Supporting Information

An Efficient Direct Phosphinylation and Alkylation of

Ketone to Construct C-P and C-C bonds: Access to

α,α-Disubstituted γ-Ketophosphine Oxides

Xiao-Hong Wei,* Xiao-Hong Wang, [†] Chun-Yuan Bai, [†] Ya-Wen Xue, Ping Zhang, Yan-Bin Wang and Qiong Su*

Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University. No. 1, Northwest Xincun, Lanzhou, 730030, P.R. China.

[†] These authors contributed equally to this work. E-mail: weixh12@lzu.edu.cn; E-mail: <u>hgsq@xbmu.edu.cn</u>

Contents

General	2
Experimental Section	2
1. General procedure for synthesis of γ -ketophosphine oxides	2
2. Synthesis of 4	2
2. Synthesis of 5	3
3. Synthesis of 6	3
4. Crystal structure for 3fa	4
5. Time-controlled In situ ¹ H and ³¹ P NMR spectra	6
6. Analytical data of products	7
¹ H, ¹³ C and ³¹ P NMR Spectra of Products	19

General

All reactions involving air- or moisture-sensitive reagents were carried out under an argon atmosphere. All chemicals were purchased from Chemical and used without further purification. Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Silica gel 60 (230-400 mesh) was used for column chromatography.¹H and ¹³C NMR spectra were recorded using CDCl₃ solvent on a Bruker advance III 400 spectrometer (400 MHz for ¹H,162 MHz for ³¹P and 101 MHz for ¹³C),. The chemical shift is given indimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy.

Experimental Section

1. General procedure for synthesis of γ -ketophosphine oxides

An oven-dried 10 mL screw-capped vial containing 1 (0.1 mmol, 1.0 equiv), 2 (0.1 mmol, 1.0 equiv), HOTf (0.1 mmol, 1.0 equiv), and then heated to 100 °C until the starting material has disappeared for 16 hours under air condition (monitored by TLC), then was purified by column chromatography using EA/PE as eluent to afford the desired product 3.

2. Synthesis of 4¹

An oven-dried schlenck tube containing a Teflon-coated stir bar was charged with $Pd_2(dba)_3$ (1 mol%), dppe (2 mol%), diphenylphosphorus acid(4 mol%) and 0.5

^{1.} Chen T, Zhao C-Q, Han L-B. Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. *Journal of the American Chemical Society* **2018**, *140*, 3139-3155.

mL toluene under N_2 atmosphere and stirred at room temperature for 10 min, then 0.5 mmol diphenylphosphine oxide and 0.5 mmol alkynes were added and the mixture was stirred at 100 °C overnight. After removal of the solvent, the residues were passed through a short silica chromatography to afford the pure product diphenyl(1-phenylvinyl)phosphine oxide 4.

2. Synthesis of 5²

An oven-dried schlenck tube was charged with diphenylphosphine oxide (1.0 mmol), N-tosylhydrazones (1.2 equiv), CuI (10 mol %), and K_2CO_3 (3.0 equiv) in dioxane at reflux under dry argon for 5 h. then the crude product was purified by column chromatography on a short silica gel column to afford the pure product diphenyl(1-phenylethyl)phosphine oxide **5**.

3. Synthesis of 6³

A mixture of diphenylphosphine oxide (1.0 mmol) and acetophenone (1.05 mmol) as rubbed with a spatula in a round-bottomed flask (20–25 °C, 15 min, argon atmosphere) and then stirred under the same conditions for 24 h to give a solid product. The latter was washed with Et_2O (2 × 0.3 mL) and dried in vacuum to afford (1-hydroxy-1-phenylethyl)diphenylphosphine oxide **6**.

^{2.} Chen Z-S, Zhou Z-Z, Hua H-L, Duan X-H, Luo J-Y, Wang J, Zhou P-X, Liang Y-M. Reductive coupling reactions: a new strategy for C(sp3)–P bond formation. *Tetrahedron* **2013**, *69*, 1065-1068.

^{3.} Gusarova NK, Ivanova NI, Khrapova KO, Volkov PA, Telezhkin AA, Larina LI, Afonin AV, Pavlov DV, Trofimov BA. Catalyst- and Solvent-Free Hydrophosphorylation of Ketones with Secondary Phosphine Oxides: Green Synthesis of Tertiary α -Hydroxyphosphine Oxides. *Synthesis* **2020**, *52*, 2224-2232.

4. Crystal structure for 3fa

CCDC 2201338 (thermal ellipsoid is set at 50% probability)

Table 1 Crystal data and structure refinement for 3pa	
Identification code	zhangqian-yshd_0520-4_auto
Empirical formula	$C_{28}H_{23}Br_2O_2P$
Formula weight	582.25
Temperature/K	296.85(14)
Crystal system	triclinic
Space group	P-1
	13.37312(19)
Unit cell dimensions	a = 9.4895(2) Å
	10.7941(2) Å
	c = 13.7701(3) Å
	$\alpha = 96.2258(14)^{\circ}$
	$\beta = 94.9520(14)^{\circ}$
	γ = 113.640(2) °
Volume	1234.72(4) Å ³
Ζ	2
Calculated density	1.566 g/cm ³
Absorption coefficient	4.960 mm ⁻¹
F(000)	584.0
Crystal size	$0.09 \times 0.07 \times 0.05 \text{ mm}^3$
Radiation	Cu Ka ($\lambda = 1.54184$)
The range for data collection/°	6.718 to 155.198
Index ranges	$-11 \le h \le 11, -13 \le k \le 13, -10 \le l \le 16$
Reflections collected	14374
Independent reflections	4995 [$R_{int} = 0.0477, R_{sigma} = 0.0411$]
Data/restraints/parameters	4995/0/299
Goodness-of-fit on F ²	1.076
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0446, wR_2 = 0.1255$
Final R indexes [all data]	$R_1 = 0.0492, wR_2 = 0.1291$
Largest diff. peak/hole	0.53/-1.05 e Å ⁻³

Crystallization: Crystals of compound **3pa** suitable for X-ray analysis were grown from the solvent of chloroform/ethyl acetate by slow evaporation method.

