Supporting Information

Bio-inspired Formal Total Synthesis of (\pm)-Bisabosqual A

Xuanxuan Du, ${ }^{\text {a }}$ Hainan Liu, ${ }^{\text {a }}$ Yumeng Wu^{a} and Yu Tang, ab

${ }^{\text {a }}$ Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003,
${ }^{\text {b }}$ People's Republic of China bLaboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People’s Republic of China.

Table of contents

1. General Methods 3
2. Experimental Procedures and Physical Data of Compounds 4
2.1 Synthesis of (2E, 6E)-3, 7, 11-trimethyldodeca-2, 6, 10-trienal (20) 4
2.2 Synthesis of 5-(hydroxymethyl)cyclo hexane-1, 3-dione (21) 4
2.3 Synthesis of -2-((E)-4, 8-dimethylnona-3, 7-dien-1-yl)-7-(hydroxymethyl)-2-methyl-2, 6, 7, 8-tetrahydro-5 H -chromen-5-one (19) 5
2.4 Synthesis of -3-(hydroxymethyl)-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-2, 3, 4, 6, 6a, 7, 8, 10 a-octahydro-1 H -benzo[c]chromen-1-one (17) 6
2.5 Synthesis of -3-(((tert-butyldimethylsilyl)oxy)methyl)-6, 9-dimethyl-6-(4-methy lpent-3- en-1-yl)-2, 3, 4, 6, 6a, 7, 8, 10a-octahydro-1 H-benzo[c]chromen-1-one (24) 7
2.6 Synthesis of methyl-3-(((tert-butyldimethylsilyl)oxy)methyl)-6, 9-dimethyl-6-(4- methylpent-3-en-1-yl)-1-oxo-2, 3, 4, 6, 6a, 7, 8, 10a-octahydro- 1 H -benzo[c]chromene-2- carboxy late (25) 8
2.7 Synthesis of methyl-3-formyl-1-hydroxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a-tetrahydro- 6 H -benzo[c]chromene-2-carboxylate (27) 9
2.8 Synthesis of dimethyl-1-hydroxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a- tetrahy dro-6 H -benzo[c]chromene-2, 3-dicarboxylate (28) 10
2.9 Synthesis of dimethyl -1-acetoxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a- tetrahydro- 6 H -benzo[c]chromene-2, 3-dicarboxylate (29) 11
2.10 Synthesis of dimethyl-9-(2-(3, 3-dimethyloxiran-2-yl) ethyl)-9-methyl-3-methylene-2, 3,3a, 3a1, 9, 9a-hexahydro-1H-benzofuro[4, 3, 2-cde]chromene-5, 6-dicarboxylate (31)..11
2.11 Synthesis of dimethyl-9-methyl-9-(4-methylpent-3-en-1-yl)-3-oxo-2, 3, 3a, 3a1, 9, 9a- hexahydro-1H-benzofuro[4, 3, 2-cde]chromene-5, 6-dicarboxylate (32) 13
2.12 Intermidiate Product Spectral Comparisons 14
3. References 16
4. NMR Spectra 17

1. General Methods

All reactions were carried out under an argon atmosphere with dry solvent under anhydrous conditions, unless otherwise noted. Dry dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF) were obtained by passing commercially available pre-dried. Anhydrous acetone, dimethylformamide (DMF), ethyl acetate (EtOAc), and toluene were purchased from commercial suppliers and stored under argon. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogenous material, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise noted.

Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm silica gel plates (GF254, Qingdao) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid (PMA) or I_{2} as developing agents. Silica gel (200-400 mesh, Qingdao) or neutral alumina (100-200 mesh) was used for column chromatography.

NMR spectra were recorded on Bruker AV 400, Agilent AV 500 or JEOL AV 400 instruments and calibrated using residual undeuterated solvent $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.1 \mathrm{ppm} ; \mathrm{DMSO}, \delta_{\mathrm{H}}=2.50\right.$ $\left.\mathrm{ppm}, \delta_{\mathrm{C}}=39.6 \mathrm{ppm}\right)$ as an internal reference. The information in parentheses report fine structures ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), scalar coupling constants (J, given in Hz), relative integration of signals and the signal assignment. HRESIMS data were measured on UHD Accurate Mass Q-TOF LC/MS G6540A. Semi-preparative HPLC (Hitachi chromaster).

