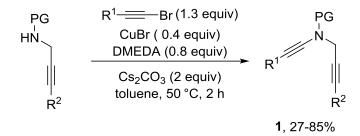
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Copper-catalyzed formal [4 + 1] **annulation of** *N***-propargyl ynamides with diketones**

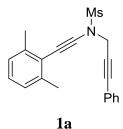
Hao-Jin Xu,^a Cui-Ting Li,^a Can-Ming Chen,^a Jie Chen,^a Xin-Qi Zhu,^{*,a} Bo Zhou^a and Long-Wu Ye^{*,a,b}

 ^aKey Laboratory for Chemical Biology of Fujian Province and State Key
 Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
 ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China E-mails: longwuye@xmu.edu.cn; xinqizhu@xmu.edu.cn


Content	Page Number
1. General Information	2
2. General Procedures and Transformations	3
3. References	42
4. Crystal Data and Structure Refinement for 3ab	43
5. HPLC Chromatograms	44
6. ¹ H , ¹³ C and ¹⁹ F NMR	46

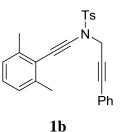
General Information. Acetonitrile (ACS grade), toluene (ACS grade), ethyl acetate (ACS grade) and hexanes (ACS grade) were obtained commercially and used without further purification. Methylene chloride, tetrahydrofuran and diethyl ether were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. All reactions were carried out with a Titan HMS-14 digital magnetic stirrer with hot plate. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Agilent 6230 ESI-TOF MS using electron spray ionization. X-ray diffraction analysis was recorded on a Rigaku AFC7R X-ray single crystal diffractometer. HPLC analyses were carried out in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel.

¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard for ¹H NMR spectra and with the internal chloroform signal at 77.0 ppm as a standard for ¹³C NMR spectra. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

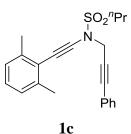

2. General Procedures and Transformations

2.1 Representative synthetic procedure for the preparation of ynamides 1 (1a-1y)^{1,2}

To a solution of the protected propargylamide derivative (1 mmol, 1 equiv) in toluene (0.1 M) was added copper bromide (0.4 mmol, 0.4 equiv), DMEDA (0.8 mmol, 0.8 equiv), Cs_2CO_3 (2 mmol, 2 equiv), acetylene bromide derivative (1.3 mmol, 1.3 equiv). The reaction was stirred at 50 °C for about 2 h and the progress of the reaction was monitored by TLC. Upon completion, the solution was then filtered and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography (PE:EA = 15:1). The characterization data of ynamides **1x** and **1z** have been reported in our previous work.¹

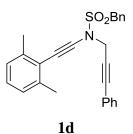

N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1a)

Compound **1a** was prepared in 57% yield (192.3 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale yellow solid (mp 64–65 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.40 – 7.28 (m, 3H), 7.13 – 7.07 (m, 1H), 7.06 – 7.01 (m, 2H), 4.64 (s, 2H), 3.27 (s, 3H), 2.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 131.8, 129.1, 128.5, 127.6, 126.7, 122.0, 121.7, 89.4, 86.9, 81.5, 69.3, 43.1, 38.4, 21.1; IR (neat): 3020, 2927, 2232, 1490,

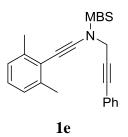

1363, 1321, 1167, 1040, 788, 758 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₉NNaO₂S 360.1029; Found 360.1031.

N-((2,6-dimethylphenyl)ethynyl)-4-methyl-*N*-(3-phenylprop-2-yn-1yl)benzenesulfonamide (1b)

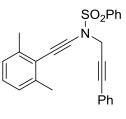
Compound **1b** was prepared in 69% yield (285.3 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 121–123 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.29 – 7.20 (m, 5H), 7.15 – 7.10 (m, 2H), 7.09 – 7.03 (m, 1H), 7.02 – 6.96 (m, 2H), 4.60 (s, 2H), 2.37 (s, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 139.9, 134.3, 131.6, 129.6, 128.6, 128.2, 128.1, 127.3, 126.5, 122.3, 121.9, 90.0, 86.3, 81.2, 68.9, 43.0, 21.5, 21.0; IR (neat): 3055, 2921, 2230, 1490, 1367, 1168, 1119, 1089, 757, 708 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₂₃NNaO₂S 436.1342; Found 436.1342.


N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1-yl)propane-1-sulfonamide (1c)

Compound **1c** was prepared in 68% yield (248.5 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a brown solid (mp 68–70 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 2H), 7.36 – 7.25 (m, 3H), 7.10 – 7.03 (m, 1H), 7.03 – 6.96 (m, 2H), 4.60 (s, 2H), 3.39 (t, *J* = 7.6 Hz, 2H), 2.43 (s, 6H), 2.10 – 1.95 (m, 2H), 1.05 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz,

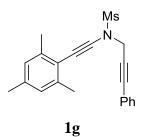

CDCl₃) δ 139.5, 131.6, 128.8, 128.3, 127.2, 126.5, 122.1, 121.7, 89.7, 86.4, 81.9, 68.9, 53.9, 42.5, 20.9, 16.9, 12.8; IR (neat): 3056, 2972, 2232, 1490, 1365, 1158, 1123, 1078, 757, 691 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₃NNaO₂S 388.1342; Found 388.1340.

N-((2,6-dimethylphenyl)ethynyl)-1-phenyl-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1d)


Compound **1d** was prepared in 73% yield (301.9 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale yellow solid (mp 90–92 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.44 – 7.39 (m, 2H), 7.38 – 7.26 (m, 6H), 7.10 – 7.05 (m, 1H), 7.04 – 6.99 (m, 2H), 4.61 (s, 2H), 4.34 (s, 2H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 131.7, 130.9, 129.1, 128.8, 128.3, 127.3, 127.2, 126.6, 122.2, 121.8, 89.4, 86.5, 81.8, 69.8, 57.6, 43.2, 21.1; IR (neat): 3058, 2920, 2232, 1491, 1366, 1164, 1122, 1045, 757, 693 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₂₃NNaO₂S 436.1342; Found 436.1342.

N-((2,6-dimethylphenyl)ethynyl)-4-methoxy-*N*-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1e)

Compound **1e** was prepared in 53% yield (227.7 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 18:1) as a white solid (mp 122–124 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 2H), 7.32 – 7.20 (m, 3H), 7.18 – 7.13 (m, 2H), 7.10 – 7.03 (m, 1H), 7.03 – 6.97 (m, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.60 (s, 2H), 3.75 (s, 3H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl3) δ 163.8, 139.9, 131.6, 130.4, 128.8, 128.6, 128.1, 127.2, 126.5, 122.4, 122.0, 114.1, 90.1, 86.3, 81.4, 68.9, 55.5, 43.0, 21.1; IR (neat):3057, 2944, 2229, 1595, 1497, 1366, 1264, 1163, 757, 730 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₂₃NNaO₃S 452.1291; Found 452.1288.


N-((2,6-dimethylphenyl)ethynyl)-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1f)

1f

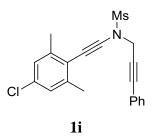
Compound **1f** was prepared in 65% yield (259.7 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 106–108 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.62 – 7.45 (m, 3H), 7.30 – 7.12 (m, 5H), 7.10 – 7.03 (m, 1H), 7.03 – 6.96 (m, 2H), 4.63 (s, 2H), 2.36 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 137.3, 133.7, 131.6, 129.0, 128.6, 128.1, 127.4, 126.5, 122.2, 121.8, 89.6, 86.5, 81.1, 69.0, 43.1, 21.0; IR (neat): 3059, 2919, 2231, 1490, 1368, 1172, 1122, 1089, 756, 733 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₂₁NNaO₂S 422.1185; Found 452.1278.

N-(mesitylethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1g)



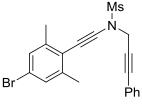
Compound **1g** was prepared in 48% yield (168.7 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 10:1) as a white solid (mp 80–82 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H), 6.86 (s,

2H), 4.62 (s, 2H), 3.26 (s, 3H), 2.40 (s, 6H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.00, 137.7, 131.8, 129.0, 128.4, 127.6, 121.7, 118.9, 88.5, 86.9, 81.6, 69.2, 43.1, 38.3, 21.3, 21.0; IR (neat): 3053, 2921, 2238, 1491, 1363, 1265, 1168, 1038, 738, 706 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NNaO₂S 374.1185; Found 374.1185.


N-((4-fluoro-2,6-dimethylphenyl)ethynyl)-N-(3-phenylprop-2-yn-1-

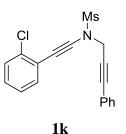
yl)methanesulfonamide (1h)

Compound **1h** was prepared in 78% yield (277.2 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.29 (m, 3H), 6.74 (d, J = 9.2 Hz, 2H), 4.62 (s, 2H), 3.26 (s, 3H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (d, J = 247.0 Hz), 142.6 (d, J = 9.0 Hz), 131.7, 129.1, 128.4, 121.6, 117.9 (d, J =3.0 Hz), 113.7 (d, J = 21.0 Hz), 88.8 (d, J = 1.0 Hz), 86.9, 81.5, 68.2, 43.0, 38.4, 21.1 (d, J = 1.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.7; IR (neat): 3021, 2928, 2242, 1490, 1364, 1168, 1135, 1039, 775, 758 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈FNNaO₂S 378.0934; Found 378.0935


N-((4-chloro-2,6-dimethylphenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1yl)methanesulfonamide (1i)

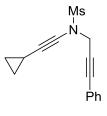
Compound **1i** was prepared in 66% yield (245.4 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as

a pale red solid (mp 52–54 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.29 (m, 3H), 7.03 (s, 2H), 4.63 (s, 2H), 3.27 (s, 3H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 133.1, 131.8, 129.1, 128.5, 126.7, 121.6, 120.6, 90.0, 87.0, 81.4, 68.5, 43.0, 38.5, 20.9; IR (neat): 3055, 2927, 2235, 1491, 1364, 1167, 1121, 1038, 757, 703 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈ClNNaO₂S 394.0639; Found 394.0654.


N-((4-bromo-2,6-dimethylphenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1yl)methanesulfonamide (1j)

1j

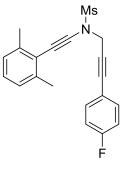
Compound **1j** was prepared in 60% yield (249.8 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.39 – 7.29 (m, 3H), 7.18 (s, 2H), 4.63 (s, 2H), 3.27 (s, 3H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 131.7, 129.6, 129.1, 128.5, 121.5, 121.4, 121.1, 90.2, 87.0, 81.3, 68.6, 42.9, 38.5, 20.8; IR (neat): 3056, 2928, 2236, 1490, 1365, 1167, 1117, 1038, 773, 758 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈BrNNaO₂S 438.0133; Found 438.0139.


N-((2-chlorophenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1k)

Compound **1k** was prepared in 69% yield (237.2 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.42 (m, 3H), 7.41 – 7.28 (m, 4H),

7.26 – 7.16 (m, 2H), 4.62 (s, 2H), 3.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 132.9, 131.8, 129.1(4), 129.1(0), 129.0, 128.4, 126.4, 122.3, 121.7, 87.1, 86.3, 81.3, 68.7, 43.0, 38.8; IR (neat): 3020, 2928, 2237, 1490, 1364, 1167, 1122, 1037, 780, 755 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄ClNNaO₂S 366.0326; Found 366.0338.

N-(cyclopropylethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (11)

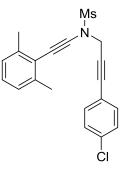


11

Compound **11** was prepared in 27% yield (73.8 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 4.45 (s, 2H), 3.17 (s, 3H), 1.41 – 1.31 (m, 1H), 0.89 – 0.79 (m, 2H), 0.78 – 0.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 131.7, 128.9, 128.4, 121.8, 86.5, 81.7, 75.5, 67.8, 42.8, 38.0, 8.9, -0.9; IR (neat): 3014, 2929, 2247, 1490, 1360, 1165, 1095, 1043, 758, 692 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₅NNaO₂S 296.0716; Found 296.0726.

N-((2,6-dimethylphenyl)ethynyl)-N-(3-(4-fluorophenyl)prop-2-yn-1-

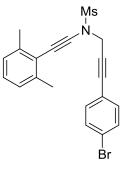
yl)methanesulfonamide (1m)



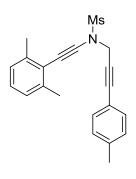
1m

Compound **1m** was prepared in 72% yield (255.9 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 12:1) as a white solid (mp 58–60 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.12 –

7.06 (m, 1H), 7.06 – 6.97 (m, 4H), 4.61 (s, 2H), 3.26 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, *J* = 250.0 Hz), 139.8, 133.7 (d, *J* = 9.0 Hz), 127.5, 126.6, 121.9, 117.7 (d, *J* = 4.0 Hz), 115.8 (d, *J* = 22.0 Hz), 89.3, 85.8, 81.3, 69.3, 42.9, 38.3, 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.4; IR (neat): 2920, 2232, 1507, 1364, 1322, 1231, 1167, 1040, 788, 765 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈FNNaO₂S 378.0934; Found 378.0939.


N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-*N*-((2,6dimethylphenyl)ethynyl)methanesulfonamide (1n)

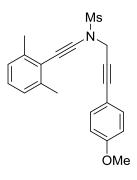
Compound **1n** was prepared in 50% yield (185.9 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale red solid (mp 90–92 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.13 – 7.06 (m, 1H), 7.06 – 6.99 (m, 2H), 4.61 (s, 2H), 3.25 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 135.1, 133.0, 128.8, 127.6, 126.6, 121.9, 120.1, 89.2, 85.7, 82.6, 69.4, 42.8, 38.3, 21.0; IR (neat): 3020, 2930, 2232, 1489, 1364, 1167, 1091, 1039, 788, 765 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈ClNNaO₂S 394.0639; Found 394.0651.


N-(3-(4-bromophenyl)prop-2-yn-1-yl)-*N*-((2,6dimethylphenyl)ethynyl)methanesulfonamide (10)

10

Compound **10** was prepared in 54% yield (224.8 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a yellow solid (mp 92–94 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.13 – 7.07 (m, 1H), 7.06 – 7.00 (m, 2H), 4.62 (s, 2H), 3.25 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 133.2, 131.8, 127.6, 126.7, 123.4, 121.9, 120.6, 89.2, 85.8, 82.7, 69.4, 42.9, 38.4, 21.1; IR (neat): 2927, 2232, 1485, 1364, 1275, 1166, 1071, 1040, 764, 750 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈BrNNaO₂S 438.0133; Found 438.0127.

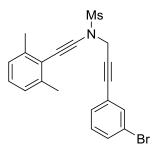
N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(*p*-tolyl)prop-2-yn-1-yl)methanesulfonamide (1p)



1p

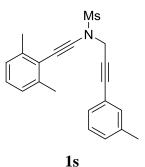
Compound **1p** was prepared in 58% yield (203.8 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a red solid (mp 73–75 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.10 – 6.99 (m, 3H), 4.61 (s, 2H), 3.26 (s, 3H), 2.44 (s, 6H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 139.3, 131.7, 129.2, 127.5, 126.6, 122.0, 118.6, 89.5, 87.1, 80.8, 69.2, 43.1, 38.3, 21.4, 21.0; IR (neat): 2921, 2232, 1509, 1364,

1322, 1166, 1077, 1039, 787, 765 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{21}NNaO_2S$ 374.1185; Found 374.1187.

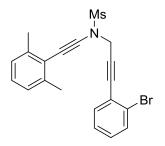

N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(4-methoxyphenyl)prop-2-yn-1yl)methanesulfonamide (1q)

1q

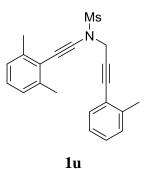
Compound **1q** was prepared in 52% yield (191.1 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 53–55 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.8 Hz, 2H), 7.12 – 7.05 (m, 1H), 7.05 – 6.97 (m, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 4.60 (s, 2H), 3.79 (s, 3H), 3.25 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 139.8, 133.2, 127.4, 126.6, 122.0, 114.0, 113.6, 89.5, 86.9, 80.1, 69.1, 55.2, 43.1, 38.3, 21.0; IR (neat): 2932, 2232, 1606, 1509, 1363, 1249, 1166, 1035, 787, 765 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NNaO₃S 390.1134; Found 390.1135.


N-(3-(3-bromophenyl)prop-2-yn-1-yl)-*N*-((2,6dimethylphenyl)ethynyl)methanesulfonamide (1r)

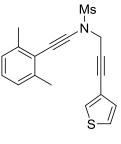
1r


Compound **1r** was prepared in 30% yield (124.9 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.24 – 7.15 (m, 1H), 7.12 – 6.99 (m, 3H), 4.61 (s, 2H), 3.25 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 134.4, 132.2, 130.3, 129.9, 127.5, 126.6, 123.5, 122.1, 121.8, 89.1, 85.2, 82.9, 69.4, 42.7, 38.3, 21.0; IR (neat): 3019, 2929, 2232, 1473, 1364, 1167, 1077, 1041, 786, 770 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈BrNNaO₂S 438.0133; Found 438.0127.

N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(*m*-tolyl)prop-2-yn-1-yl)methanesulfonamide (1s)

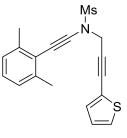

Compound **1s** was prepared in 79% yield (277.7 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a yellow solid (mp 47–49 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.20 – 7.12 (m, 2H), 7.11 – 7.05 (m, 1H), 7.04 – 6.98 (m, 2H), 4.59 (s, 2H), 3.24 (s, 3H), 2.44 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 138.1, 132.2, 129.9, 128.8, 128.3, 127.4, 126.6, 121.9, 121.4, 89.4, 87.0, 81.1, 69.2, 42.9, 38.2, 21.0, 20.9; IR (neat): 3021, 2921, 2231, 1468, 1363, 1167, 1078, 1042, 787, 766 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NNaO₂S 374.1185; Found 374.1189.

N-(3-(2-bromophenyl)prop-2-yn-1-yl)-*N*-((2,6dimethylphenyl)ethynyl)methanesulfonamide (1t)


Compound **1t** was prepared in 50% yield (208.2 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a brown oil. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.46 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.21 – 7.15 (m, 1H), 7.11 – 7.05 (m, 1H), 7.04 – 6.97 (m, 2H), 4.67 (s, 2H), 3.31 (s, 3H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 133.7, 132.4, 130.2, 127.4, 127.1, 126.5, 125.3, 123.8, 121.9, 89.2, 86.0, 85.1, 69.3, 42.9, 38.5, 21.0; IR (neat): 3019, 2928, 2232, 1470, 1364, 1167, 1078, 1039, 789, 764 ; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈BrNNaO₂S 438.0133; Found 438.0134.

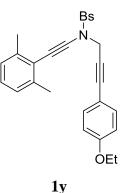
N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(*o*-tolyl)prop-2-yn-1-yl)methanesulfonamide (1u)

Compound **1u** was prepared in 61% yield (214.4 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 71–73 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.6 Hz, 1H), 7.24 – 7.05 (m, 4H), 7.04 – 6.97 (m, 2H), 4.66 (s, 2H), 3.25 (s, 3H), 2.42 (s, 6H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 139.7, 132.1, 129.5, 129.0, 127.4, 126.6, 125.6, 121.9, 121.4, 89.4, 85.7, 85.2, 69.2, 43.0, 38.4, 21.0, 20.6; IR (neat): 3021, 2921, 2232, 1485, 1364, 1167, 1077, 1037, 788, 762 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NNaO₂S 374.1185; Found 374.1190.

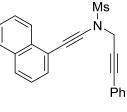

N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(thiophen-3-yl)prop-2-yn-1yl)methanesulfonamide (1v)

1v

Compound **1v** was prepared in 85% yield (291.9 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 65–67 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 2.8 Hz, 1H), 7.24 (dd, *J* = 4.8, 2.8 Hz, 1H), 7.12 – 7.04 (m, 2H), 7.04 – 6.98 (m, 2H), 4.57 (s, 2H), 3.22 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 129.8, 129.5, 127.4, 126.5, 125.6, 121.8, 120.5, 89.3, 82.0, 81.1, 69.1, 42.8, 38.1, 20.9; IR (neat): 3019, 2927, 2231, 1467, 1361, 1166, 1077, 1039, 786, 765 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NNaO₂S₂ 366.0593; Found 366.0597.


N-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(thiophen-2-yl)prop-2-yn-1yl)methanesulfonamide (1w)

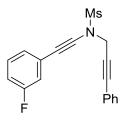
1w


Compound **1w** was prepared in 64% yield (219.8 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a brown solid (mp 65–67 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.30 (dd, *J* = 3.6, 0.8 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.13 – 7.07 (m, 2H), 7.04 (dd, *J* = 5.2, 3.6 Hz, 1H), 4.69 (s, 2H), 3.31 (s, 3H), 2.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 133.0, 128.0, 127.5, 127.0, 126.6, 121.8, 121.3, 89.2, 85.5, 80.3, 69.3, 43.1, 38.2, 21.0; IR (neat): 3019, 2929, 2231, 1467, 1363, 1167, 1077, 1034, 788, 765 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NNaO₂S₂ 366.0593; Found 366.0591.

4-bromo-*N*-((2,6-dimethylphenyl)ethynyl)-*N*-(3-(4-ethoxyphenyl)prop-2-yn-1yl)benzenesulfonamide (1y)

Compound **1y** was prepared in 34% yield (177.6 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a pale yellow solid (mp 106–108 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.10 – 6.95 (m, 5H), 6.76 (d, *J* = 8.8 Hz, 2H), 4.58 (s, 2H), 3.98 (q, *J* = 6.8 Hz, 2H), 2.36 (s, 6H), 1.38 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 140.0, 136.3, 133.0, 132.1, 129.6, 129.0, 127.4, 126.5, 122.0, 114.4, 113.4, 89.5, 86.8, 79.4, 69.0, 63.4, 43.3, 21.0, 14.6; IR (neat): 2980, 2926, 2231, 1605, 1508, 1371, 1172, 1043, 784, 747 cm⁻¹; HRMS (ESI) m/z: [M + K]⁺ Calcd for C₂₇H₂₄BrNNaO₃S 560.0292; Found 560.0284.

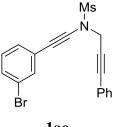
N-(naphthalen-1-ylethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1aa)



1aa

Compound **1aa** was prepared in 39% yield (140.2 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.0 Hz, 1H), 7.85 – 7.73 (m, 2H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.51 – 7.28 (m, 8H), 4.68 (s, 2H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 133.1, 131.8, 130.2, 129.1, 128.6, 128.4, 128.2, 126.8, 126.3,

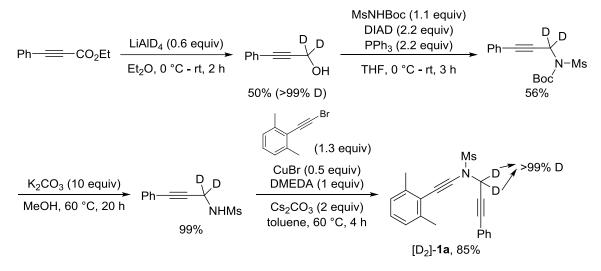
126.0, 125.1, 121.6, 119.8, 87.2, 85.8, 81.6, 69.7, 43.0, 38.6; IR (neat): 3057, 2925, 2230, 1489, 1360, 1321, 1189, 1165, 800, 756 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₂H₁₇NNaO₂S 382.0878; Found 382.0881.


N-((3-fluorophenyl)ethynyl)-*N*-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1ab)

1ab

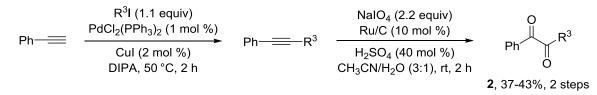
Compound **1ab** was prepared in 57% yield (186.6 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.42 (m, 2H), 7.38 – 7.28 (m, 3H), 7.28 – 7.20 (m, 2H), 7.13 (d, *J* = 9.2 Hz, 1H), 7.03 – 6.93 (m, 1H), 4.59 (s, 2H), 3.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, *J* = 245.0 Hz), 131.7, 129.8 (d, *J* = 9.0 Hz), 129.0, 128.4, 127.2 (d, *J* = 3.0 Hz), 124.0 (d, *J* = 10.0 Hz), 121.5, 118.1 (d, *J* = 23.0 Hz), 115.3 (d, *J* = 21.0 Hz), 87.0, 82.2, 81.2, 70.2 (d, *J* = 4.0 Hz), 42.7, 38.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.8; IR (neat): 3020, 2930, 2241, 1489, 1363, 1324, 1166, 1038, 869, 757 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄FNNaO₂S 350.0627; Found 350.0630.