5. Time-controlled In situ ¹H and ³¹P NMR spectra

In situ ¹H NMR spectra

In situ ³¹P NMR spectra

6. Analytical data of products

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 22.4 mg (99%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.69 – 7.56 (m, 4H), 7.56 – 7.45 (m, 2H), 7.45 – 7.34 (m, 4H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.92 – 6.85 (m, 2H), 4.01 (dd, *J* = 17.8, 7.9 Hz, 1H), 3.82 (dd, *J* = 17.7, 5.1 Hz, 1H), 2.37 (s, 3H), 2.31 (d, *J* = 6.2 Hz, 3H), 1.88 (d, *J* = 16.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.91 (d, *J* = 15.9 Hz), 143.74, 136.38 (d, *J* = 3.5 Hz), 135.41 (d, *J* = 3.4 Hz), 135.11 (d, *J* = 2.3 Hz), 133.07 (d, *J* = 7.6 Hz), 132.91 (d, *J* = 7.8 Hz), 131.73 (d, *J* = 2.7 Hz), 131.68 (d, *J* = 2.7 Hz), 129.11, 128.43 (d, *J* = 2.8 Hz), 128.24 (d, *J* = 4.8 Hz), 127.97 (d, *J* = 2.4 Hz), 127.96, 127.88 (d, *J* = 0.9 Hz), 44.51 (d, *J* = 64.0 Hz), 44.19, 41.77, 21.56, 21.02, 19.72. ³¹P NMR (162 MHz, CDCl₃) δ 35.24. HRMS (ESI) Calcd. for C₃₀H₃₀O₂P [M+H]⁺: 453.1978, found 453.1970.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 21.0 mg (93%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.69 – 7.56 (m, J = 9.8, 7.8 Hz, 6H), 7.55 – 7.47 (m, 2H), 7.44 – 7.28 (m, 6H), 7.12 – 7.02 (m, 2H), 6.84 (d, J = 7.5 Hz, 1H), 6.69 (s, 1H), 4.01 (dd, J = 17.9, 7.9 Hz, 1H), 3.86 (dd, J = 17.8, 5.1 Hz, 1H), 2.36 (s, 3H), 2.16 (s, 3H), 1.87 (d, J = 16.3 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 196.44 (d, J = 15.9 Hz), 138.22 (d, J = 2.0 Hz), 137.61 (d, J = 2.3 Hz), 136.90 (d, J = 3.0 Hz), 133.69, 133.08 (d, J = 7.6 Hz), 132.93 (d, J = 7.8 Hz), 131.79 (d, J = 2.7 Hz), 131.73 (d, J = 2.8 Hz), 129.84 (d, J = 66.8 Hz), 129.37 (d, J = 4.8 Hz), 128.92 (d, J = 66.7 Hz), 128.35 (d, J = 5.3 Hz), 127.83, 127.61 (d, J = 3.3 Hz), 127.54 (d, J = 2.9 Hz), 125.39 (d, J = 5.0 Hz), 125.04, 53.38, 44.80 (d, J = 63.6 Hz), 41.98, 21.44, 21.27, 19.53. ³¹P NMR (**162 MHz, CDCl₃**) δ 35.62. HRMS (ESI) Calcd. for C₃₀H₃₀O₂P [M+H]⁺: 453.1978, found 453.1970.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 17.2 mg (81%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.85 (d, *J* = 7.5 Hz, 2H), 7.69 – 7.31 (m, 13H), 7.24 – 7.13 (m, 3H), 7.08 – 6.99 (m, 2H), 4.12 (dd, *J* = 17.8, 8.0 Hz, 1H), 3.82 (dd, *J* = 17.9, 5.1 Hz, 1H), 1.91 (d, *J* = 16.3 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 196.18 (d, *J* = 15.9 Hz, 1H), 138.53 (d, *J* = 3.4 Hz, 1H), 137.50 (d, *J* = 2.2 Hz, 1H), 133.01 (d, *J* = 7.6 Hz, 3H), 132.98, 132.82 (d, *J* = 7.8 Hz, 2H), 131.84 (d, *J* = 2.7 Hz, 1H), 131.76 (d, *J* = 2.7 Hz, 1H), 129.88 (d, *J* = 48.3 Hz, 0H), 128.96 (d, *J* = 47.4 Hz, 1H), 128.46, 128.32 (d, *J* = 4.8 Hz, 2H), 127.95 (d, *J* = 1.9 Hz, 2H), 127.81 (d, *J* = 2.9 Hz, 3H), 127.80, 127.67 (d, *J* = 2.8 Hz, 2H), 126.86 (d, *J* = 3.3 Hz, 1H), 44.84 (d, *J* = 63.5 Hz, 1H), 42.06, 19.70. ³¹P NMR (162 MHz, CDCl₃) δ 35.38. HRMS (ESI) Calcd. for C₂₈H₂₆O₂P [M+H]⁺: 425.1665, found 425.1660.

