Rhodium-catalyzed aminoacylation of alkenes via carbonylative C-H

activation toward poly(hetero)cyclic alkylarylketones

Chao Yang,^{‡ac} Lijun Shi,^{‡b} Wenlong Wang,^{*a} Ji-Bao Xia^{*b} and Fuwei Li^{*b}

^{*a*} School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China. E-mail: <u>wangwl@dgut.edu.cn</u>

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. E-mail: <u>jibaoxia@licp.cas.cn</u>; <u>fuweili@licp.cas.cn</u>

^c Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

‡ These authors contributed equally to this work.

1.	General information	S2
2.	Screening of the reaction conditions	S3
3.	General procedure for the rhodium-catalyzed carbonylative assembly of poly(hetero)cyclic alkylarylketones	S4
4.	Mechanistic studies	S5
5.	Synthetic utility of the product	S7
6.	Experimental characterization data for products	S9
7.	X-Ray crystal structures of product 2g	.S17
8.	References	.S18
9.	Copies of NMR spectra	.S19

1. General information

Unless otherwise noted, all the reactions were carried out in standard Schlenk technique, and all reagents were used as supplied commercially without further purification from Aldrich, Alfa Aesar, Adamas-beta® or Bidepharm. An oil bath or aluminum heating module equipped with a magnetic stir bar was used for reactions requiring heating. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian Inova or Bruker Advance 400 M NMR spectrometers (CDCl₃ as solvent). Chemical shifts of ¹H, ¹⁹F and ¹³C NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.00) and relative to the signal of SiMe₄ (δ 0.00 singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); p (pentet); m (multiplet); br (broad), etc. Coupling constants are reported as a J value in Hertz (Hz). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). High resolution mass spectral analysis (HRMS) was performed on Agilent 6530 Accurate-Mass Q-TOF with ESI mode. Flash chromatography was performed using 200-300 mesh silica gel with the indicated eluent system. High performance liquid chromatography (HPLC) yields were recorded on the Agilent 1260A instrument and Agilent ZORBAX SB-C18 column, with a mixture of H₂O and acetonitrile as fluent. Single crystal X-ray diffraction data were collected on the Rigaku Oxford Diffraction (ROD) SuperNova Diffraction System.

2. Screening of the reaction conditions

	0		~	0 //	
		+ <u>CO</u> /O ₂	it. additive	N-	
	H	2	solvent	Me	_/
	Me 1a	4/1, 1 atm		2a 0	
Entry	Catalyst	Oxidant	Additive	Solvent	Yield (%)
1	$Pd(OAc)_2$	$Cu(OAc)_2 \cdot H_2O$	-	PhCl	0
2	$[Cp*RhCl_2]_2$	$Cu(OAc)_2 \cdot H_2O$	-	PhCl	10
3	$[Cp*RhCl_2]_2$	-	NaOAc	PhCl	0
4	Rh(CO) ₂ (acac)	$Cu(OAc)_2 \cdot H_2O$	-	PhCl	22
5	$Rh(CO)_2(acac)$	$Cu(OAc)_2 \cdot H_2O$	HOAc/NaOAc	PhCl	48
6	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	HOAc	PhCl	61
7	$[Cp*RhCl_2]_2$	Cu(OAc) ₂ ·H ₂ O	HOAc	PhCl	51
8	$[Rh(CO)_2Cl]_2$	Cu(OAc) ₂ ·H ₂ O	HOAc	PhCl	53
9	Rh(CO) ₂ (acac)	-	HOAc	PhCl	0
10	Rh(CO) ₂ (acac)	Cu(TFA) ₂	HOAc	PhCl	48
11	Rh(CO) ₂ (acac)	$Cu(acac)_2$	HOAc	PhCl	54
12	Rh(CO) ₂ (acac)	CuCl ₂	HOAc	PhCl	2
13	Rh(CO) ₂ (acac)	AgOAc	HOAc	PhCl	trace
14	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	HOAc	PhMe	56
15	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	HOAc	THF	20
16	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	HOAc	DCE	9
17	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	PivOH	PhCl	57
18	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	TfOH	PhCl	0
19	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	AdCO ₂ H	PhCl	55
20	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	EtCO ₂ H	PhCl	65
21^{b}	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	EtCO ₂ H	PhCl	71
22 ^c	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	EtCO ₂ H	PhCl	75 (73)
23^d	Rh(CO) ₂ (acac)	Cu(OAc) ₂ ·H ₂ O	EtCO ₂ H	PhCl	75

Table S1 Exploration and screening of the reaction conditions.^a

^{*a*} Reaction conditions: **1a** (0.3 mmol), catalyst (5 mol%), oxidant (10 mol%), additive (0.3 mmol), solvent (1 mL), CO/O₂ (4/1, v/v, 1 atm), 135 °C, 20 h. Yields were determined by HPLC analysis with biphenyl as an internal standard, with isolated yield in parentheses. ^{*b*} Cu(OAc)₂·H₂O (20 mol%). ^{*c*} Cu(OAc)₂·H₂O (30 mol%). ^{*d*} Cu(OAc)₂·H₂O (50 mol%). acac = acetylacetone.