2. Experimental Procedures and Physical Data of Compounds

2.1 Synthesis of (2E, $6 E$)-3, 7, 11-trimethyldodeca-2, 6, 10-trienal (20)

Aldehyde $\mathbf{2 0}$ was prepared in 80% accorting to the process reported in literature. ${ }^{[1]}$
To a solution of ($2 E, 6 E$)-farnesol ($222.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dichloromethane (50 mL) was added $\mathrm{NaHCO}_{3}(252.0 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq})$, Dess-Martin periodinane ($932.0 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After being stirred for 1 h at room temperture, the reaction solvent was removed under vacuum. Saturated sodium bicarbonate aqueous solution (10 mL) and saturated sodium thiosulfate aqueous solution (5 mL) were added to the residue. The solution was extracted with dichloromethane ($20 \mathrm{~mL} \times$ 3). The combined organic phase was washed with brine (20 mL), dried over sodium sulfate, concentrated and purified by silica gel column chromatography (petroleum ether/ethyl acetate $=50: 1$) to give aldehyde $\mathbf{2 0}$ as a yellow oil ($176.0 \mathrm{mg}, 80 \%$).

2.2 Synthesis of 5-(hydroxymethyl)cyclohexane-1, 3-dione (21)

Hydroxydiketone 21 was prepared in 67% by 3 steps of the process reported in literature. ${ }^{[2,3]}$
To a solution of compound $22(50.0 \mathrm{~g}, 235.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ in methanol (300 mL) was added liquid ammonia (1000 mL) at $-78^{\circ} \mathrm{C}$, Sodium (30.0 g) was added in small pieces to a solution. When the addition was complete, ammonium chloride (125.0 g) was added, and the ammonia was allowed to evaporate at room temperature. The resulting solid was dissolved in ice-water, and the solution was acidified to congo-red with 2 N HCl at $0^{\circ} \mathrm{C}$. The solution was extracted with methylene chloride. After drying, the methylene chloride was removed at room temperature giving crude 1,4 -dihydro-3, 5dimethoxybenzoic acid. Crude product was added as a slurry in MTBE to a suspension of lithium aluminum hydride (17.0 g) in MTBE $(500 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h the excess hydride was quenched with saturated ammonium chloride aqueous solution and the mixture was filtered. Evaporation of the MTBE at room temperature gave the crude alcohol. A solution of alcohol (30.0 g , $176.0 \mathrm{mmol})$ in a mixture of THF $(750 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(150 \mathrm{~mL})$ was stirred at room temperature for 8 hours and was then concentrated in vacuo, purified by neutral alumina column chromatography (DCM :

Methanol = 5:1) to give hydroxydiketone 21 as a yellow oil ($22.4 \mathrm{~g}, 67 \%, 3$ steps).

2.3 Synthesis of -2-((E)-4, 8-dimethylnona-3, 7-dien-1-yl)-7-(hydroxymethyl)-2-methyl-2, 6, 7, 8-

 tetrahydro-5H-chromene-5-one (19)

To a stirred solution of hydroxydiketone $21(156.0 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1 \mathrm{eq})$ in dry $\mathrm{MeOH}(20 \mathrm{~mL})$ was added freshly prepared EDDA ($17.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1 \mathrm{eq}$) and ($2 E, 6 E$)-farnesal $20(222.0 \mathrm{mg}, 1.0$ mmol, 1.0 eq) at room temperature. The resulting mixture was stirred about 1 h . The reaction mixture was concentrated under reduced pressure and was purified by flash column chromatography (silica gel, petrol ether : $\mathrm{EtOAc}=10: 1$) to give pyran 19 as a yellow oil ($223.6 \mathrm{mg}, 65 \%$).