N-((3-bromophenyl)ethynyl)-N-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1ac)



1ac

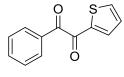
Compound **1ac** was prepared in 64% yield (248.5 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.56 (m, 1H), 7.48 – 7.43 (m, 2H),


7.43 – 7.38 (m, 1H), 7.38 – 7.29 (m, 4H), 7.18 – 7.11 (m, 1H), 4.59 (s, 2H), 3.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.0, 131.7, 131.1, 129.9, 129.7, 129.0, 128.4, 124.2, 121.9, 121.4, 87.1, 82.5, 81.2, 70.0, 42.8, 38.8; IR (neat): 3020, 2929, 2237, 1490, 1364, 1323, 1167, 1039, 789, 758 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄BrNNaO₂S 409.9826; Found 409.9825.

[D₂]-1a (>99% D)

Compound [D₂]-**1a** was prepared in 85% yield (288.5 mg) according to the above general procedure.² The substrate was isolated through silica gel column chromatography (PE:EA = 15:1) as a red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.37 – 7.27 (m, 3H), 7.11 – 7.05 (m, 1H), 7.05 – 6.98 (m, 2H), 3.24 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 131.7, 129.0, 128.4, 127.5, 126.6, 121.9, 121.6, 89.3, 86.8, 81.4, 69.2, 38.2, 21.0; IR (neat): 3020, 2918, 2240, 1489, 1363, 1321, 1169, 1105, 961, 757 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇D₂NNaO₂S 362.1160; Found 362.1158.

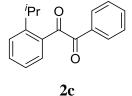
2.2 General procedure for the synthesis of diketones 2 (2b-2c) ^{3,4}



To a solution of styrene (2.0 mmol) in DIPA (0.2 M) was added copper iodide (0.04

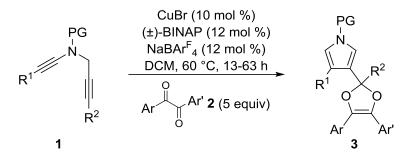
mmol, 7.6 mg), $Pd(PPh_3)_2Cl_2$ (0.01 mmol, 7.0 mg), aryl iodide (2.2 mmol, 1.1 equiv). The reaction was stirred at 50 °C for about 2 h and the progress of the reaction was monitored by TLC. Upon completion, the solution was then filtered and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography (PE).

The above product was added to a stirred solution of Ru/C (0.2 mmol, 20 mg), H_2SO_4 (0.8 mmol) in CH₃CN (7.5 mL) and H_2O (2.5 mL), The resulting mixture was then stirred at room temperature for about 2 h and the progress of the reaction was monitored by TLC. Upon completion, the solution was then filtered and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography (PE).

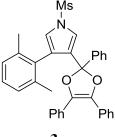

1-phenyl-2-(thiophen-2-yl)ethane-1,2-dione (2b)

2b

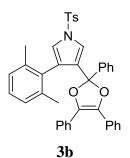
Compound **2b** was prepared in 37% yield (160.0 mg) according to the general procedure. The substrate was isolated through silica gel column chromatography (PE) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.2 Hz, 2H), 7.82 (d, *J* = 4.8 Hz, 1H), 7.79 (d, *J* = 3.6 Hz, 1H), 7.68 – 7.58 (m, 1H), 7.55 – 7.40 (m, 2H), 7.22 – 7.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 185.5, 139.7, 136.8, 136.6, 134.8, 132.5, 130.1, 128.8, 128.7; IR (neat): 3103, 2924, 1676, 1652, 1595, 1410, 1213, 1178, 742, 717 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₈NaO₂S 239.0137; Found 239.0129.


1-(2-isopropylphenyl)-2-phenylethane-1,2-dione (2c)

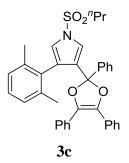
Compound 2c was prepared in 43% yield (236.6 mg) according to the general procedure.


The substrate was isolated through silica gel column chromatography (PE) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.33 (m, 6H), 7.14 – 7.06 (m, 1H), 3.90 – 3.71 (m, 1H), 1.19 (s, 3H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 194.2, 151.6, 134.6, 133.7, 133.0, 132.4, 131.7, 129.8, 128.9, 127.0, 125.6, 29.2, 23.7; IR (neat): 2967, 2870, 1676, 1597, 1449, 1210, 1198, 1178, 759, 724 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₆NaO₂ 275.1043; Found 275.1041.

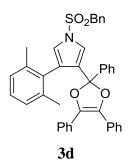
2.3 General procedure for the synthesis of pyrrole-substituted dioxoles 3


The powdered CuBr (0.01 mmol, 1.4 mg), (\pm)-BINAP (0.012 mmol, 7.5 mg), NaBAr^F₄ (0.012 mmol, 10.6 mg) were introduced into the Schlenk tubes. After DCM (2.5 mL) was added to the Schlenk tubes, the solution was stirred at 60 °C for 0.5 h. Subsequently, the *N*-propargyl ynamide **1** (0.1 mmol) and diketone **2** (0.5 mmol) in DCM (2.5 mL) were introduced into the system. The resulting mixture was stirred at 60 °C and the progress of the reaction was monitored by TLC. Upon completion, the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired pyrrole-substituted dioxole **3**.

3-(2,6-dimethylphenyl)-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*pyrrole (3a)

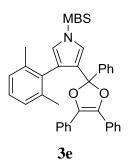

Compound **3a** was prepared in 89% yield (48.7 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 64–65 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 2H), 7.33 – 7.19 (m, 13H), 7.07 (d, *J* = 2.4 Hz, 1H), 7.02 – 6.97 (m, 1H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 2H), 3.16 (s, 3H), 1.95 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 138.2, 133.1, 132.4, 129.2, 129.1, 128.6, 128.0, 127.8, 127.7, 127.4, 127.0, 126.6, 126.2, 125.7, 120.8, 119.0, 108.4, 42.8, 20.8; IR (neat): 3026, 2927, 1370, 1260, 1175, 1107, 1080, 983, 759, 693 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₉NNaO₄S 570.1710; Found 570.1701.

3-(2,6-dimethylphenyl)-1-tosyl-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3b)

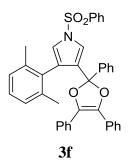

Compound **3b** was prepared in 71% yield (44.3 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 169–171 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 6.8 Hz, 2H), 7.33 – 7.15 (m, 15H), 7.10 (d, *J* = 2.4 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.81 (d, *J* = 7.6 Hz, 2H), 2.47 – 2.35 (s, 3H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 141.0, 138.1, 136.0, 133.1, 132.5, 129.9, 129.2, 129.1, 128.5, 128.0, 127.7, 127.6, 127.3, 127.2, 126.7, 126.5, 126.2, 125.7, 121.3, 119.7, 108.5, 21.6, 20.7; IR (neat): 3059, 2922, 1374, 1261, 1188, 1174, 1106, 1079, 759, 693 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₀H₃₃NNaO₄S 646.2023; Found 646.2018.

3-(2,6-dimethylphenyl)-1-(propylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*pyrrole (3c)

Compound **3c** was prepared in 72% yield (41.4 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 147–149 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 6.8 Hz, 2H), 7.34 – 7.16 (m, 13H), 7.07 – 6.96 (m, 2H), 6.90 – 6.82 (m, 3H), 3.22 (t, *J* = 8.0, 2H), 1.95 (s, 6H), 1.78 – 1.66 (m, 2H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 138.2, 133.1, 132.5, 129.1, 128.9, 128.6, 128.0, 127.8, 127.7, 127.3, 126.6, 126.2, 125.7, 121.0, 119.5, 108.5, 57.2, 20.8, 17.1, 12.6; IR (neat): 3060, 2922, 1372, 1261, 1168, 1106, 1079, 1024, 759, 695 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₆H₃₃NNaO₄S 598.2023; Found 598.2031.


1-(benzylsulfonyl)-3-(2,6-dimethylphenyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3d)

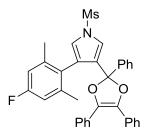
Compound **3d** was prepared in 66% yield (41.2 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 149–151 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.28 – 7.20 (m, 13H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.01 – 6.95 (m, 1H), 6.83 (d, *J* = 7.6 Hz, 2H), 6.67 (d, *J* = 2.4 Hz, 1H), 6.59 (d, *J* = 2.4 Hz, 1H), 4.47 (s, 2H), 1.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.2, 133.0, 132.4, 130.4, 129.4, 129.1, 129.0, 128.5, 128.0, 127.7, 127.6, 127.3, 126.9, 126.6, 126.5, 126.2, 125.7, 121.8, 119.2, 108.4, 61.4, 21.0; IR


(neat): 3060, 2923, 1373, 1261, 1168, 1106, 1080, 1024, 759, 695 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₄₀H₃₃NNaO₄S 646.2023; Found 646.2018.

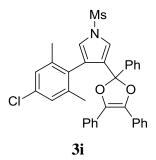
3-(2,6-dimethylphenyl)-1-((4-methoxyphenyl)sulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3e)


Compound **3e** was prepared in 80% yield (51.2 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 25:1) as a white solid (mp 159–161 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 6.8 Hz, 2H), 7.30 – 7.17 (m, 13H), 7.09 (s, 1H), 7.01 – 6.87 (m, 4H), 6.81 (d, *J* = 7.6 Hz, 2H), 3.86 (s, 3H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 141.0, 138.2, 133.1, 132.6, 130.3, 129.1, 129.0, 128.5, 128.0, 127.7, 127.6, 127.3, 127.1, 126.5, 126.2, 125.7, 121.2, 119.5, 114.5, 108.5, 55.7, 20.7; IR (neat): 3059, 2924, 1595, 1498, 1374, 1263, 1167, 1079, 760, 680 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₀H₃₃NNaO₅S 662.1972; Found 662.1969.

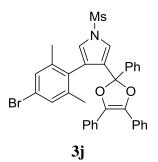
3-(2,6-dimethylphenyl)-1-(phenylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3f)


Compound **3f** was prepared in 66% yield (40.2 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 25:1) as a white solid (mp 150–152 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.53 – 7.46 (m, 2H), 7.41 (d, *J* = 6.8 Hz, 2H), 7.32 – 7.17 (m, 13H), 7.12 (d, *J* = 2.0 Hz, 1H), 7.01 – 6.89 (m, 2H), 6.81 (d, *J* = 7.6 Hz, 2H), 1.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.8, 138.1, 133.9, 133.1, 132.4, 129.5, 129.3, 129.0, 128.5, 128.0, 127.8, 127.7, 127.5, 127.3, 126.6, 126.5, 126.2, 125.7, 121.4, 119.7, 108.4, 20.6; IR (neat): 3060, 2922, 1448, 1376, 1260, 1184, 1176, 1079, 760, 727 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₉H₃₁NNaO₄S 632.1866; Found 632.1871.

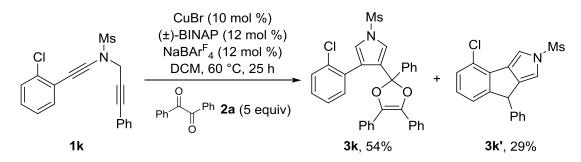
3-mesityl-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3g)


Compound **3g** was prepared in 64% yield (35.9 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.8 Hz, 2H), 7.31 – 7.20 (m, 13H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.66 (s, 2H), 3.17 (s, 3H), 2.17 (s, 3H), 1.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 137.9, 136.8, 133.1, 129.4, 129.1, 128.6, 128.0, 127.7, 127.4, 127.1, 126.2, 125.7, 120.7, 119.1, 108.5, 42.8, 21.0, 20.7; IR (neat): 3026, 2926, 1448, 1370, 1261, 1173, 1084, 1024, 760, 694 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₁NNaO₄S 584.1866; Found 584.1868.

3-(4-fluoro-2,6-dimethylphenyl)-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2yl)-1*H*-pyrrole (3h)

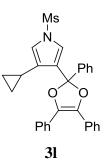

Compound **3h** was prepared in 88% yield (49.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 195–197 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.4 Hz, 2H), 7.34 – 7.20 (m, 13H), 7.07 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.55 (d, *J* = 9.6 Hz, 2H), 3.17 (s, 3H), 1.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 244.0 Hz), 140.9, 140.6, 140.5, 133.1, 129.3, 129.0, 128.7, 128.1, 127.8 (d, *J* = 9.0 Hz), 126.1, 125.6, 120.8, 119.4, 113.1 (d, *J* = 21.0 Hz), 108.3, 42.9, 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6; IR (neat): 3058, 2927, 1371, 1261, 1173, 1130, 1085, 1024, 760, 694 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈FNNaO₄S 588.1615; Found 588.1613.

3-(4-chloro-2,6-dimethylphenyl)-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2yl)-1*H*-pyrrole (3i)


Compound **3i** was prepared in 89% yield (51.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 196–198 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.37 – 7.26 (m, 13H), 7.09 (d, *J* = 2.4 Hz, 1H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.87 (s, 2H), 3.23 (s, 3H), 1.98 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 140.1, 133.1, 132.8, 131.0, 129.2, 128.9, 128.7, 128.1, 127.9, 127.8, 126.4, 126.1, 125.9, 125.6, 121.0, 119.1, 108.3, 42.9, 20.8; IR (neat): 3026, 2927, 1371, 1260, 1175, 1122, 1084, 1024, 751, 694 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈ClNNaO₄S 604.1320; Found 604.1335.

3-(4-bromo-2,6-dimethylphenyl)-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2yl)-1*H*-pyrrole (3j)

Compound **3j** was prepared in 85% yield (53.3 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 188–190 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.33 – 7.21 (m, 13H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.97 (s, 2H), 6.89 (d, *J* = 2.4 Hz, 1H), 3.17 (s, 3H), 1.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 140.5, 133.2, 131.7, 129.4, 129.2, 129.0, 128.8, 128.2, 128.0, 127.9, 126.2, 126.0, 125.7, 121.3, 121.1, 119.1, 108.4, 43.0, 20.8; IR (neat): 3056, 2927, 1371, 1264, 1175, 1120, 1083, 1024, 751, 739 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈BrNNaO₄S 648.0815; Found 648.0822.

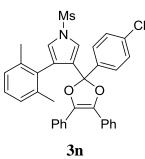

3-(2-chlorophenyl)-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3k)

Compound **3k** was prepared in 54% yield (29.9 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 88–90 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.36 – 7.20 (m, 15H), 7.12 (d, *J* = 2.4 Hz, 1H), 7.10 – 7.04 (m, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 7.01 – 6.96 (m, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 134.4, 133.2, 132.9, 132.2, 129.3, 129.1, 128.8, 128.7, 128.6, 128.1, 127.9, 127.8, 126.3, 125.8, 125.6, 120.8, 120.4, 108.6, 43.0; IR (neat): 3056, 2927, 1371, 1264, 1175, 1097, 1063, 1023, 755, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₄ClNNaO₄S 576.1007;

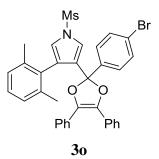
Found 576.0996.

3-cyclopropyl-1-(methylsulfonyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3l)

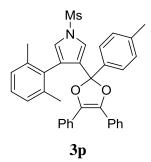
Compound **3I** was prepared in 77% yield (37.2 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 71–73 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (m, 2H), 7.59 – 7.53 (m, 4H), 7.43 – 7.36 (m, 3H), 7.32 – 7.24 (m, 6H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.74 (d, *J* = 1.6 Hz, 1H), 3.09 (s, 3H), 1.81 – 1.72 (m, 1H), 0.72 – 0.66 (m, 2H), 0.50 – 0.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 133.6, 131.1, 129.6, 129.3, 128.9, 128.3, 128.1, 128.0, 126.3, 126.2, 120.8, 117.1, 109.2, 42.8, 7.3, 6.7; IR (neat): 3057, 2929, 1369, 1263, 1172, 1087, 1061, 1025, 753, 696 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₉H₂₅NNaO₄S 506.1397; Found 506.1392.


3-(2,6-dimethylphenyl)-4-(2-(4-fluorophenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3m)

Compound **3m** was prepared in 88% yield (49.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 152–154 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.32 – 7.19 (m, 10H), 7.13 (d, *J* = 2.4 Hz, 1H), 7.04 – 6.97 (m, 1H), 6.97 – 6.83 (m,

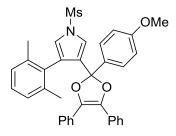

5H), 3.19 (s, 3H), 1.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 246.0 Hz), 138.1, 136.9 (d, J = 3.0 Hz), 133.1, 132.2, 128.9(2), 128.9(0), 128.1, 127.9, 127.6 (d, J = 9.0 Hz), 127.5, 126.9, 126.6, 126.2, 120.5, 119.1, 114.6 (d, J = 21.0 Hz), 108.1, 42.9, 20.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.4; IR (neat): 3056, 2926, 1371, 1264, 1222, 1175, 1107, 1079, 760, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈FNNaO₄S 588.1615; Found588.1612.

3-(2-(4-chlorophenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-4-(2,6-dimethylphenyl)-1-(methylsulfonyl)-1*H*-pyrrole (3n)


Compound **3n** was prepared in 79% yield (46.0 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.30 – 7.20 (m, 12H), 7.11 (d, *J* = 2.4 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 2H), 3.19 (s, 3H), 1.95 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 138.1, 134.5, 133.2, 132.2, 128.8, 128.6, 128.1, 128.0, 127.9, 127.5, 127.2, 126.9, 126.7, 126.2, 120.6, 119.1, 108.0, 42.9, 20.8; IR (neat): 3056, 2927, 1371, 1263, 1214, 1175, 1107, 1080, cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈ClNNaO₄S 604.1320; Found 604.1325.

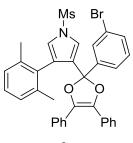
3-(2-(4-bromophenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-4-(2,6-dimethylphenyl)-1-(methylsulfonyl)-1*H*-pyrrole (30)

Compound **30** was prepared in 77% yield (48.2 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 179–181 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.30 – 7.20 (m, 10H), 7.11 (d, *J* = 2.4 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 2H), 3.19 (s, 3H), 1.95 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 138.1, 133.2, 132.2, 130.9, 128.8, 128.5, 128.1, 128.0, 127.5, 127.4, 126.8, 126.7, 126.2, 122.8, 120.6, 119.1, 108.0, 42.9, 20.8; IR (neat): 3056, 2926, 1371, 1263, 1214, 1175, 1107, 1080, 770, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈BrNNaO₄S 648.0815; Found 648.0801.

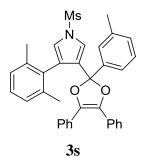

3-(2,6-dimethylphenyl)-4-(4,5-diphenyl-2-(*p*-tolyl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3p)

Compound **3p** was prepared in 85% yield (47.7 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 176–178 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.2 Hz, 2H), 7.28 – 7.18 (m, 10H), 7.09 (d, *J* = 7.2 Hz, 2H), 7.03 – 6.95 (m, 2H), 6.93 – 6.82 (m, 3H), 3.17 (s, 3H), 2.34 (s, 3H), 1.99 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.2, 138.1, 133.1, 132.5, 129.4, 129.1, 128.4, 127.9, 127.7, 127.3, 127.2, 126.6, 126.2, 125.6, 121.0, 118.9, 108.5, 42.8, 21.2, 20.9; IR (neat): 3056, 2925, 1371, 1263, 1219, 1176,

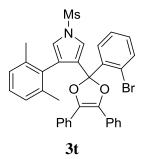
1107, 1079, 769, 693 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{31}NNaO_4S$ 584.1866; Found 584.1871.


3-(2,6-dimethylphenyl)-4-(2-(4-methoxyphenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3q)

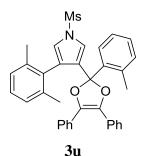
3q


Compound **3q** was prepared in 66% yield (38.1 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 150–152 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.8 Hz, 2H), 7.30 – 7.19 (m, 10H), 7.05 (d, *J* = 2.4 Hz, 1H), 7.02 – 6.96 (m, 1H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 3.17 (s, 3H), 1.97 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 138.1, 133.3, 133.1, 132.5, 129.5, 129.2, 128.0, 127.7, 127.3, 127.1, 127.0, 126.6, 126.2, 120.8, 119.0, 113.1, 108.5, 55.3, 42.8, 20.9; IR (neat): 3055, 2927, 1370, 1264, 1216, 1173, 1106, 1079, 759, 739 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₁NNaO₅S 600.1815; Found 600.1814.

3-(2-(3-bromophenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-4-(2,6-dimethylphenyl)-1-(methylsulfonyl)-1*H*-pyrrole (3r)

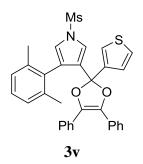

Compound **3r** was prepared in 54% yield (33.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.44 – 7.36 (m, 2H), 7.34 – 7.28 (m, 4H), 7.26 – 7.21 (m, 6H), 7.16 (d, *J* = 2.4 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.06 – 7.00 (m, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 2H), 3.19 (s, 3H), 1.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 138.1, 133.2, 132.0, 131.7, 129.4, 128.8, 128.7, 128.5, 128.1, 128.0, 127.6, 126.8, 126.7, 126.3, 124.4, 122.0, 120.5, 119.2, 107.6, 42.9, 20.8; IR (neat): 3055, 2927, 1371, 1264, 1216, 1173, 1106, 1079, 769, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈BrNNaO₄S 648.0815; Found 648.0822.

3-(2,6-dimethylphenyl)-4-(4,5-diphenyl-2-(*m*-tolyl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3s)

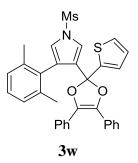

Compound **3s** was prepared in 83% yield (46.6 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 167–169 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 5H), 7.24 – 7.18 (m, 7H), 7.18 – 7.13 (m, 1H), 7.12 – 7.07 (m, 2H), 7.03 – 6.97 (m, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.86 (d, *J* = 7.2 Hz, 2H), 3.17 (s, 3H), 2.28 (s, 3H), 1.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 138.2, 137.3, 133.2, 132.4, 129.4, 129.3, 129.2, 128.0, 127.8, 127.6, 127.4, 127.0, 126.6, 126.3, 126.2, 122.9, 120.7, 119.0, 108.5, 42.8, 21.5, 20.8; IR (neat): 3056, 2925, 1371, 1264, 1175, 1107, 1080, 1024, 769, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₁NNaO₄S 584.1866; Found 584.1870.

3-(2-(2-bromophenyl)-4,5-diphenyl-1,3-dioxol-2-yl)-4-(2,6-dimethylphenyl)-1-(methylsulfonyl)-1*H*-pyrrole (3t)

Compound **3t** was prepared in 46% yield (28.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 199–201 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.47 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.37 – 7.30 (m, 4H), 7.27 – 7.21 (m, 6H), 7.19 – 7.09 (m, 3H), 6.97 – 6.91 (m, 2H), 6.79 (d, *J* = 7.6 Hz, 2H), 3.18 (s, 3H), 2.03 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 138.2, 134.7, 133.2, 132.1, 130.3, 128.8, 128.1, 127.9, 127.8, 127.3, 127.2, 126.8, 126.7, 126.6, 126.3, 122.2, 121.3, 119.0, 108.0, 42.9, 20.9; IR (neat): 3055, 2926, 1371, 1265, 1175, 1106, 1081, 1024, 756, 739 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₈BrNNaO₄S 648.0815; Found 648.0816.

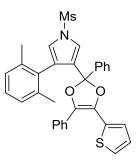

3-(2,6-dimethylphenyl)-4-(4,5-diphenyl-2-(*o*-tolyl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3u)

Compound **3u** was prepared in 47% yield (26.4 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 227–229 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.24 (m, 5H), 7.23 – 7.14 (m, 7H), 7.09 – 7.03 (m, 1H), 6.99 – 6.90 (m, 3H), 6.81 (d, *J* = 7.6 Hz, 2H), 3.16 (s, 3H), 2.47 (s, 3H), 2.02 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.0, 136.3, 133.0, 132.4, 131.7, 129.1, 128.8, 128.5, 128.0, 127.7, 127.4, 127.3, 126.7, 126.3, 125.7, 125.1, 121.2, 119.2, 108.9, 42.8, 21.1, 20.9; IR (neat): 3056, 2926,


1371, 1264, 1175, 1105, 1077, 1024, 758, 692 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₅H₃₁NNaO₄S 584.1866; Found 584.1869.