3da ion was performed by column

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 22.1 mg (82%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 8.07 (d, J = 8.4 Hz, 2H), 7.87 (t, J = 8.4 Hz, 4H), 7.77 – 7.66 (m, 2H), 7.66 – 7.54 (m, 3H), 7.54 – 7.44 (m, 3H), 7.44 – 7.33 (m, 2H), 7.14 (dd, J = 8.6, 2.0 Hz, 2H), 4.20 (dd, J = 18.2, 7.8 Hz, 1H), 3.92 (d, J = 13.0 Hz, 6H), 3.83 (dd, J = 18.1, 4.8 Hz, 1H), 1.92 (d, J = 16.0 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 195.55 (d, J = 15.7 Hz), 166.82, 166.07, 144.32, 140.35, 133.94, 132.93, 132.86, 132.70, 132.62, 132.19 (d, J = 2.6 Hz), 132.12 (d, J = 2.7 Hz), 129.81, 129.47 (d, J = 27.4 Hz), 128.93 (d, J = 2.6 Hz), 128.61 (d, J = 12.9 Hz), 128.49 (d, J = 16.3 Hz), 128.36, 128.30, 128.25, 128.21, 128.09, 127.75, 52.45, 52.08, 45.32 (d, J = 62.2 Hz), 42.89, 19.81. ³¹P NMR (**162 MHz, CDCl₃**) δ 34.68. HRMS (ESI) Calcd. for C₃₂H₃₀O₆P [M+H]⁺: 541.1775, found 541.1775.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 18.8 mg (73%) of **3aa**. Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.23 (m, 2H), 8.02 (dd, J = 21.9, 8.8 Hz, 4H), 7.88 – 7.79 (m, 2H), 7.67 – 7.48 (m, 6H), 7.45 – 7.28 (m, 4H), 4.36 (dd, J = 18.5, 7.8 Hz, 1H), 3.75 (dd, J = 18.5, 4.7 Hz, 1H), 1.95 (d, J = 16.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.31 (d, J = 15.3 Hz), 150.46, 146.97 (d, J = 3.7 Hz), 146.54 (d, J = 3.5 Hz), 141.09 (d, J = 2.0 Hz), 132.76 (d, J = 7.9 Hz), 132.59 (d, J = 2.8 Hz), 132.47 (d, J = 2.8 Hz), 132.37 (d, J = 8.0 Hz), 129.03 (d, J = 8.0 Hz), 128.93, 128.88, 128.67 (d, J = 11.3 Hz), 128.38 (d, J = 11.4 Hz), 128.09 (d, J = 10.1 Hz), 123.92, 122.80 (d, J = 2.6 Hz), 45.48 (d, J = 61.1 Hz), 43.56, 20.03. ³¹P NMR (162 MHz, CDCl₃) δ 34.19. HRMS (ESI) Calcd. for C₂₈H₂₄N₂O₆P [M+H]⁺: 515.1366, found 515.1368.

3fa

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 24.6 mg (85%) of **3aa**. White solid. ¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.66 (m, 4H), 7.63 – 7.43 (m, 8H), 7.42 – 7.34 (m, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 6.99 – 6.87 (m, 2H), 4.05 (dd, *J* = 18.0, 7.8 Hz, 1H), 3.71 (dd, *J* = 17.9, 4.9 Hz, 1H), 1.86 (d, *J* = 16.2 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 195.04 (d, *J* = 15.7 Hz), 137.87 (d, *J* = 3.5 Hz), 135.94 (d, *J* = 2.1 Hz), 132.86 (d, *J* = 7.7 Hz), 132.61 (d, *J* = 7.9 Hz), 132.07 (d, *J* = 2.7 Hz), 132.00 (d, *J* = 2.7 Hz), 131.81, 130.77 (d, *J* = 2.7 Hz), 129.92 (d, *J* = 4.7 Hz), 129.53 (d, *J* = 29.0 Hz), 129.30, 128.60 (d, *J* = 4.1 Hz), 44.58 (d, *J* = 63.2 Hz), 42.08, 19.71. ³¹**P NMR (162 MHz, CDCl₃)** δ 34.61. **HRMS (ESI)** Calcd. for C₂₈H₂₄Br₂O₂P [M+H]⁺: 580.9875, found 580.9887.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 20.4 mg (83%) of **3aa**. White solid. ¹H NMR (**400** MHz, CDCl₃) δ 7.80 – 7.68 (m, 4H), 7.63 – 7.53 (m, 3H), 7.53 – 7.44 (m, 3H), 7.42 – 7.34 (m, 4H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.99 (dd, *J* = 8.8, 2.2 Hz, 2H), 4.06 (dd, *J* = 17.1, 7.1 Hz, 1H), 3.71 (dd, *J* = 17.9, 5.0 Hz, 1H), 1.87 (d, *J* = 16.2 Hz, 3H). ¹³C NMR (**101** MHz, CDCl₃) δ 194.91 (d, *J* = 15.7 Hz), 139.67, 137.36 (d, *J* = 3.6 Hz), 135.58 (d, *J* = 2.2 Hz), 132.91 (d, *J* = 7.7 Hz), 132.87, 132.66 (d, *J* = 7.9 Hz), 132.09 (d, *J* = 2.7 Hz), 132.01 (d, *J* = 2.7 Hz), 129.62 (d, *J* = 30.3 Hz), 129.60 (d, *J* = 4.7 Hz), 129.24, 128.85, 128.55, 128.25 (d, *J* = 11.1 Hz), 128.09 (d, *J* = 11.2 Hz), 127.87 (d, *J* = 2.7 Hz), 44.53 (d, *J* = 63.3 Hz), 42.14, 19.79. ³¹P NMR (**162** MHz, CDCl₃) δ 34.74. HRMS (ESI) Calcd. for C₂₈H₂₄Cl₂O₂P [M+H]⁺: 493.0885, found 493.0882.