19: $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (petroleum ether : $\mathrm{EtOAc}=1: 1$); IR (KBr): 3480, 3417, 2968, 2920, 1633, 1608, 1437, 1381, 1203, 1152, 1059, $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two isomers, $\delta 6.43(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.21(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.65-$ $3.60(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 9 \mathrm{H}), 1.99$ - $1.95(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.23$, (194.15), 171.4, 171.3, 135.66, (135.66), 131.39, (131.39), 124.18, (124.18), 123.40, (123.36), 121.8, 121.7, 116.3, 116.2, 110.1, 109.9, 82.70, (82.66), 65.71, (65.68), 41.68, (41.68), 39.62, (39.62), 39.08, (39.05), 35.6, 35.5, 31.4, 31.3, 27.5, 27.3, 26.61, (26.61), 25.67, (25.67), 22.6, 22.2, 17.66, (17.66), 15.96, 15.95 ppm ; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3}{ }^{+}$ 345.2424; found 345.2426 .

2.4 Synthesis of -3-(hydroxymethyl)-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-2, 3, 4, 6, 6a, 7, 8, 10

 a-octahydro-1H-benzo[c]chromene-1-one (17)Table S1 Optimal conditions screened for the formation of $17{ }^{\text {[a] }}$

Entry	Reagent	Eq	Solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield(\%) ${ }^{[\mathrm{bb]}}$
1	MgBr_{2}	1	DCM	reflux	2	28
2	p-TSA	1	DCM	rt	2	45
3	AlCl_{3}	1	DCM	rt	2	14
4	$\mathrm{Zn}(\mathrm{OTf})_{3}$	1	DCM	rt	2	No Reaction
5	$\mathrm{In}(\mathrm{OTf})_{3}$	1	DCM	rt	2	34
6	FeCl_{3}	1	DCM	rt	2	69(56 ${ }^{\text {[c] }}$)
7	$\mathrm{Yb}(\mathrm{OTf})_{3}$	1	DCM	rt	2	No Reaction
8	FeCl_{3}	1	Tol	rt	2	32
9	FeCl_{3}	,	DCM	rt	4	29

${ }^{[a]}$ Reactions were performed at the 0.1 mmol scale in solvent.
${ }^{[b]}$ Total yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixtures.
${ }^{[\mathrm{c}]}$ Isolated yield.

To a stirred solution of compound $19(1.0 \mathrm{~g}, 2.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{DCM}(0.1 \mathrm{M}, 29 \mathrm{~mL})$ was added FeCl_{3} ($469.8 \mathrm{mg}, 2.9 \mathrm{mmol}, 1.0 \mathrm{eq}$) at room temperature. The resulting mixture was stirred about 2 h . The reaction mixture was concentrated under reduced pressure. The crude product was purified by flash column chromatography (neutral alumina, petrol ether : EtOAc $=15: 1$) to give product $\mathbf{1 7}$ as a yellow oil (558.7 mg , yield: 56%).

17: $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (petroleum ether: $\mathrm{EtOAc}=1: 1$); IR (KBr): 3513, 3436, 2957, 2915, 1633, 1600, 1440, 1380, 1223, 1155, 1073, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): two isomers, $\delta 6.09(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 7 \mathrm{H}), 2.26-$ $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 7 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.65$ (s, 9H), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}$, 3 H), $1.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.5, 197.2, 168.2, 167.4, 133.8, 133.6, 132.1, $132.0,123.7,123.6,122.1,122.0,114.2,113.5,81.49$, (81.47), 65.9, 65.6, 40.3, 40.1, 37.8, 37.4, 37.4, $36.8,35.8,34.9,32.2,31.6,31.5,30.2,30.0,29.8,29.7,29.6,25.7,23.54,(23.50), 22.7,22.4,22.3,22.2$, 20.4, 20.0, 17.6 ppm ; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3}{ }^{+} 345.2424$; found 345.2427.

