}$ C<sub>2</sub>-2a)

Yield 0.513 g (96%), white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  77.82 – 7.61 (m, 8H), 7.52 (t, *J* = 7.1 Hz, 4H), 7.46 (t, *J* = 7.1 Hz, 8H), 2.83 – 2.24 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  132.3, 131.9 – 131.1 (m), 131.0 – 130.9 (m), 129.1 – 128.9 (m), 22.7 – 20.8 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  38.8 – 28.8 (m). HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>24</sub><sup>13</sup>C<sub>2</sub>H<sub>24</sub>O<sub>2</sub>P<sub>2</sub>Na<sup>+</sup>): m/z 455.1211, found m/z 455.1213.

## DPPE (3a)

Yield 0.295 g (74%), white solid, m.p. 139-140 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.22 (m, 20H), 2.10 (t, *J* = 3.7 Hz, 4H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -12.5.

Cf. lit. data.<sup>14</sup>

## $DPPE-d_4 (3a-d_4)$

Yield 0.302 g (75%), white solid, m.p. 139-140 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.28 (m, 10H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.3 – 138.2 (m), 132.9 (t, *J* = 9.3 Hz), 128.8, 128.6 (t, *J* = 3.0 Hz), 24.0 – 22.2 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -13.2. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  2.08 (s). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>21</sub>D<sub>4</sub>P<sub>2</sub><sup>+</sup>): m/z 403.1677, found m/z 403.1677.

The compound has been previously synthesized.<sup>21</sup> However, NMR spectra were not presented in the work.

## <sup>13</sup>C-DPPE (<sup>13</sup>C<sub>2</sub>-3a)

Yield 0.312 g (78%), white solid, m.p. 141-142 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 – 7.27 (m, 20H), 2.36 – 1.79 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.5 – 138.0 (m), 132.9 (t, J = 9.4 Hz), 128.8, 128.6 (t, J = 3.3 Hz), 25.1 – 23.2 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -11.9 – 13.2 (m). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>24</sub><sup>13</sup>C<sub>2</sub>H<sub>25</sub>P<sub>2</sub>): m/z 401.1493, found m/z 401.1489.

## DHHE (3b)

Yield 46 mg (72%), yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.83 – 1.07 (m, 44H), 0.88 (t, J = 6.7 Hz, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  31.7, 31.3 (t, J = 5.3 Hz), 27.3 – 26.7 (m), 26.0 (t, J = 6.3 Hz), 22.7, 22.7 – 22.3 (m), 14.2. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -26.1. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>57</sub>P<sub>2</sub><sup>+</sup>): m/z 431.3930, found m/z 431.3922.

## **DHHE-d**<sub>12</sub> (**3b-d**<sub>12</sub>)

Yield 46 mg (70%), yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.65 – 1.11 (m, 32H), 0.87 (t, J = 6.9 Hz, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  31.7, 31.3 – 31.2 (m), 26.4 – 25.9 (m), 25.9 – 25.6 (m), 22.7, 22.6 – 21.4 (m), 14.2. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -28.2. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  1.69 (s, 4D), 1.36 (s, 8D). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>26</sub>H<sub>45</sub>D<sub>12</sub>P<sub>2</sub><sup>+</sup>): m/z 443.4683, found m/z 443.4677.

## D(o-Tol)<sub>2</sub>E (3e)

Yield 35 mg (78%), white solid, m.p. 150-152 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.18 (m, 4H), 7.18 – 7.12 (m, 4H), 7.09 (t, *J* = 7.4 Hz, 4H), 7.06 – 6.99 (m, 4H), 2.40 (s, 12H), 2.06 (t, *J* = 4.4 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  142.8 – 142.3 (m), 136.7 – 136.3 (m), 131.2, 130.2 (t, *J* = 2.3 Hz), 128.6, 126.2, 22.8 (d, *J* = 3.7 Hz), 21.6 – 21.0 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -33.6. HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>33</sub>P<sub>2</sub><sup>+</sup>): m/z 455.2052, found m/z 455.2051.

Cf. lit. data.<sup>22</sup>

## D(o-Tol)<sub>2</sub>E-d<sub>4</sub> (3e-d<sub>4</sub>)

Yield 28 mg (61%), white solid, m.p. 147-152 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.18 (m, 4H), 7.18 – 7.12 (m, 4H), 7.09 (t, J = 7.4 Hz, 4H), 7.05 – 6.99 (m, 4H), 2.41 (s, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  142.8 – 142.3 (m), 136.9 – 136.4 (m), 131.2, 130.4 – 130.0 (m), 128.6, 126.2, 21.6 – 21.1 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -34.1. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) 2.02 (s). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>29</sub>D<sub>4</sub>P<sub>2</sub><sup>+</sup>): m/z 459.2303, found m/z 459.2302.

## $D(o-Tol)_2E-d_{16} (3e-d_{16})$

Yield 36 mg (77%), white solid, m.p. 151-152 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.18 (m, 4H), 7.18 – 7.12 (m, 4H), 7.10 (t, *J* = 7.4 Hz, 4H), 7.06 – 6.97 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  142.8 – 142.1 (m), 136.7 – 136.2 (m), 131.2, 130.2, 128.6, 126.2, 22.3 – 22.0 (m), 21.0 – 20.3 (m). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -34.1. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>)  $\delta$  2.38 (s, 12D), 2.03 (s, 4D). HRMS exact mass calculated for [M+H]<sup>+</sup> (C<sub>30</sub>H<sub>17</sub>D<sub>16</sub>P<sub>2</sub><sup>+</sup>): m/z 503.2944, found m/z 503.2949.

## Ni(DPPE)Br<sub>2</sub> (NiBr<sub>2</sub>(3a))

Yield 123 mg (80%), red crystals, decompose at 280 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 7.94 (m, 8H), 7.57 (t, *J* = 7.3 Hz, 4H), 7.50 (t, *J* = 6.9 Hz, 8H), 2.16 – 2.06 (m, 4H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  65.6. HRMS exact mass calculated for [M-Br]<sup>+</sup> (C<sub>26</sub>H<sub>24</sub>P<sub>2</sub>NiBr<sup>+</sup>): m/z 536.9863, found m/z 536.9852.

## $Ni(DPPE-d_4)Br_2(NiBr_2(3a-d_4))$

Yield 128 mg (83%), red crystals, decompose at 280 °C.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 – 7.90 (m, 8H), 7.57 (t, *J* = 7.3 Hz, 4H), 7.50 (t, *J* = 7.4 Hz, 8H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  65.0. HRMS exact mass calculated for [M-Br]<sup>+</sup> (C<sub>26</sub>H<sub>20</sub>D<sub>4</sub>P<sub>2</sub>NiBr<sup>+</sup>): m/z 541.0114, found m/z 541.0100.

#### Ni(D(oTol)<sub>2</sub>E)Br<sub>2</sub> (NiBr<sub>2</sub>(3e))

Yield 162 mg (96%), red crystals poorly soluble, decompose at 280 °C. The experimental diffraction patterns of the samples (Fig. S110) are in a good agreement with those simulated from the single-crystal data and this indicates that the powders exhibit the same packing features as the corresponding crystal.

### $Ni(D(oTol)_2E-d_{16})Br_2(NiBr_2(3e-d_{16}))$

Yield 158 mg (92%), poorly soluble red crystals, decompose at 280 °C. The experimental diffraction patterns of the samples (Fig. S111) are in a good agreement with those simulated from the single-crystal data and this indicates that the powders exhibit the same packing features as the corresponding crystal.

### Ni(D(oTol)<sub>2</sub>E-d<sub>4</sub>)Br<sub>2</sub> (NiBr<sub>2</sub>(3e-d<sub>4</sub>))

Yield 151 mg (89%), poorly soluble red crystals, decompose at 280 °C. The experimental diffraction patterns of the samples (Fig. S112) are in a good agreement with those simulated from the single-crystal data and this indicates that the powders exhibit the same packing features as the corresponding crystal.

### $Pd(DPPE)Cl_2(PdCl_2(3a))$

Yield 30 mg (87%), white crystals, decompose at 270 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 – 7.83 (m, 8H), 7.62 – 7.53 (m, 4H), 7.53 – 7.44 (m, 8H), 2.50 – 2.40 (m, 4H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  63.7. HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>26</sub>H<sub>24</sub>P<sub>2</sub>PdCl<sub>2</sub>Na<sup>+</sup>): m/z 596.9661, found m/z 596.9672

## $Pd(DPPE-d_4)Cl_2(PdCl_2(3a-d_4))$

Yield 31 mg (89%), white crystals, decompose at 270 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 7.76 (m, 8H), 7.60 – 7.52 (m, 4H), 7.52 – 7.44 (m, 8H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  63.1. HRMS exact mass calculated for [M+Na]<sup>+</sup> (C<sub>26</sub>H<sub>20</sub>D<sub>4</sub>P<sub>2</sub>PdCl<sub>2</sub>Na<sup>+</sup>): m/z 600.9913, found m/z 600.9920

# S4. NMR spectra



Figure S1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub> (2a).



Figure S2. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub> (2a).



Figure S3. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub> (2a).

 $DHHEO_2(2b)$ 



Figure S4. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DHHEO<sub>2</sub> (2b).



Figure S6. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DHHEO<sub>2</sub> (2b).



**Figure S7.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub> (2c).



Figure S8. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub> (2c).





 $D(i-Bu)_2EO_2(2d)$ 



Figure S10. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(i-Bu)_2EO_2$  (2d).





**Figure S11.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*i*-Bu)<sub>2</sub>EO<sub>2</sub> (**2d**).





**Figure S12.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*i*-Bu)<sub>2</sub>EO<sub>2</sub> (**2d**).

 $D(o-Tol)_2EO_2(2e)$ 



Figure S13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(o-Tol)_2EO_2(2e)$ .



Figure S14. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub> (2e).



**Figure S15.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub> (**2e**).

D(*m*-Tol)<sub>2</sub>EO<sub>2</sub> (**2f**)



Figure S16. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(m-Tol)_2EO_2(2f)$ .



**Figure S17.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*m*-Tol)<sub>2</sub>EO<sub>2</sub> (**2f**).



**Figure S18.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*m*-Tol)<sub>2</sub>EO<sub>2</sub> (**2f**).



Figure S19. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(p-Tol)_2EO_2(2g)$ .



**Figure S20.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*p*-Tol)<sub>2</sub>EO<sub>2</sub> (**2g**).





 $D(p-OMe(C_6H_4))_2EO_2(2h)$ 



Figure S22. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(p-OMe(C_6H_4))_2EO_2$  (2h).



Figure S24. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of  $D(p-OMe(C_6H_4))_2EO_2(2h)$ .



Figure S25. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(t-Bu)_2EO_2$  (2i).



**Figure S26.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*t*-Bu)<sub>2</sub>EO<sub>2</sub> (**2i**).



230 220 210 200 130 120 110 100 f1 (ppm) . 40 -10 -20



 $D(Cy)_2EO_2(1j)$ 









**Figure S30.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(Cy)<sub>2</sub>EO<sub>2</sub> (**1j**).



Figure S31. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub>-d<sub>4</sub> (2a-d<sub>4</sub>).







Figure S33. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub>-d<sub>4</sub> (2a-d<sub>4</sub>).



Figure S34. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>) spectrum of DPPEO<sub>2</sub>-d<sub>4</sub> (2a-d<sub>4</sub>).



Figure S35. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DHHEO<sub>2</sub>- $d_{12}$  (2b- $d_{12}$ ).



**Figure S36.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DHHEO<sub>2</sub>-d<sub>12</sub> (**2b-d<sub>12</sub>**).









Figure S39. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub>- $d_{12}$  (2c- $d_{12}$ ).



**Figure S40.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub>-d<sub>12</sub> (**2c-d<sub>12</sub>**).





**Figure S41.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub>-d<sub>12</sub> (**2c-d<sub>12</sub>**).



Figure S42. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>) spectrum of DBBEO<sub>2</sub>-d<sub>12</sub> (2c-d<sub>12</sub>).



**Figure S43.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>16</sub> (**2e-d**<sub>16</sub>).



**Figure S44.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>16</sub> (**2e-d**<sub>16</sub>).



Figure S45. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>16</sub> (2e-d<sub>16</sub>).




## $D(o-Tol)_2EO_2-d_4(2e-d_4)$



Figure S47. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $D(o-Tol)_2EO_2-d_4$  (2e-d<sub>4</sub>).



**Figure S48.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>4</sub> (**2e-d**<sub>4</sub>).



Figure S49. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of  $D(o-Tol)_2EO_2-d_4$  (2e-d<sub>4</sub>).



Figure S50. <sup>2</sup>H NMR (77 MHz, CHCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>EO<sub>2</sub>-d<sub>4</sub> (2e-d<sub>4</sub>).



**Figure S51.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of D(*p*-OMe(C<sub>6</sub>H<sub>4</sub>))<sub>2</sub>EO<sub>2</sub>-d<sub>4</sub> (**2h-d**<sub>4</sub>).



**Figure S52.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*p*-OMe(C<sub>6</sub>H<sub>4</sub>))<sub>2</sub>EO<sub>2</sub>-d<sub>4</sub> (**2h-d**<sub>4</sub>).



Figure S53. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of  $D(p-OMe(C_6H_4))_2EO_2-d_4$  (2h-d<sub>4</sub>).



Figure S54. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) spectrum of  $D(p-OMe(C_6H_4))_2EO_2-d_4$  (2h-d<sub>4</sub>).



Figure S55. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DCy<sub>2</sub>EO<sub>2</sub>-d<sub>4</sub> (2j-d<sub>4</sub>).



Figure S56. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of  $DCy_2EO_2-d_4$  (2j-d<sub>4</sub>).







Figure S59. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C-DPPEO<sub>2</sub> ( ${}^{13}C_2-2a$ ).



Figure S60. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C-DPPEO<sub>2</sub> ( $^{13}C_2$ -2a).





DPPE-d<sub>4</sub> ( $3a-d_4$ )



Figure S62. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DPPE-d<sub>4</sub> (3a-d<sub>4</sub>).





Figure S63. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DPPE-d<sub>4</sub> (3a-d<sub>4</sub>).



Figure S64. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DPPE-d<sub>4</sub> (3a-d<sub>4</sub>).



Figure S65. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) spectrum of DPPE-d<sub>4</sub> (3a-d<sub>4</sub>).

 $^{13}$ C-DPPE ( $^{13}$ C<sub>2</sub>-3a)



Figure S66. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C-DPPE ( $^{13}C_2$ -3a).



Figure S67. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C-DPPE ( $^{13}C_2$ -3a).



Figure S68. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C-DPPE ( $^{13}C_2$ -3a).





Figure S70. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of DHHE (3b).



Figure S71. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DHHE (3b).

### DHHE-d<sub>12</sub> (**3b-d<sub>12</sub>**)



Figure S72. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of DHHE-d<sub>12</sub> (3b-d<sub>4</sub>).





**Figure S74.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DHHE-d<sub>12</sub> (**3b-d<sub>12</sub>**).



Figure S75. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) spectrum of DHHE-d<sub>12</sub> (3b-d<sub>12</sub>).

D(o-Tol)<sub>2</sub>E (3e)



**Figure S76.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E (**3e**).





-30

-50

-70

-90

-110

-140

-170

180

160

140

120

100

80

60

40



Figure S78. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of  $D(o-Tol)_2E$  (3e).



**Figure S79.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>4</sub> (**3e-d**<sub>4</sub>).



**Figure S80.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>4</sub> (**3e-d**<sub>4</sub>).



**Figure S81.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>4</sub> (**3e-d**<sub>4</sub>).



Figure S82. <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>4</sub> (3e-d<sub>4</sub>).