3ha

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 20.2 mg (88%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.92 – 7.82 (m, 2H), 7.72 (t, *J* = 9.2 Hz, 2H), 7.64 – 7.54 (m, 3H), 7.52 – 7.43 (m, 3H), 7.43 – 7.33 (m, 2H), 7.12 – 6.98 (m, 4H), 6.88 (t, *J* = 8.6 Hz, 2H), 4.09 (dd, *J* = 17.7, 7.9 Hz, 1H), 3.70 (dd, *J* = 17.7, 5.0 Hz, 1H), 1.88 (d, *J* = 16.3 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 194.67 (d, *J* = 15.8 Hz), 165.71 (d, *J* = 255.2 Hz), 134.45 (t, *J* = 3.3 Hz), 133.83 (t, *J* = 2.7 Hz), 132.96 (d, *J* = 7.6 Hz), 132.67 (d, *J* = 7.9 Hz), 132.04 (d, *J* = 2.7 Hz), 131.94 (d, *J* = 2.7 Hz), 130.50 (d, *J* = 9.4 Hz), 129.91 (d, *J* = 4.9 Hz), 129.83 (d, *J* = 4.8 Hz), 128.86 (d, *J* = 31.7 Hz), 128.23 (d, *J* = 11.0 Hz), 128.05 (d, *J* = 11.1 Hz), 115.63 (d, *J* = 21.9 Hz), 114.73 (d, *J* = 2.7 Hz), 114.52 (d, *J* = 2.7 Hz), 44.38 (d, *J* = 63.9 Hz), 42.09, 19.98. ³¹P NMR (162 MHz, CDCl₃) δ 35.08. HRMS (ESI) Calcd. for C₂₈H₂₄F₂O₂P [M+H]⁺: 461.1476, found 461.1476.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 12.6 mg (45%) of **3aa**. Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.1 Hz, 2H), 7.81 – 7.66 (m, 4H), 7.60 – 7.35 (m, 10H), 7.22 (d, J = 7.1

Hz, 2H), 4.25 (dd, J = 18.2, 7.8 Hz, 1H), 3.75 (dd, J = 18.1, 4.9 Hz, 1H), 1.93 (d, J = 16.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.17 (d, J = 15.6 Hz), 143.12 (d, J = 2.1 Hz), 139.78, 134.56 (d, J = 32.7 Hz), 132.88 (d, J = 7.8 Hz), 132.53 (d, J = 8.0 Hz), 132.31 (d, J = 2.7 Hz), 132.20 (d, J = 2.7 Hz), 130.99 (d, J = 20.7 Hz), 129.38 (q, J = 8.8 Hz), 129.21 (d, J = 3.2 Hz), 128.89 (d, J = 3.3 Hz), 128.84 (d, J = 4.2 Hz), 128.49, 128.42 (d, J = 6.3 Hz), 128.19, 128.19 (d, J = 11.3 Hz), 125.70 (q, J = 3.7 Hz), 125.45 (d, J = 13.8 Hz), 124.75 (d, J = 11.9 Hz), 124.62 (q, J = 3.8 Hz), 124.62, 45.08 (d, J = 62.2 Hz), 42.88, 19.86. ³¹P NMR (162 MHz, CDCl₃) δ 34.74. HRMS (ESI) Calcd. for C₃₀H₂₄F₆O₂P [M+H]⁺: 561.1413, found 561.1420.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/2) to afford 19.3 mg (80%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.67 – 7.54 (m, 4H), 7.53 – 7.32 (m, 6H), 6.91 (d, *J* = 7.3 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 3.94 (dd, *J* = 17.4, 7.9 Hz, 1H), 3.82 (s, 3H), 3.79 – 3.69 (m, 4H), 1.84 (d, *J* = 16.4 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 194.94 (d, *J* = 16.0 Hz, 1H), 163.37, 158.33 (d, *J* = 3.2 Hz, 0H), 133.08 (d, *J* = 7.6 Hz, 2H), 132.89 (d, *J* = 7.9 Hz, 1H), 131.78 (d, *J* = 2.7 Hz, 1H), 131.72 (d, *J* = 2.7 Hz, 1H), 130.77 (d, *J* = 2.9 Hz, 1H), 130.57 (d, *J* = 13.6 Hz, 0H), 130.44 (d, *J* = 6.9 Hz, 0H), 130.17, 129.52 (d, *J* = 4.9 Hz, 2H), 128.89 (d, *J* = 12.9 Hz, 1H), 128.06, 127.96, 127.85, 113.58, 113.06 (d, *J* = 2.7 Hz, 1H), 55.43, 55.13, 44.26 (d, *J* = 64.7 Hz, 1H), 41.42, 19.86. ³¹P NMR (**162 MHz, CDCl₃**) δ 35.45. HRMS (ESI) Calcd. for C₃₀H₃₀O₄P [M+H]⁺: 485.1876, found 485.1867.

3ka

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 17.0 mg (78%) of **3aa**. Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.96 (m, J = 2.8, 1.1 Hz, 1H), 7.73 – 7.66 (m, 2H), 7.64 – 7.43 (m, 6H), 7.43 – 7.36 (m, J = 8.7, 3.0 Hz, 3H), 7.25 – 7.17 (m, 2H), 6.86 – 6.77 (m, J = 20.3, 11.0, 3.2 Hz, 2H), 3.80 (dd, J = 16.5, 7.5 Hz, 1H), 3.63 (dd, J = 16.5, 5.7 Hz, 1H), 1.84 (d, J =