3-(2,6-dimethylphenyl)-4-(4,5-diphenyl-2-(thiophen-3-yl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3v)

Compound **3v** was prepared in 75% yield (41.5 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 151–153 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 4H), 7.24 – 7.17 (m, 9H), 7.12 (dd, *J* = 4.4, 2.0 Hz, 1H), 7.03 – 6.97 (m, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 2H), 3.19 (s, 3H), 1.98 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 138.2, 133.1, 132.4, 129.0, 128.6, 128.0, 127.8, 127.4, 126.9, 126.6, 126.3, 126.1, 125.7, 123.0, 120.6, 119.1, 107.2, 42.9, 20.8; IR (neat): 3055, 2926, 1371, 1264, 1175, 1106, 1078, 1024, 762, 738 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇NNaO₄S₂ 576.1274; Found 576.1280.

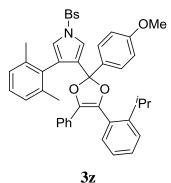

3-(2,6-dimethylphenyl)-4-(4,5-diphenyl-2-(thiophen-2-yl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3w)

Compound **3w** was prepared in 66% yield (36.5 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a

white solid (mp 168–170 °C). ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.18 (m, 12H), 7.12 (dd, J = 3.6, 1.2 Hz, 1H), 7.01 – 6.92 (m, 3H), 6.86 (d, J = 7.6 Hz, 2H), 3.19 (s, 3H), 2.03 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 138.1, 133.2, 132.4, 128.8, 128.5, 128.0, 127.9, 127.4, 127.1, 126.7, 126.6, 126.4, 125.7(3), 125.7(1), 121.4, 119.1, 107.0, 42.9, 20.9; IR (neat): 3056, 2923, 1370, 1263, 1175, 1106, 1077, 1023, 770, 759 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇NNaO₄S₂ 576.1274; Found 576.1284.

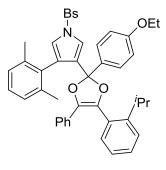
3-(2,6-dimethylphenyl)-4-(2,4-diphenyl-5-(thiophen-2-yl)-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3x)

3x


Compound **3x** was prepared in 64% yield (35.4 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.39 – 7.35 (m, 2H), 7.30 – 7.18 (m, 7H), 7.08 – 6.98 (m, 3H), 6.94 – 6.83 (m, 4H), 3.17 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 138.2, 138.1, 133.2, 132.3, 130.6, 128.9, 128.7, 128.6, 128.5, 128.0, 127.9, 127.8, 127.4, 127.0, 126.9, 126.6, 126.5, 126.1, 125.7, 125.1, 125.0, 120.8, 119.0, 108.8, 42.9, 20.8(3), 20.8(1); IR (neat): 3057, 2925, 1654, 1410, 1265, 1213, 1175, 1076, 772, 739 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇NNaO₄S₂ 576.1274; Found 576.1284.

3-(2,6-dimethylphenyl)-4-(4-(2-isopropylphenyl)-2,5-diphenyl-1,3-dioxol-2-yl)-1-(methylsulfonyl)-1*H*-pyrrole (3y)

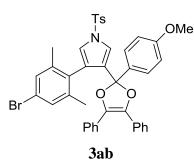
Compound **3y** was prepared in 68% yield (40.1 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 79–81 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.33 (m, 1H), 7.32 – 7.23 (m, 4H), 7.17 – 6.97 (m, 9H), 6.93 – 6.83 (m, 3H), 3.18 (s, 3H), 2.76 – 2.64 (m, 1H), 2.03 (s, 3H), 1.88 (s, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 141.0, 138.4, 138.3, 133.6, 133.1, 132.5, 131.3, 130.0, 129.0, 128.9, 128.5, 127.9, 127.5, 127.4, 127.2, 127.0, 126.7, 126.6, 126.5, 125.9, 125.8, 125.7, 123.9, 120.8, 119.1, 109.0, 42.8, 29.8, 23.9, 23.6, 21.0, 20.6; IR (neat): 2962, 2927, 1371, 1264, 1176, 1107, 1078, 1024, 760, 741 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₇H₃₅NNaO₄S 612.2179; Found 612.2186.


1-((4-bromophenyl)sulfonyl)-3-(2,6-dimethylphenyl)-4-(4-(2-isopropylphenyl)-2-(4-methoxyphenyl)-5-phenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3z)

Compound **3z** was prepared in 63% yield (47.9 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 30:1) as a white solid (mp 86–88 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.59 (m, 4H), 7.43 – 7.25 (m, 4H), 7.18 – 6.72 (m, 14H), 3.79 (s, 3H), 2.78 – 2.65 (m, 1H), 1.90 (s, 3H), 1.75

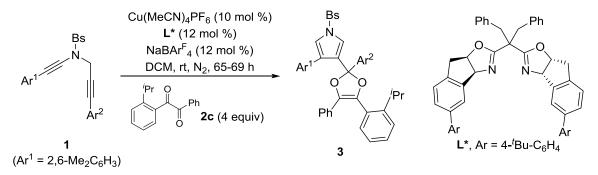
(s, 3H), 0.96 (d, J = 6.4 Hz, 3H), 0.85 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 149.7, 138.3, 138.1, 138.0, 133.5, 133.1, 133.0, 132.7, 132.4, 131.3, 130.2, 129.9, 129.2, 128.9, 128.1, 127.9, 127.8, 127.4, 127.3, 127.1, 126.6, 126.5, 126.4, 125.9, 125.7, 123.8, 121.2, 119.8, 112.9, 109.0, 55.3, 29.9, 23.9, 23.6, 20.9, 20.5; IR (neat): 2961, 2926, 1391, 1379, 1252, 1185, 1176, 1076, 760, 744 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₃H₃₈BrNNaO₅S 782.1546; Found 782.1550.

1-((4-bromophenyl)sulfonyl)-3-(2,6-dimethylphenyl)-4-(2-(4-ethoxyphenyl)-4-(2isopropylphenyl)-5-phenyl-1,3-dioxol-2-yl)-1*H*-pyrrole (3aa)



3aa

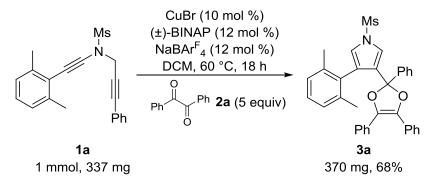
Compound **3aa** was prepared in 54% yield (41.8 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 30:1) as a white solid (mp 78–80 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.61 (m, 4H), 7.38 – 7.24 (m, 4H), 7.16 (d, *J* = 2.4 Hz, 1H), 7.13 – 6.94 (m, 8H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.87 – 6.79 (m, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 4.02 (q, *J* = 7.2 Hz, 2H), 2.80 – 2.65 (m, 1H), 1.90 (s, 3H), 1.74 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 149.7, 138.3, 138.1, 138.0, 133.5, 133.0, 132.9, 132.7, 132.4, 131.3, 130.2, 129.9, 129.2, 129.0, 128.1, 127.9, 127.8, 127.4, 127.3, 127.1, 126.6, 126.5, 126.4, 125.9, 125.7, 123.8, 121.2, 119.7, 113.5, 109.1, 63.5, 29.8, 23.9, 23.6, 20.9, 20.5, 14.8; IR (neat): 2961, 2925, 1391, 1251, 1185, 1175, 1090, 1076, 759, 744 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₄H₄₀BrNNaO₅S 796.1703; Found 796.1701.


3-(4-bromo-2,6-dimethylphenyl)-4-(2-(4-methoxyphenyl)-4,5-diphenyl-1,3-dioxol-2-

yl)-1-tosyl-1H-pyrrole (3ab)

Compound **3ab** was prepared in 60% yield (44.0 mg) according to the general procedure. The product was isolated through silica gel column chromatography (PE:EA = 15:1) as a white solid (mp 212–214 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.15 (m, 10H), 7.05 (d, *J* = 2.4 Hz, 1H), 6.92 (s, 2H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H), 2.42 (s, 3H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 145.2, 140.3, 135.9, 133.1, 133.0, 131.8, 130.0, 129.4, 129.2, 129.0, 128.1, 127.8, 127.0, 126.7, 126.2, 126.1, 121.6, 121.1, 119.6, 113.1, 108.4, 55.3, 21.6, 20.6; IR (neat): 3054, 2925, 1376, 1264, 1188, 1173, 1079, 1024, 739, 704 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₁H₃₄BrNNaO₅S 754.1233; Found 754.1231.

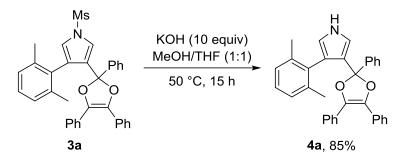
2.4 General procedure for the synthesis of chiral pyrrole-substituted dioxoles 3


The powdered Cu(MeCN)₄PF₆ (0.01 mmol, 3.7 mg), **L*** (0.012 mmol, 9.3 mg), NaBAr^F₄ (0.012 mmol, 10.6 mg) were introduced into an oven-dried Schlenk tube under argon atmosphere. After DCM (1 mL) was injected to the Schlenk tube, the solution was stirred at room temperature under argon atmosphere for 2 h. Subsequently, the *N*-propargyl ynamide **1** (0.1 mmol) and diketone **2c** (0.5 mmol) in DCM (1 mL) were introduced into the system. The resulting mixture was stirred at room temperature and the progress of the

reaction was monitored by TLC. Upon completion, the mixture was concentrated and the residue was purified by flash chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired chiral pyrrole-substituted dioxole **3**.

Compound (+)-**3z** was prepared in 30% yield (22.8 mg) according to the above procedure. The product was isolated through silica gel column chromatography (PE:EA = 30:1) as a white solid. $[\alpha]_D{}^{20} = +15.86$ ° (c = 1.0, CHCl₃). 30% ee (determined by HPLC (IB, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, I = 254 nm) tR = 6.80 min (minor), 7.58 min (major)).

Compound (+)-**3aa** was prepared in 36% yield (27.8 mg) according to the above procedure. The product was isolated through silica gel column chromatography (PE:EA = 30:1) as a white solid $[\alpha]_D^{20} = +15.00$ °(c = 1.0, CHCl₃). 29% ee (determined by HPLC (IB, *n*-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, I = 254 nm) tR = 7.27 min (minor), 8.19 min (major)).

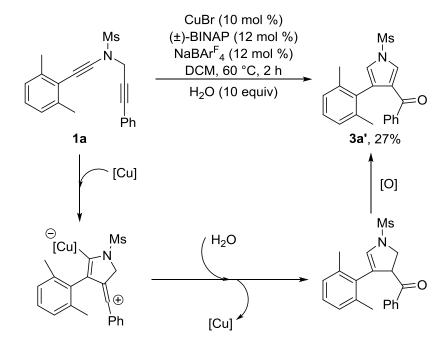

2.5 Preparative-scale synthesis of 3a

The powdered CuBr (0.1 mmol, 14.1 mg), (\pm)-BINAP (0.12 mmol, 74.7 mg), NaBAr^F₄ (0.12 mmol, 106.3 mg) were introduced into the Schlenk tubes. After DCM (25 mL) was added to the Schlenk tubes, the solution was stirred at 60 °C for 0.5 h. Subsequently, the *N*-propargyl ynamide **1a** (1.0 mmol, 337 mg) and diketone **2a** (5.0 mmol) in DCE (25 mL) were introduced into the system. The resulting mixture was stirred at 60 °C and the progress of the reaction was monitored by TLC. Upon completion, the mixture was concentrated and the residue was purified by flash chromatography on silica gel (PE:EA = 15:1) to afford the desired product **3a** (370 mg, 68% yield).

2.6 Transformations

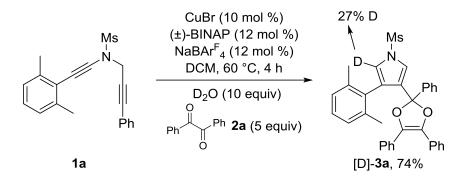
3-(2,6-dimethylphenyl)-4-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1H-pyrrole (4a)

Compound **4a** was prepared in 85% yield (39.9 mg) according to the above known procedure (0.1 mmol scale).⁵ The product was isolated through silica gel column chromatography (PE:EA = 10:1) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.61 – 7.52 (m, 2H), 7.33 – 7.23 (m, 7H), 7.22 – 7.13 (m, 6H), 6.99 – 6.91 (m, 1H), 6.85 (d, *J* = 7.6 Hz, 2H), 6.61 – 6.56 (m, 1H), 6.53 – 6.46 (m, 1H), 2.01 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 138.7, 135.2, 133.1, 129.7, 128.0, 127.9, 127.4, 127.3, 126.5, 126.3(2), 126.3(1), 125.8, 123.4, 122.2, 119.1, 116.9, 109.8, 21.0; IR (neat): 3432, 3057, 2922, 1447, 1264, 1101, 1072, 1024, 758, 749 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₂₇NNaO₂ 492.1934; Found 492.1943.

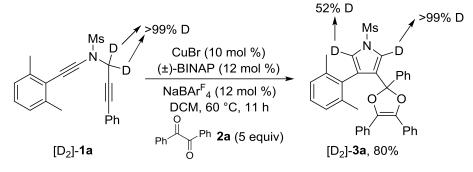

(±)-2-(2,6-dimethylphenyl)-9-(methylsulfonyl)-3-(2,4,5-triphenyl-1,3-dioxol-2-yl)-1,4dihydro-1,4-epiminonaphthalene (4b)

Compound **4b** was prepared in 69% yield (43.0 mg) according to the above known procedure (0.1 mmol scale).⁶ The product was isolated through silica gel column chromatography (PE:EA = 5:1) as pale yellow solid (mp 200–202 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.37 – 7.23 (m, 9H), 7.18 (s, 5H), 7.05 – 6.96 (m,

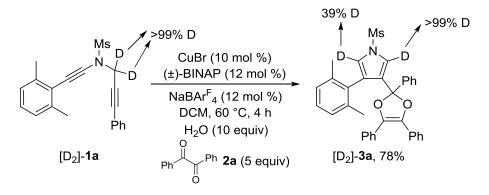
3H), 6.90 - 6.85 (m, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 5.66 (d, J = 1.6 Hz, 1H), 5.25 (d, J = 1.6 Hz, 1H), 2.29 (s, 3H), 2.08 (s, 3H), 1.54 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 152.3, 147.7, 147.6, 146.6, 138.4, 136.5, 135.0, 133.5, 133.4, 132.9, 129.1, 128.8, 128.5, 128.2, 128.0(8), 128.0(3), 128.0(0), 127.9, 127.6, 127.0, 126.9, 126.4, 126.2, 126.0, 125.5, 122.1, 121.9, 109.3, 72.8, 68.9, 38.0, 20.6, 20.1; IR (neat): 3057, 2925, 1449, 1341, 1264, 1154, 1069, 1025, 760, 740 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₀H₃₃NNaO₄S 646.2023; Found 646.2038.


2.7 Control experiments

(4-(2,6-dimethylphenyl)-1-(methylsulfonyl)-1*H*-pyrrol-3-yl)(phenyl)methanone (3a')


Compound **3a'** was prepared in 27% yield (9.5 mg) according to the general procedure (0.1 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.2 Hz, 2H), 7.60 (d, *J* = 2.0 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.45 – 7.37 (m, 2H), 7.15 – 7.10 (m, 1H), 7.08 – 7.01 (m, 3H), 3.27 (s, 3H), 2.11 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 138.3, 137.0, 132.5, 132.2, 129.1, 128.4, 128.1, 127.6, 127.1, 127.0, 126.2, 119.4, 43.1, 20.9. IR (neat): 2924, 2852, 1652, 1508, 1369, 1275, 1174, 1069, 802, 766 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₉NNaO₃S 376.0983; Found 376.0986.

[D]-**3a** (27% D)


Compound [D]-**3a** was prepared in 74% yield (40.6 mg) according to the above general procedure (0.1 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.31 – 7.19 (m, 13H), 7.07 (d, *J* = 2.8 Hz, 1H), 7.02 – 6.97 (m, 1H), 6.90 (d, *J* = 2.8 Hz, 0.73H), 6.86 (d, *J* = 7.6 Hz, 2H), 3.17 (s, 3H), 1.95 (s, 6H).

[D₂]-3a (52% D)

Compound [D₂]-**3a** was prepared in 80% yield (43.9 mg) according to the above general procedure (0.1 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.32 – 7.19 (m, 13H), 7.03 – 6.97 (m, 1H), 6.90 (s, 0.48H), 6.86 (d, *J* = 7.6 Hz, 2H), 3.17 (s, 3H), 1.95 (s, 6H).

[D₂]-3a (39% D)

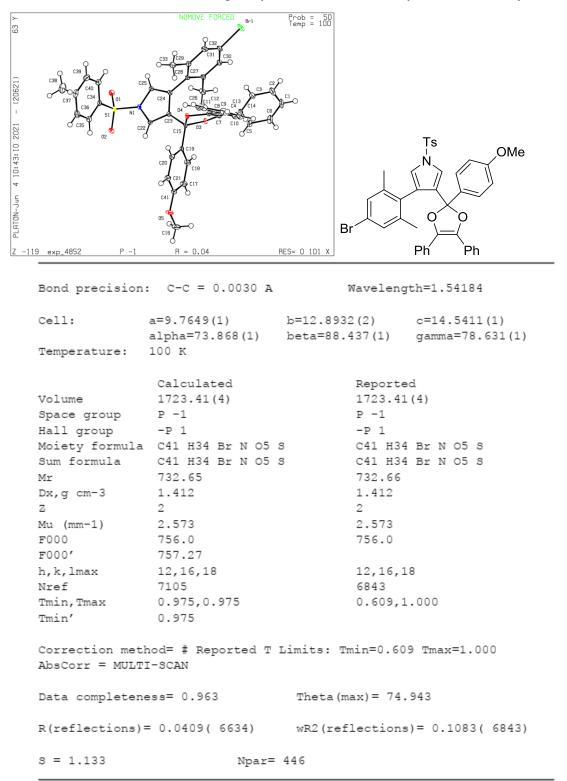
Compound [D₂]-**3a** was prepared in 78% yield (42.7 mg) according to the general procedure (0.1 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.32 – 7.19 (m, 13H), 7.02 – 6.97 (m, 1H), 6.90 (s, 0.61H), 6.86 (d, *J* = 7.6 Hz, 2H), 3.17 (s, 3H), 1.95 (s, 6H).

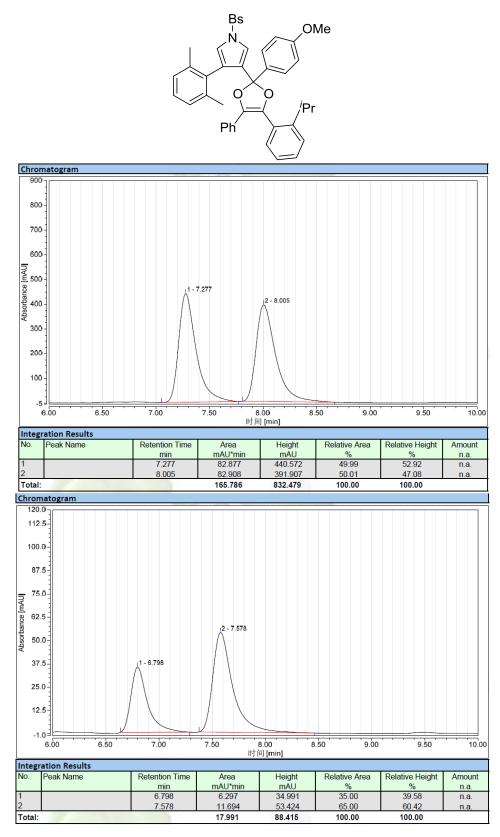
3. Reference

1) L.-J. Qi, C.-T. Li, Z.-Q. Huang, J.-T. Jiang, X.-Q. Zhu, X. Lu and L.-W. Ye, Enantioselective Copper-Catalyzed Formal [2 + 1] and [4 + 1] Annulations of Diynes with Ketones via Carbonyl Ylides, *Angew. Chem., Int. Ed.*, 2022, **61**, e202210637.

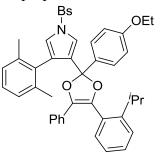
2) X.-Q. Zhu, P. Hong, Y.-X. Zheng, Y.-Y. Zhen, F.-L. Hong, X. Lu and L.-W. Ye, Copper-Catalyzed Asymmetric Cyclization of Alkenyl Diynes: Method Development and New Mechanistic Insights, *Chem. Sci.*, 2021, **11**, 9466.

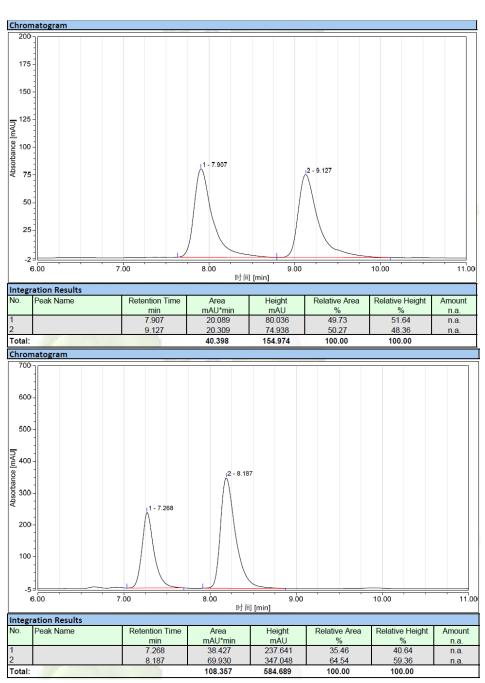
3) D. J. Cassar, E. Nagaradja, D. C. D. Butler, D. Villemin and C. J. Richards, Regioselective, Stereoselective, and Conformationally Controlled Synthesis of (η^4 -Tetraarylcyclobutadiene)-(η^5 -Carbomethoxycyclopentadienyl)-Cobalt Metallocenes, *Org. Lett.*, 2012, **14**, 894.

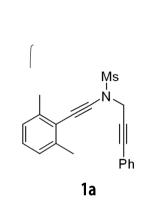

4) P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha, R. Ramapanicker and J. K. A. Bera, Highly Efficient Catalyst for Selective Oxidative Scission of Olefins to Aldehydes: Abnormal-NHC-Ru(II) Complex in Oxidation Chemistry, *J. Am. Chem. Soc.*, 2014, **136**, 13987.

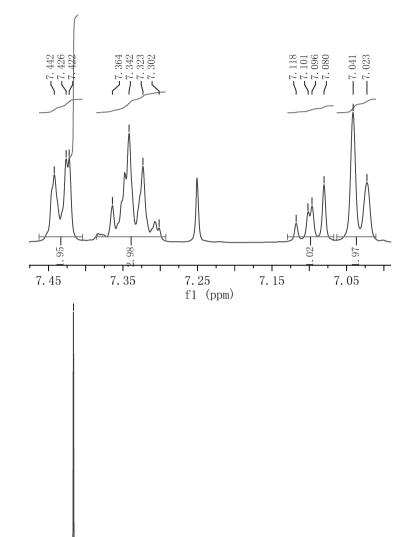

5) F.-L. Hong, Y.-B. Chen, S.-H. Ye, G.-Y. Zhu, X.-Q. Zhu, X. Lu, R.-S. Liu and L.-W. Ye, Copper-Catalyzed Asymmetric Reaction of Alkenyl Diynes with Styrenes by Formal [3 + 2] Cycloaddition via Cu-Containing All-Carbon 1,3-Dipoles: Access to Chiral Pyrrole-Fused Bridged [2.2.1] Skeletons, *J. Am. Chem. Soc.*, 2020, **142**, 7618.

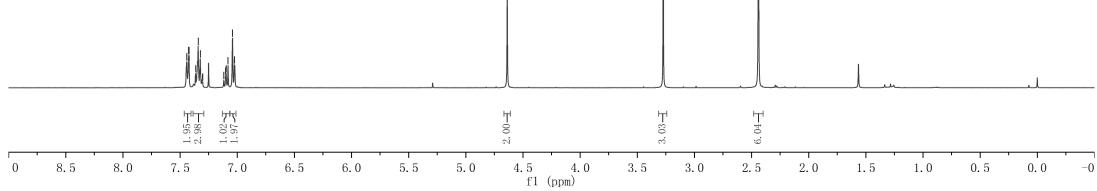
6) H.-J. Luo, K. Chen, H.-F. Jiang and S.-F. Zhu, A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach, *Org. Lett.*, 2016, **18**, 5208.