**Figure S83.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>16</sub> (**3e-d**<sub>16</sub>).



**Figure S84.** <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>16</sub> (**3e-d**<sub>16</sub>).



**Figure S85.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>16</sub> (**3e-d**<sub>16</sub>).



**Figure S86.** <sup>2</sup>H NMR (61 MHz, CHCl<sub>3</sub>) spectrum of D(*o*-Tol)<sub>2</sub>E-d<sub>16</sub> (**3e-d**<sub>16</sub>).

160

140

120

100

80

60

40

20



Figure S87. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ni(DPPE)Br<sub>2</sub> (NiBr<sub>2</sub>(3a)).



Figure S88. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of Ni(DPPE)Br<sub>2</sub> (NiBr<sub>2</sub>(3a)).

-30

-50

-70

-110

-90

-140

-170



Figure S89. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ni(DPPE-d<sub>4</sub>)Br<sub>2</sub> (NiBr<sub>2</sub>(3a-d<sub>4</sub>)).



Figure S90. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of Ni(DPPE-d<sub>4</sub>)Br<sub>2</sub> (NiBr<sub>2</sub>(3a-d<sub>4</sub>)).

# $Pd(DPPE)Cl_2(PdCl_2(3a))$



Figure S91. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Pd(DPPE)Cl<sub>2</sub> (PdCl<sub>2</sub>(3a)).





Figure S92. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of Pd(DPPE)Cl<sub>2</sub> (PdCl<sub>2</sub>(3a)).

## $Pd(DPPE-d_4)Cl_2\left(PdCl_2(3a-d_4)\right)$



Figure S93. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Pd(DPPE-d<sub>4</sub>)Cl<sub>2</sub> (PdCl<sub>2</sub>(3a-d<sub>4</sub>)).



Figure S94. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) spectrum of Pd(DPPE-d<sub>4</sub>)Cl<sub>2</sub> (PdCl<sub>2</sub>(3a-d<sub>4</sub>)).

#### **S5.** Calculations

Please, see Table 2 in the manuscript.



| Η | -4.18669204532232 | -0.53244808675246 | -2.82433193347946 |
|---|-------------------|-------------------|-------------------|
| C | -0.89301948392977 | -1.40363270638681 | -2.96611410702686 |
| Н | -2.65641136933608 | -2.10459153444955 | -3.99658729939801 |
| С | -1.24677360639432 | 0.35965880792021  | -1.33795104620467 |
| С | -0.38441423674345 | -0.51902214069626 | -2.01279121657641 |
| Н | -3.28997089748765 | 1.05347365722193  | -1.14710448709864 |
| Н | -0.22093355464456 | -2.07898684770480 | -3.48968793819957 |
| Н | 0.68162988425663  | -0.49330397415006 | -1.80153956739731 |
| Н | -1.59346048889385 | 2.45731188000416  | 0.01313132988725  |

| Р | -0.69339898254853 | 1.49777794001222  | 0.00154544731726  |
|---|-------------------|-------------------|-------------------|
| 0 | 0.68801516660868  | 2.04032474952291  | -0.25799432227617 |
| С | -2.07576933549731 | -0.10580584815486 | 3.57393435746921  |
| С | -0.90009473030816 | -0.63546138533668 | 4.11471903467143  |
| С | -2.04615493118812 | 0.54528675385625  | 2.33722784404634  |
| Н | -3.01429122663499 | -0.19291304587196 | 4.11610173817873  |
| С | 0.30690153991018  | -0.50603317459504 | 3.42003584567681  |
| Н | -0.92370771874385 | -1.13971839770433 | 5.07776349921655  |
| С | -0.83979428398628 | 0.66889024445548  | 1.62942484592012  |
| С | 0.33888692572007  | 0.14536426913721  | 2.18439878750674  |
| Н | -2.96649536794839 | 0.96677709202956  | 1.94075132299518  |
| Н | 1.22514632912636  | -0.90616372533900 | 3.84289248441036  |
| Н | 1.27694325179909  | 0.26813799365995  | 1.64968982942720  |
| С | -2.63179365101587 | -1.51251567902859 | -2.09867870458449 |
| C | -1.93130996510674 | -1.50765482886566 | -3.30961514367549 |
| С | -2.27134965744765 | -0.62857148592696 | -1.07805579909229 |
| Н | -3.45344552736879 | -2.20819921891902 | -1.94595220861559 |
| C | -0.86622223443490 | -0.62069905889865 | -3.49579027440868 |
| Н | -2.21094090354411 | -2.19802766428966 | -4.10184752337741 |
| С | -1.20894140126797 | 0.26982873963014  | -1.26237048442987 |
| С | -0.50486815609692 | 0.26557990684179  | -2.47700705046129 |



| Η | -2.81180167986957 | -0.65689017398096 | -0.13502847141484 |
|---|-------------------|-------------------|-------------------|
| Η | -0.31350623664555 | -0.62051434270557 | -4.43216890790743 |
| Η | 0.32911622662707  | 0.95000225741310  | -2.60737389547713 |
| С | -1.99037724492384 | 2.77645405426465  | -0.03849889833662 |
| С | -1.65903223846995 | 4.06044981175681  | -0.21331909463628 |
| Η | -3.03438193066206 | 2.47359601176322  | 0.04302005474219  |
| Η | -0.61774839531201 | 4.35930737841065  | -0.31393243405527 |
| Η | -2.41379364076986 | 4.84293082686294  | -0.26523187882928 |
|   |                   |                   |                   |

| Р | -1.30571398063995 | 1.39450325359797  | -0.51584532429635 |
|---|-------------------|-------------------|-------------------|
| 0 | -0.24027827219055 | 1.89851390785302  | -1.45561161691044 |
| С | -0.48496966504297 | -0.38105106766631 | 3.14750433502252  |
| С | 0.43861956388563  | 0.51478641027553  | 3.69448491131960  |
| С | -1.03457286365813 | -0.13615852485150 | 1.88542993070498  |
| Н | -0.77126540905433 | -1.27549900207059 | 3.69583616469548  |
| С | 0.81373763019183  | 1.65404031107794  | 2.97468920982910  |
| Н | 0.86856714013387  | 0.32233290955843  | 4.67479809970235  |
| С | -0.66826453587235 | 1.01078241439668  | 1.16166086436867  |
| С | 0.27173427251106  | 1.90334335904799  | 1.71071545101193  |
| Н | -1.73386062171268 | -0.85270283467969 | 1.46506766209521  |
| Н | 1.53597177255286  | 2.35120195636978  | 3.39238357602573  |
| Н | 0.56703444120931  | 2.79054388654935  | 1.15498339330109  |
| С | -3.80125057103596 | -1.86725948044702 | -1.23155132724767 |
| С | -3.11620471227313 | -2.50854511092113 | -2.26894507469009 |
| С | -3.29198202732750 | -0.68783978128850 | -0.68089427652273 |
| Н | -4.73116662399298 | -2.28348584976752 | -0.85156393261935 |
| С | -1.92403051478115 | -1.96491398440553 | -2.75650823409516 |
| Н | -3.51303509146081 | -3.42605664887701 | -2.69676436905278 |
| С | -2.09147875984594 | -0.13736459916196 | -1.16126371210831 |
| С | -1.41473134785549 | -0.78424248584107 | -2.20817499180983 |
| Н | -3.83852078841233 | -0.20834566629857 | 0.12792662378077  |



 $(C_6H_5)_2P(O)CH_2CH_2P(O)(C_6H_5)_2\\$ 

(DA)

| Η | -1.39094432057638 | -2.45743973878850 | -3.56609003724343 |
|---|-------------------|-------------------|-------------------|
| Η | -0.49530869434655 | -0.34674148666639 | -2.58752326762933 |
| С | -2.73354112954494 | 2.56475198240738  | -0.30984247480836 |
| С | -2.57400923496043 | 3.81374616195612  | 0.58192157060498  |
| Η | -0.58082827506530 | 4.49281932273450  | -4.73985056220024 |
| С | -1.16275459113920 | 5.05557684775405  | -4.01407002314547 |
| Η | -2.20861604884657 | 6.21631773741678  | -5.50517324035601 |
| С | -2.07785398607883 | 6.02204288671515  | -4.44309293964706 |
| С | -0.98387895476158 | 4.80740496495884  | -2.65028942062168 |
| Н | -0.27997479086492 | 4.04900866560257  | -2.31821614814509 |
| 0 | 0.04208122260196  | 4.85326493495411  | 0.34017916881013  |
| С | -2.82047221648918 | 6.74426399216719  | -3.50380472719660 |
| С | -1.73364516261430 | 5.52728372472236  | -1.70264919009875 |
| С | -2.64827195890131 | 6.50040703383917  | -2.13805119799520 |
| Р | -1.40726045492692 | 5.16401993429609  | 0.06444211617054  |
| Η | -3.52505162166243 | 7.50505544019524  | -3.83129510348110 |
| Η | -3.21400206052949 | 7.08590298033042  | -1.41878449822801 |
| Η | 0.08868305224265  | 7.18482793178148  | 1.33905369793565  |
| С | -1.96604857106231 | 6.62591273908941  | 1.03061233722752  |
| С | -0.94662372138013 | 7.45340954809325  | 1.53028254866214  |
| С | -3.30480828214202 | 6.95588426857210  | 1.30011972338120  |
| Η | -4.11670374270909 | 6.33495845971466  | 0.92901919537355  |
| C | -1.26092680654421 | 8.59285210036457  | 2.27595425723520  |
| Η | -0.46290163534873 | 9.22491855215045  | 2.65770536773261  |
| C | -3.61820131272656 | 8.09383076919704  | 2.04939923088631  |
| C | -2.59637572265525 | 8.91486838069730  | 2.53677329984018  |
| Η | -4.65853325536561 | 8.33618498253792  | 2.25278166582982  |
| Η | -2.84125512648084 | 9.79893445808037  | 3.12052382756393  |
| Η | -3.57341431145188 | 1.98225064592179  | 0.08888369690673  |
| Η | -3.01082197670313 | 2.85196473105710  | -1.33246035712883 |
| Н | -3.56749653314906 | 4.26684181129721  | 0.68599905167858  |







(N)

| 24 |                   |                   |                   |
|----|-------------------|-------------------|-------------------|
| С  | 3.81516315237673  | -2.45319141441294 | -2.53138372390217 |
| С  | 3.87098967606873  | -1.18125229581686 | -1.95227390188626 |
| Н  | 4.47156872629969  | -2.71319288988568 | -3.35740153887512 |
| Н  | 4.56722161671351  | -0.43911440389387 | -2.33651827554048 |
| С  | 2.89671610795827  | -3.38360407016067 | -2.03330608678713 |
| С  | 3.02934708922910  | -0.83521567641701 | -0.89304296757490 |
| Н  | 2.83453563811617  | -4.37752088763413 | -2.47050862401984 |
| Н  | 3.06172779653963  | 0.16911333693503  | -0.48336302604802 |
| С  | 2.06404528887125  | -3.05476533716731 | -0.96347730622479 |
| C  | 2.11863658344213  | -1.77575960724412 | -0.37599778036649 |
| N  | 1.22601238049003  | -1.47371315773003 | 0.66206475596033  |
| Н  | 1.36757057105333  | -3.79301276272038 | -0.56951749356423 |
| С  | 1.37563184672112  | -0.57893659081476 | 1.73039571263348  |
| С  | 2.63069167097315  | -0.13968351026054 | 2.19158843044205  |
| Н  | 3.53886466954071  | -0.49065013239390 | 1.71316695374716  |
| С  | 0.21884433670989  | -0.14185952633136 | 2.40660431278792  |
| С  | 2.71375543634963  | 0.72193258478639  | 3.28785904448732  |
| Н  | -0.75877222869958 | -0.46868886966025 | 2.05614337772838  |
| С  | 0.31527217310177  | 0.70629114636326  | 3.50912706961719  |
| С  | 1.56369943888065  | 1.15340598778711  | 3.95611091287115  |
| Н  | 3.69456848334463  | 1.04519027629407  | 3.62948470842506  |
| Н  | -0.59307956808825 | 1.02718764655922  | 4.01388277116388  |
| Н  | 1.63817700014363  | 1.82157907049286  | 4.80977673024211  |
| Н  | 0.38204211386405  | -2.02987891667413 | 0.68115594468339  |
|    |                   |                   |                   |

| Н | -0.89592903180463 | -3.61140355901083 | 3.10563824463676  |
|---|-------------------|-------------------|-------------------|
| C | 3.22728208962981  | -2.25231188031641 | -2.45245083889846 |
| C | 3.09162613589152  | -0.98107463257596 | -1.88092286431798 |
| Н | 3.69682796720909  | -2.37144969868882 | -3.42527415095112 |
| Н | 3.45027394630771  | -0.10330509933688 | -2.41349793298634 |
| C | 2.75570102908975  | -3.36511472791628 | -1.75195968199238 |
| C | 2.48323441468053  | -0.82043967590837 | -0.63676857226804 |
| Н | 2.86561898708046  | -4.36190482784138 | -2.17279747595661 |
| Н | 2.36852400969680  | 0.17191525284033  | -0.21107910203448 |
| C | 2.16094461460276  | -3.21754783958888 | -0.49556648537796 |
| C | 2.00736996644027  | -1.93977235917493 | 0.07226012356012  |
| N | 1.36626347414097  | -1.77240974775197 | 1.32672962794576  |
| Н | 1.83864994868595  | -4.09630823597965 | 0.05495125892808  |
| C | 1.84590534826175  | -0.77963279713616 | 2.23926242538358  |
| C | 3.20339165216783  | -0.73585822479154 | 2.58877236359589  |
| Η | 3.88738234495342  | -1.46578646508196 | 2.16465083474183  |
| C | 0.96100526470251  | 0.15910265543142  | 2.78924100103734  |
| C | 3.67037330975903  | 0.24279487877585  | 3.47018947697907  |
| Η | -0.09011642181215 | 0.12176636628657  | 2.51828841733781  |
| C | 1.43063029318804  | 1.12696700924464  | 3.67941818540417  |
| C | 2.78695014197770  | 1.17589463866409  | 4.02147178321702  |
| Η | 4.72538423488230  | 0.26795795316303  | 3.73236851948166  |
| Н | 0.73635654019348  | 1.85168575822501  | 4.09801150748751  |
| Н | 3.15066838919173  | 1.93352725754448  | 4.71091004491143  |
| С | 0.36472232213214  | -2.67042128773346 | 1.71614579471631  |
| Η | -0.09267131940343 | -3.17856242345582 | 0.87092313136234  |
| C | -0.07167028055936 | -2.92080214212278 | 2.96319775070880  |
| Η | 0.34810062871402  | -2.44840614576334 | 3.84535661334787  |
|   |                   |                   |                   |