3. General procedure for the rhodium-catalyzed carbonylative assembly of poly(hetero)cyclic alkylarylketones

To an oven-dried 50 mL Schlenk tube with a magnetic stir bar, **1** (0.3 mmol), Rh(CO)₂(acac) (3.9 mg, 5 mol%), Cu(OAc)₂·H₂O (18 mg, 30 mol%), propionic acid (23 μ L, 1 equiv) and PhCl (1 mL) were added under air atmosphere. Then the tube was purged with CO/O₂ (4/1, v/v) for 5 times and the mixture was stirred at 135 °C for 20 h. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column and eluted with ethyl acetate/petroleum ether (v/v = 1:5) to afford the desired product **2**.

4. Mechanistic studies

We carried out some isotope labelling and KIE experiments under CO/O_2 (4/1, v/v). As shown in **Figures S1** and **S2**, small KIE values (26% yield, KIE = 1; 25% yield, KIE = 1) were obtained in the intra- and intermolecular reactions, respectively, suggesting that cyclometalation of the C–H bond is irreversible and C–H bond cleavage is not the rate-determining step. Meanwhile, the following investigation in **Figure S3** shows that the insertion of CO in the present carbonylative annulation is irreversible and **Figure S4** dedicates that the insertion of CO happened after the formation of the 6-membered rhodacycle.

4.1 Intramolecular kinetic isotope effect:

Figure S1 The ¹H-NMR spectrum of the product $2a/d_1-2a$.

4.2 Intermolecular kinetic isotope effect:

Figure S2 The ¹H-NMR spectrum of the product $2a/d_4$ -2a.

4.3 Scrambling experiment using CD₃CO₂D:

To an oven-dried Schlenk tube equipped with a magnetic stir bar, **1a** (23.7 mg, 0.1 mmol), $Rh(CO)_2(acac)$ (1.3 mg, 5 mol%), $Cu(OAc)_2 \cdot H_2O$ (6 mg, 30 mol%), CD_3CO_2D (32.5 mg, 5 eq) and PhCl (0.5 mL) were added. Then the tube was purged with CO/O_2 (4/1, v/v) for 5 times and the mixture was stirred at 135 °C for 20 h. After cooling to room temperature, the slurry was purified directly by pre-TLC to afford *d*-**2a** in 63% yield. The deuterium incorporations in the products were determined by ¹H NMR spectroscopy, and the result shows that the insertion of CO into the six-membered rhodacycle **E** in such carbonylation is irreversible (**Figure S3**).

Figure S3 The ¹H-NMR spectrum of the product d-2a.

4.4 Control experiments without CO or with nucleophile

Figure S4 The results of the control experiments.

5. Synthetic utility of the product

Derived to compound 5: In the nitrogen filled glovebox, to a suspension of PPh₃MeI (97 mg, 1.2 equiv) in anhydrous THF (10 mL) was added KO'Bu (34 mg, 1.5 equiv). The resulting bright yellow mixture was stirred at room temperature for 30 min. Then 2a (52.6 mg, 0.2 mmol) in THF (10 mL) was added into the yellow mixture, then stirred at 70 °C for overnight. After cooling to room temperature, the reaction was quenched by H₂O (5 mL), extracted with ethyl acetate (5 mL×3) and washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude product, which was subsequently purified by column chromatography using ethyl acetate/petroleum ether (v/v = 1:10) as eluent to afford the product 5 (49.6 mg, 95%) as white solid (m.p.: 110.5–112.0 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 5.81 (d, J = 2.1 Hz, 1H), 5.15 (d, J = 1.9 Hz, 1H), 2.93 (d, J = 14.0 Hz, 1H), 2.50 (d, J = 14.0 Hz, 1H), 1.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 150.5, 136.7, 133.7, 132.5, 131.3, 129.3, 128.7, 124.6, 124.3, 124.23, 124.18, 122.1, 120.8, 112.3, 62.3, 42.7, 22.9. HRMS (ESI) calcd for C₁₈H₁₅NONa [M+Na]⁺ 284.1046, found 284.1045.

Derived to compound 6¹: Under argon atmosphere, to a solution of sodium (14 mg, 0.6 mmol, 3.0 equiv) in ethylene glycol was added **2a** (52.6 mg, 0.2 mmol) and N₂H₄·H₂O (39 µL, 0.8 mmol, 4.0 equiv). The mixture was stirred at 180 °C for 5 h. After cooling to room temperature, the mixture was diluted with H₂O and extracted with CH₂Cl₂ for three times. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated to give the crude product, which was purified by column chromatography using ethyl acetate/petroleum ether (v/v = 1:10) as eluent to afford the desired product **6** (44.8 mg, 90%) as white solid (m.p.: 157.5–159.1 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 7.9 Hz, 1H), 7.91-7.89 (m, 1H), 7.58-7.56 (m, 1H), 7.48-7.45 (m, 2H), 7.28-7.27 (m, 1H), 7.21-7.20 (m, 1H), 7.08 (m, 1H), 3.11-3.08 (m, 1H), 2.97 (d, *J* = 16.8 Hz, 1H), 2.35-2.32 (m, 1H), 1.71-1.65 (m, 1H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 150.9, 134.9, 132.4, 131.2, 129.2, 128.5, 127.0, 125.5, 124.5, 124.2, 122.0, 120.8, 61.5, 32.4, 24.4, 22.2. HRMS (ESI) calcd for C₁₇H₁₅NONa [M+Na]⁺ 272.1046, found 272.1047.