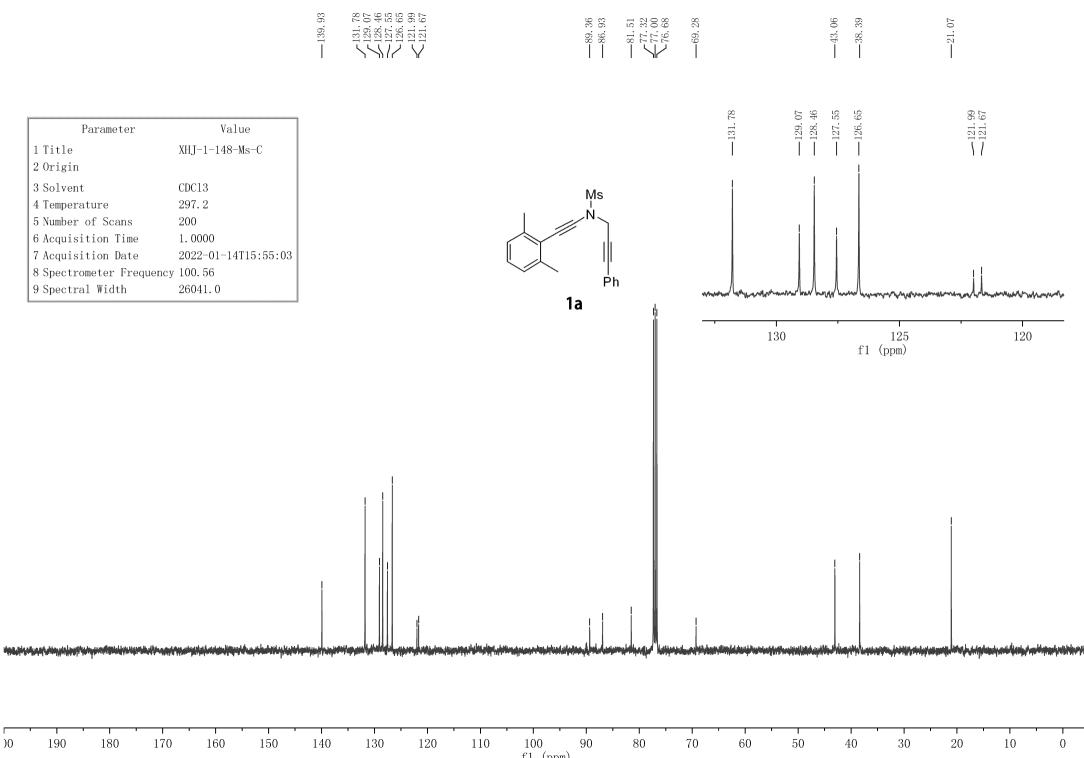

Crystal data and structure refinement for 3ab. CCDC Number = 2203937


ORTEP drawing of **3ab** (thermal ellipsoids set at 50% probability). Recrystallization from *n*-hexane/DCM afforded single crystals suitable for X-ray diffraction analysis.

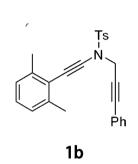

(+)-3aa/L*: HPLC (IE, *n*-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, I = 254 nm)

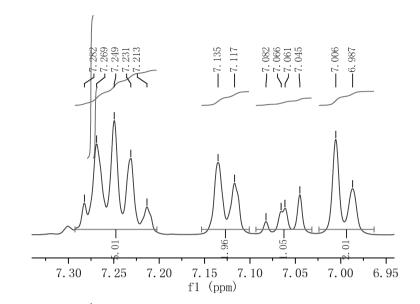




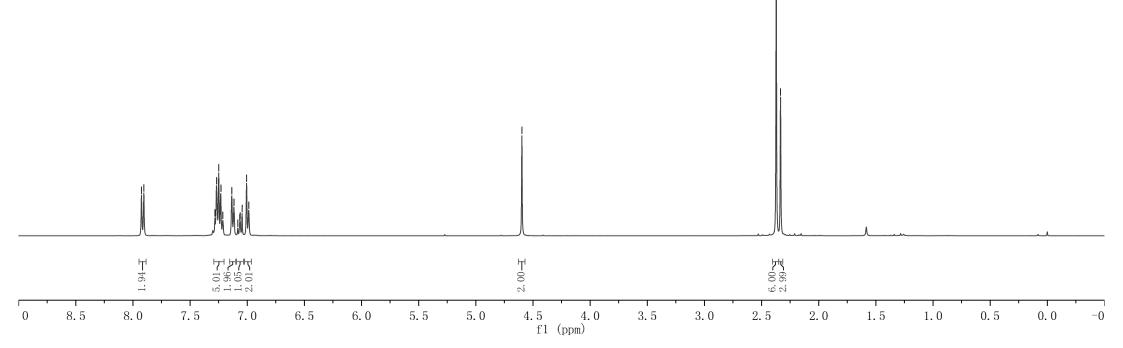


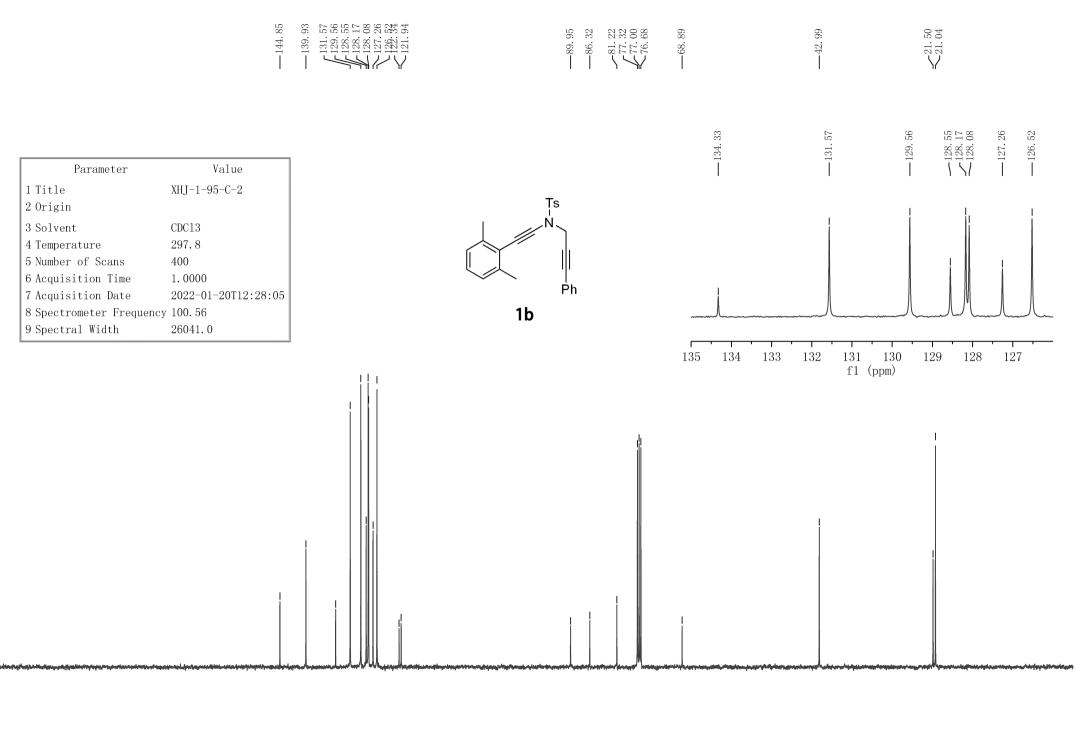
	/
Parameter	Value
1 Title	XHJ-1-148-Ms-H
2 Origin	
3 Solvent	CDC13
4 Temperature	297.1
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-01-14T15:45:52
8 Spectrometer Frequ	iency 399.93
9 Spectral Width	8012.0



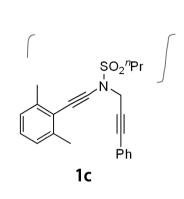


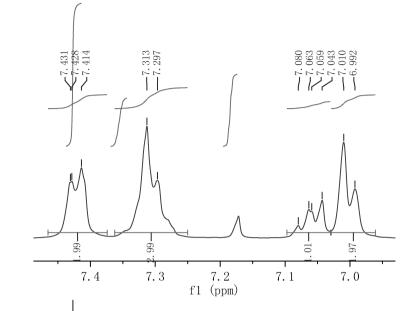
fl (ppm)

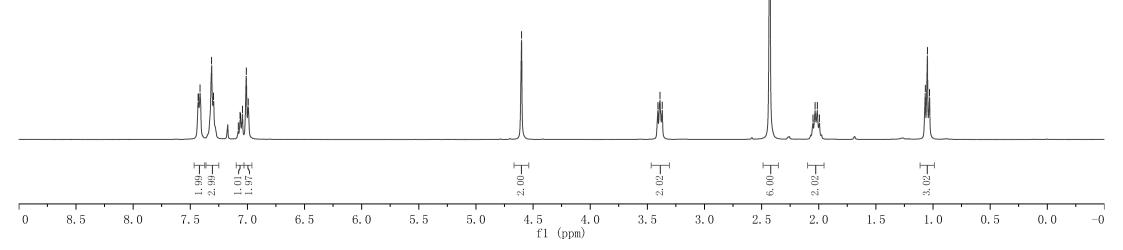

925 904	$\begin{array}{c} 282\\ 269\\ 249\\ 117\\ 117\\ 066\\ 061\\ 061\\ 061\\ 061\\ 061\\ 061\\ 061$
<u>7</u> .	
١٢	

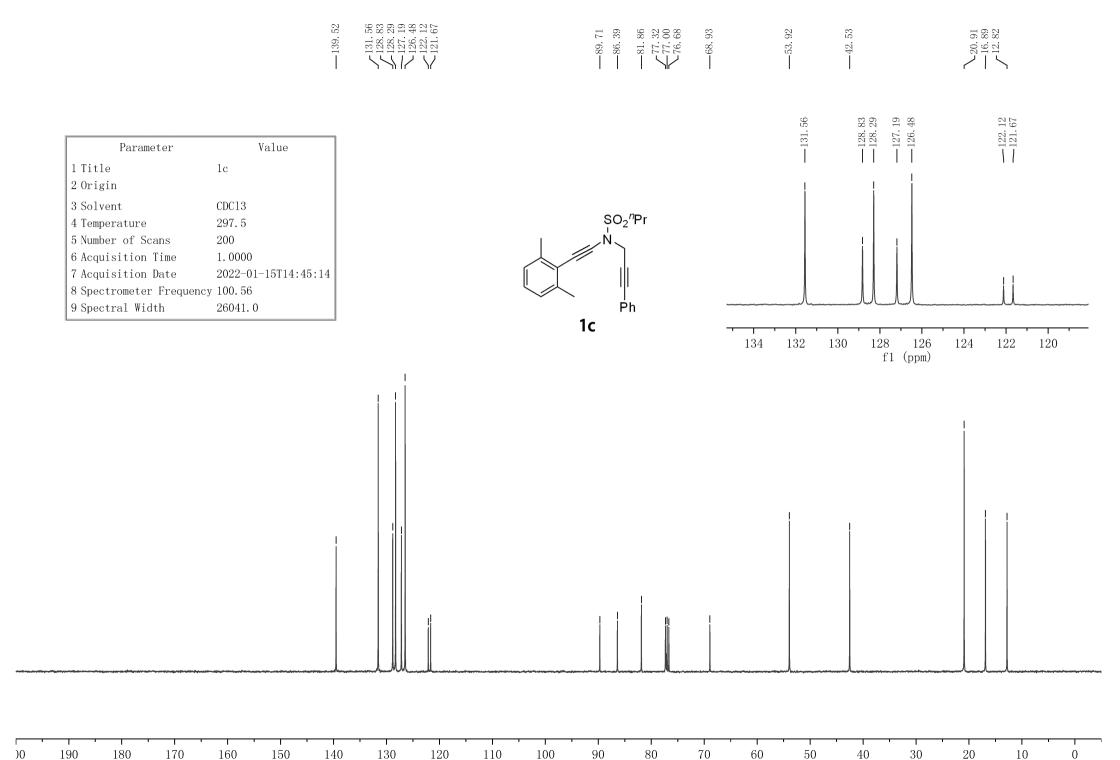

Parameter	Value
1 Title (/XHJ−1−95−H−2
2 Origin	
3 Solvent	ØDC13
4 Temperature	297.6
5 Number of Scans	40
6 Acquisition Time	4.0002
7 Acquisition Date	2022-01-20T12:12:39
8 Spectrometer Frequen	icy 399.93
9 Spectral Width	8012.0

 $\sim^{2.372}_{2.334}$

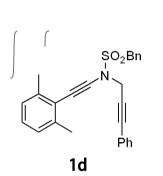


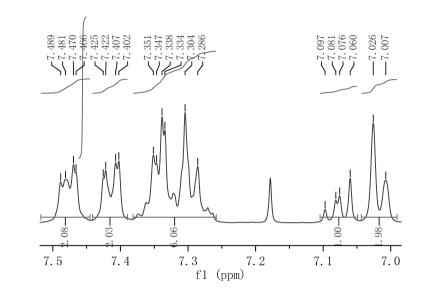

	·	·		·	· ·			· · ·		·	·			·	·	·	·	· 1		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (nn	m)									

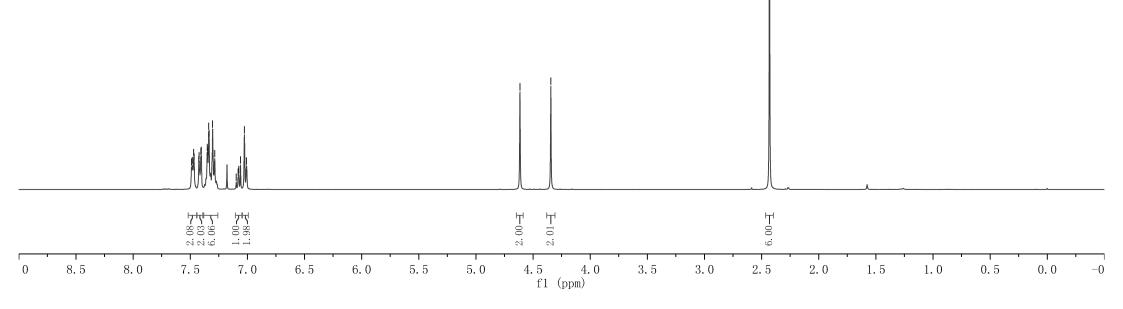

	(
Parameter	Value
1 Title	1c
2 Origin	
3 Solvent	CDC13
4 Temperature	297.5
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-01-15T14:36:25
8 Spectrometer Freque	ency 399.93
9 Spectral Width	8012.0



 $\overbrace{-3.369}^{3.408}$

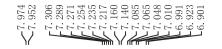

 $\overbrace{-1.030}^{1.067}$



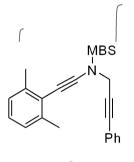


$\begin{array}{c} 4489 \\ 4470 \\ 4470 \\ 3347 \\ 3351 \\ 3334 \\ 33$	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5

Parameter	Value
1 Title	ХНЈ-1-160-Н
2 Origin (	[
3 Solvent	DC13
4 Temperature )))	$/_{297.1}$
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-01-15T23:37:05
8 Spectrometer Frequer	ncy 399.93
9 Spectral Width	8012.0



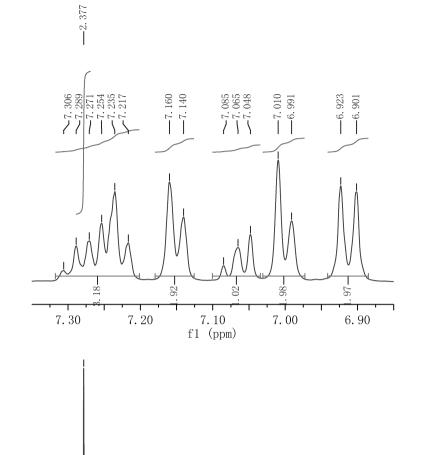


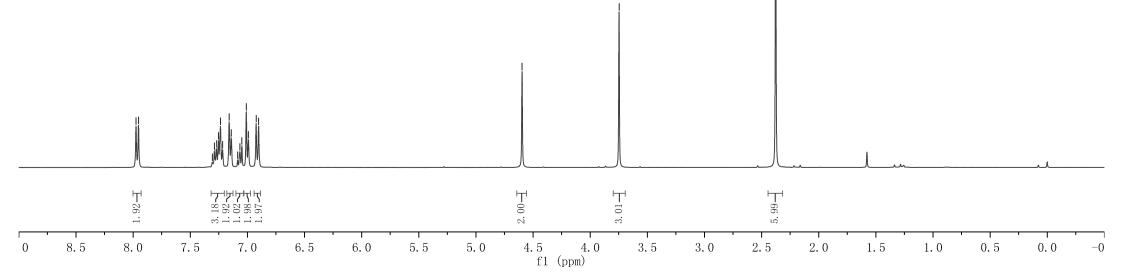



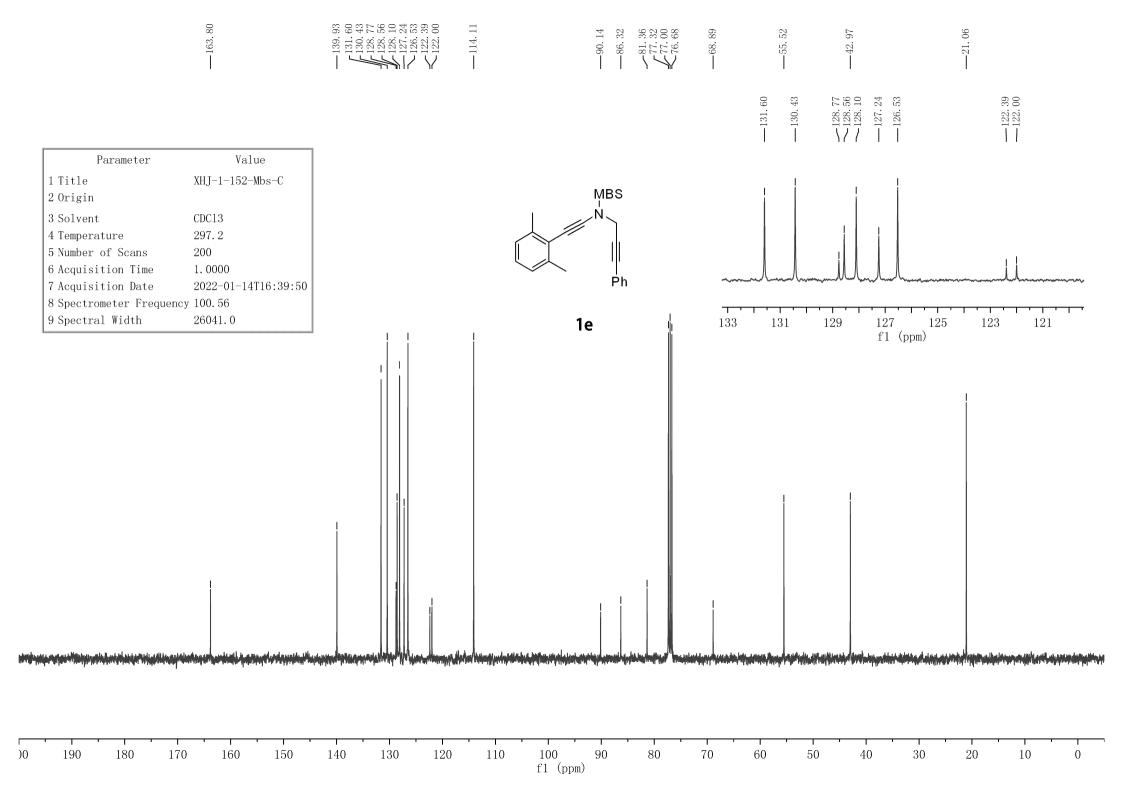

		212.21.21	$ \begin{array}{c} -89. 41 \\ -86. 53 \\ -81. 79 \\ -77. 32 \\ 77. 00 \\ 76. 68 \end{array} $			
2 Origin 3 Solvent CDC13			SO₂Bn ∽N	——— — 131. 71 ——— — 130. 90	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4 Temperature297.15 Number of Scans2006 Acquisition Time1.00007 Acquisition Date2022-08 Spectrometer Frequency100.509 Spectral Width26041.	00 -01-15T23:46:00 56	lt 1d	 Ph			
					129 127 f1 (ppm)	125 123 121 )

																		·		
			1		·			· ·	· .	· ·				'				1 1		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (pp	om)									

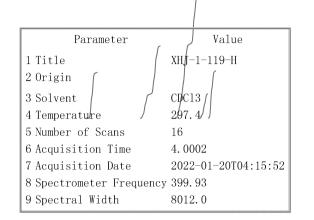


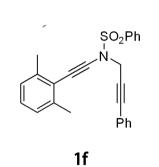

Parameter	Value							
1 Title	XHJ-1-152-Mbs-H							
2 Origin (								
3 Solvent	¢D¢13							
4 Temperature	/29#./1]							
5 Number of Scans	16							
6 Acquisition Time	4.0002							
7 Acquisition Date	2022-01-14T16:31:04							
8 Spectrometer Frequency	7 399.93							
9 Spectral Width	8012.0							