(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>NVy (VE)

| С | 3.89990241713622  | -2.86070043111102 | -1.85632504816593 |
|---|-------------------|-------------------|-------------------|
| С | 3.81678557049803  | -1.50203713648495 | -1.52875071679392 |
| Н | 4.52633206201876  | -3.19636559335224 | -2.67824133196578 |
| Н | 4.37413328575481  | -0.76709115805182 | -2.10544658256074 |
| С | 3.15565745633942  | -3.77371967370095 | -1.10695330059699 |
| С | 3.01088470018324  | -1.06523213551860 | -0.47965136161977 |
| Н | 3.20056927535989  | -4.83548437938118 | -1.33910686376568 |
| Н | 2.94624616397965  | -0.00422019071455 | -0.26098503284821 |
| С | 2.35354963762312  | -3.35025467784081 | -0.04333470736070 |
| С | 2.26602735700821  | -1.98345183917396 | 0.29406783597005  |
| N | 1.43311502416054  | -1.52526015416298 | 1.33178434338743  |
| Н | 1.80624411190511  | -4.09665903589267 | 0.52213979706722  |
| С | 1.70541474251586  | -0.29774324057456 | 2.00681610563339  |
| С | 2.97650040549280  | -0.03647306225562 | 2.54753917668265  |
| Н | 3.76720166104239  | -0.77184535927086 | 2.42578498197876  |
| С | 0.69114702002624  | 0.65994330737409  | 2.16949442034230  |
| С | 3.22386004201799  | 1.15578499576452  | 3.23022355684792  |
| Н | -0.28879493415915 | 0.48155326416901  | 1.73416180068038  |
| С | 0.93771463618439  | 1.84372449136232  | 2.87060269028127  |
| С | 2.20515735302470  | 2.10000270665890  | 3.40173409748131  |
| Н | 4.21347806883242  | 1.34063444528069  | 3.64154516246709  |
| Н | 0.13961579121052  | 2.57327351535038  | 2.98655337005467  |
| Н | 2.39811026504561  | 3.02371176040132  | 3.94106326621148  |
| С | 0.38473867118274  | -2.37816622643878 | 1.89315810797268  |
| С | 0.85027270238872  | -3.18290362725052 | 3.13196507659692  |
| Н | -3.18559112448498 | -4.77745021351975 | 7.09408172918585  |
| Н | -1.73974722762365 | -5.54826665176718 | 5.26740250895084  |
| С | -2.61691217255503 | -4.04555451893949 | 6.52459856471976  |
| С | -1.80069405430032 | -4.48691998404619 | 5.48536705445513  |
| С | -2.69657543391587 | -2.68654553835051 | 6.85144320849168  |



 $(C_6H_5)_2NCH_2CH_2N(C_6H_5)_2$ 

(DA)

| Н2.0/060136888858                 | -6.9128710/011270                             | 1 3516/312725839                                               |
|-----------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| 11 -2.74000130000030              | -0.7120/1049112/0                             | 1.3310+312/23037                                               |
| C -1.95927615604376               | -6.72746111118957                             | 1.78211643052563                                               |
| C -1.72206385616212               | -5.52981838054033                             | 2.45912063814052                                               |
| Н -2.51247672529073               | -4.79066602498480                             | 2.55801892944362                                               |
| Н -3.33124094492243               | -2.34751606630644                             | 7.66561494789602                                               |
| C -0.94042682160968               | -7.67650391672731                             | 1.64097757537442                                               |
| C -1.04105211507173               | -3.57285313751943                             | 4.72096742075939                                               |
| C -0.46182265902365               | -5.26820466777316                             | 3.02393065781115                                               |
| N -0.19848523734742               | -4.03521575886638                             | 3.69339106433355                                               |
| Н -1.12523730450696               | -8.60450644604669                             | 1.10616506571548                                               |
| C 0.31647288346369                | -7.41985554250986                             | 2.19644371868452                                               |
| C -1.93792146256338               | -1.77776845300173                             | 6.11141951833793                                               |
| C 0.55231495996203                | -6.23045307035438                             | 2.89174147856722                                               |
| C -1.12518243340530               | -2.20552990644669                             | 5.05765332850027                                               |
| Н 1.11415083857572                | -8.15319175899828                             | 2.10392115714603                                               |
| Н 1.52333543119304                | -6.05031379688663                             | 3.34605288166403                                               |
| Н -1.97937784167774               | -0.71577440427155                             | 6.34320759322148                                               |
| Н -0.56630287619102               | -1.46190565810228                             | 4.49998062596352                                               |
| Н 1.70314344276982                | -3.80970360415431                             | 2.85336559451286                                               |
| Н 1.20860484563325                | -2.50083273849291                             | 3.90874952169940                                               |
| Н 0.02811239476844                | -3.06038912078251                             | 1.11586476008167                                               |
| Н -0.46961046755393               | -1.75316904549382                             | 2.17124205458155                                               |
|                                   | HCECH                                         | n-C <sub>12</sub> H <sub>25</sub> SH                           |
| n-C <sub>12</sub> H <sub>25</sub> | ── <b>─</b> n-C <sub>12</sub> H <sub>25</sub> | $r_{5}$ n-C <sub>12</sub> H <sub>25</sub> S <sup>-12-125</sup> |
| 39                                |                                               |                                                                |

| 39                  |                  |                  | . <b>%</b>       |
|---------------------|------------------|------------------|------------------|
| S 6.41660941763706  | 5.54702497016820 | 6.04035073441257 | A A A A A        |
| C 7.86104843152543  | 5.68322367189096 | 4.90120751583568 | Sold a second    |
| C 8.58337336288680  | 4.36130779685664 | 4.62639611156274 | e                |
| C 9.83205308895397  | 4.53884524247609 | 3.74627436551573 | $C_{12}H_{25}SH$ |
| C 10.55776232129982 | 3.21461839595013 | 3.46383713125634 | (N)              |
| C 11.84923143028887 | 3.37554320934684 | 2.64919941326530 |                  |
|                     |                  |                  |                  |

| С | 12.56769149855334 | 2.04442029020002  | 2.38171427947447  |  |
|---|-------------------|-------------------|-------------------|--|
| C | 13.89174486028782 | 2.19790734252499  | 1.62013556556707  |  |
| С | 14.61417030268941 | 0.86561899204635  | 1.37096073592253  |  |
| С | 15.94575312534888 | 1.01870956764185  | 0.62173117383513  |  |
| С | 16.67319502724827 | -0.31163158774066 | 0.37801173664474  |  |
| C | 17.99922883897528 | -0.15808523074948 | -0.38131182734991 |  |
| C | 18.72440490448695 | -1.49018926921229 | -0.61278825934145 |  |
| Н | 8.86507865189418  | 3.90143316917555  | 5.58314704846747  |  |
| Н | 7.88841203815498  | 3.66162041418058  | 4.13887399178537  |  |
| Н | 10.52698769724772 | 5.23527420616709  | 4.24017495834679  |  |
| Н | 9.54892078826856  | 5.01141624933230  | 2.79326819050572  |  |
| Н | 10.79572989795153 | 2.72456430809099  | 4.42049371199960  |  |
| Н | 9.87482872236473  | 2.53263835558292  | 2.93422503183682  |  |
| Н | 11.61948010023729 | 3.86589969718468  | 1.69049274350995  |  |
| Н | 12.53145116262422 | 4.05449832852034  | 3.18383668384729  |  |
| Н | 11.89809609486923 | 1.37678261023719  | 1.81767455625253  |  |
| Н | 12.76097889776362 | 1.54095410554148  | 3.34180718104722  |  |
| Н | 13.70202938038915 | 2.69433341597082  | 0.65567452679405  |  |
| Н | 14.55720356323657 | 2.87060963277839  | 2.18319545626089  |  |
| Н | 13.95252290297837 | 0.19428753908499  | 0.80182445421255  |  |
| Н | 14.79652188321622 | 0.36730385582886  | 2.33583205016857  |  |
| Н | 16.60557134459429 | 1.69358529831809  | 1.18886768163336  |  |
| Н | 15.76265185694968 | 1.51357513050666  | -0.34486732379531 |  |
| Н | 16.86469051448924 | -0.80329705529174 | 1.34464276935930  |  |
| Н | 16.01207970010368 | -0.99048744320303 | -0.18311595529113 |  |
| Н | 18.65830578802034 | 0.52482104216103  | 0.17536380668646  |  |
| Н | 17.80694899930399 | 0.32646064030738  | -1.35029620942829 |  |
| Н | 18.96415305379790 | -1.98215722523728 | 0.33923449831217  |  |
| Н | 19.66506423824326 | -1.34491231918404 | -1.15856836767238 |  |
| Н | 18.10426358083935 | -2.18348381778125 | -1.19648090968380 |  |
| Н | 7.53552706133930  | 6.15697686676293  | 3.96818899793929  |  |

| Η  | 8.53174678424657  | 6.39036947018932  | 5.40369990886327  |
|----|-------------------|-------------------|-------------------|
| Н  | 5.68692868669397  | 4.70819013337612  | 5.27145184144123  |
| 43 |                   |                   |                   |
| S  | 5.55070586971723  | 5.79739092377232  | 4.16733762945174  |
| С  | 7.24051231610630  | 5.88046300984742  | 3.44338066738428  |
| С  | 7.99225442522515  | 4.54608041950432  | 3.41455635528569  |
| С  | 9.38718550268092  | 4.67100782255745  | 2.78047246006421  |
| С  | 10.15127027660136 | 3.33910697369721  | 2.73427850523183  |
| С  | 11.54448044611683 | 3.45327965148148  | 2.09850850288989  |
| С  | 12.30668613702563 | 2.12094614910008  | 2.04699664995177  |
| С  | 13.69779782301234 | 2.23357561767817  | 1.40638331275685  |
| С  | 14.46274583468645 | 0.90275490480029  | 1.35664194723535  |
| С  | 15.85041404810473 | 1.01628794175412  | 0.70853191415770  |
| С  | 16.61794118338961 | -0.31275424401737 | 0.65741695828027  |
| С  | 18.00331120202247 | -0.19888848039395 | 0.00436220655070  |
| С  | 18.76401546585969 | -1.53051417098625 | -0.04061341648304 |
| Н  | 7.80951990911909  | 6.64433392148348  | 3.98921136830225  |
| Н  | 7.08667717063440  | 6.26149380898727  | 2.42680097057860  |
| Н  | 8.08593058727220  | 4.15887811694705  | 4.43860391367748  |
| Η  | 7.39442406509644  | 3.81033504828863  | 2.85953587410953  |
| Н  | 9.97975701747425  | 5.41040421886123  | 3.34100966319743  |
| Н  | 9.28954662457021  | 5.06818592284245  | 1.75829053381103  |
| Н  | 10.24920143801294 | 2.94223204910440  | 3.75638706746953  |
| Η  | 9.55657943449554  | 2.60026692742697  | 2.17565463277292  |
| Η  | 11.44531710689655 | 3.85346758089961  | 1.07755346704540  |
| Η  | 12.14006582835751 | 4.19071696859865  | 2.65864801687927  |
| Η  | 11.70936971183193 | 1.38282920105970  | 1.48968928272137  |
| Η  | 12.40860017683480 | 1.72201151142504  | 3.06817614386845  |
| Н  | 13.59491490422606 | 2.63041607467475  | 0.38444039469021  |
| Н  | 14.29421450408095 | 2.97385998750888  | 1.96195204909414  |
| Н  | 13.86461343479774 | 0.16078730687359  | 0.80526351653394  |



C<sub>12</sub>H<sub>25</sub>SVy (VE)

| H 14 57082768411238                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 14.57002700411250                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50818154680483                                                                                                                                                                                                                                                                                                                                                                                                  | 2.37889722222290                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H 16.44826019449730                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.75899360632272                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25936886664378                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 15.74138998494912                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.41080749190591                                                                                                                                                                                                                                                                                                                                                                                                  | -0.31370929898638                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 16.73144910212927                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.70641455752830                                                                                                                                                                                                                                                                                                                                                                                                 | 1.67960933703520                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 16.01997735585320                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.05733248180949                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10906713131854                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H 18.60115253966015                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.54545689506144                                                                                                                                                                                                                                                                                                                                                                                                  | 0.55122430406164                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 17.89032228196855                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19214058624764                                                                                                                                                                                                                                                                                                                                                                                                  | -1.01782331813292                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 18.92310410764372                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.93077652683437                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96948984061653                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 19.74820411317956                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.41424451855288                                                                                                                                                                                                                                                                                                                                                                                                 | -0.51135662662422                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H 18.20838201485291                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.28581670079261                                                                                                                                                                                                                                                                                                                                                                                                 | -0.61208665158734                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C 5.93943024648688                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.62838689392290                                                                                                                                                                                                                                                                                                                                                                                                  | 5.88756465022362                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C 5.15932243746332                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00211201877502                                                                                                                                                                                                                                                                                                                                                                                                  | 6.77831848273481                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 6.84763078014794                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.14103040301347                                                                                                                                                                                                                                                                                                                                                                                                  | 6.20736056125430                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 4.25282856942295                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.47642783061062                                                                                                                                                                                                                                                                                                                                                                                                  | 6.48779114590014                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н 5.40948614338276                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.01634234907598                                                                                                                                                                                                                                                                                                                                                                                                  | 7.83616376581053                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S 4.20917947735795                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.47748957061858                                                                                                                                                                                                                                                                                                                                                                                                  | 2.50600526086313                                                                                                                                                                                                                                                                                         | San Pana .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul><li>S 4.20917947735795</li><li>C 5.94379311690602</li></ul>                                                                                                                                                                                                                                                                                                                                                                                         | 5.47748957061858<br>5.48497650947005                                                                                                                                                                                                                                                                                                                                                                              | 2.50600526086313<br>1.90047027582224                                                                                                                                                                                                                                                                     | a se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> </ul>                                                                                                                                                                                                                                                                                                                                                          | 5.47748957061858<br>5.48497650947005<br>4.45396575743655                                                                                                                                                                                                                                                                                                                                                          | <ul><li>2.50600526086313</li><li>1.90047027582224</li><li>2.54544531971799</li></ul>                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> </ul>                                                                                                                                                                                                                                                                                                                              | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353                                                                                                                                                                                                                                                                                                                                      | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918                                                                                                                                                                                                                             | and a set of the set o |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> </ul>                                                                                                                                                                                                                                                                                                  | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487                                                                                                                                                                                                                                                                                                                  | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> </ul>                                                                                                                                                                                                                                                                     | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487<br>3.53774713759794                                                                                                                                                                                                                                                                                              | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587                                                                                                                                                                                     | $C_{12}H_{25}SCH_2CH_2SC_{12}H_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> </ul>                                                                                                                                                                                                                                        | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487<br>3.53774713759794<br>2.57883319598696                                                                                                                                                                                                                                                                          | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710                                                                                                                                                                 | C <sub>12</sub> H <sub>25</sub> SCH <sub>2</sub> CH <sub>2</sub> SC <sub>12</sub> H <sub>25</sub><br>(DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> </ul>                                                                                                                                                                                                           | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487<br>3.53774713759794<br>2.57883319598696<br>2.62611772507495                                                                                                                                                                                                                                                      | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092                                                                                                                                             | C <sub>12</sub> H <sub>25</sub> SCH <sub>2</sub> CH <sub>2</sub> SC <sub>12</sub> H <sub>25</sub><br>(DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> </ul>                                                                                                                                                  | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487<br>3.53774713759794<br>2.57883319598696<br>2.62611772507495<br>1.68426510921881                                                                                                                                                                                                                                  | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092<br>2.84936480257785                                                                                                                         | C <sub>12</sub> H <sub>25</sub> SCH <sub>2</sub> CH <sub>2</sub> SC <sub>12</sub> H <sub>25</sub><br>(DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> <li>C 15.48734312435733</li> </ul>                                                                                                                     | 5.47748957061858<br>5.48497650947005<br>4.45396575743655<br>4.49132745172353<br>3.50304493177487<br>3.53774713759794<br>2.57883319598696<br>2.62611772507495<br>1.68426510921881<br>1.74155636881047                                                                                                                                                                                                              | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092<br>2.84936480257785<br>2.27247111596708                                                                                                     | C12H25SCH2CH2SC12H25<br>(DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> <li>C 15.48734312435733</li> <li>C 16.47693453111953</li> </ul>                                                                                        | <ul> <li>5.47748957061858</li> <li>5.48497650947005</li> <li>4.45396575743655</li> <li>4.49132745172353</li> <li>3.50304493177487</li> <li>3.53774713759794</li> <li>2.57883319598696</li> <li>2.62611772507495</li> <li>1.68426510921881</li> <li>1.74155636881047</li> <li>0.80139714464253</li> </ul>                                                                                                          | <ul> <li>2.50600526086313</li> <li>1.90047027582224</li> <li>2.54544531971799</li> <li>1.95116276903918</li> <li>2.62089615669270</li> <li>2.03162267916587</li> <li>2.72542763615710</li> <li>2.14402121698092</li> <li>2.84936480257785</li> <li>2.27247111596708</li> <li>2.97573509539017</li> </ul> | Image: constraint of the second se                                |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> <li>C 15.48734312435733</li> <li>C 16.47693453111953</li> <li>C 17.89786377983060</li> </ul>                                                           | <ul> <li>5.47748957061858</li> <li>5.48497650947005</li> <li>4.45396575743655</li> <li>4.49132745172353</li> <li>3.50304493177487</li> <li>3.50304493177487</li> <li>3.53774713759794</li> <li>2.57883319598696</li> <li>2.62611772507495</li> <li>1.68426510921881</li> <li>1.74155636881047</li> <li>0.80139714464253</li> <li>0.85731019803211</li> </ul>                                                      | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092<br>2.84936480257785<br>2.27247111596708<br>2.97573509539017<br>2.39586134440879                                                             | c12H25SCH2CH2SC12H25<br>(DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> <li>C 15.48734312435733</li> <li>C 16.47693453111953</li> <li>C 17.89786377983060</li> <li>C 18.88123259495665</li> </ul> | <ul> <li>5.47748957061858</li> <li>5.48497650947005</li> <li>4.45396575743655</li> <li>4.49132745172353</li> <li>3.50304493177487</li> <li>3.53774713759794</li> <li>3.53774713759794</li> <li>2.57883319598696</li> <li>2.62611772507495</li> <li>1.68426510921881</li> <li>1.74155636881047</li> <li>0.80139714464253</li> <li>0.85731019803211</li> <li>-0.08078693705355</li> </ul>                           | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092<br>2.84936480257785<br>2.27247111596708<br>2.97573509539017<br>2.39586134440879<br>3.10746034602901                                         | the second secon |
| <ul> <li>S 4.20917947735795</li> <li>C 5.94379311690602</li> <li>C 6.87737250082881</li> <li>C 8.29501935998490</li> <li>C 9.26146760614954</li> <li>C 9.26146760614954</li> <li>C 10.67914576237561</li> <li>C 11.65784883202032</li> <li>C 13.07844797148467</li> <li>C 14.06528114358694</li> <li>C 15.48734312435733</li> <li>C 16.47693453111953</li> <li>C 17.89786377983060</li> <li>C 18.88123259495665</li> <li>H 6.34495182083835</li> </ul>  | <ul> <li>5.47748957061858</li> <li>5.48497650947005</li> <li>4.45396575743655</li> <li>4.49132745172353</li> <li>3.50304493177487</li> <li>3.53774713759794</li> <li>3.53774713759794</li> <li>2.57883319598696</li> <li>2.62611772507495</li> <li>1.68426510921881</li> <li>1.74155636881047</li> <li>0.80139714464253</li> <li>0.85731019803211</li> <li>-0.08078693705355</li> <li>6.50069307307124</li> </ul> | 2.50600526086313<br>1.90047027582224<br>2.54544531971799<br>1.95116276903918<br>2.62089615669270<br>2.03162267916587<br>2.72542763615710<br>2.14402121698092<br>2.84936480257785<br>2.27247111596708<br>2.97573509539017<br>2.39586134440879<br>3.10746034602901<br>2.01510478482671                     | the second secon |