Derived to compound 8²: Under nitrogen atmosphere, a solution of **2a** (52.6 mg, 0.2 mol) in anhydrous 1,2-dimethoxyethane (DME) (3 mL) was added into an oven dried Schlenk tube and

cooled to -78 °C, then sodium bis(trimethylsilyl)amide (NaHMDS) (300 µL, 1 mol/L in THF, 1.5 equiv) was added dropwise. After stirring at this temperature for 1 h, to the mixture was added **7** (80 mg, 1.3 equiv) in DME (4 mL) followed by BF₃·Et₂O (48% in Et₂O, 1.5 equiv). The mixture was further stirred at -78 °C for 3 h. After that the reaction was quenched by saturate NH₄Cl solution and warmed to room temperature. The mixture was extracted with Et₂O for 3 times and the combined organic layers were dried over anhydrous Na₂SO₄, concentrated under vacuum. The residue was purified by column chromatography using ethyl acetate/petroleum ether (v/v = 1:5) as eluent to afford the desired product **8** (62.5 mg, 87%) as white solid (m.p.: 76.2–77.3 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.94-7.91 (m, 1H), 7.63 (td, *J* = 7.5, 1.2 Hz, 1H), 7.52-7.43 (m, 3H), 7.39 (d, *J* = 7.8, 1.5 Hz, 1H), 7.21 (td, *J* = 7.6, 1.2 Hz, 1H), 6.18 (s, 1H), 6.01-5.91 (m, 1H), 5.43-5.38 (m, 1H), 5.34-5.31 (m, 1H), 4.70 (d, *J* = 5.8 Hz, 2H), 1.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 152.7, 148.3, 144.1, 133.6, 133.1, 131.1, 130.9, 130.1, 128.8, 124.9<u>4</u>, 124.9<u>0</u>, 122.9, 122.4, 122.2, 121.1, 119.8, 118.0, 69.5, 63.7, 27.4. HRMS (ESI) calcd for C₂₁H₁₇NO₄Na [M+Na]⁺ 370.1050, found 370.1050.

6. Experimental characterization data for products

6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2a):

White solid (57.9 mg, 73%, m.p.: 131.6–132.3 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.3 Hz, 1H), 8.08 (dd, *J* = 7.8, 0.9 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.73-7.66 (m, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.30-7.26 (m, 1H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.76 (d, *J* = 16.2 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 165.4, 149.9, 139.2,

135.7, 133.3, 130.6, 129.3, 127.4, 125.1, 124.5, 122.4, 121.8, 121.0, 64.3, 48.7, 24.0. HRMS (ESI) calcd for $C_{17}H_{14}NO_2$ [M+H]⁺ 264.1019, found 264.1019.

3,6a-dimethyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2b):

White solid (59.3 mg, 71%, m.p.: 207.6–209.1 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 7.5 Hz, 1H), 7.85 (s, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.55-7.46 (m, 3H), 3.11 (d, *J* = 16.2 Hz, 1H), 2.71 (d, *J* = 16.2 Hz, 1H), 2.38 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 192.6, 165.2, 149.7, 136.8, 136.5, 134.3, 133.0, 130.7, 129.1, 127.2, 124.9, 122.0, 121.6, 120.9, 64.2, 48.6, 23.9, 20.9. HRMS (ESI) calcd for C₁₈H₁₅NO₂Na [M+Na]⁺ 300.0995, found 300.1011.

6a-methyl-3-phenyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2c):

Pale yellow solid (63.1 mg, 62%, m.p.: 183.6–184.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.5 Hz, 1H), 8.32 (s, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.71-7.64 (m, 3H), 7.58 (t, J = 7.4 Hz, 1H), 7.52-7.45 (m, 3H), 7.38 (t, J = 7.3 Hz, 1H), 3.19 (d, J = 16.1 Hz,

1H), 2.79 (d, J = 16.1 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 165.4, 149.8, 139.5, 138.3, 137.3, 134.2, 133.3, 130.6, 129.3, 129.1, 127.8, 127.0, 125.6, 125.1, 122.5, 122.2, 121.0, 64.3, 48.7, 24.1. HRMS (ESI) calcd for C₂₃H₁₇NO₂Na [M+Na]⁺ 362.1151, found 362.1143.

3-methoxy-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2d):

White solid (64.3 mg, 73%, m.p.: 150.2–151.7 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 9.0 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52-7.44 (m, 3H), 7.23-7.21 (m, 1H), 3.82 (s, 3H), 3.11 (d, *J* = 16.3 Hz, 1H), 2.69 (d, *J* = 16.2 Hz, 1H), 1.53 (s, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 192.4, 165.1, 156.3, 149.6, 132.98, 132.96, 130.7, 129.1, 124.9, 123.6, 123.3, 123.1, 120.9, 109.1, 64.3, 55.7, 48.7, 23.8. HRMS (ESI) calcd for C₁₈H₁₅NO₃Na [M+Na]⁺ 316.0944, found 316.0938.$

6a-methyl-3-phenoxy-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2e):

Pale yellow solid (69.1 mg, 65%, m.p.: 179.7–181.2 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.46 (d, J = 9.0 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.70-7.66 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.41-7.35 (m, 3H), 7.15 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 7.8 Hz, 2H), 3.15 (d,

J = 16.3 Hz, 1H), 2.73 (d, J = 16.3 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 165.3, 156.7, 154.1, 149.7, 134.7, 133.2, 130.6, 130.1, 129.3, 126.5, 125.0, 124.0, 123.6, 121.0, 119.2, 116.1, 64.3, 48.7, 23.9. HRMS (ESI) calcd for C₂₃H₁₇NO₃Na [M+Na]⁺ 378.1101, found 378.1102.