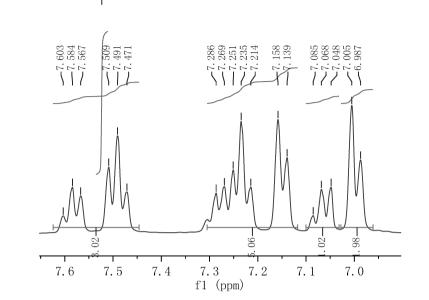




----3.747

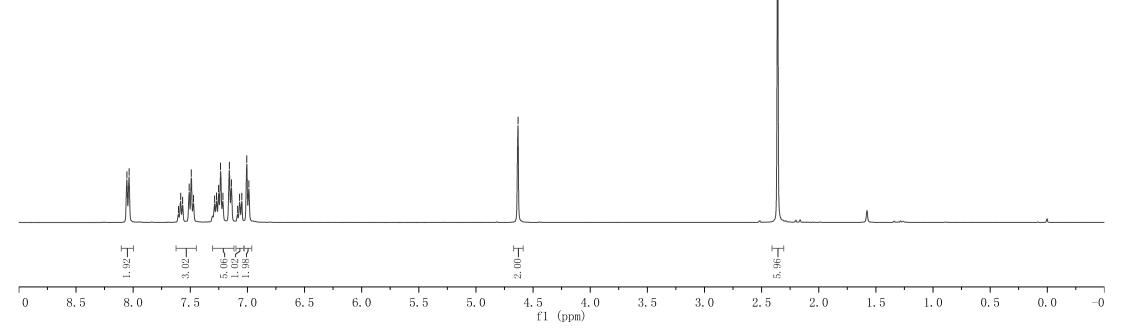
----4. 596





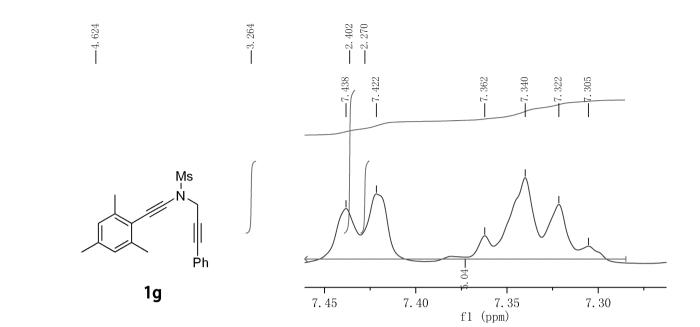



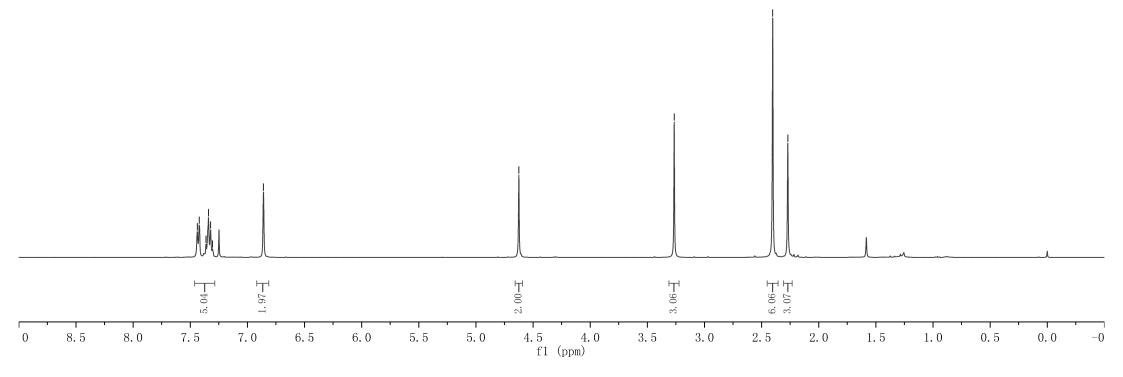


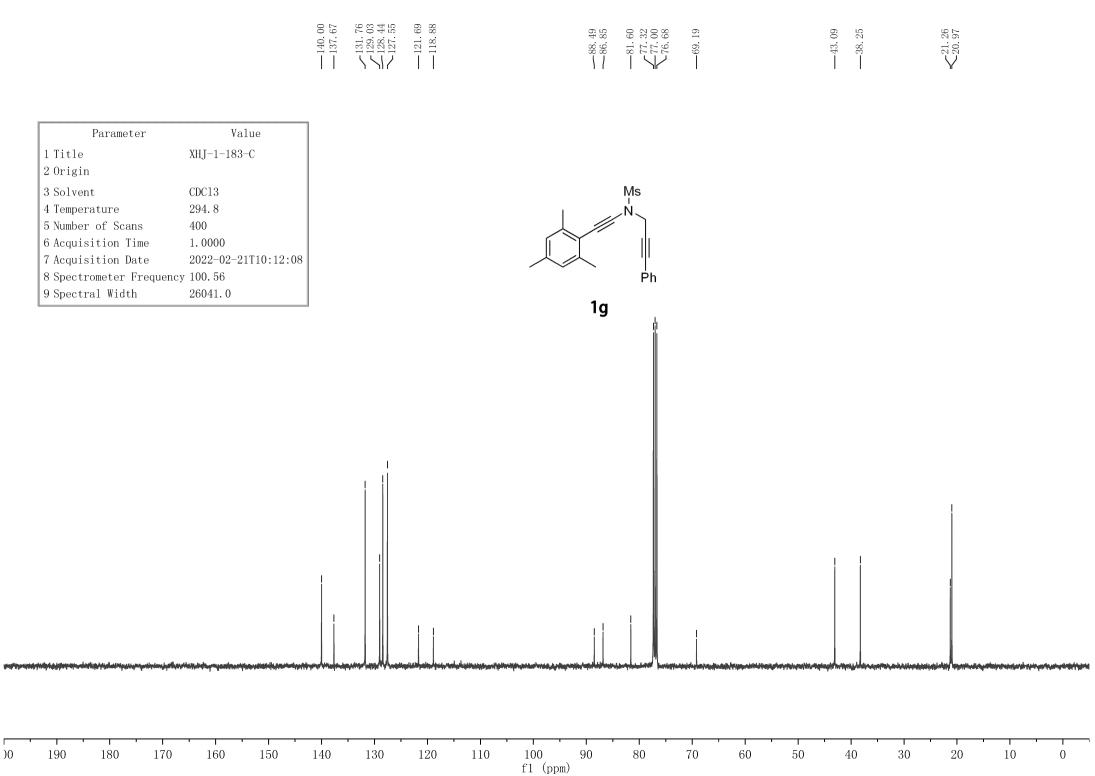





-2.359





)()



Parameter	Value
1 Title 2 Origin	ХНЈ-1-183-Н
3 Solvent	CDC13
4 Temperature 5 Number of Scans	294. 5 16
6 Acquisition Time	4. 0002
7 Acquisition Date 8 Spectrometer Frequency	2022-02-21T09:56:19 7 399.93
9 Spectral Width	8012. 0







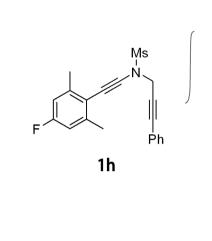


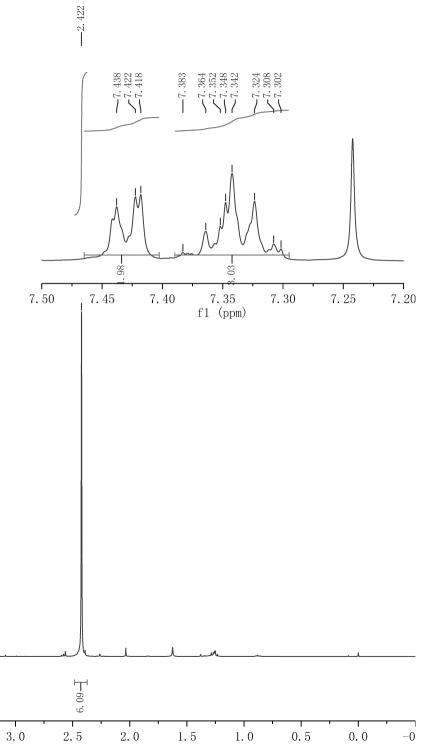
Parameter	Value
1 Title	ХНЈ-1-230-Н
2 Origin	Brukér BioSpin GmbH
3 Solvent	CDC18
4 Temperature )/	298.0
5 Number of Scans	15
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-03-15T15:32:35
8 Spectrometer Frequency	400. 13
9 Spectral Width	8012.8

1. 98 3. 03 ⊥

7.5

8.5


0


8.0

1.96-

6.5

7.0

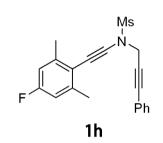


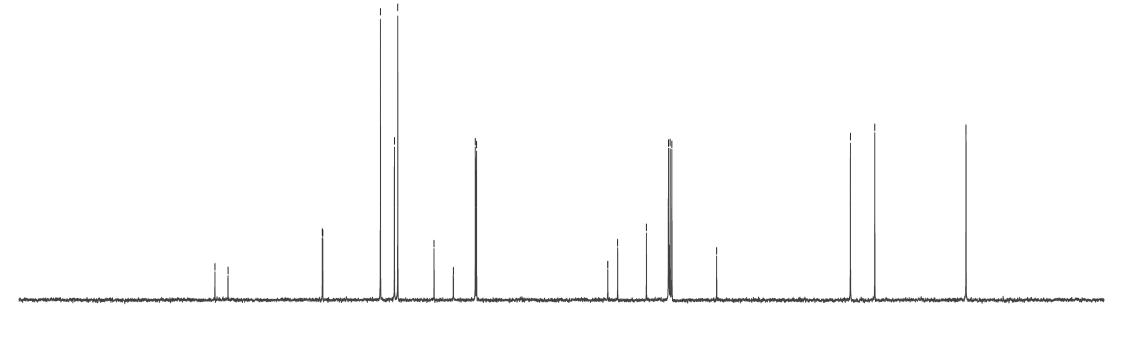


4.5 4.0 f1 (ppm)

2. 00<del>. I</del>

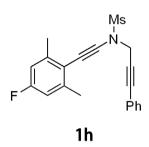
5.0


5.5


6.0

3.5

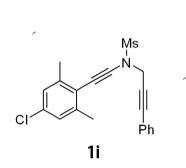
		$<^{142.68}_{142.59}$	$^{-131.71}_{-129.07}$	$-\frac{-121.59}{2117.95}$	88. 79 88. 77 86. 91	$\frac{81.48}{\sqrt{77.32}}$		49 66	i so	$<_{21.12}^{21.13}$
--	--	-----------------------	------------------------	----------------------------	----------------------------	------------------------------	--	----------	------	---------------------

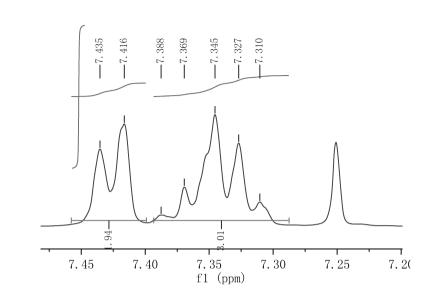

Parameter	Value
1 Title	ХНЈ-1-230-С
2 Origin	
3 Solvent	CDC13
4 Temperature	297.5
5 Number of Scans	250
6 Acquisition Time	1.0000
7 Acquisition Date	2022-03-15T19:26:07
8 Spectrometer Frequency	100.56
9 Spectral Width	26041.0

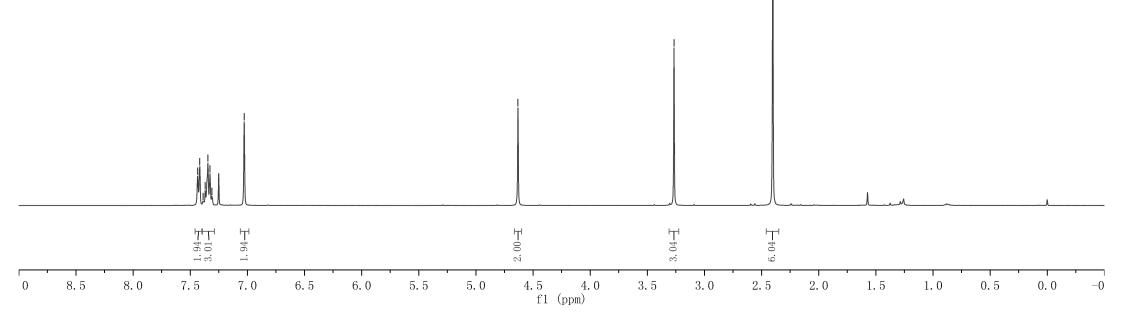




	, 1 ,	1			· .			1					1 .	1	'				1 1			1 1
10	100	100	170	100	1 5 0	1 4 0	190	100	110	100	00	<i>c</i>	20	70	<u>co</u>	50	10	c	0	00	10	0
	190	180	170	160	150	140	130	120	110	100	90	5	30	70	60	50	40	ć	30	20	10	0
										f1 (p	nom)											
										(P	-p-m/											


Parameter	Value					
1 Title	XHJ-1-230-F					
2 Origin	Bruker BioSpin GmbH					
3 Solvent	CDC13					
4 Temperature	297.2					
5 Number of Scans	16					
6 Acquisition Time	0.7340					
7 Acquisition Date	2022-08-16T20:03:52					
8 Spectrometer Frequency	376.31					
9 Spectral Width	89285.7					



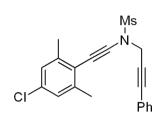


-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 10 -20 -40 -60 0 -10-30 -50-70 -80



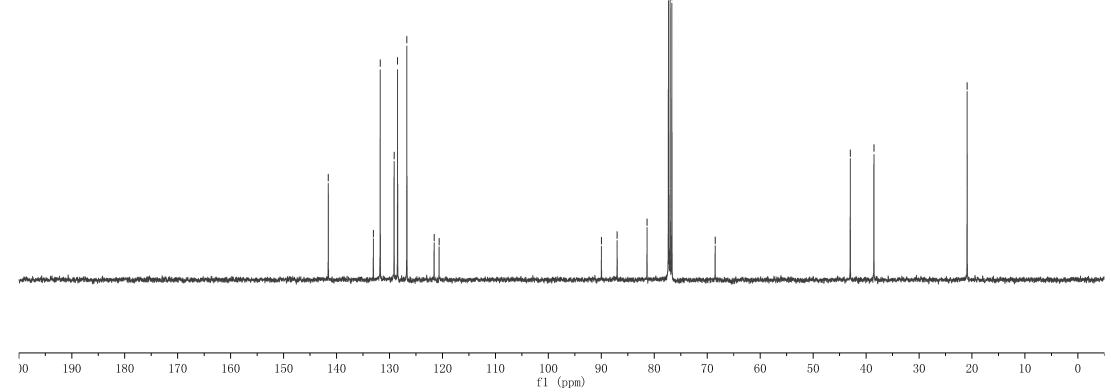
Parameter	/ Value
1 Title	ХНЈ-1-218-Н
2 Origin	
3 Solvent	CDC13
4 Temperature	297.6
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-03-08T16:29:55
8 Spectrometer Frequer	
9 Spectral Width	8012.0





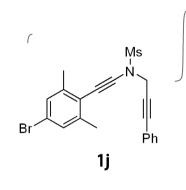



-2.402


-3.266

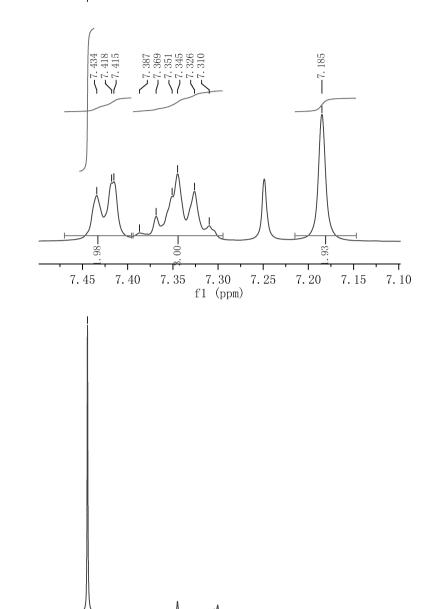
22.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52.01. 52		1.3 7.0 6.6				<b>—</b> 20. 91
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	-------------------	--	--	--	-----------------

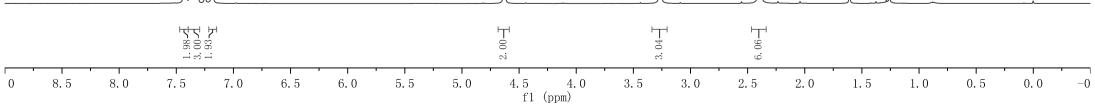
Parameter	Value					
1 Title	XHJ-1-218-C					
2 Origin						
3 Solvent	CDC13					
4 Temperature	297.8					
5 Number of Scans	400					
6 Acquisition Time	1.0000					
7 Acquisition Date	2022-03-08T16:45:34					
8 Spectrometer Frequency	100.56					
9 Spectral Width	26041.0					




1i




$\begin{array}{c} 434\\ 415\\ 415\\ 387\\ 387\\ 351\\ 351\\ 345\\ 345\\ 326\\ 310\\ 185\\ 185\end{array}$	

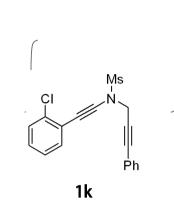

Parameter /	Value
1 Title	ХНЈ-1-202-Н
2 Origin	
3 Solvent	CDC13
4 Temperature	295.8
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-03-03T17:39:45
8 Spectrometer Frequency	399. 93
9 Spectral Width	8012. 0

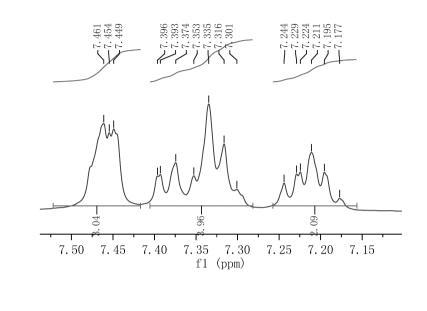


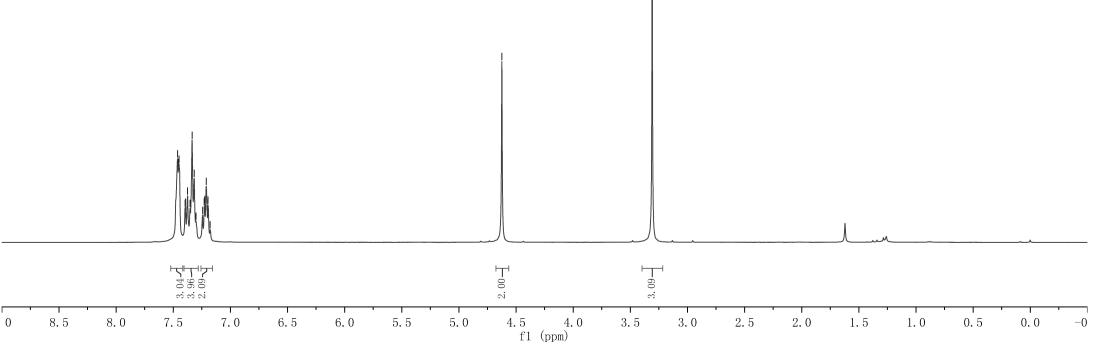
-3.265

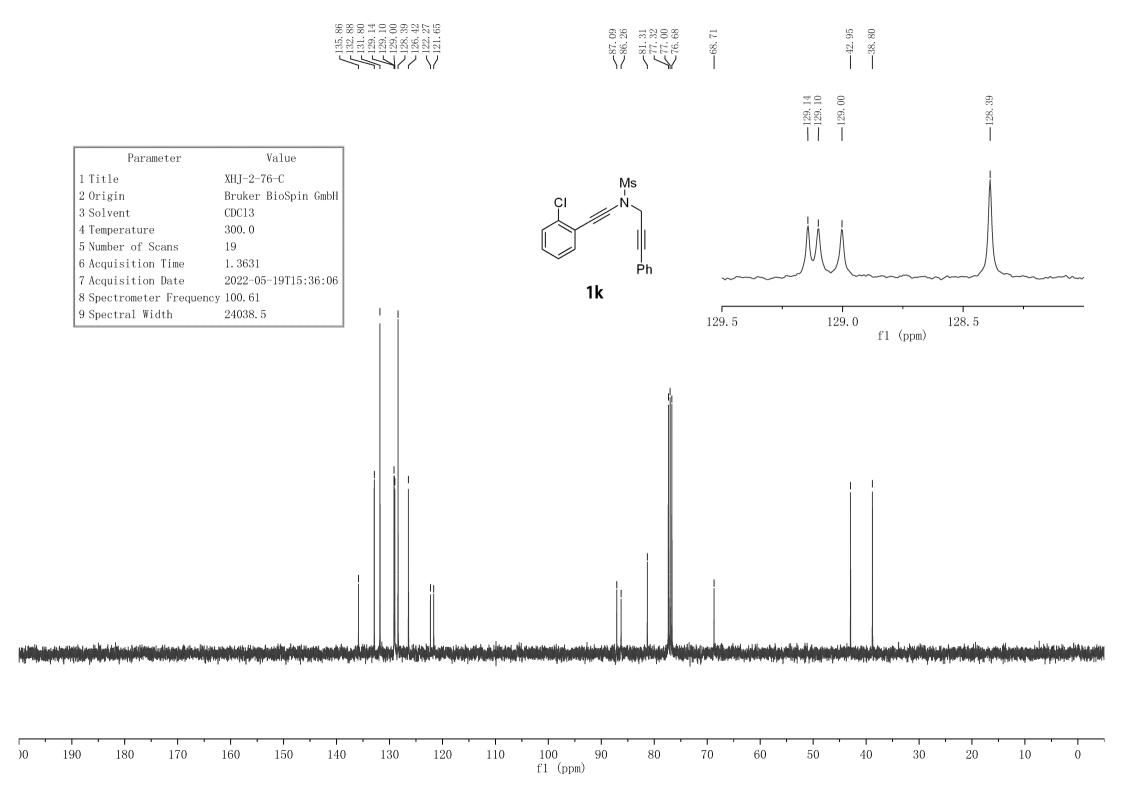
-2. 396





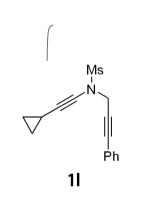


	<b>—</b> 141. 66	$\overbrace{\begin{tabular}{c} 121. \\ \hline 129. \\ 129. \\ 128. \\ 16\\ 128. \\ 46\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 138\\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\ 121. \\$	= 90.21 $= 87.01$ $= 77.32$ $= 77.00$ $= 77.00$			20.81
Parameter 1 Title XH 2 Origin	Value J-1-202-C		Ms	131. 73 129. 58	128.46	$\sum_{121, 138}^{121, 53}$
4 Temperature2965 Number of Scans4006 Acquisition Time1.007 Acquisition Date2008 Spectrometer Frequency 100	0000 22-03-03T17:55:12		Br Ph 1j			
				132 130	128 126 124 f1 (ppm)	. 122 120
alanan yadi walata kutu mata kifa na gupa kutu mana Malayo da yan Af	**************************************	anna dhallana an Inina an a	ennervenenenen anvenenen duetenen van de seere		inadelin-easedarthergenishipeterisangungenishipeterisa	₩₽₽₽ ^{\$} ₩₽₽₽₽₽₩₩₽₽₽₩₩₽₽₽₽₩₩₽₽₽₽₩₩₽₽₽₽₩₩₽₽₽₩₩


f1 (ppm) . 90 )() 



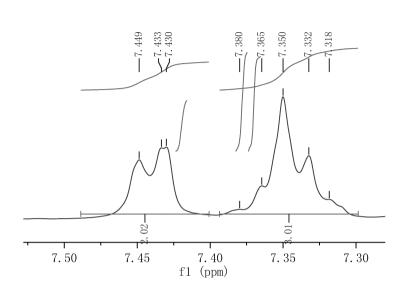

Parameter	/ Value
1 Title	ХНЈ-2-76-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	5
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-05-19T15:34:58
8 Spectrometer Frequency	y 400.13
9 Spectral Width	8012.8

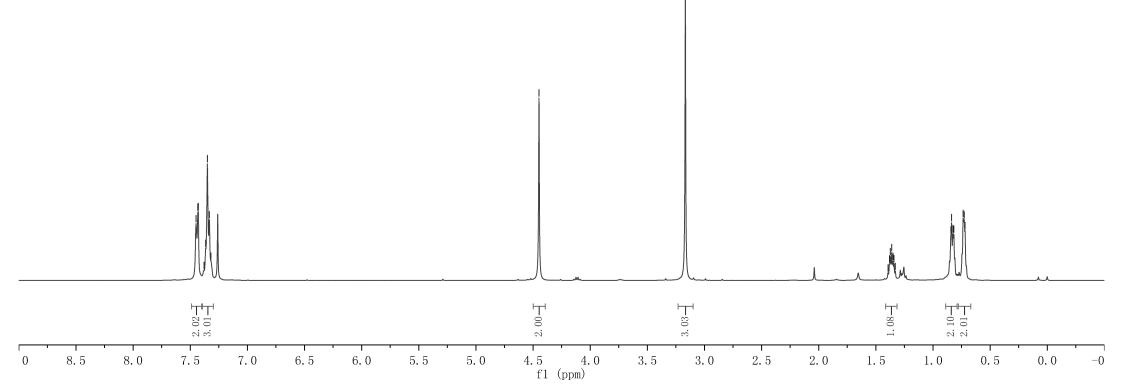








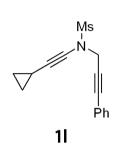


Parameter	Value
1 Title	ХНЈ-1-167-Н
2 Origin	
3 Solvent	CDC13
4 Temperature	297.6
5 Number of Scans	/ 16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-02-15T10:37:14
8 Spectrometer Frequence	су 399.93
9 Spectral Width	8012.0



-3.167








	Parameter	Value
1	Title	XHJ-1-167-C
2	Origin	
3	Solvent	CDC13
4	Temperature	297.6
5	Number of Scans	200
6	Acquisition Time	1.0000
7	Acquisition Date	2022-02-15T10:46:09
8	Spectrometer Frequency	100. 56

26041.0

9 Spectral Width

-131.70 -128.90 -128.38-121.78



--86. 53 --81. 72 77. 32 77. 32 77. 66

---67.78

--0.85

**—**8.94

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 hynemaan y newstaan de argenet

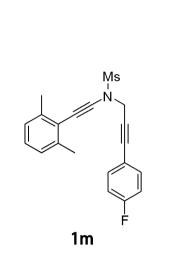
					·		1 1			·			·	· ·		1					
)0	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0	
										f1 (p	pm)										

Parameter		Value
1 Title 2 Origin	XHJ-2-	22-2-H
3 Solvent 4 Temperature	$CDC1\beta$ 297.0	
5 Number of Scans 6 Acquisition Time	16 4. 0002	
7 Acquisition Date	1.000	94-15T14:07:33
8 Spectrometer Frequency 9 Spectral Width	399.93 8012.0	

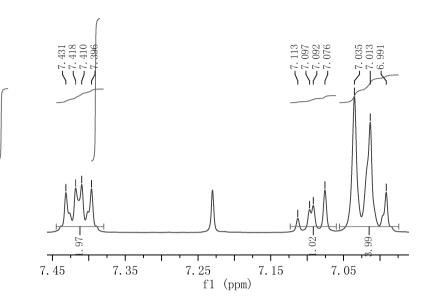
1. 97 I

7.5

8.5


0

8.0


1. 02 3. 99 44

7.0

6.5

----2. 431

3. 09.