16.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.02 (d, J = 15.8 Hz), 142.96 (d, J = 2.3 Hz), 140.11 (d, J = 3.4 Hz), 132.99 (d, J = 7.7 Hz), 132.67 (d, J = 8.0 Hz), 132.20, 131.97 (d, J = 2.7 Hz), 131.88 (d, J = 2.8 Hz), 129.92 (d, J = 77.9 Hz), 128.99 (d, J = 76.6 Hz), 128.21, 128.18, 128.10, 127.99, 126.84, 126.17, 124.70 (d, J = 1.6 Hz), 123.14 (d, J = 7.3 Hz), 43.43, 43.26 (d, J = 66.2 Hz), 20.22. ³¹P NMR (162 MHz, CDCl₃) δ 35.14. HRMS (ESI) Calcd. for C₂₄H₂₂O₂PS₂ [M+H]⁺: 437.0793, found 437.0795.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 18.4 mg (73%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.74 (dd, J = 17.7, 8.3 Hz, 2H), 7.64 (d, J = 7.9 Hz, 1H), 7.58 – 7.37 (m, 5H), 7.30 – 7.25 (m, 1H), 7.21 (d, J = 2.5 Hz, 1H), 6.41 (d, J = 3.8 Hz, 0H), 3.98 – 3.80 (m, J = 16.6, 6.4 Hz, 2H), 1.83 (d, J = 15.1 Hz, 1H). ¹³C NMR (**101 MHz, CDCl₃**) δ 187.44 (d, J = 15.5 Hz), 155.52, 154.11 (d, J = 1.3 Hz), 152.50 (d, J = 2.4 Hz), 132.59 (d, J = 3.9 Hz), 132.51 (d, J = 4.7 Hz), 132.08 (d, J = 15.5 Hz), 132.08, 130.09, 128.35 (d, J = 2.9 Hz), 128.26 (d, J = 3.5 Hz), 128.21, 128.11 (d, J = 2.4 Hz), 126.91, 124.06, 123.85, 123.26, 122.91, 120.88 (d, J = 1.0 Hz), 113.05, 112.45, 111.00 (d, J = 0.6 Hz), 105.84 (d, J = 7.4 Hz), 43.03 (d, J = 65.9 Hz), 40.64, 18.27. ³¹P NMR (**162 MHz, CDCl₃**) δ 33.24. HRMS (ESI) Calcd. for C₃₂H₂₆O₄P [M+H]⁺: 505.1563, found 505.1567.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 19.5 mg (73%) of **3aa**. Yellow solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.95 (s, 1H), 7.91 – 7.65 (m, 7H), 7.63 – 7.33 (m, 9H), 7.31 – 7.20 (m, 2H), 6.98 (d, *J* = 3.5 Hz, 1H), 4.08 (dd, *J* = 16.5, 7.2 Hz, 1H), 3.83 (dd, *J* = 16.4, 5.5 Hz, 1H), 2.01 (d, *J* = 16.0 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 190.67 (d, *J* = 15.3 Hz), 144.61 (d, *J* = 4.5 Hz), 144.23 (d, *J* = 2.9 Hz), 142.46, 139.34 (d, *J* = 3.0 Hz), 138.96, 139.27 (d, *J* = 1.6 Hz), 133.07 (d, *J* = 7.9 Hz), 132.85 (d, *J* = 8.2 Hz), 132.24 (d, *J* = 2.7 Hz),

132.16 (d, J = 2.7 Hz), 129.59 (d, J = 21.1 Hz), 129.49, 128.92 (d, J = 34.6 Hz), 128.22 (d, J = 5.7 Hz), 128.13 (d, J = 11.4 Hz), 127.45, 126.02, 124.92, 124.06 (d, J =13.5 Hz), 123.78 (d, J = 7.0 Hz), 123.32, 122.78, 121.93, 44.59 (d, J = 65.7 Hz), 44.06, 20.82. ³¹P NMR (162 MHz, CDCl₃) δ 35.14. HRMS (ESI) Calcd. for C₃₂H₂₆O₂PS₂ [M+H]⁺: 537.1106, found 537.1120.

3na

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 15.0 mg (73%) of **3aa**. White solid. ¹H NMR (**400** MHz, CDCl₃) δ 8.08 – 7.89 (m, 4H), 7.60 – 7.41 (m, 6H), 3.06 (dd, J = 16.2, 9.3 Hz, 1H), 2.51 (dd, J = 16.2, 10.4 Hz, 1H), 2.44 – 2.25 (m, 2H), 1.83 – 1.75 (m, 2H), 1.52 – 1.22 (m, 8H), 1.17 – 0.98 (m, 1H), 0.84 (d, J = 6.6 Hz, 6H), 0.72 (dd, J = 13.9, 6.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 209.44 (d, J = 12.3 Hz), 132.26 (d, J = 3.6 Hz), 132.18 (d, J = 3.7 Hz), 132.01, 131.63 (d, J = 2.6 Hz), 131.53 (d, J = 2.8 Hz), 131.13, 128.40 (d, J = 1.0 Hz), 128.29 (d, J = 1.0 Hz), 43.70, 43.03 (d, J = 1.2 Hz), 40.47 (d, J = 68.0 Hz), 33.29 (d, J = 4.6 Hz), 32.80, 32.32, 28.60, 27.53, 22.44, 22.33, 22.31, 22.25, 21.31. ³¹P NMR (162 MHz, CDCl₃) δ 36.53. HRMS (ESI) Calcd. for C₂₆H₃₈O₂P [M+H]⁺: 413.2604, found 413.2602.

3oa

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 14.2 mg (80%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 8.07 – 7.89 (m, 4H), 7.61 – 7.42 (m, 6H), 3.03 (dd, J = 16.2, 9.3 Hz, 1H), 2.50 (dd, J = 16.2, 10.9 Hz, 1H), 2.42 – 2.24 (m, 2H), 1.87 – 1.66 (m, 2H), 1.54 – 1.35 (m, 6H), 1.35 – 1.12 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H), 0.76 (t, J = 7.2 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 209.20 (d, J = 12.2 Hz), 132.22 (d, J = 2.2 Hz), 132.14 (d, J = 2.2 Hz), 131.66 (d, J = 39.8 Hz), 131.61 (d, J = 2.7 Hz), 131.53 (d, J = 2.7 Hz), 130.77 (d, J = 40.5 Hz), 128.40, 128.29, 46.83, 43.83, 40.73 (d, J = 68.1 Hz), 37.11, 21.00, 17.93 (d, J = 5.3 Hz), 16.93, 14.62, 13.56. ³¹P NMR (**162 MHz, CDCl₃**) δ 36.57. HRMS (**ESI**) Calcd. for C₂₂H₃₀O₂P [M+H]⁺: 357.1978, found 357.1960.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 18.0 mg (82%) of **3aa**. White solid. ¹**H NMR (400 MHz, CDCl₃)** δ 8.05 – 7.90 (m, 4H), 7.59 – 7.37 (m, 6H), 3.05 (dd, J = 16.2, 9.3 Hz, 1H), 2.50 (dd, J = 16.2, 10.7 Hz, 1H), 2.45 – 2.24 (m, 2H), 1.85 – 1.71 (m, 2H), 1.52 – 1.02 (m, 21H), 0.86 (t, J = 7.0 Hz, 3H), 0.81 (t, J = 7.0 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 209.36 (d, J = 12.3 Hz), 132.22, 132.14, 131.62 (d, J = 43.6 Hz), 131.60 (d, J = 2.6 Hz), 131.51 (d, J = 2.7 Hz), 130.73 (d, J = 44.2 Hz), 128.38, 128.27, 44.96, 43.74, 40.60 (d, J = 68.0 Hz), 34.84, 31.54, 31.40, 29.79, 28.69, 24.43 (d, J = 5.0 Hz), 23.47, 22.44 (d, J = 2.8 Hz), 21.07, 13.98, 13.97. ³¹**P NMR (162 MHz, CDCl₃)** δ 36.64. **HRMS (ESI)** Calcd. for C₂₈H₄₂O₂P [M+H]⁺: 441.2917, found 441.2904.