3-fluoro-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2f):

White solid (54.8 mg, 65%, m.p.: 168.2–169.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 9.2, 4.6 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.72-7.65 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.41-7.36 (m, 1H), 3.16 (d, J = 16.3 Hz, 1H), 2.73 (d, J = 16.3 Hz, 1H), 1.56 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d, J = 1.7 Hz), 165.3, 159.2 (d, J = 245.0 Hz), 149.5, 135.4 (d, J = 2.5 Hz), 133.3, 130.3, 129.3, 125.0, 123.8 (d, J = 7.1 Hz), 123.7 (d, J = 6.3 Hz), 122.9 (d, J = 23.2 Hz), 121.0, 113.1 (d, J = 23.3 Hz), 64.3, 48.5, 23.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.13. HRMS (ESI) calcd for C₁₇H₁₂FNO₂Na [M+Na]⁺ 304.0744, found 304.0749.

3-chloro-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2g):

White solid (57.2 mg, 64%, m.p.: 217.6–219.2 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.45 (dd, J = 8.8, 1.0 Hz, 1H), 8.01 (dd, J = 2.6, 1.1 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.64-7.61 (m, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.50 (dd, J = 7.6, 0.6 Hz, 1H), 3.16 (d, J = 16.2 Hz,

1H), 2.75 (d, J = 16.2 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 165.3, 149.6, 137.6, 135.4, 133.5, 130.2<u>4</u>, 130.2<u>1</u>, 129.4, 127.0, 125.1, 123.3, 123.2, 121.0, 64.2, 48.4, 24.0. HRMS (ESI) calcd for C₁₇H₁₂ClNO₂Na [M+Na]⁺ 320.0449, found 320.0447.

3-bromo-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2h):

White solid (67.5 mg, 66%, m.p.: 175.2–177.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.8, 1H), 8.18 (s, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 3.16 (d, J = 16.2 Hz, 1H), 2.74 (d, J = 16.1 Hz,

1H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 165.4, 149.7, 138.4, 138.1, 133.5, 130.3, 130.2, 129.4, 125.2, 123.6, 123.5, 121.0, 117.8, 64.2, 48.4, 24.0. HRMS (ESI) calcd for C₁₇H₁₂BrNO₂Na [M+Na]⁺ 363.9944, found 363.9945.

6a-methyl-5,11-dioxo-5,6,6a,11-tetrahydroisoindolo[2,1-a]quinoline-3-carbonitrile (2i):

White solid (46.1 mg, 53%, m.p.: 218.3–220.6 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.6 Hz, 1H), 8.36 (s, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.91 (d, *J* = 8.7 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 2.78 (d, *J* = 16.2 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 2.78 (d, *J* = 16.2 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 2.78 (d, *J* = 16.2 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 3.21 (d, *J* = 16.2 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 3.21 (d, *J* = 16.2 Hz, 1H), 3.22 (d, *J* = 16.2 Hz, 1H), 3.21 (d, J = 16.2 Hz, 1H), 3.21 (d,

1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) & 190.5, 165.7, 149.6, 142.3, 138.1, 134.1,

132.1, 129.7<u>2</u>, 129.7<u>0</u>, 125.5, 122.3<u>3</u>, 122.3<u>1</u>, 121.1, 118.0, 107.9, 64.3, 48.1, 24.3. HRMS (ESI) calcd for $C_{18}H_{12}N_2O_2Na$ [M+Na]⁺ 311.0791, found 311.0782.

3-acetyl-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2j):

White solid (50.2 mg, 55%, m.p.: 243.6–245.1 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.63-8.61 (m, 2H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.71 (t, *J* = 7.3 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 3.21 (d, *J* = 16.3 Hz, 1H), 2.79 (d, *J* = 16.1 Hz, 1H), 2.65

(s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 191.7, 165.7, 149.7, 142.8, 134.9, 133.8, 132.9, 130.1, 129.5, 128.3, 125.3, 121.7, 121.1, 64.3, 48.3, 26.7, 24.3. HRMS (ESI) calcd for C₁₉H₁₅NO₃Na [M+Na]⁺ 328.0944, found 328.0948.

6a-methyl-3-(trifluoromethyl)-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2k):

White solid (58.6 mg, 59%, m.p.: 180.7–182.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.6, Hz, 1H), 8.34 (s, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 3.21 (d, J = 16.2 Hz, 1H), 2.79 (d, J

= 16.2 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 165.6, 149.6, 141.7, 133.8, 132.0 (q, *J* = 3.6 Hz), 130.0, 129.5, 126.4 (q, *J* = 33.6 Hz), 125.3, 124.9 (q, *J* = 3.9 Hz), 123.7 (q, *J* = 270 Hz), 122.1, 122.0, 121.1, 64.3, 48.3, 24.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.54. HRMS (ESI) calcd for C₁₈H₁₂F₃NO₂Na [M+Na]⁺ 354.0712, found 354.0715.

methyl 6a-methyl-5,11-dioxo-5,6,6a,11-tetrahydroisoindolo[2,1-*a*]quinoline-3carboxylate (2l):

White solid (66.5 mg, 69%, m.p.: 226.5–227.9 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.61 (d, *J* = 8.9 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 7.7 Hz, 1H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 1H), 3.94 (s, 3H), 3.20 (d, *J*

= 16.3 Hz, 1H), 2.78 (d, J = 16.2 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 166.0, 165.7, 149.7, 142.6, 136.4, 133.8, 130.1, 129.5, 129.4, 126.1, 125.3, 121.9, 121.5, 121.1, 64.3, 52.5, 48.4, 24.3. HRMS (ESI) calcd for C₁₉H₁₅NO₄Na [M+Na]⁺ 344.0893, found 344.0893.