2.5 Synthesis of -3-(((tert-butyldimethylsilyl)oxy)methyl)-6, 9-dimethyl-6-(4-methy lpent-3-en-1-

yl)-2, 3, 4, 6, 6a, 7, 8, 10a-octahydro-1H-benzo[c]chromene-1-one (24)

To a stirred solution of compound $17(660.0 \mathrm{mg}, 1.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry DCM $(50 \mathrm{~mL})$ was added imidole ($390.5 \mathrm{mg}, 5.7 \mathrm{mmol}, 3.0 \mathrm{eq}$) and $\mathrm{TBSCl}(573.8 \mathrm{mg}, 3.8 \mathrm{mmol}, 2.0 \mathrm{eq})$ at room temperature. The resulting mixture was stirred about 1 h . The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with DCM ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (neutral alumina, petrol ether : $\mathrm{EtOAc}=100: 1$) to give product 24 as a yellow oil (678.7 mg , yield: 78%).

24: $\boldsymbol{R}_{\boldsymbol{f}}=0.6$ (petroleum ether : $\mathrm{EtOAc}=5: 1$); IR (KBr): 3475, 2931, 2859, 1650, 1614, 1471, 1380, 1257, 1103, $979,836,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): two isomers, $\delta 6.07(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 7 \mathrm{H})$, $2.12-2.02(\mathrm{~m}, 5 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 9 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$, $-0.01(\mathrm{~s}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.8,197.6,168.3,167.5,133.6$, $133.4,132.0,131.9,123.7,122.3,122.2,114.1,114.1,113.4,81.32$, (81.32), 66.0, 65.7, 40.5, 40.3, 37.89 , (37.89), 37.5, 37.4, 36.74, (36.74), 36.06, (36.06), 35.02, (35.02), 32.24, (32.24), 31.62, (31.62), 30.11, (30.11), 29.84, (29.84), 29.69, (29.65), 26.0, 25.7, 23.6, 23.5, 22.8, 22.5, 22.4, 22.3, 20.4, 20.1, 18.4, 18.3, 17.64, (17.64), $-5.4,-5.5 \mathrm{ppm}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}^{+}$459.3289; found 459.3286 .

2.6 Synthesis of methyl-3-(((tert-butyldimethylsilyl)oxy)methyl)-6, 9-dimethyl-6-(4-methylpent-3-

 en-1-yl)-1-oxo-2, 3, 4, 6, 6a, 7, 8, 10a-octahydro-1H-benzo[c]chromene-2-carboxy late (25)

To a solution of compound 24 ($4.58 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) in anhydrous THF (250 mL) under Ar atmosphere at $-78^{\circ} \mathrm{C}$ was added LDA ($10.0 \mathrm{ml}, 7.5 \mathrm{mmol}, 1.5 \mathrm{eq}$) dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min and a solution of methyl cyanoformate ($1.7 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added dropwise. The resultant mixture was stirred, then allowed to warm to rt. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (neutral alumina, petrol ether $: \mathrm{EtOAc}=100: 1$) to give methyl ester product $\mathbf{2 5}$ as yellow oil (3.97 g , yield: 77%).

25: $\boldsymbol{R}_{\boldsymbol{f}}=0.55$ (petroleum ether : $\mathrm{EtOAc}=5: 1$); IR (KBr): 3471, 2954, 2929, 2857, 1743, 1650, 1606, $1429,1384,1257,1158,1105,836,669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): two isomers, $\delta 6.05$ (d, $J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{bs}, 1 \mathrm{H}), 3.09(\mathrm{bs}$, $1 \mathrm{H}), 2.63-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 9 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.69(\mathrm{~m}$, $2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) 1.52-1.49(\mathrm{~m}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}),-0.02-0.01(\mathrm{t}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.13, (193.13), 192.63, (192.63), 171.1, 171.0, 168.3, 168.0, 133.7, 133.6, 132.1, $131.9,123.6,123.4,121.8,121.7,113.10,(113.10), 112.41$, (112.41), 81.83, (81.77), 64.2, 63.7, 55.53, (55.51), 51.92, (51.86), 38.8, 37.9, 37.5, 37.4, 37.0, 36.7, 31.0, 30.5, 29.96, (29.96), 29.71, (29.65), 25.82, (25.79), 25.62, (25.62), 23.43, (23.40), 22.6, 22.4, 22.3, 22.2, 20.3, 20.0, 18.3, 18.2, 17.58, (17.56), -5.62 , (-5.64), $-5.7,(-5.8) \mathrm{ppm}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}^{+}$517.3344; found 517.3348.