| _ | Н | 6.93905445789657  | 4.63604912415885  | 3.62751514044522  |
|---|---|-------------------|-------------------|-------------------|
|   | Н | 6.44564455124029  | 3.45135846317562  | 2.42255157966009  |
|   | Н | 8.70154583156793  | 5.51044323977566  | 2.04107478675239  |
|   | Н | 8.24347243513976  | 4.27693497643346  | 0.87264289122593  |
|   | Н | 9.31216453607444  | 3.72259979025799  | 3.69862919654900  |
|   | Н | 8.85622503463714  | 2.48309430706294  | 2.53615693915437  |
|   | Н | 10.63269460012521 | 3.29661394751654  | 0.95842672977339  |
|   | Н | 11.07249023491171 | 4.56411795374938  | 2.09633605959229  |
|   | Н | 11.27047588037623 | 1.55050687672296  | 2.65714484342876  |
|   | Н | 11.69832360713742 | 2.81839085444732  | 3.79939485190375  |
|   | Н | 13.04080742139044 | 2.37590658648878  | 1.07246201669281  |
|   | Н | 13.45877645707935 | 3.65778923317653  | 2.20231762160065  |
|   | Н | 13.68941379082415 | 0.65124487137538  | 2.78719337381933  |
|   | Н | 14.09905095087662 | 1.93190205549802  | 3.92172656973554  |
|   | Н | 15.86243269317041 | 2.77488253050207  | 2.33501176599040  |
|   | Н | 15.45338496341291 | 1.49469332085195  | 1.19992022243429  |
|   | Н | 16.51428044590974 | 1.04941319321560  | 4.04805000206901  |
|   | Н | 16.10219900336193 | -0.23233272010614 | 2.91561045797666  |
|   | Н | 18.27159702151125 | 1.89050956467985  | 2.45335311887981  |
|   | Н | 17.86196416996701 | 0.60530142915168  | 1.32547959716243  |
|   | Н | 18.96515672848415 | 0.16725773060854  | 4.17388404756240  |
|   | Н | 19.88543074738147 | -0.01541254944197 | 2.67042489947890  |
|   | Н | 18.55412878963379 | -1.12659892365387 | 3.03605869906638  |
|   | С | 4.45888927062142  | 6.08934806767728  | 4.22420247770129  |
|   | С | 3.13740680616229  | 6.47944304207828  | 4.88850463248693  |
|   | Н | -0.37765443048379 | 13.18472271657067 | 17.37997799242644 |
|   | Н | -0.21086377981478 | 12.09592717793848 | 15.05049557414688 |
|   | Н | -0.03155657480394 | 11.01634313779335 | 12.71375650032308 |
|   | Н | 1.69374899772769  | 13.80225235432837 | 18.69817123129170 |
|   | С | 0.27881689005323  | 14.00149395679236 | 17.04464642829082 |
|   | Н | 0.17328832188331  | 9.93209896043523  | 10.38657034733775 |
|   |   |                   |                   |                   |
| Η | 0.36210437635914  | 14.92456147392089 | 19.02683068859345 |
|---|-------------------|-------------------|-------------------|
| Н | 1.86270510913947  | 12.70910475961512 | 16.33680524659275 |
| C | 1.04586982026269  | 14.56577163039485 | 18.24745358606556 |
| Н | 0.41931708495345  | 8.81336927286942  | 8.08716786467671  |
| C | 0.44106599508266  | 12.91861067308261 | 14.71792582776034 |
| Н | 0.68206757772355  | 7.65627641978680  | 5.81820571831940  |
| Н | 2.03408584237635  | 11.63970287573115 | 14.00473103077786 |
| C | 1.19753586378432  | 13.48564936665150 | 15.92785428418706 |
| C | 0.61314729127247  | 11.84668506693945 | 12.38626662547146 |
| Н | 2.22722144512683  | 10.59386356679638 | 11.67551968868190 |
| С | 1.36401294946563  | 12.41388441780171 | 13.59969117896599 |
| Н | 2.45113700765823  | 9.55369349008905  | 9.36183424716590  |
| Н | 2.72467973292388  | 8.51237853964012  | 7.08031682416056  |
| C | 0.80442949102716  | 10.77172366182535 | 10.05639952742374 |
| Н | -0.38500506044138 | 14.77850015778013 | 16.63709163176432 |
| C | 1.54424419936030  | 11.35570799197983 | 11.26857866836354 |
| C | 1.02349826721280  | 9.66672229988271  | 7.74242403395573  |
| С | 1.27297341126061  | 8.51388325730184  | 5.47059943539112  |
| Н | -0.22855540829423 | 13.69345916131156 | 14.31339466741355 |
| С | 1.74760675886591  | 10.29074349295695 | 8.94449293499838  |
| С | 1.98834920370337  | 9.19971947411758  | 6.64023440675916  |
| S | 2.36791359596706  | 7.95779284089397  | 4.10005321545921  |
| Н | -0.06272155996013 | 12.61721326063954 | 11.98408902084017 |
| Н | 1.68461569168675  | 15.40824760216683 | 17.95080529471083 |
| Н | 0.11682572315833  | 11.52875375522241 | 9.64881319075913  |
| Н | 1.85456973924608  | 14.30391201008358 | 15.59397426759044 |
| Н | 0.31322052637577  | 10.39538326195969 | 7.32273753726054  |
| Н | 2.01571712163015  | 13.23754994267430 | 13.26916433708310 |
| Н | 0.57022311111656  | 9.20908499889227  | 4.99541759935305  |
| Н | 2.18206369934686  | 12.18948838606505 | 10.93647711135981 |
| Н | 2.36208279136150  | 11.13616946275042 | 8.59891412244513  |

| Н 2.55850786978019  | 10.05611260369422 | 6.25591166210286  |          |
|---------------------|-------------------|-------------------|----------|
| H 5.13156685803148  | 6.95500102937226  | 4.19700609555260  |          |
| Н 4.92999999443632  | 5.30389834722687  | 4.82652765411503  |          |
| Н 3.34407932936509  | 6.71502124355901  | 5.93807939373595  |          |
| H 2.43167123554548  | 5.64014140868603  | 4.86393497269787  |          |
| ОН                  |                   |                   |          |
| 16                  |                   |                   | <b>6</b> |
| C 0.17152516268734  | 0.44137970494653  | -0.80181788311546 |          |
| C 1.46074568365623  | -0.08232301488986 | -0.68993483375220 |          |
| C 1.91075220750543  | -0.58972949960766 | 0.53569836306878  |          |
| C 1.06473893862959  | -0.56576166966804 | 1.64698044464005  | 6        |
| C -0.22549816862408 | -0.03449796117414 | 1.53235927522717  | BnOH     |
| C -0.68731627100154 | 0.47054894569526  | 0.30965375739115  | (N)      |
| Н -0.17629691707773 | 0.83940459288576  | -1.75232332571979 |          |
| H 2.11512715911738  | -0.09895188342800 | -1.55839644642590 |          |
| Н 2.91462759886599  | -0.99858667020867 | 0.62152091520543  |          |
| Н 1.40725473570022  | -0.95440799863366 | 2.60308873842614  |          |
| Н -0.87959428881456 | -0.01425019279312 | 2.40252196443980  |          |
| C -2.08557087232620 | 1.04093745379577  | 0.18237100377713  |          |
| O -2.10996893211488 | 2.37398291483411  | -0.33896529295449 |          |
| Н -2.59783446771809 | 0.99500299936916  | 1.15521392719258  |          |
| Н -2.67973361102248 | 0.45923865612760  | -0.53089970113103 |          |
| Н -1.53665795746260 | 2.93018362274894  | 0.21353909373066  |          |
| 20                  |                   |                   |          |
| Н -2.17222342906075 | -2.72821669167259 | 2.83510087862292  |          |
| Н -1.67537481024997 | -1.70316173309571 | 0.84437677919442  |          |
| C -1.09513989309880 | -2.41315973606010 | 5.36328578953064  |          |
| C -0.97419985289680 | -2.44012346941234 | 6.75387144554837  |          |
| C -2.29177736072565 | -1.71666490272949 | 3.25174801311425  |          |

| C -1.16150901283933                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.88004562228368                                                                                                                                                                                                                                                                                  | 1.34462922878776                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н -0.35220363208569                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.91037911949494                                                                                                                                                                                                                                                                                  | 4.74341681908463                                                                                                                                                                                                                                                                     |
| C -2.16569760856564                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.74145057560346                                                                                                                                                                                                                                                                                  | 4.75367727185528                                                                                                                                                                                                                                                                     |
| Н -0.14001523237567                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.96358295050291                                                                                                                                                                                                                                                                                  | 7.21476596775251                                                                                                                                                                                                                                                                     |
| C -1.92705869605195                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.79780419395350                                                                                                                                                                                                                                                                                  | 7.55376558771815                                                                                                                                                                                                                                                                     |
| C -3.11124548023872                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.09781456794403                                                                                                                                                                                                                                                                                  | 5.56134506255258                                                                                                                                                                                                                                                                     |
| C -2.99653953708538                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.12663340560033                                                                                                                                                                                                                                                                                  | 6.95534736771152                                                                                                                                                                                                                                                                     |
| O -1.26790106751813                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.86817070076196                                                                                                                                                                                                                                                                                  | 2.70455008863747                                                                                                                                                                                                                                                                     |
| Н -0.36517360088085                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.04563370300324                                                                                                                                                                                                                                                                                  | -0.40739703531959                                                                                                                                                                                                                                                                    |
| C -0.45285871483364                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03147261084475                                                                                                                                                                                                                                                                                   | 0.67081708483161                                                                                                                                                                                                                                                                     |
| Н -1.83504743659743                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.82217565428241                                                                                                                                                                                                                                                                                  | 8.63691290767279                                                                                                                                                                                                                                                                     |
| Н -3.94191107269447                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.56893414484756                                                                                                                                                                                                                                                                                  | 5.09822213640411                                                                                                                                                                                                                                                                     |
| Н -3.73941286655669                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.62381413322683                                                                                                                                                                                                                                                                                  | 7.56976297714088                                                                                                                                                                                                                                                                     |
| Н -3.27834018398889                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.33627973068280                                                                                                                                                                                                                                                                                  | 2.95336849207479                                                                                                                                                                                                                                                                     |
| Н 0.05204948834450                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.84896242431316                                                                                                                                                                                                                                                                                   | 1.17673313708480                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 36<br>H 2.01600724518901                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.01505213873728                                                                                                                                                                                                                                                                                  | 1.22835636015580                                                                                                                                                                                                                                                                     |
| 36<br>H 2.01600724518901<br>C 3.85109284399943                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.01505213873728<br>-2.29151748734838                                                                                                                                                                                                                                                             | 1.22835636015580<br>3.14154988507111                                                                                                                                                                                                                                                 |
| <ul> <li>36</li> <li>H 2.01600724518901</li> <li>C 3.85109284399943</li> <li>C 4.90184767749329</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648                                                                                                                                                                                                                                        | 1.22835636015580<br>3.14154988507111<br>3.42034292749492                                                                                                                                                                                                                             |
| <ul> <li>36</li> <li>H 2.01600724518901</li> <li>C 3.85109284399943</li> <li>C 4.90184767749329</li> <li>H 3.87259350465949</li> </ul>                                                                                                                                                                                                                                                                                                                                            | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250                                                                                                                                                                                                                   | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375                                                                                                                                                                                                         |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219                                                                                                                                                                                                                                                                                                           | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442                                                                                                                                                                                              | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225                                                                                                                                                                                     |
| 36H2.01600724518901C3.85109284399943C4.90184767749329H3.87259350465949C1.67471216195219H5.73335117318877                                                                                                                                                                                                                                                                                                                                                                          | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554                                                                                                                                                                         | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434                                                                                                                                                                 |
| 36H2.01600724518901C3.85109284399943C4.90184767749329H3.87259350465949C1.67471216195219H5.73335117318877C2.76827472427804                                                                                                                                                                                                                                                                                                                                                         | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119                                                                                                                                                    | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472                                                                                                                                             |
| 36H2.01600724518901C3.85109284399943C4.90184767749329H3.87259350465949C1.67471216195219H5.73335117318877C2.76827472427804C4.87882309087083                                                                                                                                                                                                                                                                                                                                        | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520                                                                                                                               | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110                                                                                                                         |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       4.87882309087083         O       0.50678788417076                                                                                                                                                                       | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092                                                                                                          | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620                                                                                                     |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       4.87882309087083         O       0.50678788417076         C       2.75051890259068                                                                                                                                      | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092<br>-4.00336554605779                                                                                     | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620<br>1.84324710059343                                                                                 |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       4.87882309087083         O       0.50678788417076         C       2.75051890259068         C       3.79889865571528                                                                                                     | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092<br>-4.00336554605779<br>-4.88560653410998                                                                | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620<br>1.84324710059343<br>2.12690941717482                                                             |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       4.87882309087083         O       0.50678788417076         C       3.79889865571528         H       5.69250403428013                                                                                                     | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092<br>-4.00336554605779<br>-4.88560653410998<br>-5.16013148506392                                           | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620<br>1.84324710059343<br>2.12690941717482<br>3.13158743451044                                         |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       4.87882309087083         O       0.50678788417076         C       3.79889865571528         H       5.69250403428013         C       -0.50976302012070                                                                   | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092<br>-4.00336554605779<br>-4.88560653410998<br>-5.16013148506392<br>-1.55833243712911                      | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620<br>1.84324710059343<br>2.12690941717482<br>3.13158743451044<br>1.03172191802181                     |
| 36         H       2.01600724518901         C       3.85109284399943         C       4.90184767749329         H       3.87259350465949         C       1.67471216195219         H       5.73335117318877         C       2.76827472427804         C       2.76827472427804         C       3.87259350085083         C       3.67051890259068         C       3.79889865571528         H       5.69250403428013         C       -0.50976302012070         H       1.90868319958375 | -1.01505213873728<br>-2.29151748734838<br>-3.16911325175648<br>-1.28068239026250<br>-1.69970447067442<br>-2.83778709664554<br>-2.69636665426119<br>-4.47273188198520<br>-2.38096133965092<br>-4.00336554605779<br>-4.88560653410998<br>-5.16013148506392<br>-1.55833243712911<br>-4.32562404367704 | 1.22835636015580<br>3.14154988507111<br>3.42034292749492<br>3.54676691115375<br>2.02525260668225<br>4.03825228303434<br>2.34671829276472<br>2.91260652629110<br>1.58192975102620<br>1.84324710059343<br>2.12690941717482<br>3.13158743451044<br>1.03172191802181<br>1.23880221584449 |