3qa

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 21.7 mg (75%) of **3aa**. White solid. ¹H NMR (**400** MHz, CDCl₃) δ 8.12 – 7.85 (m, 4H), 7.68 – 7.34 (m, 6H), 3.04 (dd, J = 16.2, 9.3 Hz, 1H), 2.50 (dd, J = 16.2, 10.6 Hz, 1H), 2.41 – 2.23 (m, 2H), 1.86 – 1.70 (m, 2H), 1.46 – 1.34 (m, 6H), 1.30 – 1.10 (m, 33H), 0.88 (t, J = 6.8 Hz, 6H). ¹³C NMR (**101** MHz, CDCl₃) δ 209.36 (d, J = 12.3 Hz), 132.24, 132.16, 131.73 (d, J = 42.4 Hz), 131.59 (d, J = 2.7 Hz), 131.51 (d, J = 2.2 Hz), 130.84 (d, J = 43.4 Hz), 128.38, 128.27, 44.99, 43.81, 40.64 (d, J = 68.0 Hz), 34.90, 31.89, 31.88, 30.16, 29.58, 29.48, 29.44, 29.39, 29.31 (d, J = 1.4 Hz), 29.24, 29.06, 24.50 (d, J = 4.9 Hz), 23.55, 22.65, 21.08, 14.09. ³¹P NMR (**162** MHz, CDCl₃) δ 36.56. HRMS (ESI) Calcd. for C₃₈H₆₂O₂P [M+H]⁺: 581.4482, found 581.4482.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 20.8 mg (87%) of **3aa**. White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 - 7.90 (m, 4H), 7.60 - 7.43 (m, 6H), 7.30 - 7.07 (m, 8H), 6.95 (d, J = 7.1 Hz,

2H), 3.17 (dd, J = 16.6, 8.5 Hz, 1H), 2.84 – 2.67 (m, 5H), 2.61 – 2.43 (m, 2H), 2.20 – 1.96 (m, 3H), 1.43 (d, J = 16.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.92, 207.80, 142.14, 140.76, 132.22, 132.17, 132.14, 132.09, 131.82 (d, J = 2.7 Hz), 131.67 (d, J = 2.7 Hz), 131.38 (d, J = 44.4 Hz), 130.49 (d, J = 44.9 Hz), 128.56, 128.50, 128.45, 128.41, 128.39, 128.29, 128.26, 128.24, 126.05, 125.68, 46.30, 46.29, 43.76, 40.64 (d, J = 67.8 Hz), 37.12, 31.24 (d, J = 4.3 Hz), 29.55, 21.44. ³¹P NMR (162 MHz, CDCl₃) δ 36.31. HRMS (ESI) Calcd. for C₃₂H₃₄O₂P [M+H]⁺: 481.2291, found 481.2285.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 30.9 mg (60%) of **3aa**. White solid. ¹H NMR (**400** MHz, CDCl₃) δ 7.72 – 7.35 (m, 15H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.91 – 6.86 (m, 2H), 3.99 (dd, *J* = 17.7, 7.9 Hz, 1H), 3.77 (dd, *J* = 17.7, 5.1 Hz, 1H), 2.32 (s, 3H), 1.86 (d, *J* = 16.3 Hz, 3H). ¹³C NMR (**101** MHz, CDCl₃) δ 195.49 (d, *J* = 16.1 Hz), 136.60 (d, *J* = 3.4 Hz), 136.29 (d, *J* = 2.4 Hz), 135.20 (d, *J* = 3.5 Hz), 133.05 (d, *J* = 7.6 Hz), 132.89 (d, *J* = 7.9 Hz), 131.85 (d, *J* = 2.8 Hz), 131.79 (d, *J* = 4.0 Hz), 131.77, 129.96 (d, *J* = 53.8 Hz), 129.42, 129.04 (d, *J* = 53.0 Hz), 128.53 (d, *J* = 2.8 Hz), 128.20 (d, *J* = 4.9 Hz), 127.97, 127.97 (d, *J* = 22.1 Hz), 44.51 (d, *J* = 64.0 Hz), 42.01, 21.03, 19.73.³¹P NMR (**162** MHz, CDCl₃) δ 35.21. HRMS (ESI) Calcd. for C₂₉H₂₇BrO₂P [M+H]⁺: 517.0927, found 517.0922.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 26.2 mg (81%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.68 (d, J = 8.6 Hz, 2H), 7.64 – 7.52 (m, 4H), 7.51 – 7.43 (m, 4H), 7.42 – 7.32 (m, 4H), 6.93 (dd, J = 8.7, 2.2 Hz, 2H), 3.97 (dd, J = 17.9, 8.2 Hz, 1H), 3.68 (dd, J = 17.9, 5.0 Hz, 1H), 1.84 (d, J = 16.5 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 194.66 (d, J = 15.9 Hz), 139.20 (s), 139.07 (s), 137.34 (d, J = 3.6 Hz), 135.79 (d, J = 2.3 Hz), 134.18 (d, J = 8.4 Hz), 133.96 (d, J = 8.7 Hz), 131.94, 131.11 (d, J = 2.8 Hz), 129.88 (d, J = 4.8 Hz), 129.32, 128.79 (d, J = 11.6 Hz), 128.62, 128.60 (d, J = 11.8 Hz), 127.66 (d, J = 4.8 Hz), 129.32, 128.79 (d, J = 11.6 Hz), 128.62