1-fluoro-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2m):

White solid (59.0 mg, 70%, m.p.: 190.8–192.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.3 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.67 (t, J = 7.0 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.51-7.47 (m, 2H), 7.32-7.31 (m, 1H), 3.14 (d, J = 16.8 Hz, 1H), 2.68 (d, J = 16.9 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7 (d, J = 2.9 Hz), 164.4, 155.7 (d, J = 270 Hz), 150.2,

133.2, 130.0 (d, J = 1.3 Hz), 129.3, 126.9 (d, J = 13.8 Hz), 126.4 (d, J = 7.4 Hz), 125.7 (d, J = 1.8 Hz), 125.3, 123.4 (q, J = 20.3 Hz), 122.9 (d, J = 3.3 Hz), 121.0, 64.6, 50.7, 22.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.55. HRMS (ESI) calcd for C₁₇H₁₂FNO₂Na [M+Na]⁺ 304.0744, found 304.0753.

2-chloro-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2n):

White solid (68.2 mg, 76%, m.p.: 196.1–197.6 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.00 (t, *J* = 8.0 Hz, 2H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 1H), 3.16 (d, *J* = 16.0 Hz, 1H), 2.75 (d, *J* = 16.0 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 165.4, 149.7, 142.1, 139.9, 133.6, 130.1, 129.4, 128.7,

125.2, 125.0, 121.6, 121.0, 120.6, 64.4, 48.3, 24.2. HRMS (ESI) calcd for $C_{17}H_{12}CINO_2Na$ [M+Na]⁺ 320.0449, found 320.0451.

2,3-dichloro-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (20):

White solid (64.8 mg, 65%, m.p.: 213.9–215.6 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.11 (s, 1H), 7.97 (d, *J* = 7.4 Hz, 1H), 7.70 (t, *J* = 7.1 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.49 (d, *J* = 7.4, 1H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.75 (d, *J* = 16.4 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5, 165.3, 149.5, 140.1, 137.8, 133.7, 129.9, 129.5, 128.8,

125.3, 123.4, 121.7, 121.0, 64.3, 48.2, 24.2. HRMS (ESI) calcd for $C_{17}H_{11}Cl_2NO_2Na$ [M+Na]⁺ 354.0059, found 354.0060.

6a-methyl-6,6a-dihydro-[1,3]dioxolo[4,5-g]isoindolo[2,1-a]quinoline-5,11-dione (2p):

White solid (35.2 mg, 38%, m.p.: 211.5–213.5 °C). ¹HNMR (400 MHz, CDCl₃) δ 7.99-7.98 (m, 2H), 7.68 (t, *J* = 7.5, 1.2 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.49-7.47 (m, 2H), 6.09-6.08 (m, 2H), 3.08 (d, *J* = 16.4 Hz, 1H), 2.68 (d, *J* = 16.4 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 165.3, 153.8, 149.8, 145.2, 136.4, 133.2, 130.6, 129.2, 125.0,

121.0, 117.2, 105.6, 102.5, 102.3, 64.7, 48.3, 23.9. HRMS (ESI) calcd for $C_{18}H_{13}NO_4Na$ [M+Na]⁺ 330.0737, found 330.0739.

7a-methyl-7,7a-dihydro-[1,3]dioxolo[4,5-f]isoindolo[2,1-a]quinoline-6,12-dione (2p'):

White solid (34.7 mg, 38%, m.p.: 239.8–241.4 °C). ¹HNMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 1H), 7.93 (d J = 8.6 Hz, 1H), 7.67 (td, J = 7.5, 1.1 Hz, 1H), 7.56 (td, J = 7.5, 1.0 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 8.6 Hz, 1H), 6.18 (dd, J = 19.0, 1.2 Hz, 2H), 3.13 (d, J = 16.3 Hz, 1H), 2.71 (d, J = 16.3 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 191.4, 165.2, 149.4, 147.9, 145.4, 133.1, 132.0, 130.7, 129.2, 124.9, 120.9, 114.5, 114.0, 108.8, 103.1, 64.3, 49.4, 23.8. HRMS (ESI) calcd for C₁₈H₁₃NO₄Na [M+Na]⁺ 330.0737, found 330.0735.

2,4,6a-trimethyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2q):

White solid (56.9 mg, 65%, m.p.: 199.8–201.3 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.99 (d, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 6.90 (s, 1H), 3.06 (d, *J* = 16.0 Hz, 1H), 2.73-2.68 (m, 4H), 2.43 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 165.4, 150.0, 145.4, 142.2, 140.2, 133.1, 130.8,

129.7, 129.1, 125.0, 120.9, 120.6, 118.7, 64.0, 50.4, 23.52, 23.48, 22.1. HRMS (ESI) calcd for $C_{19}H_{17}NO_2Na$ [M+Na]⁺ 314.1151, found 314.1152.