BnOVy (VE)



BnOCH<sub>2</sub>CH<sub>2</sub>OBn

(DA)

| С | -1.44018849452023 | -0.92775229296907 | 2.05993485553971 |
|---|-------------------|-------------------|------------------|
| Н | 1.45108284676496  | -1.08138203927189 | 2.90425347948043 |
| Н | -2.49111132927107 | 1.24501402030413  | 3.08563930335782 |
| 0 | -0.77184288823103 | 0.13435711668617  | 2.73303907410315 |
| Н | -0.01685746645255 | -0.32431019479561 | 5.48853061567235 |
| С | -1.07252178245101 | -0.44474541070614 | 5.72168906472950 |
| С | -1.60336945971959 | 0.87568812507540  | 3.62491932471996 |
| С | -1.45885320209569 | -1.14857493614311 | 6.86381095439532 |
| С | -2.03486684251546 | 0.10364708740790  | 4.85905176084252 |
| Н | -0.70212705851470 | -1.57013067188941 | 7.52119641179726 |
| С | -2.81724635053448 | -1.30926524398148 | 7.16437166281810 |
| С | -3.39080192506087 | -0.06685020116742 | 5.16616668474912 |
| С | -3.78316341791956 | -0.76584461993101 | 6.31389822855003 |
| Н | -3.11811844602975 | -1.85595323765809 | 8.05480845513862 |
| Н | -4.14779390618144 | 0.34969908245677  | 4.50361657948980 |
| Н | -0.99703087764833 | 1.74321986768487  | 3.90815406698542 |
| Н | -4.84016738949567 | -0.88923055403393 | 6.53770907558384 |
| Н | -2.32832843961089 | -0.53254646570171 | 1.53443686031028 |
| Н | -1.10966747880451 | -2.21906575810031 | 0.39395899373008 |
| Н | -1.77583229005505 | -1.69270803742024 | 2.77487555806242 |
| Н | -0.06865667395266 | -0.77234034107712 | 0.39778724342422 |

## **Structures of Species from Figure 2.**

\_

| Cartesian coordinates | Cartesian | coordinates |
|-----------------------|-----------|-------------|
|-----------------------|-----------|-------------|

| 4 |                  |                   |                   |           |
|---|------------------|-------------------|-------------------|-----------|
| С | -0.0000000467141 | -0.00000000442611 | 0.60403267159474  |           |
| С | 0.0000000311363  | -0.00000000991531 | -0.60403267415776 |           |
| Н | 0.0000000207636  | 0.0000000625585   | 1.67170605838722  | Acetylene |
| Н | -0.0000000051858 | 0.0000000808557   | -1.67170605582420 |           |
|   |                  |                   |                   |           |

Structure

| С | -3.07608236485223 | -0.47972225355892 | -0.93871872365177 |
|---|-------------------|-------------------|-------------------|
| С | -3.75677233911769 | -1.68390138289424 | -0.73025184294240 |
| C | -4.45270105126117 | -1.89947122393928 | 0.46802174517324  |
| C | -4.46332729262447 | -0.90284717027884 | 1.44761687961326  |
| C | -3.77405495811228 | 0.29913949158007  | 1.23203180372015  |
| С | -3.06794419721823 | 0.53265760950710  | 0.04124468427820  |
| Р | -2.02125334315902 | 2.10599534893890  | -0.11538860880231 |
| 0 | -0.55022521906777 | 1.49603926527794  | -0.28613104292210 |
| K | 0.02387888407303  | -0.96341400167044 | 0.26429935887955  |
| 0 | 2.42033252376815  | -1.75317400979893 | -0.52399368776135 |
| S | 3.61944281153839  | -0.87035292568730 | -0.90626432458442 |
| C | 5.03676410245584  | -2.01526629013993 | -1.06027441372200 |
| C | 4.14073050317586  | -0.02178279880962 | 0.62398152977490  |
| 0 | 1.24252213086293  | 1.21861177446384  | 1.54281565969240  |
| Н | 0.55057922089196  | 1.54484872249742  | 0.86628199368513  |
| Н | 5.01697162041855  | 0.59838611934145  | 0.40572569418681  |
| Н | 3.29527014985540  | 0.60127898787970  | 0.93969170397039  |
| Н | 4.36950473041391  | -0.76709854160992 | 1.39285085568879  |
| Н | 5.95499131568099  | -1.43837260631335 | -1.21211245952889 |
| Н | 5.10270060507404  | -2.62887052213690 | -0.15646491078633 |
| Н | 4.84800234759598  | -2.64977005022727 | -1.92999910718702 |
| Н | -3.78380768352749 | 1.07202828980355  | 1.99959447827348  |
| Н | -2.56308991906131 | -0.30869940135492 | -1.88461727378249 |
| Н | -5.00895035380219 | -1.05752121741809 | 2.37642561481285  |
| Н | -3.76555768924593 | -2.44619997000808 | -1.50773744934226 |
| Н | 1.17204181857376  | 1.80962827909419  | 2.30660394506366  |
| Н | -4.99036295477417 | -2.83141326723901 | 0.62808844665519  |
| Н | -0.56627480307765 | 2.10915046607241  | -2.66631975035338 |
| Н | -1.15660986569106 | 2.80225309526976  | -4.99572923881945 |
| C | -1.56354988315370 | 2.47573157386545  | -2.89953520001637 |

38



DMSO·(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>POK·HOH

(1a`)

S77

| С  | -1.89850847927668 | 2.86804758814704  | -4.20158082548612 |
|----|-------------------|-------------------|-------------------|
| С  | -2.50565653682733 | 2.55074463574852  | -1.86318204787965 |
| C  | -3.18113515886424 | 3.34832436642460  | -4.48303802508718 |
| Η  | -3.44258550281491 | 3.65610211801515  | -5.49322784719538 |
| С  | -3.78672530442953 | 3.05110111616443  | -2.15444656922448 |
| С  | -4.12621557534846 | 3.43990464082944  | -3.45245482263060 |
| Η  | -4.52712546485221 | 3.13639069364861  | -1.35929060212837 |
| Η  | -5.12490682421866 | 3.81841345051531  | -3.66191561963332 |
| 42 |                   |                   |                   |
| C  | -2.12398051339890 | -0.97313420405776 | -0.68749604647629 |
| С  | -2.63280977688579 | -2.27373126094847 | -0.64084449637710 |
| C  | -3.96497536967604 | -2.49290767930845 | -0.27084526317563 |
| С  | -4.78065893058420 | -1.40602010793042 | 0.05815539556884  |

-0.10525724292270

0.12619384572684

1.84537652899048

1.71631788825926

1.72588548788479

-0.33113008920162

-1.13470069138332

-1.59206822896075

0.07683514846955

3.58294834761229

3.03203003053645

-0.45255743926606

0.55025188266844

0.83122320944239

-2.07765752891984

-0.69216040462848

-2.28964228166507

0.73275859095466

0.01593767077081

-0.37170866779588

-0.39998347774605

-0.31410729750193

2.40151029506546

2.02293154095934

0.75878068367918

0.93272416456966

-0.59556800526042

0.65723257083491

0.08928181878495

-1.50425737150089

-0.73859450761886

-0.31089264900258

0.01335825943038

1.14372836454667

1.77122073884759

0.30055396921571

C -4.26678631831889

C -2.93721672916704

P -2.25638855616884

O -0.68558622742269

K 0.03429763668162

O 1.61814633324119

S 1.95724244853777

C 3.72013885217961

C 2.14308608458874

O 0.90875074570191

H 0.29457733650223

H 2.45034079829844

H 1.16377206250099

H 2.88371265163394

H 4.06357838741710

H 4.30605806896846

H 3.79164864142179

H -4.89967458526753



 $I = -226.64 \text{ cm}^{-1}$ 

| ς | 7 | 8 |
|---|---|---|
| 5 | ' | o |

| Η  | -1.09004588958512 | -0.79840286519750 | -0.97398000886265 |                                        |
|----|-------------------|-------------------|-------------------|----------------------------------------|
| Н  | -5.81287000804659 | -1.57027404701038 | 0.35960630446388  |                                        |
| Н  | -1.99348645223626 | -3.11652131130938 | -0.89592919437098 |                                        |
| Н  | 1.00810085849681  | 4.44695337743445  | 0.23367225390752  |                                        |
| Н  | -4.36175257270412 | -3.50479699348227 | -0.23183849445091 |                                        |
| Н  | -0.58603566257557 | 2.79215804864848  | -2.61268520332215 |                                        |
| Н  | -1.08398657951213 | 3.72220511728216  | -4.86762258065777 |                                        |
| C  | -1.61312452680752 | 2.85688352392189  | -2.96335005860455 |                                        |
| C  | -1.89634432117232 | 3.37400132913732  | -4.23251395756583 |                                        |
| C  | -2.64538473195554 | 2.39079366334437  | -2.13284884607696 |                                        |
| C  | -3.21674606492209 | 3.44066482534760  | -4.68650308130895 |                                        |
| Н  | -3.43828904466923 | 3.84424467390587  | -5.67179037431906 |                                        |
| C  | -3.97128976350681 | 2.47328302796475  | -2.59504250692041 |                                        |
| C  | -4.25421628305045 | 2.98607376320643  | -3.86217013203808 |                                        |
| Н  | -4.78957788626154 | 2.12924679973489  | -1.96535380854490 |                                        |
| Н  | -5.28462980154651 | 3.03309303594470  | -4.20815228930889 |                                        |
| C  | -3.10353437745549 | 1.88884309036836  | 2.69142189313914  |                                        |
| Н  | -3.27754865142055 | 0.82044708159356  | 2.73919603460640  |                                        |
| C  | -2.85926252293474 | 2.69854508773050  | 1.74303920909585  |                                        |
| Н  | -2.72887875891639 | 3.75515497008088  | 1.57426715132227  |                                        |
| 42 |                   |                   |                   |                                        |
| C  | -2.62987984128332 | -0.21379907946761 | -1.54072494156677 |                                        |
| C  | -2.53949322573882 | -1.60381988323805 | -1.66718902318596 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| C  | -2.74685682051699 | -2.43077375694497 | -0.55659156005350 | 🚩 🏊                                    |
| C  | -3.06218550960394 | -1.85566412136416 | 0.67973301130239  |                                        |
| C  | -3.16111010544479 | -0.46306535948234 | 0.79756057167901  |                                        |
| C  | -2.92576890064212 | 0.38474575371659  | -0.30300844833741 |                                        |
| Р  | -3.09691637022520 | 2.22760766336604  | 0.04520471367891  |                                        |
| 0  | -1.63250796248423 | 2.68102840887901  | 0.64718408404228  | TS2B`                                  |
| K  | 0.08988065523524  | -0.19331204872506 | 1.38596832334457  | $I = -188.71 \text{ cm}^{-1}$          |

0.93275064278410

O 2.51615597160202 -1.04371762949681

| S 3.47111526826695  | -0.87225809744270 | -0.26277631027907 |
|---------------------|-------------------|-------------------|
| C 5.13014561971648  | -1.28205163448944 | 0.38852606085291  |
| C 3.70920069672919  | 0.92009323223097  | -0.48968953108779 |
| O -0.97757105794749 | 1.62187549793591  | 3.05938449940555  |
| Н -1.32503499784421 | 2.16682024917731  | 2.30179275756596  |
| Н 4.43350227614814  | 1.07875374199341  | -1.29675299015082 |
| Н 2.72579760524592  | 1.33550600696205  | -0.76930176823394 |
| H 4.06431919439840  | 1.36075806530022  | 0.44813514325964  |
| Н 5.88293938670271  | -1.07553262341000 | -0.37946402616801 |
| Н 5.31771728503485  | -0.69096770739398 | 1.29034506136005  |
| Н 5.12977661075867  | -2.34763119341672 | 0.63297387134846  |
| Н -3.43445145983426 | -0.02582341127471 | 1.75692263376673  |
| Н -2.46393437415264 | 0.41083348698149  | -2.41399975871198 |
| Н -3.25759747593967 | -2.48888871483395 | 1.54318762014012  |
| Н -2.30353774441723 | -2.04197757609254 | -2.63466760874999 |
| Н -1.23246497971157 | 2.07662143061092  | 3.87452860845935  |
| Н -2.68023196710047 | -3.51155718501484 | -0.65845199383801 |
| Н -1.45324606535104 | 4.21338875089552  | -1.46396164190926 |
| Н -1.78730242190251 | 5.35010787312151  | -3.63827399656214 |
| C -2.29838384952608 | 3.94368051043553  | -2.08859593035328 |
| C -2.48757899078702 | 4.58087331683856  | -3.31965958014621 |
| C -3.18161354395972 | 2.93993606249405  | -1.66068363996610 |
| C -3.56404521001832 | 4.23107906572573  | -4.13994229921410 |
| Н -3.70960995424055 | 4.72813938072489  | -5.09637478242074 |
| C -4.27449915451873 | 2.61047469901648  | -2.48469806355535 |
| C -4.45997654879042 | 3.24236733053867  | -3.71657574310346 |
| Н -4.99104103860172 | 1.85619997967677  | -2.16218934620975 |
| Н -5.30680669433622 | 2.96820867895461  | -4.34234649773529 |
| C 0.34587378131220  | 1.79615609327851  | -0.99434889246788 |
| Н -0.33592405742956 | 1.27983632283697  | -1.66713599415966 |
| C -0.06837357971075 | 2.47813702791605  | 0.02529251254215  |