3.0

3.5

6. 07-T

2.5

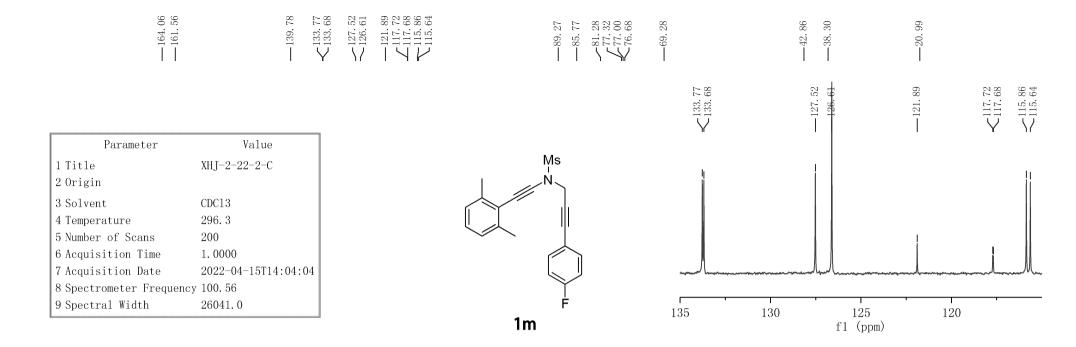
2.0

1.5

1.0

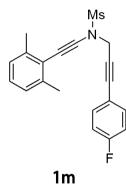
0.5

0.0


-0

2.00--

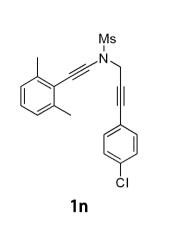
5.0

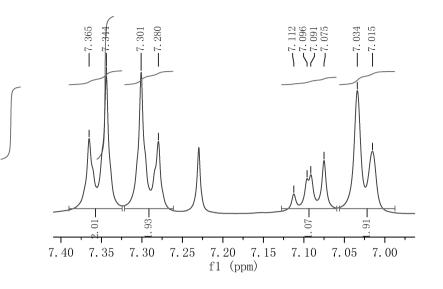

5.5

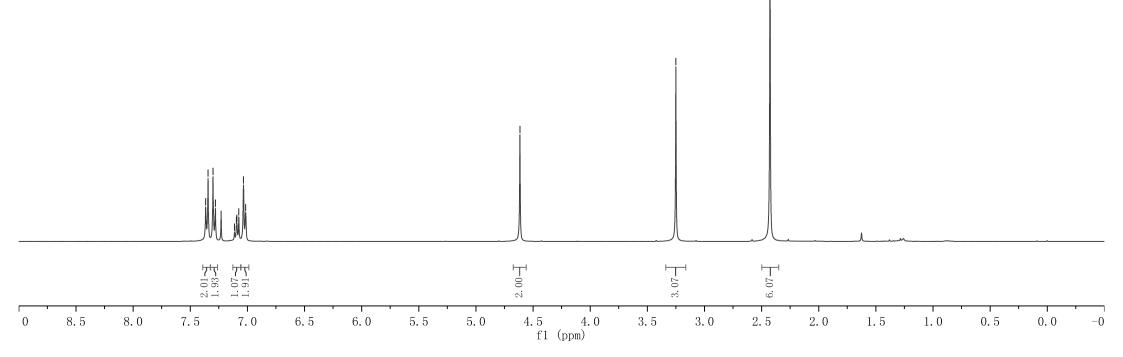
6.0

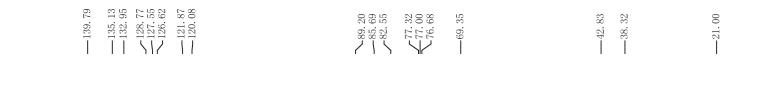
			. 1	'							1		·	'		1	1	1	1	
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
fl (ppm)																				

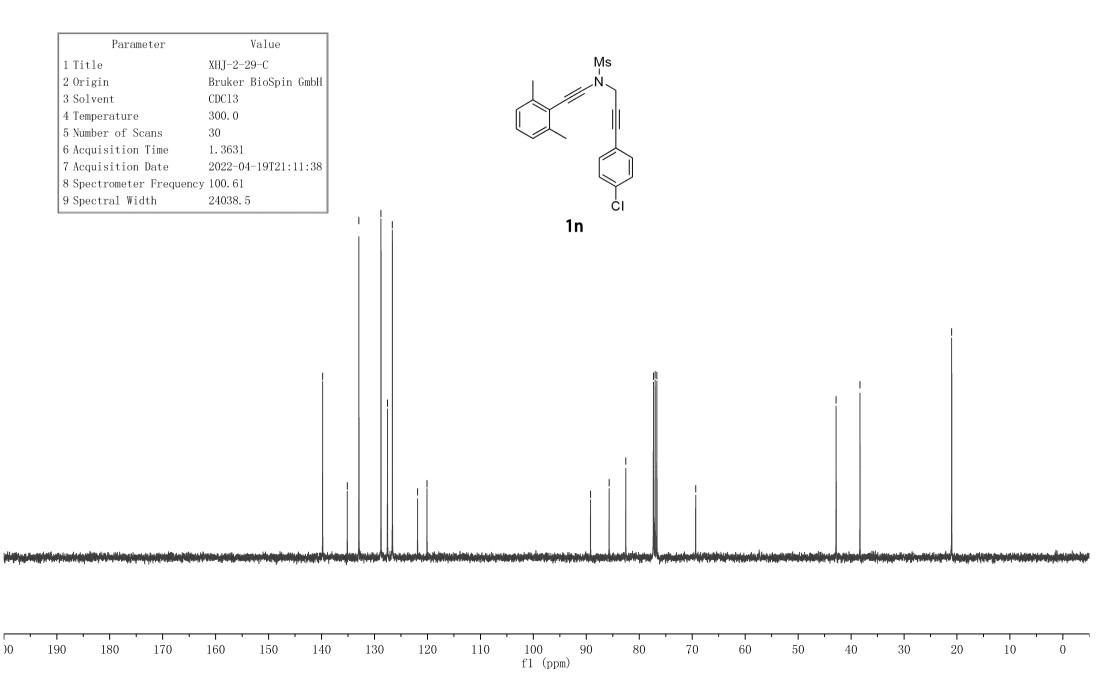
Parameter	Value
1 Title	XHJ-2-22-F-2
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	297.1
5 Number of Scans	16
6 Acquisition Time	0.7340
7 Acquisition Date	2022-08-16T20:18:57
8 Spectrometer Frequency	376.31
9 Spectral Width	89285.7

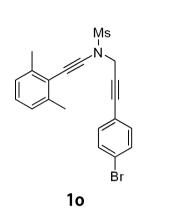


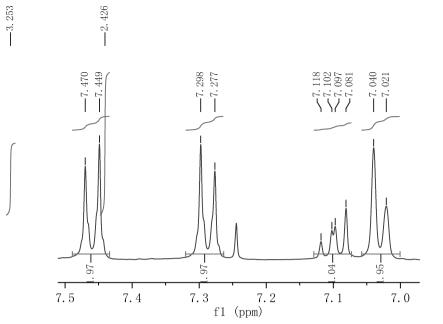

Т

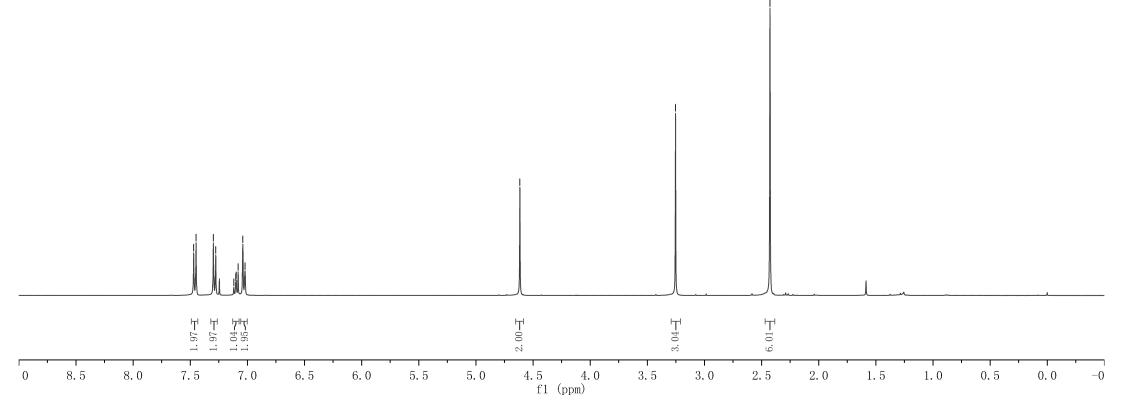

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 10 -10-20 -30 -40 -60 0 -50-70 -80

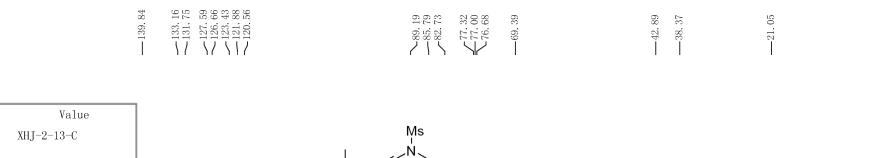

$\begin{array}{c} 365\\ 344\\ 301\\ 301\\ 280\\ 112\\ 096\\ 091\\ 034\\ 015\\ 015\\ 015\end{array}$	


Parameter	Value
1 Title	ХНЈ-2-29-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	6
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-04-19T21:10:15
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

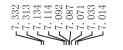




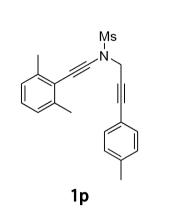



$\begin{array}{c} 470 \\ 4449 \\ 2298 \\ 277 \\ 277 \\ 1118 \\ 102 \\ 097 \\ 081 \\ 081 \\ 001 \\ 021 \\ 021 \end{array}$	

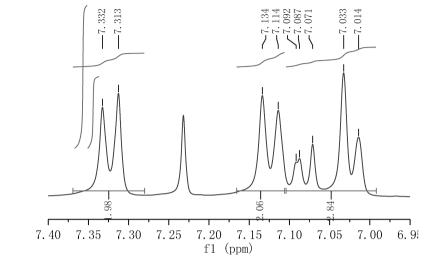
Parameter	Value			
1 Title	ХНЈ-2-13-Н			
2 Origin	Bruker BioSpin GmbH			
3 Solvent	CIPC13			
4 Temperature	298.0			
5 Number of Scans	/9			
6 Acquisition Time	4.0894			
7 Acquisition Date	2022-04-08T22:16:07			
8 Spectrometer Frequency	400.13			
9 Spectral Width	8012.8			

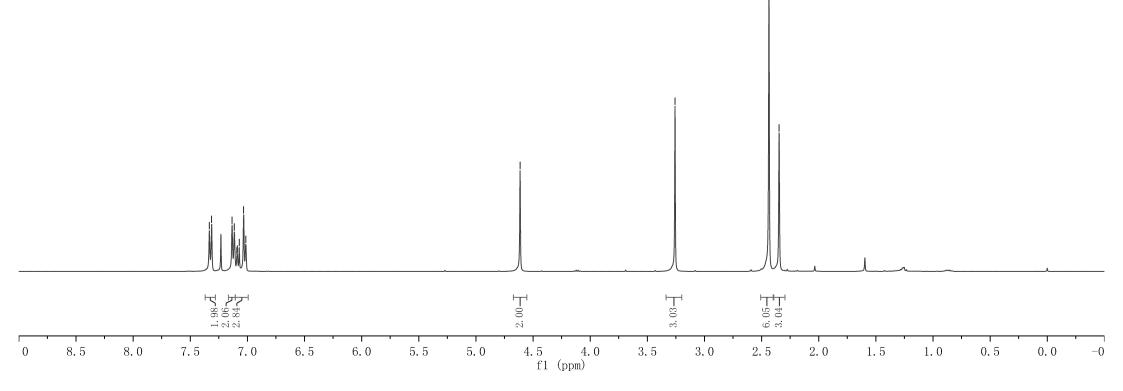


	rarameter	Tarae											
		ХНЈ-2-13-С					Ms						
	2 Origin						^N						
		CDC13					il.						
		297.6				L L							
	5 Number of Scans	200 1. 0000				Ŷ Ŷ	\downarrow						
		2022-04-09T00:30:04					$ \begin{bmatrix} 1 \end{bmatrix} $						
	8 Spectrometer Frequency						\searrow						
		26041.0					 Br						
	o spectrar "rath	20011.0				1.	Bi						
					1	10							
				. 1									
								1.					
												l	
											1		
								l l					
n Marka	in in the second states in the second sec	aitedatedatedatedatedatedatedatedatedateda	himmed	Whiteman	Marine Marine and a starter	Ráminie Índiana an anna an an an an an an an an an a	aline and the second	Lawrence	uniated and experimental and a second and a s	-	 http://www.particle.com///www.particle.com/	h Marina da Manada da Marina	hand the state of the second secon
-11 - 14	and the construction of the state of the state	n di non ni di katati in na manatta ana addana d	i to table.	1.6.00,4	and the second second second second	errer filman an a	and the second second	and contractly and	nde en de la contra ande definant	din a transferencia	and a state of the second s	ed an field and a state of the same	aran, diri aa,
-			T T				1 1 1						

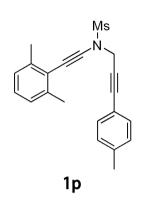

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40
										fl (pp	m)					

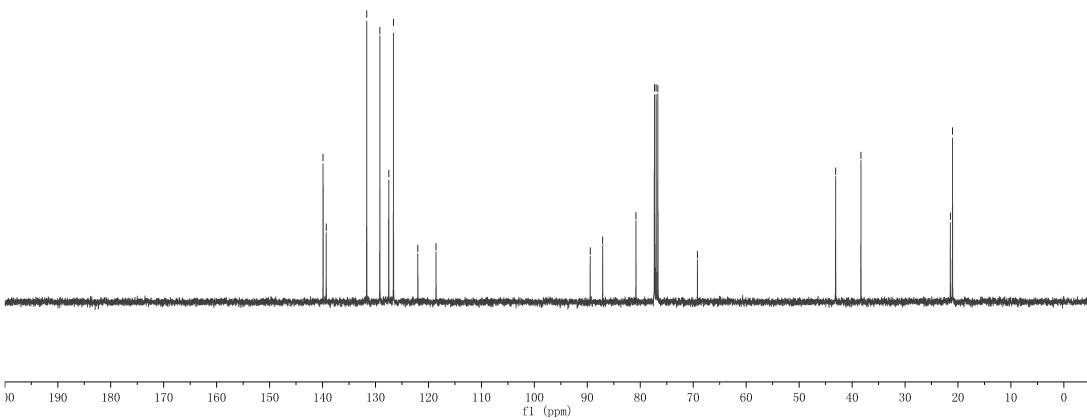
Parameter


whole wheel and the state

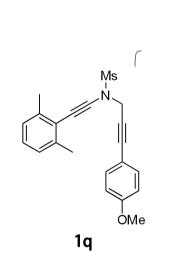


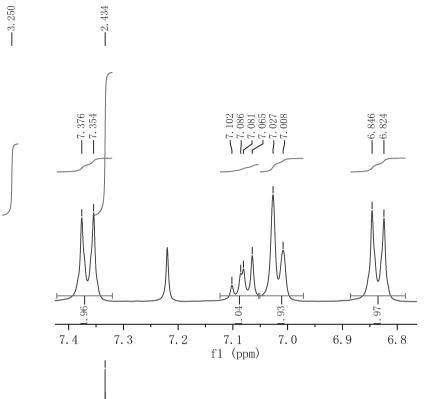
Parameter	Value
1 Title	ХНЈ-2-8-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	22
6 Acquisition Time	4.0894
7 Acquisition Date	2022-04-06T20:36:29
8 Spectrometer Frequenc	ey 400.13
9 Spectral Width	8012.8

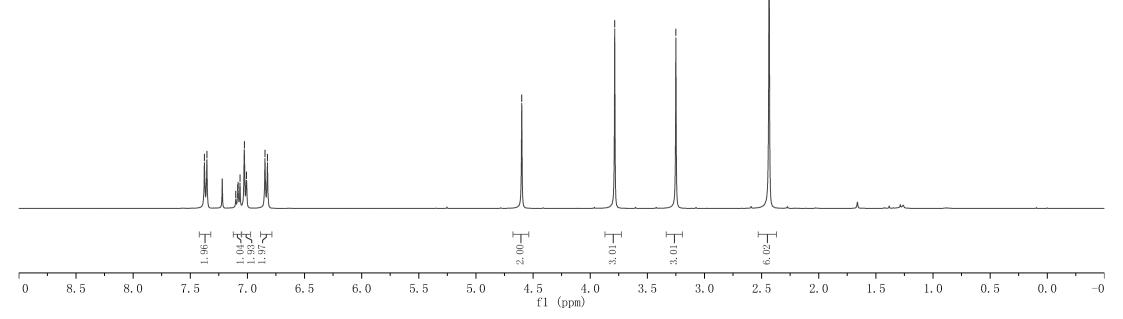

-----2. 436 ----2. 346



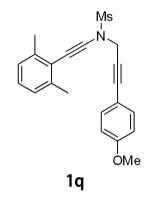
 \sim 131.66 \sim 129.18 \sim 127.49 \sim 126.61 - 122.01 - 118.57 $<139.89 \\ < 139.30 \\ 139.30$ $\overbrace{77.00}^{80.82}$ $<^{21.44}_{21.04}$


Parameter	Value
1 Title	XHJ-2-8-C
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	61
6 Acquisition Time	1.3631
7 Acquisition Date	2022-04-06T20:39:07
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5




$\begin{array}{c} 376 \\ 354 \\ 102 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 081 \\ 082 \\ 824 \\$
6

Parameter	Value
1 Title	ХНЈ+2-30-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	6
6 Acquisition Time	4.0894
7 Acquisition Date	2022-04-20T11:32:00
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8


-3.785

|--|--|

Parameter	Value
1 Title	ХНЈ-2-30-С
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	26
6 Acquisition Time	1.3631
7 Acquisition Date	2022-04-20T11:33:25
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5

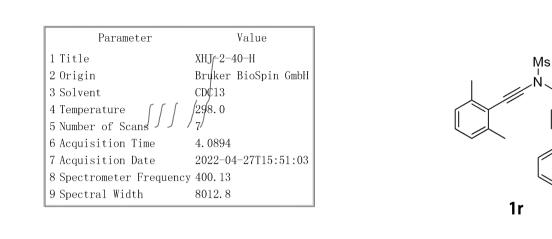
)0	190	180	170	160	150	140	130	120	110	100 f1 (ppr	80	70	60	50	40	30	20	10	0

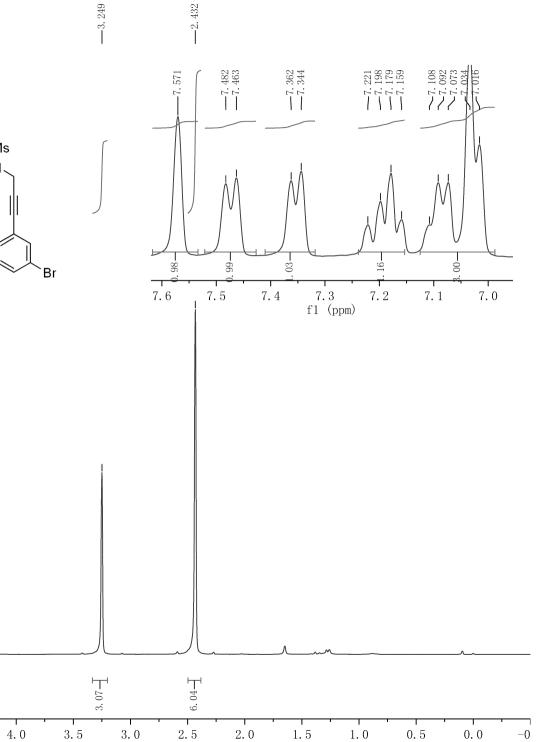
0.99 0.99 1.03 3.00 4 3.00 4 3.00 4 1.16