2.7 Synthesis of methyl-3-formyl-1-hydroxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a-tetrahydro-6 H -benzo[c]chromene-2-carboxylate (27)

25

To a solution of compound $25(2.82 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in anhydrous tetrahydrofuran (30 mL) was added tetrabutylammonium fluoride (1.0 M in tetrahydrofuran, $8.2 \mathrm{~mL}, 1.5 \mathrm{eq}$) under nitrogen. The mixture was stirred for 3 h at $27^{\circ} \mathrm{C}$. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title compound as a pale yellow oil which was used without further purification.

To a solution of oxalyl chloride ($5.79 \mathrm{~mL}, 44.8 \mathrm{mmol}, 15.0 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ cooled to -78 ${ }^{\circ} \mathrm{C}$ was added a solution of anhydrous dimethylsulfoxide ($7.1 \mathrm{~mL}, 81.9 \mathrm{mmol}, 22.0 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ keeping the internal temperature under $-78^{\circ} \mathrm{C}$. After 15 minutes, a solution of the crude product $26(1.81 \mathrm{~g}, 4.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added keeping the internal temperature under $-78{ }^{\circ} \mathrm{C}$. After 1 h , anhydrous triethylamine ($25.0 \mathrm{~mL}, 180.0 \mathrm{mmol}, 40.0 \mathrm{eq}$) was added dropwise and the reaction mixture was warmed to room temperature over 30 minutes. Water was added and the aqueous phase extracted with DCM. The combined organic phases were washed with brine, dried over MgSO_{4}, filtrated and the filtrate concentrated under reduced pressure. The crude product. was purified by flash column chromatography flash chromatography on $\mathrm{Et}_{3} \mathrm{~N}$-deactivated silica gel (petrol ether: $E t O A c=400: 1$) to give aromatization product 27 as yellow solid (393.4 mg , yield: 18%, two steps).

27: $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (petroleum ether : $\mathrm{EtOAc}=10: 1$); Mp: $74.4^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 2920,2850,1700,1658,1559$, 1454, 1375, 1341, 1256, 1155, $963 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.85(\mathrm{br}, 1 \mathrm{H}), 10.39(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.08-1.88(\mathrm{~m}$, $7 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.1,170.8,163.2,158.2,138.0,135.1,132.0,123.6,120.9,117.3,110.9,103.1,80.2$,
$52.5,37.3,37.0,31.5,29.5,25.6,23.6,22.7,22.2,20.6,17.6 \mathrm{ppm}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}{ }^{+} 399.2166$; found 399.2167 .

2.8 Synthesis of dimethyl-1-hydroxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a-tetrahy dro-6H-benzo[c]chromene-2, 3-dicarboxylate (28)

To a stirred solution of compound $27(227.0 \mathrm{mg}, 0.57 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{THF} / \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=2: 2: 1(20$ mL) was added $\mathrm{NaH}_{2} \mathrm{PO}_{4}(205.2 \mathrm{mg}, 1.71 \mathrm{mmol}, 3.0$ eq), 2-methyl-2-butene ($0.18 \mathrm{ml}, 1.71 \mathrm{mmol}, 3.0$ eq) at $0^{\circ} \mathrm{C}$, finally, $\mathrm{NaClO}_{2}(153.9 \mathrm{mg}, 1.71 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added. The resulting mixture was stirred about 1 h . The mixture was quenched with ice-water (30 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title compound as a pale yellow oil which was used without further purification.

To a stirred solution of the above crude product in acetone (50 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(87.0 \mathrm{mg}, 0.63$ mmol, 1.1 eq$)$ and $\mathrm{CH}_{3} \mathrm{I}(0.05 \mathrm{~mL}, 0.63 \mathrm{mmol}, 1.1 \mathrm{eq})$ at room temperature. The resulting mixture was stirred about 40 min . The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50$ mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica gel, petrol ether : EtOAc $=50: 1$) to give dimethyl ester 28 as a yellow solid (197.6 mg , yield: 81%, two steps).