| Н 0.41982955090981  | 3.09064139247882  | 0.77396425263528  |
|---------------------|-------------------|-------------------|
| 42                  |                   |                   |
| C -2.04525770305814 | -1.05440473748900 | -1.61975236214278 |
| C -2.57680983608955 | -2.34703171825360 | -1.63164488872682 |
| C -3.68828010353439 | -2.65447075112500 | -0.83910097478139 |
| C -4.26523117549803 | -1.66561207331366 | -0.03588807463855 |
| C -3.73707202168633 | -0.37098774471695 | -0.02664476045292 |
| C -2.62274616599219 | -0.05589513883837 | -0.81914019336332 |
| P -1.92259050525555 | 1.63812167756611  | -0.88314772272164 |
| O -0.42620422627966 | 1.54254703668328  | -1.25235049362138 |
| K 0.52127574100563  | 3.03217851125622  | 2.32422361391669  |
| O 1.87216519494700  | 0.78589515631323  | 2.53427246386615  |
| S 1.70605134829196  | -0.60100861840401 | 1.89509612027467  |
| C 3.27032637291013  | -1.48381052427731 | 2.24752133653588  |
| C 1.95087072776410  | -0.38408701943224 | 0.09807785538279  |
| O 1.17321190296339  | 3.47567277368145  | -0.24929957356011 |
| Н 0.59671136465844  | 2.79593041057131  | -0.70381974348246 |
| Н 1.97530771115572  | -1.37274797986018 | -0.37355322138482 |
| H 1.10499744042187  | 0.19309209265122  | -0.29343005380603 |
| H 2.88790075504105  | 0.15580574749298  | -0.07242056566728 |
| Н 3.26925132759533  | -2.44905943235019 | 1.73055092370164  |
| Н 4.11325035867149  | -0.86551359276299 | 1.92331396142356  |
| Н 3.31622849702635  | -1.64104557231506 | 3.32819502623735  |
| Н -4.17567789386469 | 0.38989872669412  | 0.61278639660640  |
| Н -1.17580680161220 | -0.81328237865821 | -2.22593990418373 |
| Н -5.12287420631973 | -1.90218039060301 | 0.58942511747565  |
| Н -2.12495952382614 | -3.11273918602591 | -2.25849704149607 |
| H 1.52308535029643  | 4.04467488539599  | -0.94919378037966 |
| Н -4.10097319668681 | -3.66078860901553 | -0.84547583519972 |
| Н -1.08451557049602 | 2.52340943183837  | -3.52027077913470 |
| Н -2.22668314374385 | 3.76607306437723  | -5.35728293308709 |



 $DMSO \cdot H_2O \cdot K^+ [CH=CHPO(Ph)_2]^-$ 

(3A`)

| С | -2.12279258932181 | 2.82759641498979 | -3.41720967649354 |
|---|-------------------|------------------|-------------------|
| С | -2.76640641432189 | 3.52677611702301 | -4.44363292483627 |
| С | -2.80985559598133 | 2.51043456932705 | -2.23615394544665 |
| С | -4.10058400613370 | 3.91863113571572 | -4.29531090538149 |
| Н | -4.60116345233155 | 4.46413670812601 | -5.09197863467434 |
| С | -4.14721981468848 | 2.91367658117228 | -2.09097450769755 |
| С | -4.79010627103239 | 3.61170527513622 | -3.11650111563437 |
| Н | -4.68614162431537 | 2.68780508534746 | -1.17330957736992 |
| Н | -5.82590944069361 | 3.91989287039719 | -2.99428740243707 |
| С | -2.05033966532442 | 1.98474477560738 | 1.91108027225084  |
| Н | -1.83032562572605 | 0.89490431595605 | 1.85603241020352  |
| С | -2.25461571766042 | 2.50124029175692 | 0.66873585010344  |
| Н | -2.49614180127441 | 3.56105181236451 | 0.51322024382316  |

42

| -2.50958888698480 | -0.23892230110865                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.55071893614676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -2.44216050733754 | -1.63158465894433                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.65788951515191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -2.67624606832253 | -2.44003818992580                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.53875587462461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -2.99489867453610 | -1.84300940152741                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68617771431509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -3.07490452128232 | -0.44810582247008                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.78456231776520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -2.81170160972543 | 0.37981176831305                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.32453103677002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -2.99563881233222 | 2.22358549052111                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.01571049487472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1.56325723221396 | 2.68298149946447                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69482589674078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.23767105117154  | -0.38004950009670                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.31116932730706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.60055780111757  | -1.29650546489744                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.63974364568761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.44005765164379  | -0.98469147208166                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.61447639549008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.14012484793997  | -1.50846567438096                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.18989543062684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.70987561418531  | 0.81661616345867                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.63265635971696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1.14670491392924 | 1.27147833895273                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.04208907231529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -1.39296860067945 | 1.93330669191829                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.34834322715356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.35950931880973  | 1.06456801729004                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.47994374228491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.71280006442648  | 1.27913459364256                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.76254395752812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | <ul> <li>-2.50958888698480</li> <li>-2.44216050733754</li> <li>-2.67624606832253</li> <li>-2.99489867453610</li> <li>-3.074904521282322</li> <li>-2.81170160972543</li> <li>-2.99563881233222</li> <li>-1.56325723221396</li> <li>0.23767105117154</li> <li>2.60055780111757</li> <li>3.44005765164379</li> <li>5.14012484793997</li> <li>3.70987561418531</li> <li>-1.14670491392924</li> <li>-1.39296860067945</li> <li>4.35950931880973</li> <li>2.71280006442648</li> </ul> | -2.50958888698480-0.23892230110865-2.44216050733754-1.63158465894433-2.67624606832253-2.44003818992580-2.99489867453610-1.84300940152741-3.07490452128232-0.44810582247008-2.811701609725430.37981176831305-2.995638812332222.22358549052111-1.563257232213962.682981499464470.23767105117154-0.380049500096702.60055780111757-1.296505464897443.44005765164379-0.984691472081665.14012484793997-1.508465674380963.709875614185310.81661616345867-1.146704913929241.27147833895273-1.392968600679451.933306691918294.359509318809731.064568017290042.712800064426481.27913459364256 |



 $DMSO \cdot H_2O \cdot K^{+}[CH=CHOP(Ph)_2]^{-}$ 

(3B`)

| Н | 4.16692489238270  | 1.12422002530262  | 0.31433977516505  |  |
|---|-------------------|-------------------|-------------------|--|
| Н | 5.82092786776246  | -1.21853615261501 | -0.99703405722218 |  |
| Н | 5.43407861851387  | -1.04235021047113 | 0.75567105494815  |  |
| Н | 5.13036278757735  | -2.59642263170421 | -0.08327196212602 |  |
| Н | -3.34325759219445 | 0.00378799665439  | 1.73725582916171  |  |
| Н | -2.31507192025866 | 0.37090918349908  | -2.42814574640029 |  |
| Н | -3.20629185519744 | -2.45992150896295 | 1.55748060926228  |  |
| Н | -2.20012250345731 | -2.08598629049876 | -2.61604746254304 |  |
| Н | -1.26162129817577 | 1.71038687848873  | 3.89719345234038  |  |
| Н | -2.62525118437291 | -3.52297137806770 | -0.62483100236117 |  |
| Н | -1.21563184825421 | 4.16377345563578  | -1.46179494013150 |  |
| Н | -1.42881437463916 | 5.28570814074036  | -3.65620446291666 |  |
| С | -2.04126752605559 | 3.90907675641065  | -2.11785675422209 |  |
| С | -2.16084881383816 | 4.53676362061592  | -3.36225159700695 |  |
| С | -2.96596278900542 | 2.92955259831700  | -1.72290078926363 |  |
| С | -3.20677521406760 | 4.20279938534873  | -4.22752544109434 |  |
| Н | -3.29649228737949 | 4.69232400146254  | -5.19447576187737 |  |
| С | -4.02940993244624 | 2.61779982339639  | -2.59104515073300 |  |
| С | -4.14418123439011 | 3.24011869319194  | -3.83622674333017 |  |
| Н | -4.77813609497849 | 1.88511286657163  | -2.29314158743453 |  |
| Н | -4.96858285938911 | 2.97917612226035  | -4.49631467062385 |  |
| С | 0.38220537947140  | 1.77776375942195  | -0.79711560750471 |  |
| Н | -0.34449516506986 | 1.37596256285540  | -1.50990357537588 |  |
| С | -0.10094774101825 | 2.43108519173053  | 0.23763916836141  |  |
| Н | 0.43693616653039  | 2.94638703228667  | 1.03228796485957  |  |

| 42 |                   |                   |                   |
|----|-------------------|-------------------|-------------------|
| С  | -2.75868234969281 | -1.76140003463000 | -0.08792054915472 |
| С  | -3.49868727165972 | -2.91278135731716 | -0.37645064624858 |
| С  | -4.77250438428444 | -2.80296853432747 | -0.94148056540447 |
| С  | -5.30855953463881 | -1.53917054336681 | -1.21546713470390 |
| С  | -4.57096383182487 | -0.38807533049552 | -0.92752701745282 |
| С  | -3.28792948770466 | -0.49161790742817 | -0.36285806265463 |
| Р  | -2.27073237294208 | 0.96992833891728  | 0.06357714652926  |
| 0  | -0.88918934511686 | 0.54317289184636  | 0.55940162355720  |
| K  | 0.52063136925346  | 2.33391322442111  | 2.07382804852428  |
| 0  | 2.77055923540177  | 1.07236220268519  | 1.37763820750410  |
| S  | 3.01597415719777  | -0.14692224269655 | 0.48080895030366  |
| С  | 4.64406192408418  | 0.14060464016241  | -0.30518094405566 |
| С  | 1.97964097030731  | 0.08385053661570  | -1.00565929572540 |
| 0  | -1.08600456281377 | 4.15768612771229  | 1.69156064754162  |
| Н  | 2.15341664560296  | -0.74967287843030 | -1.69515667163871 |
| Н  | 0.93831310609805  | 0.09161222560062  | -0.66379681602028 |
| Н  | 2.22648121254317  | 1.03992070280271  | -1.47881847202756 |
| Н  | 4.83135256335796  | -0.63512175486001 | -1.05506108456383 |
| Н  | 4.65086339931636  | 1.13643109076934  | -0.75917553306934 |
| Н  | 5.39852722448159  | 0.08591693559170  | 0.48389520340556  |
| Н  | -4.99342098043717 | 0.58939233014331  | -1.14743671236811 |
| Н  | -1.76794506655415 | -1.83429880586465 | 0.35220768593844  |
| Н  | -6.29938274105293 | -1.45031491475104 | -1.65439850296179 |
| Н  | -3.08022409566413 | -3.89310383235395 | -0.16107204703746 |
| Н  | -1.32658637752317 | 5.07063825201793  | 1.90471746869058  |
| Н  | -5.34759151127780 | -3.69769855457207 | -1.16806872943572 |
| Н  | -2.68298419447536 | 0.47132168026876  | -2.85514992378997 |
| Н  | -2.39582540135653 | 1.92221317532025  | -4.83356756358864 |
| С  | -2.38717220520807 | 1.50802260142312  | -2.71830034669441 |
| С  | -2.22265651992235 | 2.32698063488315  | -3.83898925979216 |
|    |                   |                   |                   |



#### DMSO· KOH· (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>P(O)CH=CH<sub>2</sub>

(4A`)

| С | -2.17194237913523 | 2.02281216298343 | -1.42820019184223 |
|---|-------------------|------------------|-------------------|
| С | -1.84026782873242 | 3.66292340651663 | -3.67826455701609 |
| Н | -1.71709015352822 | 4.30134672158666 | -4.55052499605878 |
| С | -1.77554171635427 | 3.36587669090728 | -1.26546146472388 |
| С | -1.61431013263118 | 4.17360931364201 | -2.39574386155399 |
| Н | -1.57248945103375 | 3.77737288105106 | -0.26451322952514 |
| Н | -1.31130794038759 | 5.21024054116279 | -2.26652319453700 |
| С | -4.27151182669325 | 1.57718022501607 | 1.93137465277778  |
| С | -3.14099109982018 | 1.94682147084248 | 1.31596937232833  |
| Н | -2.59629773420462 | 2.87727284539267 | 1.58089685051334  |
| Н | -4.80864224733615 | 0.65967824350272 | 1.69678011165904  |
| Н | -4.70354706363784 | 2.20242459730853 | 2.71173140437221  |

| 4 | 2 |
|---|---|
|   |   |

| С | -4.48719069303871 | -0.10075104025360 | -0.69791511926262 |
|---|-------------------|-------------------|-------------------|
| C | -5.60616430409466 | -0.91529921510110 | -0.50747206998158 |
| C | -6.72592665030157 | -0.42619250145181 | 0.17391156776018  |
| C | -6.72660130278713 | 0.88522750807451  | 0.65638812225020  |
| С | -5.61055356341858 | 1.70145405019619  | 0.45342633834819  |
| С | -4.46867843054172 | 1.21899424466087  | -0.21395918734563 |
| Р | -3.10535448707421 | 2.46404004573674  | -0.38003038289936 |
| 0 | -2.15067432870820 | 2.24429204584444  | 1.01689900466065  |
| K | 1.48844917805839  | -0.38545266184327 | -0.18273420591206 |
| 0 | 2.89514778748100  | 1.82615945562173  | -0.70159963732114 |
| S | 4.30791774861804  | 1.93843878420187  | -0.08518566323614 |
| С | 5.15060471396078  | 3.21733044029680  | -1.08642219105080 |
| С | 5.23373362112157  | 0.47548295861024  | -0.63430035087840 |
| 0 | 3.43202215481485  | -1.64704388365854 | 0.45999015308904  |
| Η | -1.14309032590309 | -0.88843093475846 | 1.81435835707100  |
| Η | 6.24304642348394  | 0.52879202745684  | -0.20898830570397 |
| Η | 4.67923580071071  | -0.41220566572888 | -0.22910612264657 |
| Η | 5.27276275444797  | 0.45982242544378  | -1.72951544540972 |



 $DMSO \cdot KOH \cdot (C_6H_5)_2POCH=CH_2$ 

(4B`)

| H | H 6.20118025274065  | 3.28053040418081  | -0.78423568021679 |
|---|---------------------|-------------------|-------------------|
| H | H 5.06578347888375  | 2.95474176163428  | -2.14567728833977 |
| H | I 4.64895385467815  | 4.16992413483884  | -0.89544444025387 |
| H | I -5.62455935159781 | 2.72807257191373  | 0.81427972540700  |
| H | H -3.63246322730847 | -0.49881119750136 | -1.23641343535574 |
| H | H -7.59591546293156 | 1.27664889959708  | 1.17888964131696  |
| ŀ | H -5.60219259840075 | -1.93362115788524 | -0.88891558078019 |
| ŀ | H 3.89713961798072  | -2.39597159300897 | 0.85762892492403  |
| ŀ | H -7.59452597089173 | -1.06320527025013 | 0.32192208420706  |
| H | H -0.19252529663330 | 2.40270009777372  | -0.71876249856249 |
| H | H 1.28446076367726  | 1.87048952222187  | -2.60154768744203 |
| C | C -0.62709018261026 | 2.00348840674654  | -1.63210719218534 |
| C | 0.21409419863569    | 1.70904166244868  | -2.70987006342632 |
| C | C -2.01833855506218 | 1.80832591913796  | -1.72467414069372 |
| C | C -0.32673467095661 | 1.22883717922111  | -3.90869105790608 |
| ŀ | H 0.32361022451902  | 1.00332112526413  | -4.75032288858847 |
| C | C -2.54977241999599 | 1.35122434283915  | -2.94442715215281 |
| C | C -1.70942802663752 | 1.05764758953722  | -4.02374367266727 |
| H | H -3.62316577390715 | 1.22477945146819  | -3.06235392679857 |
| ŀ | H -2.13980703290094 | 0.69783671161196  | -4.95543511930433 |
| C | C -1.55200267441766 | -0.12511834110631 | 1.15803838611468  |
| ŀ | H -1.92708822921045 | -0.43563345572505 | 0.19123870324821  |
| C | C -1.63985573323348 | 1.13011274946706  | 1.61743957079111  |
| F | H -1.26751328124873 | 1.39582040222633  | 2.60523992713349  |
|   |                     |                   |                   |