7.0

6.5

6.0

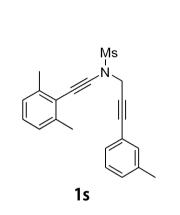

5.5

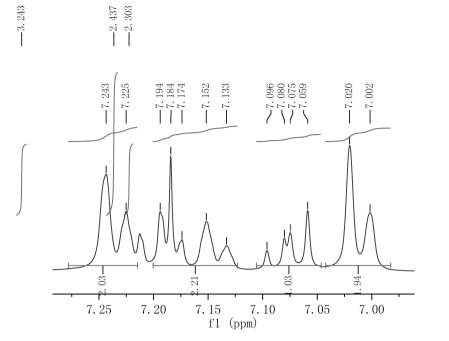

7.5

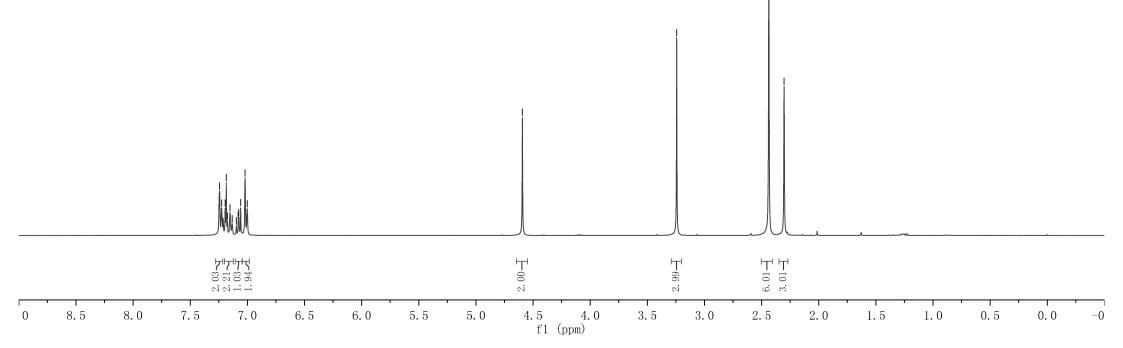
8.5

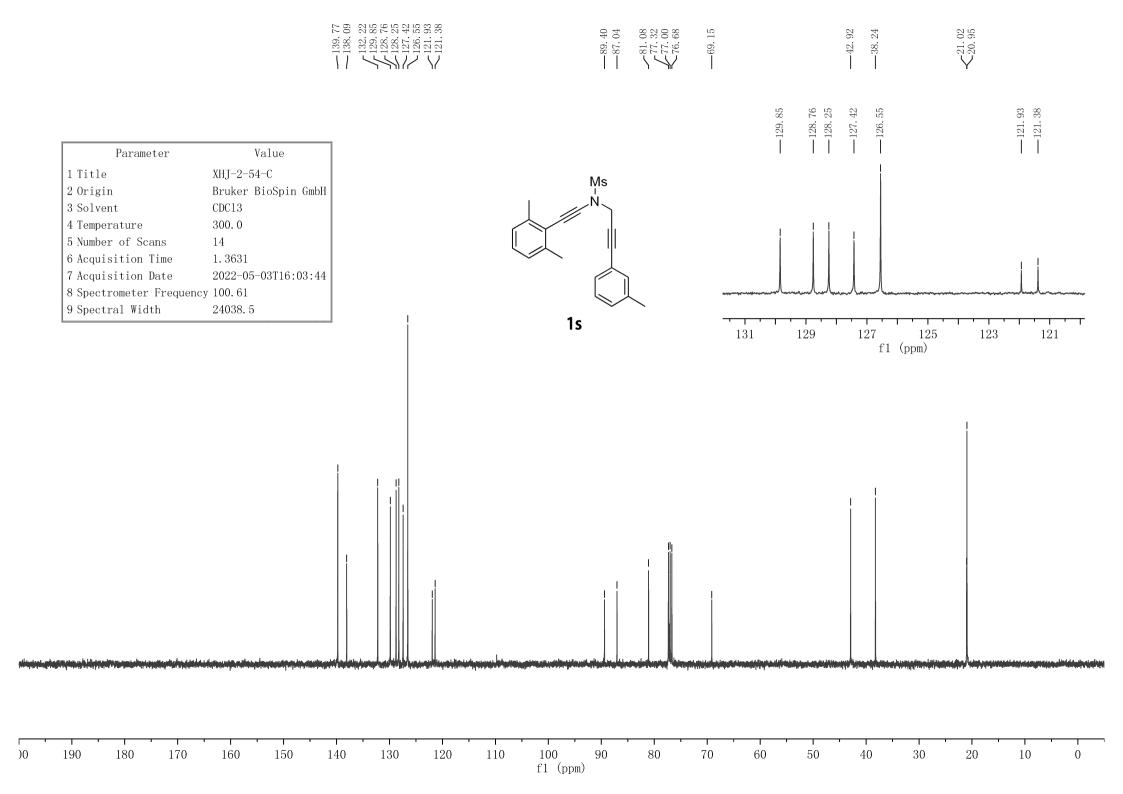
0

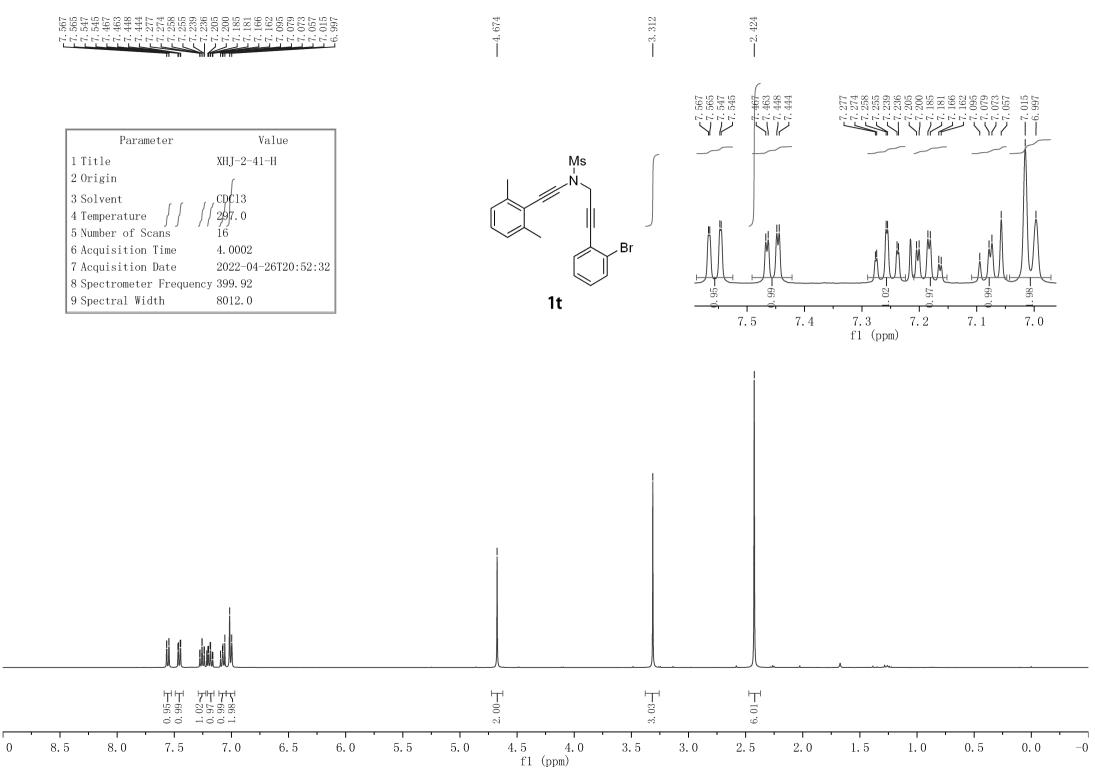
8.0

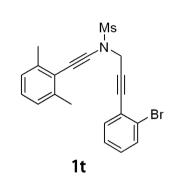

2. 00Å

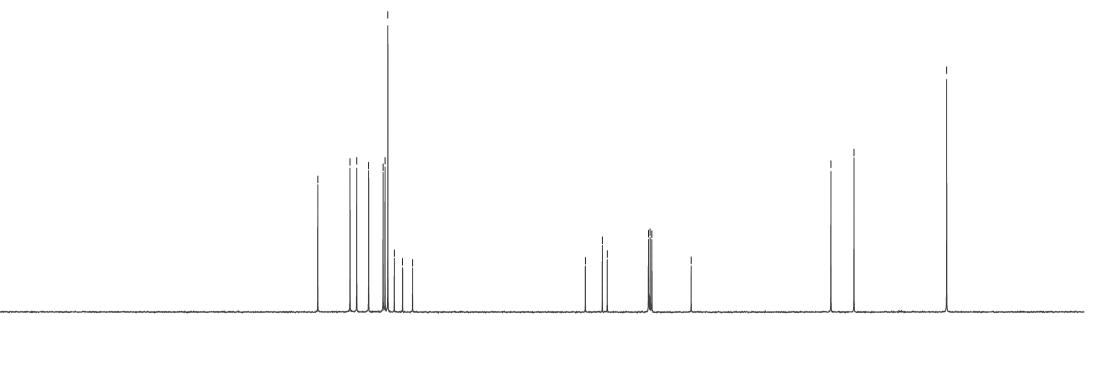

5.0

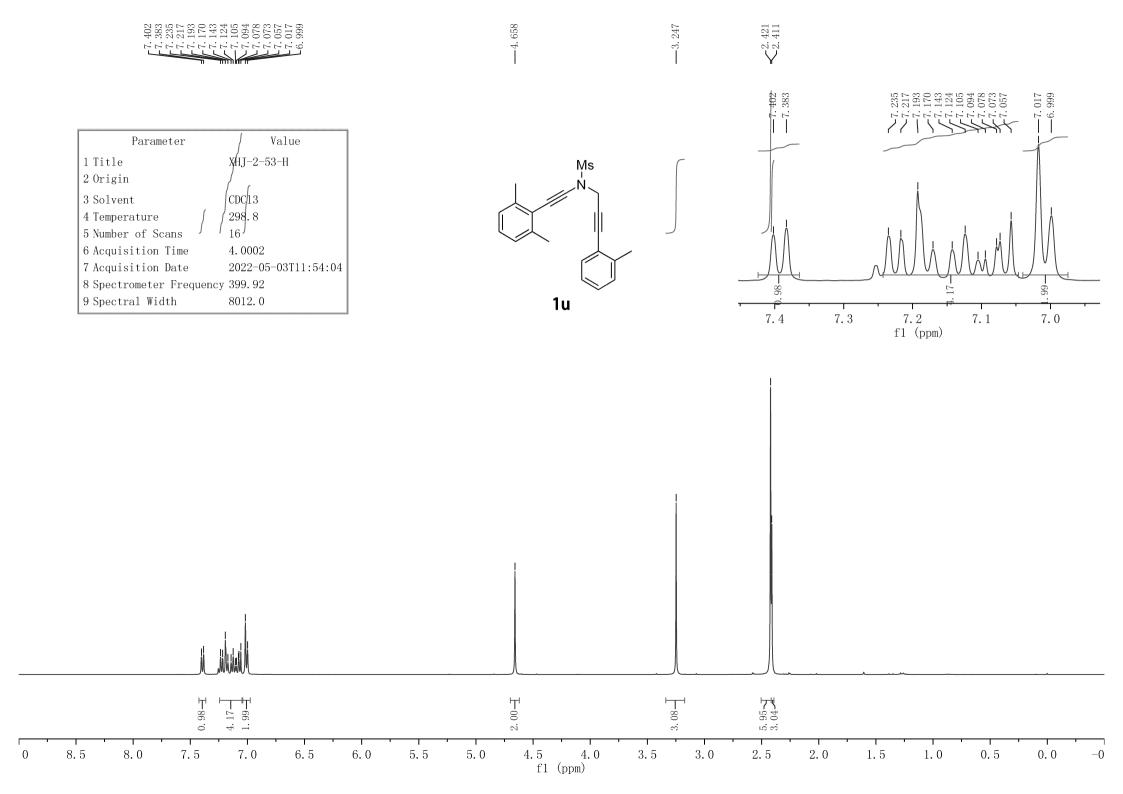

	$ \begin{array}{c} 139.78 \\ 132.17 \\ 132.17 \\ 132.17 \\ 132.17 \\ 132.17 \\ 123.54 \\ 123.54 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 121.81 \\ 122.18 \\ 122.81 \\ 122.$	$\overbrace{77.32}^{89.12}$						
Parameter Value 1 Title XHJ-2-40-C		Ms						-123.54 -122.14 -121.81
2 OriginBruker BioSpin3 SolventCDC134 Temperature300.05 Number of Scans496 Acquisition Time1.36317 Acquisition Date2022-04-27T15:0 Sector to Date100.61		N N						1
8 Spectrometer Frequency 100.61 9 Spectral Width 24038.5		Br 1r			130	 f1 (ppm)	1 125	
					.			
			odito.natasinja.natito.nationala	talatan kanan kalana	landyattikkeye ⁿ ingilikyeke ⁿ ingil	սիրիկ-մագորվիկտութ, վիկ։ Վե	hendered wheelendered and the	fyfniusferfurfynifiadafi fanddit

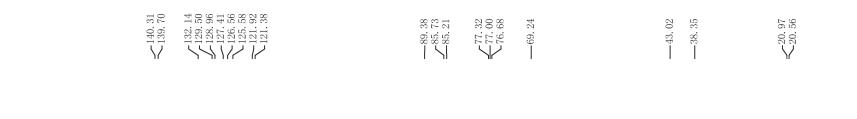


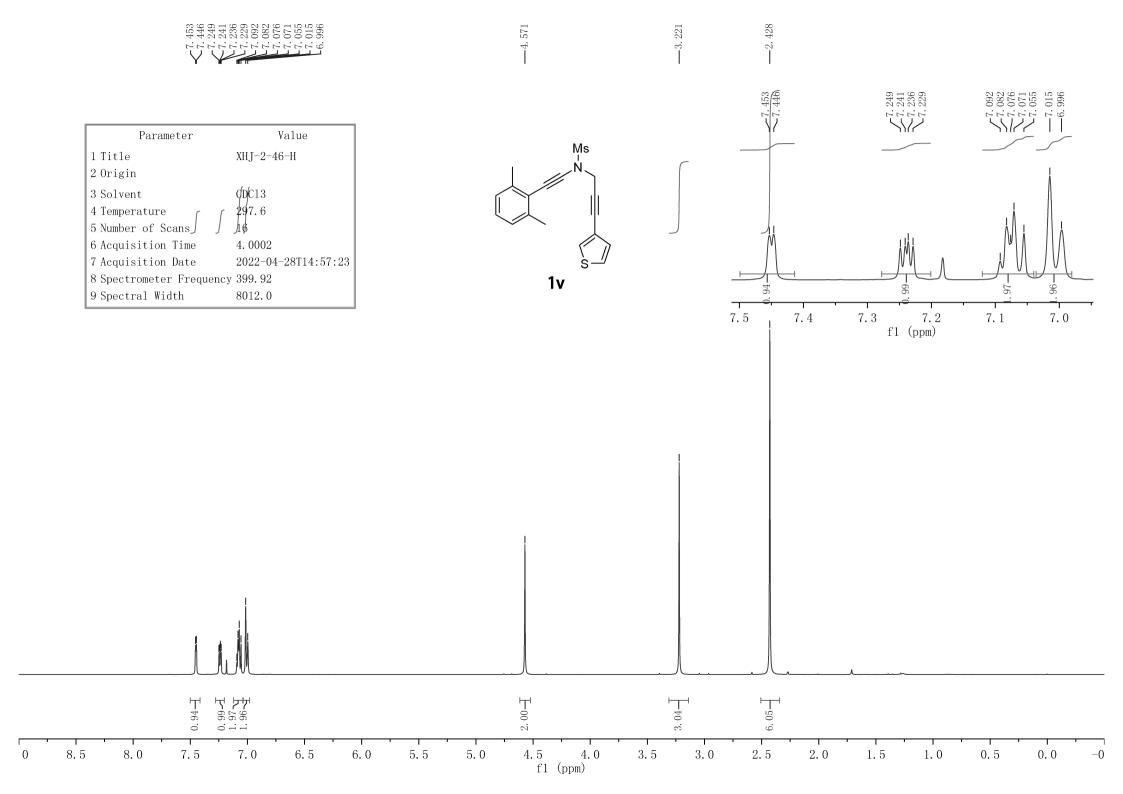

Parameter	Value
1 Title	XHJ-2-54-H
2 Origin	Brµker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298,0
5 Number of Scans	11
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-05-03T15:43:38
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8





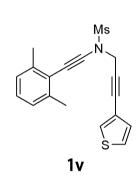



Parameter	Value
1 Title	XHJ-2-41-C
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	500
6 Acquisition Time	1.0000
7 Acquisition Date	2022-04-26T21:11:33
8 Spectrometer Frequency	100. 56
9 Spectral Width	26041.0


			·	. .					. 1	·	·	'	'	· ·		·	· · · ·	1 1		
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (pr	om)									

Origin Solvent Temperature Number of Scans Acquisition Time Acquisition Date Spectrometer Frequency	XHJ-2-53-C CDC13 298.8 400 1.0000		Ms N	
4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency	298.8 400 1.0000		N N	
4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency	298.8 400 1.0000			
5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency	400 1. 0000			
6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency	1.0000			
7 Acquisition Date 8 Spectrometer Frequency				
8 Spectrometer Frequency				
	2022-05-03T12:09:31			
$0 \ C_{-} = + - 1 \ W^{*} \ 1 + 1$				
9 Spectral Width	26041.0	I	1u	

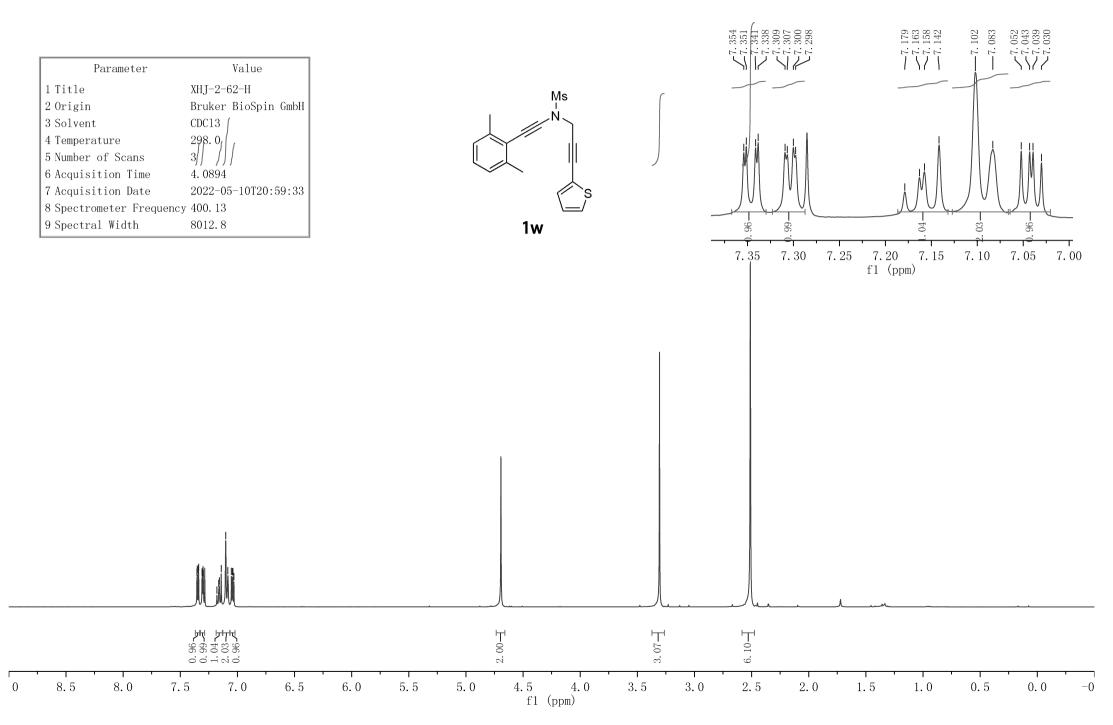
			·	·	·									·					· · ·	
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (ppm	l)									

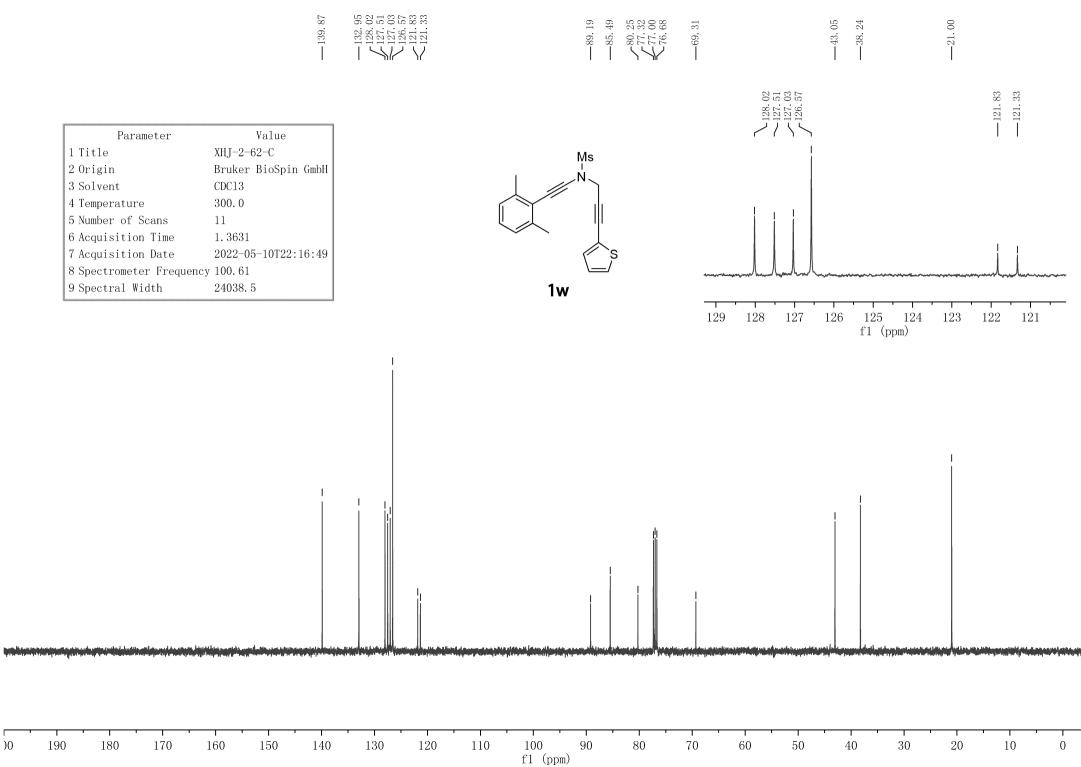

-139. 65 -129. 79 -129. 51 -129. 51 -127. 38 -127. 38 -121. 81 -121. 81 -120. 50

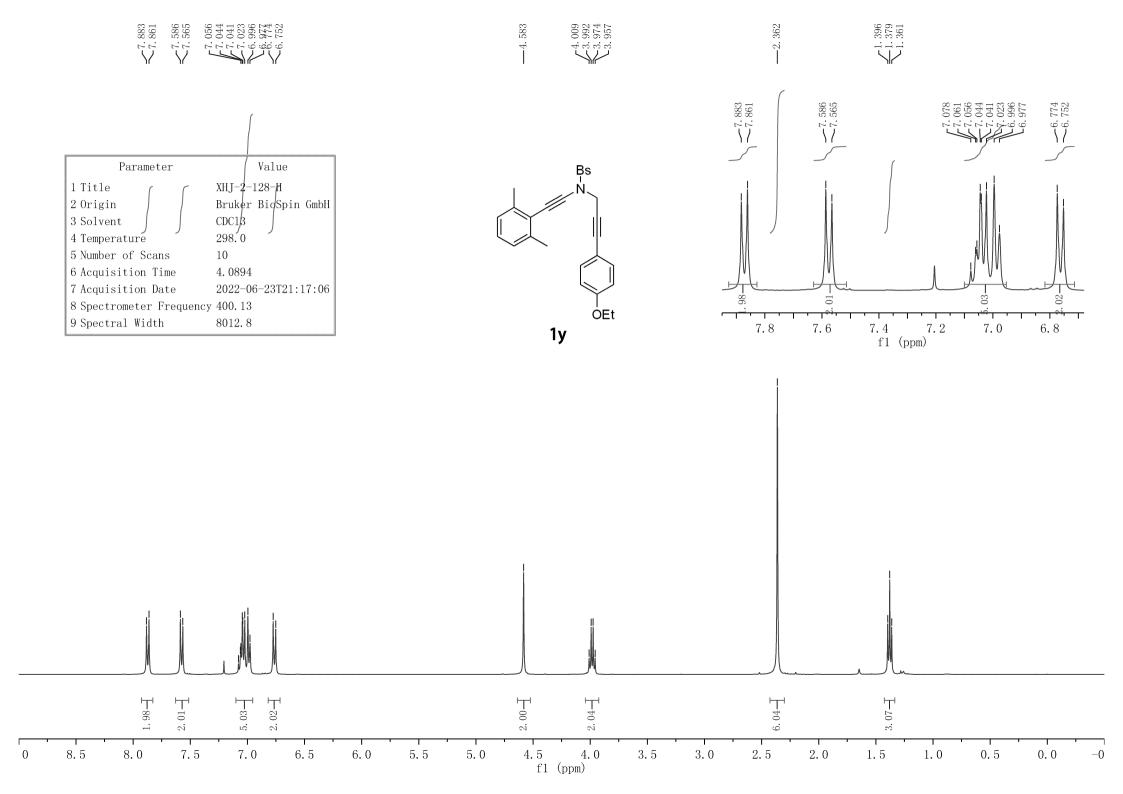
I

82	13	
42.	38.	

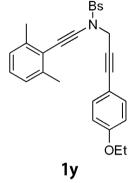
89	
-20.	