= 35.2 Hz), 126.72 (d, J = 34.0 Hz), 121.55 (d, J = 4.3 Hz), 121.55 (d, J = 4.3 Hz), 44.67 (d, J = 64.4 Hz), 41.88, 19.71. ³¹P NMR (162 MHz, CDCl₃) δ 34.03. HRMS (ESI) Calcd. for C₂₈H₂₂Br₂Cl₂O₂P [M+H]⁺: 648.9096, found 648.9094.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 29.7 mg (86%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.72 (d, *J* = 8.5 Hz, 2H), 7.65 – 7.33 (m, 10H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 6.6 Hz, 2H), 4.04 (dd, *J* = 17.9, 7.4 Hz, 1H), 3.75 (d, *J* = 16.6 Hz, 1H), 1.84 (d, *J* = 16.1 Hz, 3H), 1.30 (d, *J* = 13.9 Hz, 18H). ¹³C NMR (**101 MHz, CDCl₃**) δ 195.34 (d, *J* = 15.8 Hz), 155.44 (d, *J* = 2.6 Hz), 138.19, 136.03 (d, *J* = 2.2 Hz), 132.78 (d, *J* = 8.1 Hz), 132.58 (d, *J* = 8.3 Hz), 131.82, 130.70 (d, *J* = 2.6 Hz), 130.07 (d, *J* = 4.7 Hz), 129.43, 128.35, 125.19 (d, *J* = 11.4 Hz), 125.05 (d, *J* = 11.5 Hz), 120.97 (d, *J* = 4.0 Hz), 44.57 (d, *J* = 63.5 Hz), 42.19, 34.95, 34.91, 31.06, 31.01. ³¹P NMR (**162 MHz, CDCl₃**) δ 35.18. HRMS (ESI) Calcd. for C₃₆H₄₀Br₂O₂P [M+H]⁺: 693.1127, found 693.1125.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 27.3 mg (90%) of **3aa**. White solid. ¹H NMR (**400** MHz, CDCl₃) δ 7.69 (d, J = 8.6 Hz, 2H), 7.62 – 7.51 (m, 4H), 7.45 (dd, J = 10.0, 8.2 Hz, 2H), 7.35 – 7.22 (m, 4H), 7.18 (dd, J = 8.0, 2.4 Hz, 2H), 6.92 (dd, J = 8.7, 2.2 Hz, 2H), 4.02 (dd, J = 18.0, 7.8 Hz, 1H), 3.70 (dd, J = 18.0, 4.9 Hz, 1H), 2.40 (s, 3H), 2.36 (s, 3H), 1.83 (d, J = 16.0 Hz, 3H). ¹³C NMR (**101** MHz, CDCl₃) δ 195.28 (d, J = 15.7 Hz), 142.55 (d, J = 2.8 Hz), 142.48 (d, J = 2.7 Hz), 138.16 (d, J = 3.4 Hz), 136.04 (d, J = 2.1 Hz), 132.91 (d, J = 7.9 Hz), 132.69 (d, J = 8.2 Hz), 131.83, 130.74 (d, J = 2.6 Hz), 130.04 (d, J = 4.6 Hz), 129.36, 128.97 (d, J = 11.5 Hz), 128.83 (d, J = 11.6 Hz), 128.35, 126.36 (d, J = 39.7 Hz), 125.41 (d, J = 38.8 Hz), 121.00 (d, J = 4.0 Hz), 44.56 (d, J = 63.5 Hz), 42.20, 21.51, 19.70. ³¹P NMR (**162** MHz, CDCl₃) δ 35.14. HRMS (ESI) Calcd. for C₃₀H₂₈Br₂O₂P [M+H]⁺: 609.0188, found 609.0180.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 28.8 mg (90%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.64 – 7.52 (m, 4H), 7.47 (t, *J* = 9.2 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.02 – 6.82 (m, 6H), 3.99 (dd, *J* = 18.0, 7.7 Hz, 1H), 3.84 (d, *J* = 11.9 Hz, 6H), 3.70 (dd, *J* = 18.0, 4.9 Hz, 1H), 1.82 (d, *J* = 16.0 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 195.33 (d, *J* = 15.7 Hz), 162.46 (d, *J* = 2.9 Hz), 162.36 (d, *J* = 2.9 Hz), 138.26 (d, *J* = 3.4 Hz), 136.01 (d, *J* = 2.2 Hz), 134.67 (d, *J* = 8.8 Hz), 134.46 (d, *J* = 9.2 Hz), 131.83, 130.74 (d, *J* = 2.7 Hz), 130.02 (d, *J* = 4.6 Hz), 129.36, 128.35, 120.98 (d, *J* = 3.9 Hz), 120.96, 120.19 (d, *J* = 44.8 Hz), 119.43, 113.69 (d, *J* = 27.6 Hz), 113.69 (d, *J* = 3.4 Hz), 55.30 (d, *J* = 2.3 Hz), 44.68 (d, *J* = 64.4 Hz), 42.13, 19.66. ³¹P NMR (162 MHz, CDCl₃) δ 35.14. HRMS (ESI) Calcd. for C₃₀H₂₈Br₂O₄P [M+H]⁺: 641.0086, found 641.0076.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 17.0 mg (53%) of **3aa**. White solid. ¹H NMR (**400 MHz, CDCl₃**) δ 7.94 – 7.83 (m, J = 12.3, 7.7, 1.7 Hz, 1H), 7.78 (d, J = 8.6 Hz, 2H), 7.55 – 7.50 (m, 2H), 7.47 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.22 – 7.12 (m, 3H), 7.05 – 6.94 (m, 4H), 6.91 – 6.84 (m, J = 7.5, 1.4 Hz, 1H), 6.56 – 6.50 (m, J = 8.2, 5.4 Hz, 1H), 4.61 (dd, J = 18.1, 8.1 Hz, 1H), 4.08 (dd, J = 18.0, 4.7 Hz, 1H), 3.95 (s, 3H), 3.57 (s, 3H), 1.86 (d, J = 19.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.09 (d, J = 16.1 Hz), 160.79 (d, J = 2.8 Hz), 158.46 (d, J = 3.2 Hz), 141.15 (d, J = 2.9 Hz), 136.67 (d, J = 2.6 Hz), 135.48 (d, J = 4.9 Hz), 134.87 (d, J = 8.9 Hz), 133.66 (d, J = 2.2 Hz), 133.50 (d, J = 1.8 Hz), 131.67, 129.64 (d, J = 2.4 Hz), 129.45, 128.92 (d, J = 5.8 Hz), 127.92, 121.00 (d, J = 5.5 Hz), 120.71 (d, J = 11.9 Hz), 119.99 (d, J = 13.0 Hz), 119.88 (d, J = 1.7 Hz), 111.55 (d, J = 6.7 Hz), 109.45 (d, J = 6.8 Hz), 55.76, 54.15, 46.07, 45.44 (d, J = 67.2 Hz), 18.08. ³¹P NMR (162 MHz, CDCl₃) δ 51.58. HRMS (ESI) Calcd. for C₃₀H₂₈Br₂O₄P [M+H]⁺: 641.0086, found 641.0076.