2,3,4-trimethoxy-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2r):

White solid (68.9 mg, 65%, m.p.: 168.4–170.2 °C). ¹HNMR (400 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.49 (d, *J* = 7.6, 1H), 4.03 (s, 3H), 3.95 (s, 3H), 3.89 (s, 3H), 3.04 (d, *J* = 16.0 Hz, 1H), 2.68 (d, *J* = 16.0 Hz, 1H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 165.6, 158.7, 155.1, 149.9, 139.9,

137.0, 133.2, 130.5, 129.2, 124.8, 120.9, 110.7, 101.0, 64.3, 61.7, 61.3, 56.4, 49.9, 23.5. HRMS (ESI) calcd for $C_{20}H_{19}NO_5Na$ [M+Na]⁺ 376.1155, found 376.1154.

6a,7-dimethyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2s):

White solid (63.7 mg, 77%, m.p.: 126.3–127.7 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.51 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 6.8 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.47-7.42 (m, 2H), 7.29-7.25 (m, 1H), 3.42 (d, J = 16.3 Hz, 1H), 2.88 (d, J = 16.2 Hz, 1H), 2.54 (s, 3H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 165.4, 147.0, 139.0, 135.7, 135.4,

132.1, 131.0, 129.2, 127.2, 124.4, 122.7, 122.3, 121.8, 65.2, 46.9, 21.7, 18.7. HRMS (ESI) calcd for $C_{18}H_{15}NO_2Na$ [M+Na]⁺ 300.0995, found 300.1003.

8-fluoro-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2t):

White solid (66.1 mg, 78%, m.p.: 192.6–193.2 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 8.08 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.99 (dd, *J* = 8.4, 4.9 Hz, 1H), 7.70 (td, *J* = 8.5, 8.0, 1.6 Hz, 1H), 7.30-7.24 (m, 2H), 7.19 (dd, *J* = 7.8, 2.1 Hz, 1H), 3.13 (d, *J* = 16.1 Hz, 1H), 2.78 (d, *J* = 16.1 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 166.1 (d, *J* =

254.7 Hz), 164.3, 152.3 (d, J = 9.5 Hz), 139.1, 135.7, 127.5, 127.4 (d, J = 10.3 Hz), 126.7 (d, J = 2.2 Hz), 124.6, 122.3, 121.6, 117.2 (d, J = 23.5 Hz), 108.6 (d, J = 24.3 Hz), 64.0 (d, J = 2.7 Hz), 48.5, 23.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.98. HRMS (ESI) calcd for C₁₇H₁₂FNO₂Na [M+Na]⁺ 304.0744, found 304.0753.

8-chloro-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2u):

White solid (67.5 mg, 76%, m.p.: 197.4–199.2 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.5 Hz, 1H), 8.09 (d, *J* = 7.6 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.48 (s, 1H), 7.31-7.26 (m, 1H), 3.13 (d, *J* = 16.4 Hz, 1H), 2.77 (d, *J* = 16.1 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 164.3, 151.2,

139.6, 138.9, 135.8, 129.9, 129.1, 127.5, 126.3, 124.7, 122.2, 121.7, 121.6, 64.1, 48.4, 23.9. HRMS (ESI) calcd for $C_{17}H_{12}CINO_2Na$ [M+Na]⁺ 320.0449, found 320.0458.

8-methoxy-6a-methyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2v):

White solid (58.1 mg, 66%, m.p.: 181.6–182.7 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.94 (s, 1H), 3.93 (s, 3H), 3.11 (d, *J* = 16.1 Hz, 1H), 2.77 (d, *J* = 16.2 Hz, 1H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.4,

165.2, 164.1, 152.2, 139.4, 135.6, 127.3, 126.6, 124.1, 122.9, 122.1, 121.5, 115.7, 105.8, 63.8, 55.9, 48.6, 24.0. HRMS (ESI) calcd for $C_{18}H_{15}NO_3Na$ [M+Na]⁺ 316.0944, found 316.0946.

9-chloro-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2w):

White solid (63.1 mg, 71%, m.p.: 178.1–179.3 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.1 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.92 (s, 1H), 7.72-7.63 (m, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.31-7.27 (m, 1H), 3.15 (d, *J* = 16.2 Hz, 1H), 2.77 (d, *J* = 16.2 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.9, 163.9, 147.9, 138.8, 135.7, 135.5, 133.4, 132.3,

127.4, 125.0, 124.8, 122.3, 122.2, 121.7, 64.2, 48.4, 23.9. HRMS (ESI) calcd for $C_{17}H_{12}ClNO_2Na\ [M+Na]^+\ 320.0449,\ found\ 320.0456.$

9-methoxy-6a-methyl-6,6a-dihydroisoindolo[2,1-a]quinoline-5,11-dione (2x):

White solid (58.1 mg, 66%, m.p.: 198.3–199.6 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.44 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.29-7.21 (m, 2H), 3.91 (s, 3H), 3.13 (d, J = 16.2 Hz, 1H), 2.72 (d, J = 16.1 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 165.3, 160.7, 142.3,

139.2, 135.6, 131.9, 127.4, 124.4, 122.3, 121.9, 121.7, 121.6, 107.2, 64.0, 55.9, 48.9, 24.0. HRMS (ESI) calcd for $C_{18}H_{15}NO_3Na$ [M+Na]⁺ 316.0944, found 316.0945.

6a,10-dimethyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2y):

White solid (60.7 mg, 73%, m.p.: 155.1–156.8 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.30-7.24 (m, 3H), 3.12 (d, J = 16.2 Hz, 1H), 2.80 (s, 3H), 2.73 (d, J = 16.5 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 192.6, 166.3, 150.5, 139.4, 139.3, 135.6, 132.7, 131.1, 127.5, 127.4, 124.3, 122.3, 121.6, 118.3, 63.3, 48.8, 24.1, 17.7. HRMS (ESI) calcd for C₁₈H₁₅NO₂Na [M+Na]⁺ 300.0995, found 300.1002.