28: $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (petroleum ether : $\mathrm{EtOAc}=10: 1$); Mp: $80.9^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3468,2954,2923,2855,1733$, 1662, 1432, 1378, 1340, 1263, 1155, 912, 807, $644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.57(\mathrm{br}, 1 \mathrm{H})$, $6.39(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{brs}, 1 \mathrm{H})$, $2.03-1.86(\mathrm{~m}, 7 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,169.5,162.5,158.0,134.7,134.3,132.0,123.7,121.2,114.4,109.8$, 101.7, 80.1, 52.5, 52.4, 37.2, 37.1, 31.2, 29.5, 25.6, 23.6, 22.7, 22.2, 20.5, 17.6 ppm ; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{6}{ }^{+} 429.2272$; found 429.2270.

2.9 Synthesis of dimethyl -1-acetoxy-6, 9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a, 7, 8, 10a-tetrahydro-6H-benzo[c]chromene-2, 3-dicarboxylate (29)

To a stirred solution of compound $28(227.0 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DCM was added $\mathrm{Et}_{3} \mathrm{~N}(0.74$ $\mathrm{mL}), \mathrm{Ac}_{2} \mathrm{O}(0.53 \mathrm{~mL})$, the resulting mixture was stirred about 3 h . The mixture was quenched with icewater $(20 \mathrm{~mL})$ and extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.to afford the crude product. The crude product was purified by flash column chromatography (silica gel, petrol ether: $\mathrm{EtOAc}=30: 1$) to give acetate ester 29 as a yellow oil (229.8 mg , yield: 92%).

29: $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (petroleum ether : $\mathrm{EtOAc}=5: 1$); IR (KBr): 3453, 2954, 2859, 1776, 1731, 1608, 1562, 1330, 1193, 1035, 979, 883, $792 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, 1 H), $5.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{brs}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 6 \mathrm{H})$, $1.85-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 168.1,166.9,165.7,154.7,148.2,136.4,132.0,128.4,124.0,123.5,120.3,119.5$, 117.1, 79.7, 52.6, 52.5, 37.3, 36.9, 32.0, 29.5, 25.6, 23.7, 22.7, 22.2, 20.9, 20.3, 17.5; HRMS (ESI) m/z: $[M+H]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{7}{ }^{+}$471.2377; found 471.2370
2.10 Synthesis of dimethyl-9-(2-(3, 3-dimethyloxiran-2-yl) ethyl)-9-methyl-3-methylene-2, 3, 3a, 3a1, 9, 9a-hexahydro-1H-benzofuro[4, 3, 2-cde]chromene-5, 6-dicarboxylate (31)

To a stirred solution of acetyl ester $29(127.0 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ was added m CPBA ($138.1 \mathrm{mg}, 0.68 \mathrm{mmol}, 2.5 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$. Then the resulting mixture was stirred about 1 h at room temperature. The mixture was quenched with $5 \% \mathrm{NaHCO}_{3}$ solution (30 mL) and extracted with DCM
$(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title bisepoxide compound as a yellow oil which was used without further purification.

To a stirred solution of the above crude product in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(114.5 \mathrm{mg}, 0.83$ $\mathrm{mmol}, 3.0 \mathrm{eq})$ and the resulting mixture was stirred about 40 min at room temperature. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title tetracyclic alcohol $\mathbf{3 0}$ as a yellow oil which was used without further purification.

To a stirred solution of the above crude product tetracyclic alcohol $\mathbf{3 0}$ in pyridine (10 mL) was added DMAP ($36.9 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0 \mathrm{eq}$) at $-40^{\circ} \mathrm{C}$, then $\mathrm{SOCl}_{2}(55 \mu \mathrm{~L}, 0.48 \mathrm{mmol}, 2.5 \mathrm{eq})$ was added. The resulting mixture was stirred about 30 min at same temperature. The mixture was quenched with icewater $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, saturated CuSO_{4} solution (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title crude product. The crude product was purified by flash column chromatography Flash chromatography on $\mathrm{Et}_{3} \mathrm{~N}$-deactivated silica gel (silica gel, petrol ether : EtOAc $=10: 1-4: 1$) to give a $1: 1$ mixture of diastereomers exocyclic alkene $\mathbf{3 1}$ as white solid (37.9 mg , yield: 31%, three steps).