Purification was performed by column chromatography (petroleum ether/ethyl acetate = 1/1) to afford 13.0 mg (44%) of **3aa**. White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.48 – 7.35 (m, 4H), 4.54 (dd, J = 17.5, 8.1 Hz, 1H), 3.26 (dd, J = 17.6, 3.2 Hz, 1H), 2.26 – 1.95 (m, 3H), 1.88 (d, J = 15.3 Hz, 6H), 1.78 – 1.16 (m, 15H), 1.05 – 0.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.17 (d, J = 12.7 Hz), 140.42 (d, J = 4.4 Hz), 136.31 (d, J = 1.6 Hz), 131.76, 131.21 (d, J = 1.9 Hz), 129.45, 129.01 (d, J = 4.1 Hz), 128.25, 44.37 (d, J = 50.6 Hz), 44.19, 37.72 (d, J = 58.8 Hz), 36.99 (d, J = 54.7 Hz), 27.67 (d, J = 3.1 Hz), 27.34 (d, J = 3.6 Hz), 27.04 (d, J = 1.5 Hz), 26.95 (d, J = 2.1 Hz), 25.86 (d, J = 4.5 Hz), 19.29. ³¹P NMR (162 MHz, CDCl₃) δ 53.24. HRMS (ESI) Calcd. for C₂₈H₃₆Br₂O₂P [M+H]⁺: 593.0814, found 593.0836.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 11.8, 7.2 Hz, 4H), 7.57 – 7.37 (m, 8H), 7.26 – 7.21 (m, 3H), 6.25 (d, J = 40.2 Hz, 1H), 5.75 (d, J = 19.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.20 (d, J = 92.5 Hz, 1H), 137.42 (d, J = 9.9 Hz, 1H), 131.94, 131.85, 131.82, 131.49 (d, J = 103.6 Hz, 18H), 128.45, 128.33, 128.12, 128.03 (d, J = 4.7 Hz, 4H).

¹**H NMR (400 MHz, CDCl₃)** δ 7.96 – 7.84 (m, *J* = 10.5, 7.8, 1.5 Hz, 2H), 7.58 – 7.43 (m, 5H), 7.41 – 7.32 (m, 1H), 7.32 – 7.23 (m, 2H), 7.14 – 7.07 (m, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 3.63 – 3.50 (m, *J* = 7.5 Hz, 1H), 2.26 (s, 3H), 1.55 (dd, *J* = 16.1, 7.4 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 136.40 (d, *J* = 2.6 Hz, 0H), 134.67 (d, *J* = 5.6 Hz, 0H), 132.50 (d, *J* = 4.3 Hz, 0H), 131.56 (d, *J* = 2.5 Hz, 1H), 131.16, 131.30 (d, *J* = 8.4 Hz, 1H), 131.07, 128.94 (d, *J* = 8.9 Hz, 2H), 128.92 (d, *J* = 1.0 Hz, 1H), 128.54 (d, *J* = 11.1 Hz, 1H), 127.95 (d, *J* = 11.5 Hz, 1H), 40.36 (d, *J* = 67.6 Hz, 1H), 20.97,

¹H NMR (400 MHz, DMSO) δ 8.08 (t, J = 8.4 Hz, 2H), 7.78 – 7.63 (m, 2H), 7.63 – 7.28 (m, 8H), 7.16 (dt, J = 23.5, 7.2 Hz, 3H), 6.43 (d, J = 18.9 Hz, 1H), 1.65 (d, J = 14.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 143.49 (d, J = 3.2 Hz), 133.07 (d, J = 7.7 Hz), 132.27 (d, J = 7.8 Hz), 131.97 (d, J = 2.6 Hz), 131.70 (d, J = 2.4 Hz), 128.63 (d, J = 10.6 Hz), 128.22 (d, J = 10.9 Hz), 128.22 (d, J = 10.9 Hz), 127.72 (d, J = 2.1 Hz), 127.17 (d, J = 2.3 Hz), 126.82 (d, J = 3.3 Hz), 75.67 (d, J = 89.6 Hz), 25.95 (d, J = 4.0 Hz). ³¹P NMR (162 MHz, DMSO) δ 30.14.

34.61

P (0) Ph2

3fa

Br

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)