6a-methyl-6,6a-dihydrobenzo[5,6]isoindolo[2,1-*a*]quinoline-5,13-dione (2z):

White solid (57.5 mg, 61%, m.p.: 221.2–223.4 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.56-8.54 (m, 2H), 8.12-8.06 (m, 2H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.90 (s, 1H), 7.74-7.70 (m, 1H), 7.66-7.59 (m, 2H), 7.31-7.27 (m, 1H), 3.26 (d, *J* = 16.3 Hz, 1H), 2.86 (d, *J* = 16.3 Hz, 1H), 1.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 165.3, 144.6, 139.3, 135.9, 135.7,

133.5, 129.9, 128.6, 128.5, 128.4, 127.5, 127.0, 125.9, 124.7, 122.5, 122.0, 120.0, 64.4, 49.3, 24.7. HRMS (ESI) calcd for $C_{21}H_{15}NO_2Na$ [M+Na]⁺ 336.0995, found 336.0993.

6a-ethyl-6,6a-dihydroisoindolo[2,1-*a*]quinoline-5,11-dione (2aa):

White solid (50.1 mg, 60%, m.p.: 156.4–160.1 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.2 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.74-7.60 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.29-7.25 (m, 1H), 3.19 (d, *J* = 16.4 Hz, 1H), 2.82 (d, *J* = 16.4 Hz, 1H), 2.19-2.10 (m, 1H), 2.02-1.93 (m, 1H), 0.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 192.5, 166.0, 147.6, 139.0, 135.6, 133.2, 131.8, 129.2, 127.4, 124.8, 124.5, 122.6, 121.6, 120.9, 67.3, 48.3, 28.6, 7.5. HRMS (ESI) calcd for $C_{18}H_{15}NO_2Na$ [M+Na]⁺ 300.0995, found 300.1002.

6a-methyl-6,6a,7,8,9,10-hexahydroisoindolo[2,1-*a*]quinoline-5,11-dione (2ac):

White solid (52.6 mg, 66%, m.p.: 148.5–150.3 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.65-7.61 (m, 1H), 7.18 (t, J = 7.6 Hz, 1H), 2.83 (d, J = 15.8 Hz, 1H), 2.53 (d, J = 15.8 Hz, 1H), 2.39-2.21 (m, 4H), 1.84-1.73 (m, 4H), 1.35 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 192.7, 168.3, 160.4, 139.5, 135.7, 131.2, 127.3, 123.6, 122.0, 121.0, 65.4, 46.9, 22.1, 21.9, 21.6, 21.4, 20.1. HRMS (ESI) calcd for C₁₇H₁₇NO₂Na [M+Na]⁺ 290.1151, found 290.1150.

3-(*tert*-butyl)-6a-methyl-6,6a,7,8,9,10-hexahydroisoindolo[2,1-*a*]quinoline-5,11-dione (2ad):

White solid (60.3 mg, 62%, m.p.: 233.7–235.5 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 2.5 Hz, 1H), 7.70 (dd, J = 8.7, 2.5 Hz, 1H), 2.83 (d, J = 15.8 Hz, 1H), 2.52 (d, J = 15.8 Hz, 1H), 2.34-2.20 (m, 4H), 1.90-1.71 (m, 4H), 1.36 (s, 3H), 1.34 (s, 9H); ¹³C

NMR (100 MHz, CDCl₃) δ 192.98, 168.16, 160.14, 146.63, 137.13, 133.27, 131.18, 123.45, 121.44, 120.68, 65.40, 47.01, 34.67, 31.29, 22.07, 21.90, 21.63, 21.41, 20.12. HRMS (ESI) calcd for C₂₁H₂₅NO₂Na [M+Na]⁺ 346.1778, found 346.1779.

3-methoxy-6a-methyl-6,6a,7,8,9,10-hexahydroisoindolo[2,1-*a*]quinoline-5,11-dione (2ae):

White solid (56.5 mg, 63%, m.p.: 125.3–126.6 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 9.0 Hz, 1H), 7.45 (d, *J* = 3.1 Hz, 1H), 7.23 (dd, *J* = 9.1, 3.1 Hz, 1H), 3.84 (s, 3H), 2.83 (d, *J* = 15.9 Hz, 1H), 2.52 (d, *J* = 15.9 Hz, 1H), 2.37-2.20 (m, 4H), 1.88-1.72 (m, 4H), 1.35 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 192.58, 167.95, 159.79, 155.75, 133.49, 131.21, 123.77, 122.66, 122.57, 108.88, 65.44, 55.72, 46.94, 22.05, 21.88, 21.48, 21.38, 20.10. HRMS (ESI) calcd for C₁₈H₁₉NO₃Na [M+Na]⁺ 320.1257, found 320.1257.