31: $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (petroleum ether : $\mathrm{EtOAc}=2: 1$); Mp: $216.6^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3448,2954,2923,2847,1723$, $1625,1429,1372,1293,1262,1228,1138,1011,726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): two isomers, $\delta 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H})$, $3.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.28$, (168.28), 165.64, (165.61), $160.1,160.0,153.8,153.7,143.04$, (142.97), 134.7, 134.6, 113.4, 113.3, 111.4, 111.3, 110.0, 109.9, 107.81 , (107.77), 88.14 , (88.09), $82.2,82.1,64.0,63.6,58.5,58.4,52.61$, (52.61), 52.29, (52.29), 37.5, 37.1, 36.18, (36.16), 34.9, 34.7, 31.4, 31.3, 24.78, (24.76), 23.74, (23.68), 23.6, 23.4, 22.4, 22.0, 18.7, 18.6 ppm ; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{7}{ }^{+} 465.1884$, found 465.1881.

2.11 Synthesis of dimethyl-9-methyl-9-(4-methylpent-3-en-1-yl)-3-oxo-2, 3, 3a, 3a1, 9, 9a-hexahydro- $1 H$-benzofuro[4, 3, 2-cde]chromene-5, 6-dicarboxylate (32)

To a stirred solution of the product exocyclic alkene $31(27.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF/ace tone $/ \mathrm{H}_{2} \mathrm{O}=1: 1: 1(15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.3 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.2 \mathrm{eq})$, NMO ($10.5 \mathrm{mg}, 0.09$ mmol, 1.5 eq), $\mathrm{NaIO}_{4}(49.9 \mathrm{mg}, 0.23 \mathrm{mmol}, 4.0 \mathrm{eq})$ and the resulting mixture was stirred about 4 h at room temperature. The mixture was quenched with ice-water (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title ketone which was used without further purification.

To a stirred solution of the above crude product ketone in acetic acid (2 mL) was added NaOAc (4.2 $\mathrm{mg}, 0.05 \mathrm{mmol}, 1.1 \mathrm{eq}$), $\mathrm{NaI}(13.4 \mathrm{mg}, 0.09 \mathrm{mmol}, 2.0 \mathrm{eq}), \mathrm{Zn}-\mathrm{Cu}$ reagent $(11.7 \mathrm{mg}, 0.18 \mathrm{mmol}, 4.0 \mathrm{eq})$ at room temperature. The resulting mixture was stirred about 30 min at same temperature. The mixture was quenched with $5 \% \mathrm{NaHCO}_{3}$ solution (10 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title crude product. The crude product was purified by flash column chromatography Flash chromatography on silica gel, (petrol ether : EtOAc =5:4) to give the title product alkenyl ketone $\mathbf{3 2}$ as white solid (8.0 mg , yield: 35%, two steps).

32: $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (petroleum ether : $\mathrm{EtOAc}=5: 4$); Mp: $112.7^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 6.69(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $2.44-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.30-1.15(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,168.0,165.0,159.9,153.3,135.7$, 132.7, 122.8, 111.0, 110.1, 107.4, 88.2, 82.4, 52.6, 52.5, 38.5, 38.5, 36.3, 25.6, 22.6, 22.5, 22.2, 17.6 ppm; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NaO}_{7}{ }^{+} 451.1727$, found 451.1722 .