#### S6. Single-crystal X-ray structure determination

X-ray diffraction data were collected at 100 K on a four-circle Xtalab Supernova diffractometer equipped with a HyPix3000 area detector using monochromatized Cu K<sub>a</sub> radiation (3a-d<sub>4</sub>), on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000, using monochromatized Cu K<sub> $\alpha$ </sub> radiation (**PdCl<sub>2</sub>(3a-d<sub>4</sub>**)), or with a HyPix6000HE area detector using monochromatized Cu  $K_{\alpha}$  (NiBr<sub>2</sub>(3a-d<sub>4</sub>), NiBr<sub>2</sub>(3e), NiBr<sub>2</sub>(3e-d<sub>4</sub>), NiBr<sub>2</sub>(3e-d<sub>16</sub>)) or Mo  $K_{\alpha}$ (NiBr<sub>2</sub>(3a)) radiation. Shutterless  $\omega$ -scan technique were used in all cases. Cu K<sub>a</sub> radiation was selected for 5 metal complexes due to small crystal sizes and relatively poor diffraction ability and for complexes NiBr<sub>2</sub>(3e), NiBr<sub>2</sub>(3e-d<sub>4</sub>), and NiBr<sub>2</sub>(3e-d<sub>16</sub>) due to extensive non-merohedral twinning. The intensity data were integrated and semi-empirically corrected for absorption and decay based on measurements of equivalent reflections with the CrysAlisPro program.<sup>23</sup> The structures were solved by dual methods using SHELXT<sup>24</sup> and refined by the full-matrix leastsquares method on  $F^2$  using SHELXL-2018<sup>25</sup> within the OLEX2 program.<sup>26</sup> Positions of nonhydrogen atoms were found from the electron density-difference map; these atoms were refined with individual anisotropic displacement parameters. For 3a-d4 and NiBr2(3a), the positions of hydrogen atoms were found from the electron density-difference map; these atoms were refined with individual anisotropic isotropic displacement parameters. For the other structures, all hydrogen atoms were placed in ideal calculated positions and refined as riding atoms (C-H distance = 0.950 Å for aromatic, 0.980 Å for methyl and 0.990 Å for methylene hydrogen atoms) with relative isotropic displacement parameters  $(U_{iso}(H)=1.5U_{ea}(C))$  for methyl groups or  $U_{iso}(H)=1.2U_{eq}(C)$  otherwise). A rotating group model was applied for methyl groups. Some reflections affected by the beam stop were omitted from the final steps of the refinement.

The absolute structure parameter (Flack) was determined by using quotients  $[(I+)-(I-)]/[(I+)+(I-)]^{27}$  for chiral crystals of NiBr<sub>2</sub>(3a) and NiBr<sub>2</sub>(3a-d<sub>4</sub>) crystallized in the *I*2 (*C*2) space group and refined as monocrystals. The studied crystals NiBr<sub>2</sub>(3a) and NiBr<sub>2</sub>(3a-d<sub>4</sub>) are isostructural but possess the opposite chirality.

All the studied crystals of chiral isostructural complexes  $NiBr_2(3e)$ ,  $NiBr_2(3e-d_4)$  and  $NiBr_2(3e-d_{16})$  contained multiple domains (from 3 to 7 major domains). The structures were refined using 2 to 4 major domains; the number and orientations of the major domains selected for further refinement were optimized to provide better R1 and  $\omega$ R2 factors, better precision on bond distances and smaller absolute structure parameters. In addition to the found non-merohedral twinning, crystals of NiBr\_2(3e), NiBr\_2(3e-d\_4) and NiBr\_2(3e-d\_{16}) likely exhibit additional racemic twinning. All these obstacles, including omitting some major and all minor crystal domains, led to, on average, a relatively poor bond distance precision, unreliable absolute

S87

structure parameters (calculated either by classical fit or from quotients), and a number of reflections with  $F_{obs}^2$  being much smaller than  $F_{calcd}^2$ .

The *Mercury* program<sup>28</sup> was used for molecular graphics.

Crystal data, data collection and structure refinement details are summarized in Table S1. The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2164954-2164960; they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC *via* http://www.ccdc.cam.ac.uk/data\_request/cif

| Compound                                                          | 3a-d₄                | NiBr <sub>2</sub> (3a)  | NiBr₂(3a-d₄)               | PdCl <sub>2</sub> (3a-d <sub>4</sub> )    |
|-------------------------------------------------------------------|----------------------|-------------------------|----------------------------|-------------------------------------------|
| Empirical formula                                                 | $C_{26}H_{20}D_4P_2$ | $C_{26}H_{24}Br_2NiP_2$ | $C_{26}H_{20}D_4Br_2NiP_2$ | $C_{26}H_{20}D_4Cl_2P_2Pd\bulletCH_2Cl_2$ |
| Formula weight                                                    | 402.42               | 616.92                  | 620.95                     | 664.64                                    |
| Temperature (K)                                                   | 99.9(6)              | 100.0(1)                | 100.0(1)                   | 100(1) K                                  |
| Wavelength (Å)                                                    | 1.54184              | 0.71073                 | 1.54184                    | 1.54184                                   |
| Crystal system                                                    | Monoclinic           | Monoclinic              | Monoclinic                 | Monoclinic                                |
| Space group                                                       | P2 <sub>1</sub> /n   | I2 (C2)                 | I2 (C2)                    | P2 <sub>1</sub> /c                        |
| Unit cell dimensions                                              |                      |                         |                            |                                           |
| a (Å)                                                             | 12.9927(2)           | 14.7357(2)              | 14.76958(12)               | 12.23371(15)                              |
| b (Å)                                                             | 5.42935(8)           | 8.18130(10)             | 8.13419(6)                 | 15.33669(17)                              |
| c (Å)                                                             | 16.1917(3)           | 31.1513(4)              | 31.1623(2)                 | 15.30095(17)                              |
| β (°)                                                             | 111.1377(19)         | 99.3775(12)             | 99.6666(8)                 | 105.8845(12)                              |
| Volume (ų)                                                        | 1065.35(3)           | 3705.32(8)              | 3690.64(5)                 | 2761.21(6)                                |
| Z / Z'                                                            | 2 / 0.5              | 6 / 1.5                 | 6 / 1.5                    | 4/1                                       |
| Calcd. Density (g/cm <sup>3</sup> )                               | 1.254                | 1.659                   | 1.676                      | 1.599                                     |
| Absorp. coef. (mm <sup>-1</sup> )                                 | 1.899                | 4.162                   | 6.255                      | 10.193                                    |
| F(000)                                                            | 420                  | 1848                    | 1848                       | 1328                                      |
| Crystal size (mm)                                                 | 0.20×0.14×0.12       | 0.87×0.12×0.09          | 0.18×0.03×0.02             | 0.18×0.08×0.08                            |
| θ range (°)                                                       | 3.764-70.696         | 2.238-33.499            | 2.877-79.537               | 3.757-78.853                              |
| Index ranges                                                      | -15≤h≤14,            | -22≤h≤22,               | -18≤h≤18,                  | -15≤h≤15,                                 |
|                                                                   | -6≤k≤6,              | -12≤k≤12,               | -9≤k≤10,                   | -19≤k≤18,                                 |
|                                                                   | -19≤l≤19             | -48≤l≤48                | -39≤l≤39                   | -19≤l≤17                                  |
| Reflections                                                       |                      |                         |                            |                                           |
| Collected                                                         | 8374                 | 72208                   | 41465                      | 26319                                     |
| Independent [R <sub>int</sub> ]                                   | 2057 [0.0373]        | 14530 [0.0575]          | 7855 [0.0367]              | 5727 [0.0873]                             |
| Observed [I>2 $\sigma$ (I)]                                       | 1903                 | 13520                   | 7712                       | 5278                                      |
| $\theta_{full}$ / $\theta_{max}$ (°)                              | 67.684 / 70.696      | 33.499 / 25.242         | 67.684 / 79.537            | 67.684 / 78.853                           |
| Completeness to $\theta_{full}$ /                                 | 1.000 / 0.999        | 0.999 / 1.000           | 1.000 / 0.994              | 0.996 / 0.959                             |
| $\theta_{max}$                                                    |                      |                         |                            |                                           |
| Data / restraints /                                               | 2057 / 0 / 175       | 14530 / 1 / 528         | 7855 / 1 / 420             | 5727 / 10 / 328                           |
| parameters                                                        |                      |                         |                            |                                           |
| Goodness-of-fit on <i>F</i> <sup>2</sup>                          | 1.103                | 1.047                   | 1.068                      | 1.082                                     |
| R1 / $\omega$ R2 indices                                          | 0.0325 / 0.0851      | 0.0330 / 0.0827         | 0.0244 / 0.0646            | 0.0415 / 0.1133                           |
| [I>2ơ(I)]                                                         |                      |                         |                            |                                           |
| R1 / $\omega$ R2 indices (all                                     | 0.0346 / 0.0874      | 0.0363 / 0.0839         | 0.0250 / 0.0648            | 0.0438 / 0.1158                           |
| data)                                                             |                      |                         |                            |                                           |
| Flack parameter                                                   | -                    | -0.003(4)               | -0.050(12)                 | -                                         |
| Number of quotients                                               | -                    | 5915                    | 3460                       | -                                         |
| $\Delta \rho_{max}  /  \Delta \rho_{max}  (\bar{e} \cdot A^{-3})$ | 0.325 / -0.245       | 1.154 / -0.488          | 0.390 / -0.550             | 1.713 / -1.442                            |
| CCDC number                                                       | 2164954              | 2164955                 | 2164956                    | 2164957                                   |

 Table S1. Crystal data, data collection and structure refinement details.

| Compound                                                                | NiBr₂(3e)               | NiBr <sub>2</sub> (3e-d <sub>4</sub> ) | NiBr <sub>2</sub> (3e-d <sub>16</sub> ) |
|-------------------------------------------------------------------------|-------------------------|----------------------------------------|-----------------------------------------|
| Empirical formula                                                       | $C_{30}H_{32}Br_2NiP_2$ | $C_{30}H_{28}D_4Br_2NiP_2$             | $C_{30}H_{16}D_{16}Br_2NiP_2$           |
| Formula weight                                                          | 673.02                  | 677.05                                 | 689.12                                  |
| Temperature (K)                                                         | 100.0(1)                | 100.0(1)                               | 100.0(1)                                |
| Wavelength (Å)                                                          | 1.54184                 | 1.54184                                | 1.54184                                 |
| Crystal system                                                          | Monoclinic              | Monoclinic                             | Monoclinic                              |
| Space group                                                             | P2 <sub>1</sub>         | P2 <sub>1</sub>                        | P2 <sub>1</sub>                         |
| Unit cell dimensions                                                    |                         |                                        |                                         |
| a (Å)                                                                   | 11.39760(19)            | 11.4120(4)                             | 11.38816(10)                            |
| b (Å)                                                                   | 16.6937(3)              | 16.6991(4)                             | 16.66903(18)                            |
| c (Å)                                                                   | 14.8531(3)              | 14.8765(4)                             | 14.84741(15)                            |
| β (°)                                                                   | 91.7332(17)             | 91.629(3)                              | 91.9150(8)                              |
| Volume (Å <sup>3</sup> )                                                | 2824.78(9)              | 2833.87(14)                            | 2816.90(5)                              |
| Z / Z'                                                                  | 4 / 2                   | 4 / 2                                  | 4 / 2                                   |
| Calcd. Density (g/cm <sup>3</sup> )                                     | 1.583                   | 1.587                                  | 1.587                                   |
| Absorp. coef. (mm <sup>-1</sup> )                                       | 5.500                   | 5.482                                  | 5.515                                   |
| F(000)                                                                  | 1360                    | 1360                                   | 1360                                    |
| Crystal size (mm)                                                       | 0.09×0.08×0.02          | 0.06×0.05×0.01                         | 0.23×0.12×0.07                          |
| θ range (°)                                                             | 3.985-79.711            | 3.981-79.461                           | 3.884-79.438                            |
| Index ranges                                                            | -14≤h≤12                | -14≤h≤14                               | -14≤h≤14                                |
|                                                                         | -21≤k≤21                | -21≤k≤21                               | -21≤k≤21                                |
|                                                                         | -18≤l≤18                | -18≤l≤18                               | -18≤l≤18                                |
| Reflections                                                             |                         |                                        |                                         |
| Collected                                                               | 12854*                  | 15002*                                 | 13566*                                  |
| Independent [R <sub>int</sub> ]                                         | 12854 [0*]              | 15002 [0*]                             | 13566 [0*]                              |
| Observed [I>2σ(I)]                                                      | 12450                   | 14242                                  | 13509                                   |
| θ <sub>full</sub> / θ <sub>max</sub> (°)                                | 67.684 / 79.711         |                                        |                                         |
| Completeness to $\theta_{full}$ / $\theta_{max}$                        | 0.984 / 0.967           |                                        |                                         |
| Data / restraints / parameters                                          | 12854 / 1 / 643         | 15002 / 1 / 641                        | 13566 / 1 / 640                         |
| Goodness-of-fit on $F^2$                                                | 1.035                   | 1.054                                  | 1.053                                   |
| R1 / ωR2 indices [I>2σ(I)]                                              | 0.0757 / 0.2064         | 0.0779 / 0.2235                        | 0.0575 / 0.1539                         |
| R1 / $\omega$ R2 indices (all data)                                     | 0.0768 / 0.2109         | 0.0864 / 0.2460                        | 0.0578 / 0.1546                         |
| $\Delta \rho_{max}  /  \Delta \rho_{max}  (\bar{e} \cdot \dot{A}^{-3})$ | 1.615 / -0.929          | 2.221 / -0.569                         | 2.071/-0.910                            |
| CCDC number                                                             | 2164957                 | 2164959                                | 2164960                                 |

**Table S1.** Crystal data, data collection and structure refinement details (cont.).

\* Due to processing as multidomain structures, identical reflections were merged, decreasing the number of collected reflections to the number of unique reflections and providing  $R_{int}=0$ .

Two polymorphic modifications for 1,2-bis(diphenylphosphino)ethane, **3a**, are known to date: modification I (the CSD codes: DPPETH, DPPETH02 and DPPETH04; the CCDC deposition numbers: 1145364, 161363 and 2113126)<sup>29-31</sup> and modification II (CSD DPPETH01; CCDC 1145365).<sup>29</sup> The crystal structure of **3a-d**<sub>4</sub> is isostructural with modification I of **3a**, in which the molecule of **3a-d**<sub>4</sub> (Fig. S95) is located on an inversion center (Z'=0.5).



Fig. S95. The structure of 3a-d<sub>4</sub> (p=50%).