3-chloro-6a-methyl-6,6a,7,8,9,10-hexahydroisoindolo[2,1-a]quinoline-5,11-dione (2af):

White solid (62.4 mg, 69%, m.p.: 168.6–170.1 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 2.6 Hz, 1H), 7.57 (dd, *J* = 8.9, 2.6 Hz, 1H), 2.85 (d, *J* = 15.9 Hz, 1H), 2.53 (d, *J* = 15.9 Hz, 1H), 2.37-2.21 (m, 4H), 1.90-1.73 (m, 4H), 1.35 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 191.45, 168.07, 160.48, 137.82, 135.42, 131.13, 129.24, 126.79, 122.88, 122.45, 65.30, 46.60, 21.96, 21.78, 21.59, 21.43, 20.05. HRMS (ESI) calcd for C₁₇H₁₆ClNO₂Na [M+Na]⁺ 324.0762, found 324.0765.

methyl 6a-methyl-5,11-dioxo-5,6,6a,7,8,9,10,11-octahydroisoindolo[2,1-*a*]quinoline-3-carboxylate (2ag):

White solid (47.7 mg, 49%, m.p.: 172.4–173.5 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (br, 1H), 8.43 (dd, *J* = 8.7, 1.6 Hz, 1H), 8.27 (m, 1H), 3.93 (s, 3H), 2.89 (d, *J* = 15.8 Hz, 1H), 2.57 (d, *J* = 15.8 Hz, 1H), 2.38-2.23 (m, 4H), 1.87-1.76 (m, 4H), 1.37 (s, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 191.66, 168.28, 166.06, 161.01, 142.65, 136.30, 131.11, 129.26, 125.13, 121.38, 120.57, 65.36, 52.33, 46.49, 21.93, 21.76, 21.48, 20.04. HRMS (ESI) calcd for C₁₉H₁₉NO₄Na [M+Na]⁺ 348.1206, found 348.1207.$

6a-methyl-6a,7,8,9,10,11-hexahydro-5*H*-cyclohepta[3,4]pyrrolo[1,2-*a*]quinoline-5,12(6*H*)-dione (2ah):

White solid (59.1 mg, 70%, m.p.: 151.5–153.2 °C). ¹HNMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 7.9, 1.7 Hz, 1H), 7.65-7.61 (m, 1H), 7.20-7.16 (m, 1H), 2.87 (d, *J* = 15.8 Hz, 1H), 2.59-2.37 (m, 5H), 1.90-1.58 (m, 6H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 168.4, 162.7, 139.5, 135.6, 134.3, 127.1, 123.6, 121.9, 120.8, 65.1, 46.3, 31.1, 27.2,

27.0, 26.8, 24.5, 21.1. HRMS (ESI) calcd for $C_{18}H_{19}NO_2Na$ [M+Na]⁺ 304.1308, found 304.1309.

3-butyl-3a-methyl-3a,4-dihydropyrrolo[1,2-*a*]quinoline-1,5-dione (2aj):

White solid (14.3 mg, 18%, m.p.: 103.3–104.9 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.3 Hz, 1H), 8.01 (dd, J = 7.9, 1.6 Hz, 1H), 7.66-7.62 (m, 1H), 7.22-7.18 (m, 1H), 6.00 (t, J = 1.7 Hz, 1H), 2.88 (d, J = 15.8 Hz, 1H), 2.59 (d, J = 15.8 Hz, 1H), 2.41-2.23 (m, 2H), 1.70-1.63 (m, 2H), 1.50-1.41 (m, 2H), 1.40 (s, 3H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 192.22, 169.76, 167.92, 139.23, 135.76, 127.29, 123.90, 121.91, 121.09, 120.74, 67.29, 46.85, 28.93, 26.34, 22.55, 21.79, 13.95. HRMS (ESI) calcd for C₁₇H₁₉NO₂Na [M+Na]⁺ 292.1308, found 292.1315.

7. X-Ray crystal structures of product 2g

 \equiv

2g (CCDC: 1984299)

Empirical formula	$C_{17}H_{12}CINO_2$		
Formula weight	297.73		
Temperature/K	180(2)		
Crystal system	monoclinic		
Space group	P 21/n		
a/Å	7.0426(6)		
b/Å	10.7671(10)		
c/Å	18.0428(16)		
α_{\circ}	90		
β/°	98.613(3)		
$\gamma^{\prime \circ}$	90		
Volume/Å ³	1352.7(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.462		
µ/mm ⁻¹	0.286		
F(000)	616.0		
Crystal size/mm ³	$0.20\times0.15\times0.15$		
Radiation	MoK\a		
2Θ range for data collection/°	2.966 to 28.383		
Index ranges	$\textbf{-9}{\leq}h{\leq}9,\textbf{-14}{\leq}k{\leq}14,\textbf{-24}{\leq}l{\leq}24$		
Reflections collected	19441		
Independent reflections	3402 [R(int) = 0.0390]		
Data/restraints/parameters	3402/0/190		
Goodness-of-fit on F ²	0.816		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0435, wR_2 = 0.1147$		
Final R indexes [all data]	$R_1 = 0.0536, \mathrm{wR}_2 = 0.1259$		
Largest diff. peak/hole / e Å ⁻³	0.372/-0.261		

8. References

- (a) Boulahjar, R.; Ouach, A.; Matteo, C.; Bourg, S.; Ravache, M.; Guevel,R.L.; Marionneau,S.; Oullier,T.; Lozach,O.; Meijer,L.; Guguen-Guillouzo, C.; Lazar, S.; Akssira, M.; Troin, Y.; Guillaumet, G.; Routier, S. *J. Med. Chem.* **2012**, *55*, 9589; (b) Yada, A.; Okajima, S.; Murakami, M. J. Am. Chem. Soc. **2015**, *137*, 8708-8711.
- (a) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343-18357; (b) Trost,
 B. M.; Koller, R.; Schäffner, B. Angew. Chem. Int. Ed. 2012, 51, 8290-8293.

9. Copies of NMR spectra

S40

S55