The formal total synthesis of bisabosqual A (1) could be achieved using the known procedure developed by Parker's group through three steps. ${ }^{[4]}$

2.12 Intermediate Product Spectral Comparisons

Table S2 Comparison of ${ }^{1} \mathrm{H}$ NMR spectroscopic data of Parker's synthetic 32 ${ }^{[4]}$ with our synthetic 32:

No.	Parker's synthetic $\delta{ }^{1} \mathrm{H}[\mathrm{ppm} ;$ mult; $J(\mathrm{~Hz})]$ $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$	Our synthetic $\delta{ }^{1} \mathrm{H}[\mathrm{ppm} ;$ mult; $J(\mathrm{~Hz})]$ $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$	Deviation $\Delta \delta(\mathrm{ppm})$
$5{ }^{\prime}$	6.68 (s, 1H)	6.69 (s, 1H)	0.01
4	5.22 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$	$5.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$	-0.01
10	5.03 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$	5.03 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$	0.00
5	$4.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$	$4.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$	0.00
17	3.89 (s, 3H)	3.90 (s, 3H)	-0.01
18	3.84 (s, 3H),	3.84 (s, 3H),	0.00
6/2	$2.47-2.25$ (m, 3H)	$2.44-2.27$ (m, 3H)	-
9/1	$2.16-2.02(\mathrm{~m}, 3 \mathrm{H})$	$2.16-2.02(\mathrm{~m}, 3 \mathrm{H})$	-
1	$1.73-1.62(\mathrm{~m}, 1 \mathrm{H})$	$1.73-1.62(\mathrm{~m}, 1 \mathrm{H})$	-
12	1.65 (s, 3H),	1.65 (s, 3H),	0.00
14	1.59 (s, 3H),	1.59 (s, 3H),	0.00
13	1.44 (s, 3H),	1.44 (s, 3H),	0.00
8	$1.30-1.16$ (m, 2H)	$1.30-1.15$ (m, 2H)	-

Table S3 Comparison of ${ }^{13} \mathrm{C}$ NMR spectroscopic data of Parker's synthetic 32 ${ }^{[4]}$ with our synthetic 32:

No.	Parker's synthetic $\delta{ }^{13} \mathrm{C}$ [ppm]; $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$	Our synthetic $\delta{ }^{13} \mathrm{C}[\mathrm{ppm}]$ $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$	Deviation $\Delta \delta(\mathrm{ppm})$
3	205.4	205.3	-0.1
16	168.0	168.0	0.0
15	165.0	165.0	0.0
2^{\prime}	159.9	159.9	0.0
6^{\prime}	153.4	153.3	-0.1
4^{\prime}	135.6	135.7	0.1
11	132.6	132.7	0.1
10	122.8	122.8	0.0
1^{\prime}	111.1	111.0	-0.1
5^{\prime}	110.1	110.1	0.0
3^{\prime}	107.4	107.4	0.0
4	88.3	88.2	-0.1
7	82.4	82.4	0.0
18	52.6	52.6	0.0
17	52.5	52.5	0.0
2	38.5	38.5	0.0
6	38.5	38.5	0.0
8	38.5	38.5	0.0
5	36.3	36.3	0.0
12	25.6	25.6	0.0
1	22.6	22.6	0.0
14	22.5	22.5	0.0
9	22.2	22.2	0.0
13	17.6	17.6	0.0

3. References

[1] J. H. Chen, Y.Y. Li, Z. M. Xiao, H. B. He, S. H. Gao, Asymmetric Synthesis of Rugulotrosin A, Org. Lett., 2020, 22, 1485-1489.
[2] O. L. Chapman, P. A. Fitton, General Synthesis of the Troponoid System Based on Solvolysis of 1, 4-Dihydrobenzyl Tosylates, J. Am. Chem. Soc., 1963, 85, 41-47.
[3] R. Aranda, K. Villalba, E. Raviña, C. F. Masaguer, J. Brea, F. Areias, E. Domínguez, J. Selent, L. López, F. Sanz, M. Pastor, M. I. Loza, Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics, J. Med. Chem., 2008, 51, 6085-6094.
[4] C.W. am Ende, Z. Zhou, K. A. Parker, Total Synthesis of (\pm)-Bisabosqual A, J. Am. Chem. Soc., 2013, 135, 582-585.

4. NMR Spectra

$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]

PROTON_01
DXX-X-28

[^0]: $\begin{array}{lllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & & & & & & & & f 1 & (\mathrm{ppm})\end{array}$