The crystal structures of  $NiBr_2(3a)$  (Figs. S96, S97) and  $NiBr_2(3a-d_4)$  (Figs. S99, S100) are isostructural. Their asymmetric units contain 1.5 molecules. One crystallographically unique molecule of  $NiBr_2(3a-d_4)$  (Figs. S96 and S99) is located in a general position, and the second one (Figs. S97 and S100) is situated on a 2-fold proper rotation axis passing through the Ni atom and the middle of the CH<sub>2</sub>-CH<sub>2</sub> bond. Both molecules exhibit similar conformations (Fig. S98 for NiBr<sub>2</sub>(3a). The structure of NiBr<sub>2</sub>(3a), reported herein, is of better quality than that reported earlier for this chiral polymorphic modification (*C*2 space group, Z'=1.5, CCDC 805341, CSD refcode DAGBIY01).<sup>32</sup> The other known polymorphic modification of NiBr<sub>2</sub>(3a) is centrosymmetric (*P*<sub>21</sub>/c, Z'=1, CCDC numbers 769521 and 1412269, CSD refcodes DAGBIY and DAGBIY02).<sup>33, 34</sup>



Fig. S96. The molecular structure of NiBr<sub>2</sub>(3a). The first crystallographically independent molecules is shown (p=50%). Selected bond distances (Å): Br1-Ni1 2.3305(5), Br2-Ni1 2.3428(5), Ni1-P1 2.1611(9), Ni1-P2 2.1425(9).



**Fig. S97.** The molecular structure of **NiBr**<sub>2</sub>(**3a**). The second crystallographically independent molecule is shown (p=50%). A 2-fold rotation axis passes through Ni2 and the middle of the C27-C27 bond. Selected distances (Å): Br3-Ni2 2.3427(5), Ni2-P3 2.1495(9).



**Fig. S98.** The overlay of two crystallographically independent molecules exhibiting similar conformations. The first molecule (from Fig. S96) is marked in green, and the second molecule (from Fig. S97) is labeled in blue. The RMSD is 0.4190, and the maximum atom deviation is 0.7262 Å.



Fig. S99. One of two crystallographically independent molecules of NiBr<sub>2</sub>(3a-d<sub>4</sub>) (p=50%). Deuterium atoms are labeled *D*. Selected bond lengths (Å): Br1-Ni1 2.3296(7), Br2-Ni1 2.3408(7), Ni1-P1 2.1608(11), Ni1-P2 2.1435(11).



**Fig. S100.** The second crystallographically independent molecule of **NiBr<sub>2</sub>(3a-d<sub>4</sub>)** (p=50%). A 2-fold rotation axis passes through Ni2 and the middle of the C27-C27 bond. Deuterium atoms are labeled as *D*. Selected distances (Å): Br3-Ni2 2.3420(7), Ni2-P3 2.1520(11).

The structure of  $PdCl_2(3a-d_4) \cdot CH_2Cl_2$  (Fig. S101) is isostructural with previously described non-deuterated  $PdCl_2(3a) \cdot CH_2Cl_2$  (CCDC 1145202, CSD refcode DPEPDC).<sup>35</sup> The conformations of NiBr<sub>2</sub>(3a) (Fig. S96) and complex  $PdCl_2(3a-d_4)$  appeared to be very close (Fig. S102).



**Fig. S101.** The crystal structure of **PdCl<sub>2</sub>(3a-d<sub>4</sub>)** (p=50%). Deuterium atoms are labeled *D*. The disorder of a non-coordinating dichloromethane molecule is omitted. Selected bond lengths (Å): Pd1-Cl1 2.3538(6), Pd1-Cl2 2.3652(6), Pd1-P1 2.2344(7), Pd1-P2 2.2230(7).



**Fig. S102.** The overlay of one crystallographically independent molecule of **NiBr**<sub>2</sub>(**3a**) (Fig. S96) and complex **PdCl**<sub>2</sub>(**3a-d**<sub>4</sub>) (Fig. S101). The RMSD is 0.335 (H atoms are not taken into account).

Complexes NiBr<sub>2</sub>(3e) (Figs. S103, S104), NiBr<sub>2</sub>(3e-d<sub>4</sub>) (Figs. S106, S107), and NiBr<sub>2</sub>(3e-d<sub>16</sub>) (Figs. S108, S109) are isostructural. They crystalize as multidomain crystals in the  $P2_1$  space group with two symmetrically inequivalent molecules, which exhibit very similar conformations (see Fig. S105 for NiBr<sub>2</sub>(3e)).



**Fig. S103.** The first crystallographically independent molecule of **NiBr<sub>2</sub>(3e)** (p=50%). Selected distances (Å): Br1-Ni1 2.328(2), Br2-Ni1 2.349(2), Ni1-P1 2.182(4), Ni1-P2 2.166(4).



**Fig. S104.** The second crystallographically independent molecule of **NiBr<sub>2</sub>(3e)** (p=50%). Selected distances (Å): Br3-Ni2 2.333(2), Br4-Ni2 2.331(2), Ni2-P3 2.178(4), Ni2-P4 2.178(4).



**Fig. S105.** The overlay of two crystallographically independent molecules of **NiBr<sub>2</sub>(3e)** exhibiting similar conformations. The first molecule (from Fig. S103) is marked in green, and the second molecule (from Fig. S104) is labeled in blue. The RMSD is 0.1745, and the maximum atom deviation is 0.3532 Å.



**Fig. S106.** The first crystallographically independent molecule of **NiBr<sub>2</sub>(3e-d<sub>4</sub>)** (p=50%). Deuterium atoms are labeled as *D*. Selected distances (Å): Br1-Ni1 2.327(3), Br2-Ni1 2.352(3), Ni1-P1 2.176(5), Ni1-P2 2.173(5).



**Fig. S107.** The second crystallographically independent molecule of NiBr<sub>2</sub>(3e-d<sub>4</sub>) (p=50%). Deuterium atoms are labeled as *D*. Selected distances (Å): Br3-Ni2 2.336(3), Br4-Ni2 2.328(3), Ni2-P3 2.182(5), Ni2-P4 2.179(5).



Fig. S108. The first crystallographically independent molecule of NiBr<sub>2</sub>(3e-d<sub>16</sub>) (p=50%). Deuterium atoms are labeled as *D*. Selected distances (Å): Br1-Ni1 2.3115(17), Br2-Ni1 2.3468(17), Ni1-P1 2.176(3), Ni1-P2 2.164(3).



Fig. S109. The second crystallographically independent molecule of NiBr<sub>2</sub>(3e-d<sub>16</sub>) (p=50%). Deuterium atoms are labeled as *D*. Selected distances (Å): Br3-Ni2 2.3320(19), Br4-Ni2 2.3265(18), Ni2-P3 2.176(3), Ni2-P4 2.173(3).

#### **S7. Powder XRD**



**Fig. S110.** X-ray patterns for **NiBr<sub>2</sub> (3e**): *red* - obtained, *blue* – simulated from the corresponding single-crystal data. The shift of the diffraction peaks was due to different temperatures of experiments.



**Fig. S111.** X-ray patterns for **NiBr<sub>2</sub> (3e-d<sub>16</sub>)**: *red* - experimental, *blue* – simulated from the corresponding single-crystal data. The shift of the diffraction peaks was due to different temperatures of experiments.



**Fig. S112.** X-ray patterns for **NiBr**<sub>2</sub> (**3e-d**<sub>4</sub>): *red* - experimental, *blue* – simulated from the corresponding single-crystal data. The shift of the diffraction peaks was due to different temperatures of experiments.

# **S8.** NMR experiment with <sup>13</sup>C<sub>2</sub>-DPPE and DPPE



**Fig. S113.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C<sub>2</sub>-DPPE (10 mg). The red asterisk indicates the signal of <sup>13</sup>C-labeled carbon atoms.



**Fig. S114.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C<sub>2</sub>-DPPE (5 mg). The red asterisk indicates the signal of <sup>13</sup>C-labeled carbon atoms.



**Fig. S115.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C<sub>2</sub>-DPPE (1 mg). The red asterisk indicates the signal of <sup>13</sup>C-labeled carbon atoms.



**Fig. S116.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C<sub>2</sub>-DPPE (0.5 mg). The red asterisk indicates the signal of <sup>13</sup>C-labeled carbon atoms.



**Fig. S117.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of <sup>13</sup>C<sub>2</sub>-DPPE (0.1 mg). The red asterisk indicates the signal of <sup>13</sup>C-labeled carbon atoms.



**Fig. S118.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DPPE (10 mg).



Fig. S120. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DPPE (1 mg).

![](_page_104_Figure_0.jpeg)

Fig. S122. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of DPPE (0.1 mg).

![](_page_105_Figure_0.jpeg)

**Fig. S123.** Comparison of the <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra of <sup>13</sup>C-labeled DPPE (left) and unlabeled DPPE (right) at various concentrations (each recorded with 256 scans for 15 min).

### **S9. References**

- 1. R. D. Feltham, G. Elbaze, R. Ortega, C. Eck and J. Dubrawski, Synthesis of new carbonyl complexes of palladium, *Inorg. Chem.*, 1985, **24**, 1503-1510.
- 2. M. S. Ledovskaya, V. V. Voronin, K. S. Rodygin and V. P. Ananikov, Efficient labeling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals, *Org. Chem. Front.*, 2020, **7**, 638-647.
- J. L. Pascual-ahuir, E. Silla and I. Tuñon, GEPOL: An improved description of molecular surfaces.
   III. A new algorithm for the computation of a solvent-excluding surface, *J. Comput. Chem.*, 1994, 15, 1127-1138.
- 4. A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem. A, 1964, 68, 441-451.
- 5. J. Cooper and T. Ziegler, A Density Functional Study of SN2 Substitution at Square-Planar Platinum(II) Complexes, *Inorg. Chem.*, 2002, **41**, 6614-6622.
- 6. D. H. Wertz, Relationship between the gas-phase entropies of molecules and their entropies of solvation in water and 1-octanol, *J. Am. Chem. Soc.*, 1980, **102**, 5316-5322.
- 7. V. Krishnamurti, C. Barrett and G. K. S. Prakash, Siladifluoromethylation and Deoxotrifluoromethylation of PV–H Compounds with TMSCF3: Route to PV–CF<sub>2</sub>– Transfer Reagents and P–CF<sub>3</sub> Compounds, *Org. Lett.*, 2019, **21**, 1526-1529.
- 8. C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei and C. H. Senanayake, A Superior Method for the Reduction of Secondary Phosphine Oxides, *Org. Lett.*, 2005, **7**, 4277-4280.
- D. Zhang, M. Lian, J. Liu, S. Tang, G. Liu, C. Ma, Q. Meng, H. Peng and D. Zhu, Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α-Substituted Malononitriles in the Presence of Diarylphosphine Oxides, Org. Lett., 2019, 21, 2597-2601.
- 10. M. M. Rauhut and H. A. Currier, Oxidation of Secondary Phosphines to Secondary Phosphine Oxides1, *J. Org. Chem.*, 1961, **26**, 4626-4628.
- 11. M. A. Klingenberg, A. S. Bogachenkov, M. A. Kinzhalov, A. V. Vasilyev and V. P. Boyarskiy, 1,4-Dihydrophosphinolines and their complexes with group 10 metals, *New J. Chem.*, 2016, **40**, 3336-3342.
- G. R. Van Hecke and W. D. Horrocks, Ditertiary Phosphine Complexes of Nickel. SpeCtral, Magnetic, and Proton Resonance Studies. A Planar-Tetrahedral Equilibrium, *Inorg. Chem.*, 1966, 5, 1968-1974.
- 13. A. D. Westland, 562. Five-co-ordinate palladium(II) and platinum(II), *J. Chem. Soc.*, 1965, DOI: 10.1039/JR9650003060, 3060-3067.
- 14. C. Laye, J. Lusseau, F. Robert and Y. Landais, The Trityl-Cation Mediated Phosphine Oxides Reduction, *Adv. Synth. Catal.*, 2021, **363**, 3035-3043.
- 15. J. E. Mrochek and C. V. Banks, Bis-(disubstitutedphosphinyl)-alkanes—IV: Extraction of mineral acids, uranium (VI), and some lanthanides, *J. Inorg. Nucl. Chem.*, 1965, **27**, 589-601.
- 16. L. Maier, Organische Phosphorverbindungen XXXI. Ein einfaches Verfahren zur Herstellung von Alkylen- bzw. Arylen- bzw. diphosphiniten und von Bis-(dialkyl- und diaryl-phosphinyl)-alkanen, *Helv. Chim. Acta*, 1968, **51**, 405-413.
- 17. L. R. Doyle, A. Heath, C. H. Low and A. E. Ashley, A Convenient Synthetic Protocol to 1,2-Bis(dialkylphosphino)ethanes, *Adv. Synth. Catal.*, 2014, **356**, 603-608.
- 18. D. Sinou, D. Maillard and G. Pozzi, Synthesis of a Family of Triarylphosphanes with Fluorous Phase Affinity, *Eur. J. Org. Chem.*, 2002, **2002**, 269-275.
- 19. L. C. Baldwin and M. J. Fink, Synthesis of 1,2-bis[(diorgano)phosphino]ethanes via Michaelis– Arbuzov type rearrangements, *J. Organomet. Chem.*, 2002, **646**, 230-238.
- 20. P. Boehm, P. Müller, P. Finkelstein, M. A. Rivero-Crespo, M.-O. Ebert, N. Trapp and B. Morandi, Mechanistic Investigation of the Nickel-Catalyzed Metathesis between Aryl Thioethers and Aryl Nitriles, J. Am. Chem. Soc., 2022, **144**, 13096-13108.
- 21. M. Bacci, Infrared spectra of  $(C_6H_5)PCH_2CH_2P(C_6H_5)_2$  and  $(C_6H_5)_2PCD_2CD_2P(C_6H_5)_2$ , Spectrochim. Acta A Mol. Biomol. Spectrosc., 1972, **28**, 2286-2289.

- 22. A. A. S. W. Tchawou, M. Raducan and P. Chen, Mechanism-Based Design and Optimization of a Catalytic Electrophilic Cyclopropanation without Diazomethane, *Organometallics*, 2017, **36**, 180-191.
- 23. CrysAlisPro. Version 1.171.41. *Rigaku Oxford Diffraction*, 2022.
- 24. G. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallogr. A*, 2015, **71**, 3-8.
- 25. G. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 26. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 27. S. Parsons, H. D. Flack and T. Wagner, Use of intensity quotients and differences in absolute structure refinement, *Acta Crystallogr. B*, 2013, **69**, 249-259.
- C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury 4.0: from visualization to analysis, design and prediction, *J. Appl. Crystallogr.*, 2020, 53, 226-235.
- 29. C. Pelizzi and G. Pelizzi, Crystal structures of two forms of 1,2-bis(diphenylphosphino)ethane, *Acta Crystallogr. B*, 1979, **35**, 1785-1790.
- 30. E. R. T. Tiekink, The crystal structure of 1,2-bis(diphenylphosphino)ethane at 173 K, [Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>], *Z. Kristallogr. New Cryst. Struct.*, 2001, **216**, 69-70.
- Mengke Li, Xinyi Cai, Zijian Chen, Kunkun Liu, Weidong Qiu, Wentao Xie, Liangying Wang and S.-J. Su, CCDC 2113126: Experimental Crystal Structure Determination, 2021, doi: https://doi.org/10.5517/ccdc.csd.cc28xwcg
- 32. M. Haddow, G. Owen and M. Slivarichova, CCDC 805341: Experimental Crystal Structure Determination, 2011, doi: https://doi.org/10.5517/ccw10rn
- 33. M. Haddow, G. Owen and M. Slivarichova, CCDC 769521: Experimental Crystal Structure Determination, 2011, doi: https://doi.org/10.5517/ccttr8m
- 34. Ali Naghipour, Arash Ghorbani-Choghamarani, Heshmatollah Babaee and B. Notash, CCDC 1412269: Experimental Crystal Structure Determination, 2016, doi: https://doi.org/10.5517/ccdc.csd.cc1jdl2l
- W. L. Steffen and G. J. Palenik, Crystal and molecular structures of dichloro[bis(diphenylphosphino)methane]palladium(II), dichloro[bis(diphenylphosphino)ethane]palladium(II), and dichloro[1,3-bis(diphenylphosphino)propane]palladium(II), *Inorg. Chem.*, 1976, 15, 2432-2439.