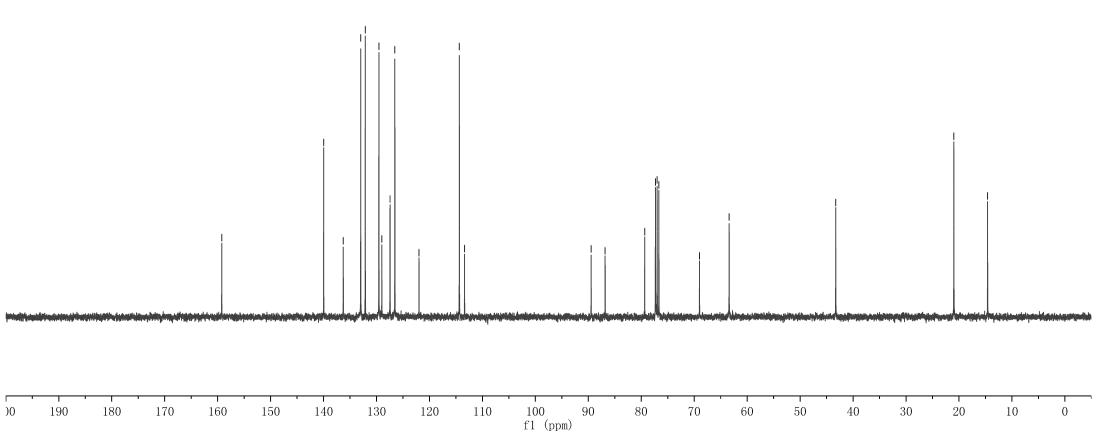

Parameter	Value
1 Title	XHJ-2-46-C
2 Origin	
3 Solvent	CDC13
4 Temperature	297.9
5 Number of Scans	600
6 Acquisition Time	1.0000
7 Acquisition Date	2022-04-28T15:19:29
8 Spectrometer Frequency	100. 56
9 Spectral Width	26041.0

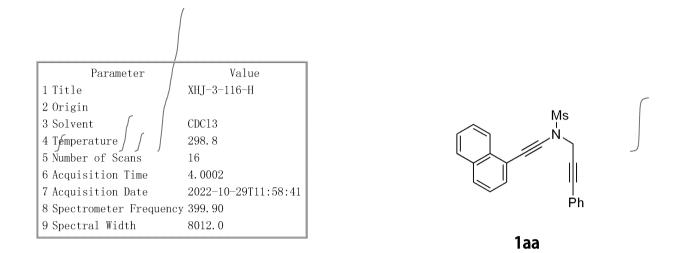


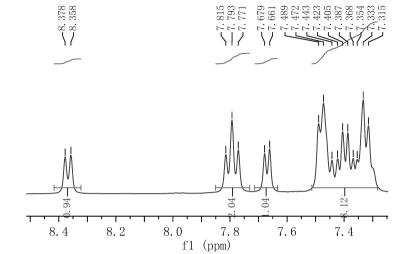

1	

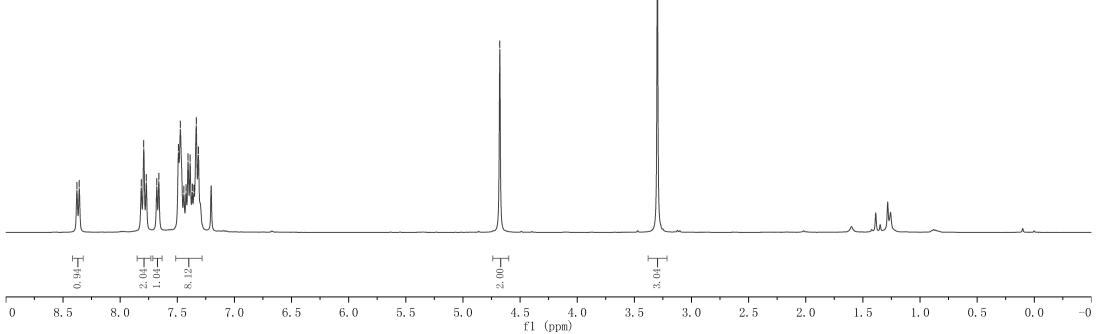
													·					· · · · ·	· 1	· · · ·
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (pp	n)									

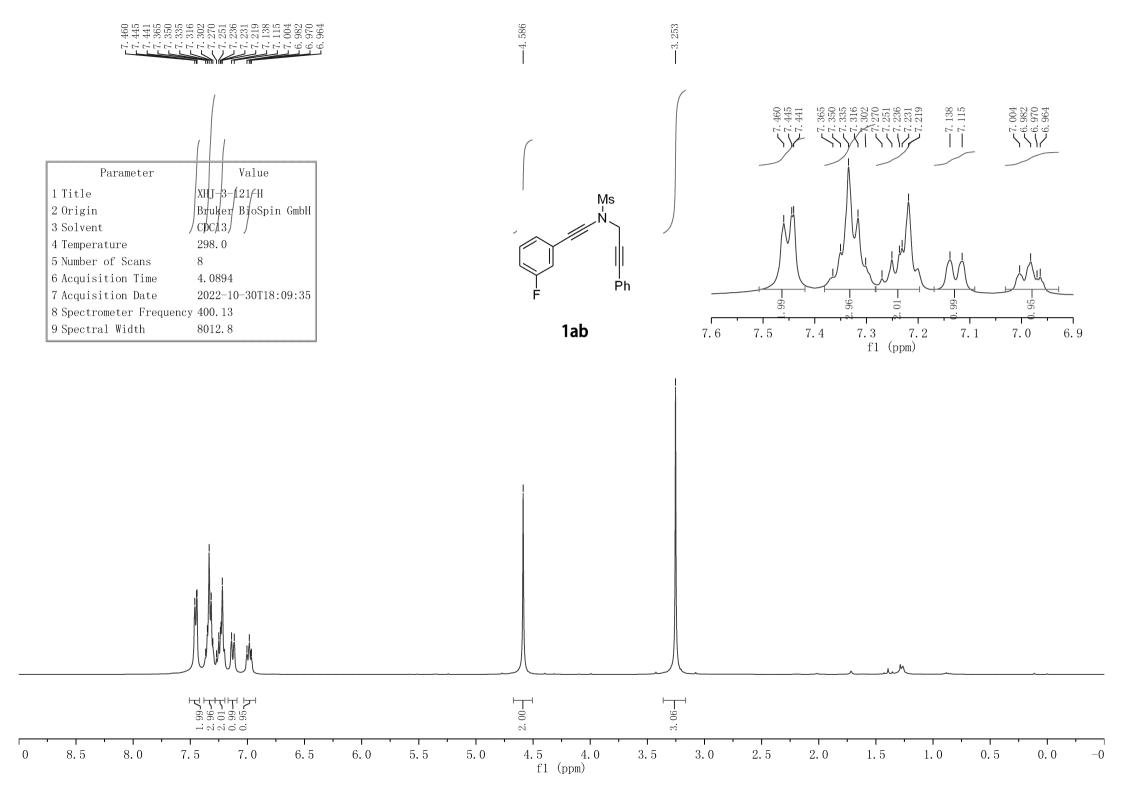




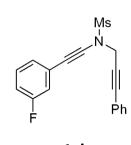

		139. 97 136. 27 132. 199 132. 122 128. 99 126. 54 121. 97	✓ 114.36		$\sum_{77.00}^{79.35} \frac{77}{77.00}$	 63. 40	 20.97	— 14. 60	
Parameter	Value			₽s					
1 Title 2 Origin 3 Solvent 4 Temperature	XHJ—2—128—C Bruker BioSpin Gm CDC13 300.0	ıbH		Ň					


	4 Temperature	300.0	
***********	5 Number of Scans	20	
	6 Acquisition Time	1.3631	
	7 Acquisition Date	2022-06-23T21:19:09	
	8 Spectrometer Frequency	100.61	
	9 Spectral Width	24038.5	

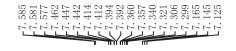




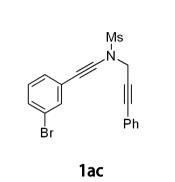
Parameter Value 1 Title XHJ-3-116-H 2 Origin 3 Solvent CDC13 4 Temperature 298.4 5 Number of Scans 500 6 Acquisition Time 1.0000 7 Acquisition Date 2022-10-29T12:18:14 8 Spectrometer Frequency 100.56		133. 2 133. 0 131. 8 130. 1 128. 5 128. 5 128. 5 126. 3 125. 9 125. 9 119. 7	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		- 130. 15 - 130. 15 - 129. 07 - 128. 61 - 128. 21 - 126. 81 - 126. 34 - 126. 34 - 126. 34 - 125. 12	
2 Origin 3 Solvent (DC13 4 Temperature 288, 4 5 Number of Scans 500 6 Acquisition Time 1,0000 7 Acquisition Date 2022-10-29712:18:14 8 Spectral Width 26041.0 1aa 1aa 1aa 1aa 1aa 1aa 1aa 1a				77 1		
4 Temperaturo 298, 4 5 Author of Seans 500 6 Acquisition Time 1, 0000 7 Acquisition Date 2022-10-29T12; 18:14 8 Spectrae Vidth 26041.0 1aa 1aa 1aa 1aa 1aa 1aa 1aa 1a	2 Origin		Мs			
5 Number of Scans 500 6 Acquisition Time 1,0000 7 Acquisition Date 2022-10-29T12:18:14 8 Spectral Width 26041.0 1aa 1aa 1aa 1aa 1aa 1aa 1aa 1a			Ń			
7 Acquisition Date 2022-10-29712:18:14 8 Spectrometer Frequency 100.56 9 Spectral Width 26041.0 1aa 1aa 1aa 1aa 1aa 1aa 1aa 1a	5 Number of Scans 500					
8 Spectrometer Frequency 100, 56 9 Spectral Width 26041.0 1aa		8.14				
9 Spectral Width 26041.0 13a		5.14	Ph			
		1	aa			
					f1 (ppm)	
		. 1				


)0

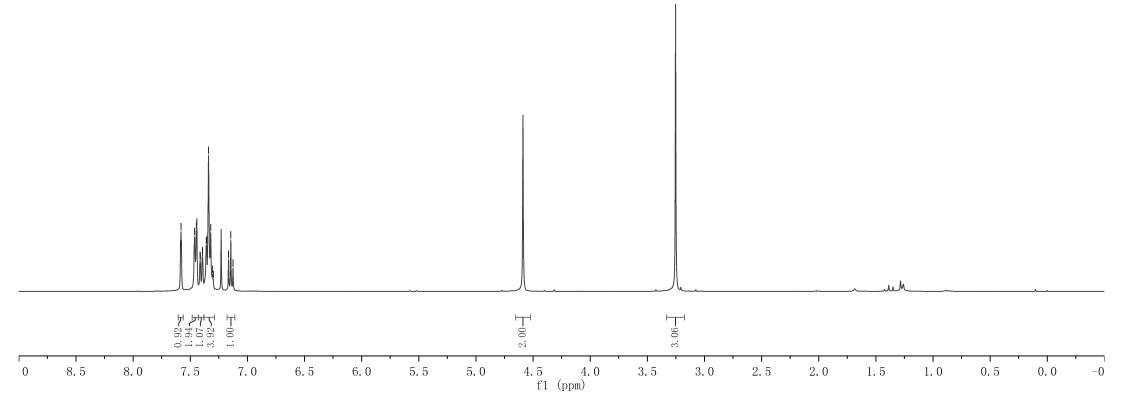
		131. 129, 129, 129, 129, 129, 129, 129, 129,		$\overbrace{77.66}^{$	< 70.23	-131. 67 -129. 84 -129. 75 -128. 99 -127. 23 -127. 22	4. 06 3. 96	-121.47	8. 18 7. 95	5. 39 5. 18
Parameter	Value					-131.	$<^{124.06}_{123.96}$		$\sim^{118.18}_{117.95}$	< 115.39 $ < 115.18$
1 Title	XHJ-3-121-C-1									
2 Origin	Bruker BioSpin GmbH		N	ls						
3 Solvent	CDC13		Ň							
4 Temperature	300. 0		~//							
5 Number of Scans	26		<pre>// I</pre>							
6 Acquisition Time	1.3631		\searrow					1	11	.1
7 Acquisition Date	2022-10-30T18:12:06		F	Ph			ļ			
8 Spectrometer Frequen			I			-land -land - land				l
9 Spectral Width	24038.5		1ab			· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>	<u> </u>
				1						
								-terret-severa speced there also		


f1 (ppm)

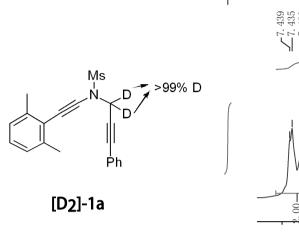
Parameter	Value
1 Title	xhj-3-121-f
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	296.3
5 Number of Scans	16
6 Acquisition Time	0.7340
7 Acquisition Date	2022-11-02T21:50:19
8 Spectrometer Frequency	376.31
9 Spectral Width	89285.7

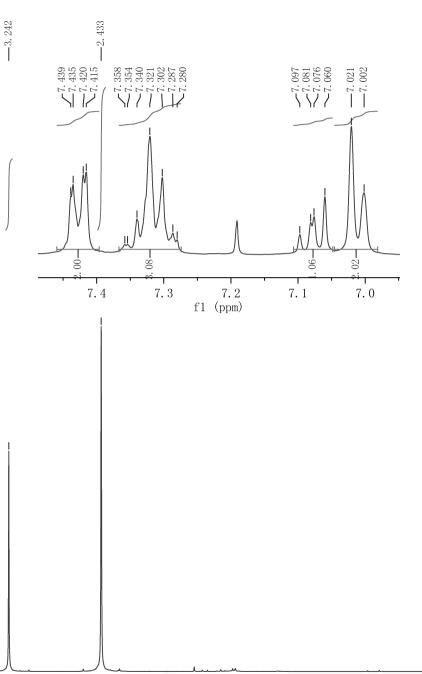


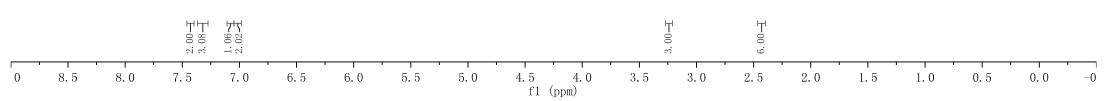
1ab


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

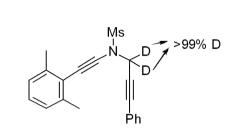
	/
Parameter	Value
1 Title	ХНЈ-3-122-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298. 0
5 Number of Scans	13
6 Acquisition Time ///	4. 0894
7 Acquisition Date	2022-10-30T18:16:10
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

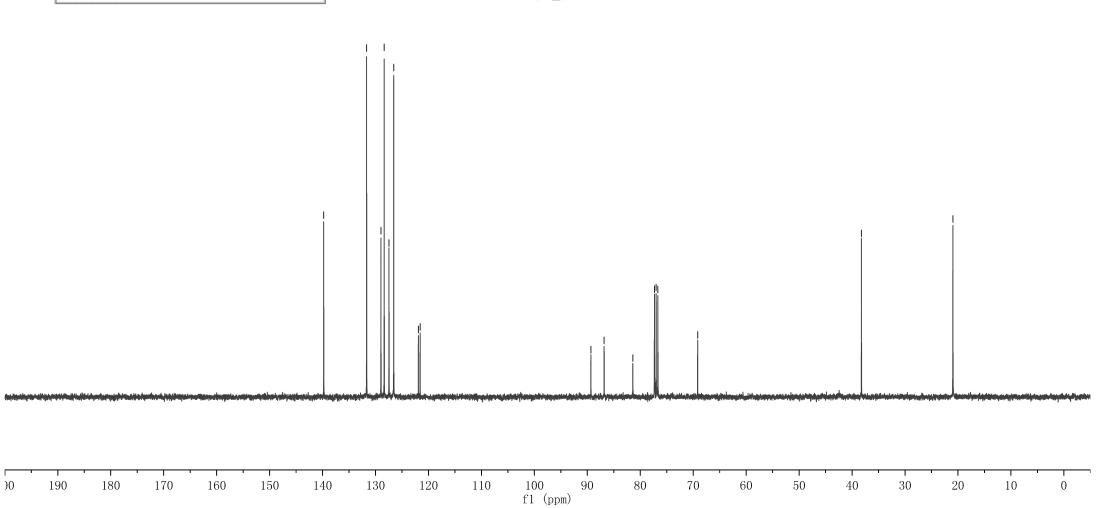



	134. 00 131. 69 131. 09 131. 09 129. 65	129.0 128.1 121.1 121.1 121.1	-87.05 -82.52 -7.82 -7.12 -7.12	$\overbrace{76, 98}^{77, 00}$					
Parameter	Value						-131.09 -129.86 -129.65 -129.01 -128.37	—124. 18	
	-3-122-C		Ms			1 1	1 17 1 1	I	
	ker BioSpin GmbH								
3 Solvent CDC1									
4 Temperature 300.	0								
5 Number of Scans 31						!			
6 Acquisition Time 1.36			Ph						
	2-10-30T18:18:30	E	Br						
8 Spectrometer Frequency 100.					ngalitan yakeler digalaritigan				
9 Spectral Width 2403	38. 5		1ac						
	1	1					2 130 128 fl (ppm	u <i>)</i>	

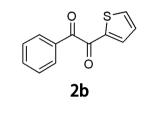

				·	. 1				· · ·	'	1	1								
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (p	pm)									

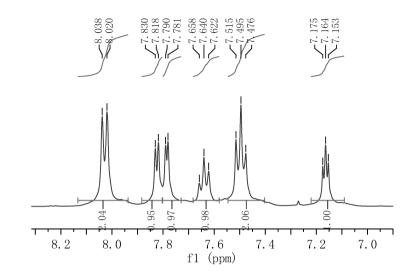
Parameter	Value
1 Title	lct-10-93-H
2 Origin	Bruker BioSpin GmbH
3 Solvent /	CDC13
4 Temperature	298.0
5 Number of Scans	7
6 Acquisition Time	4. Ø894
7 Acquisition Date //	2022-11-01T15:40:05
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

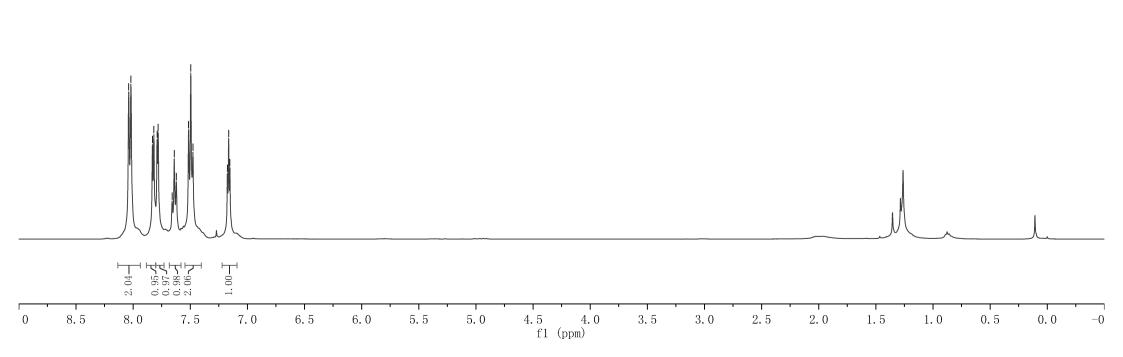


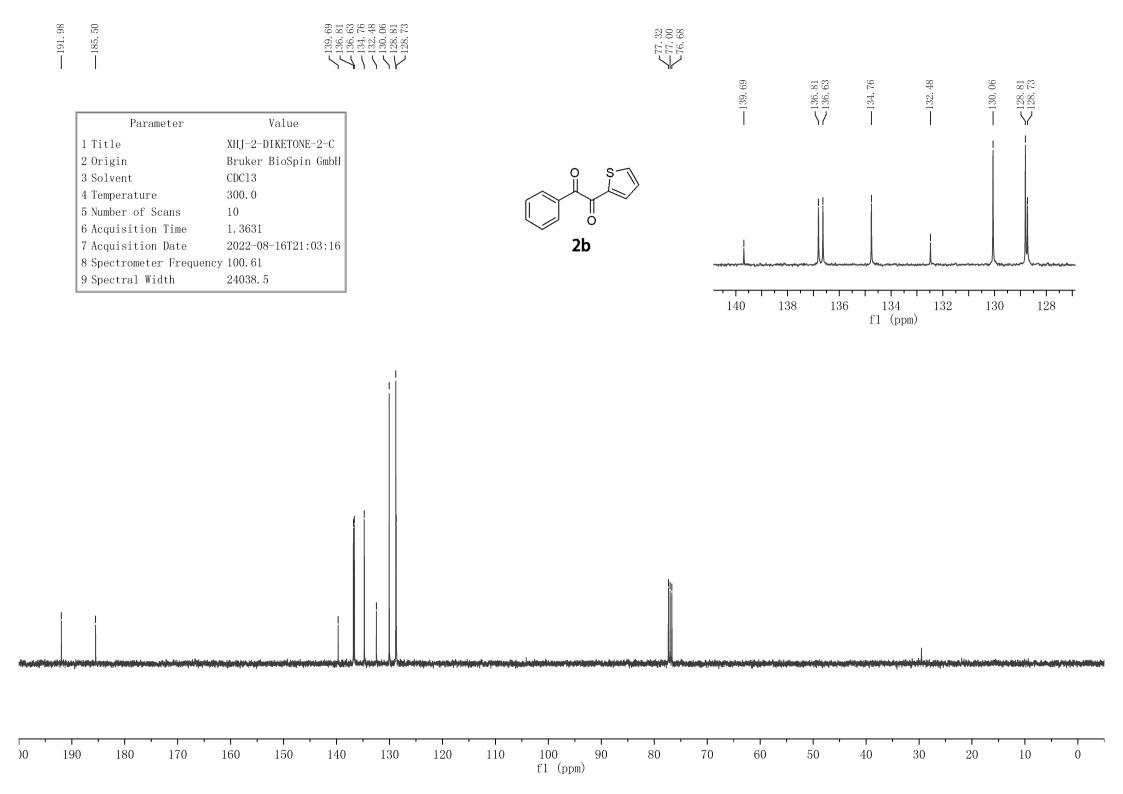


Parameter	Value
1 Title	lct-10-93-C
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	20
6 Acquisition Time	1.3631
7 Acquisition Date	2022-11-01T15:41:28
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5

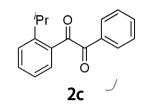


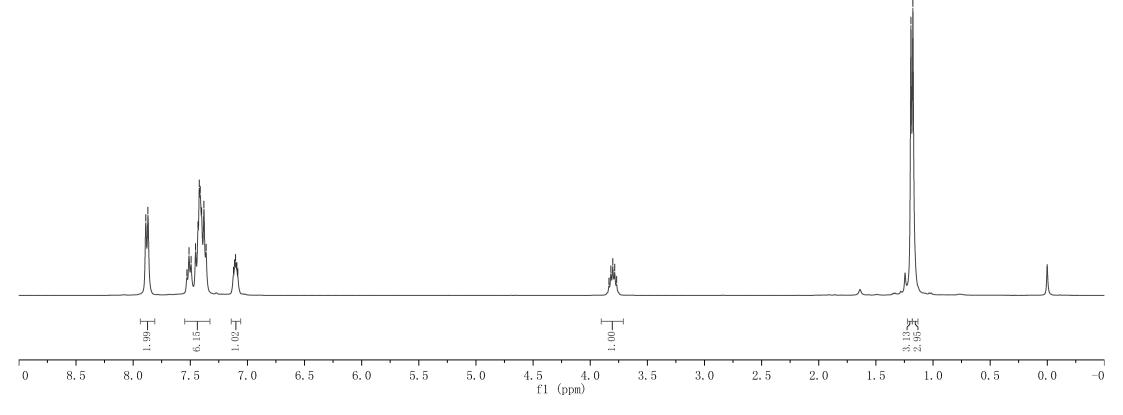

[D2]-1a

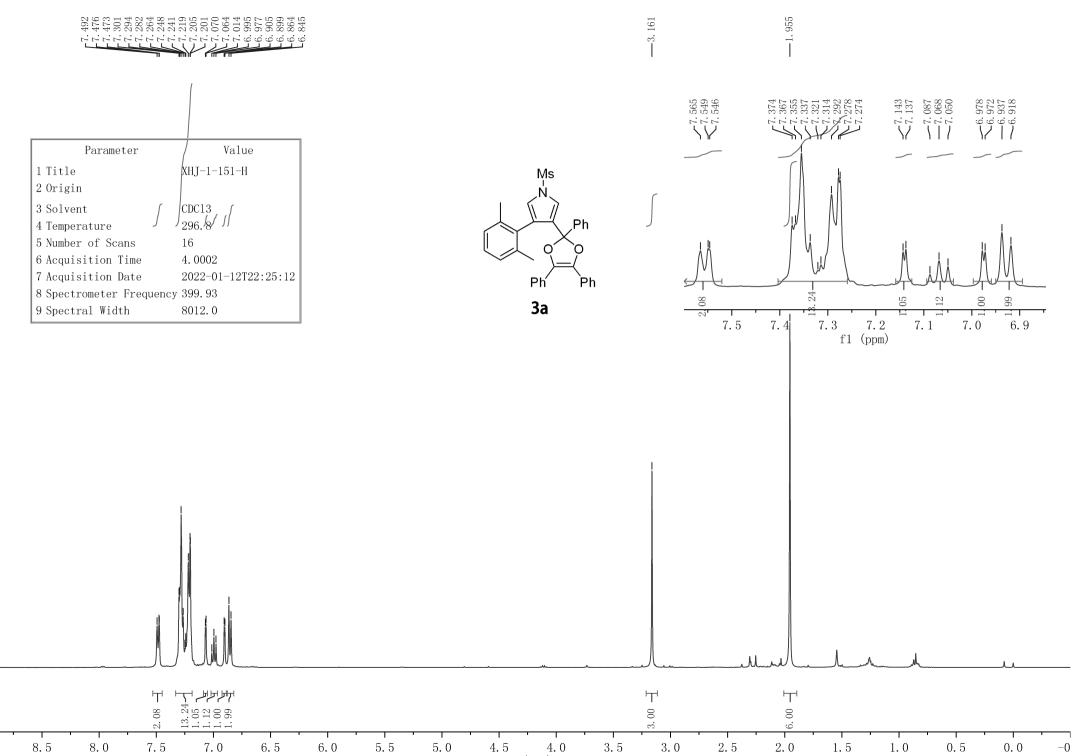


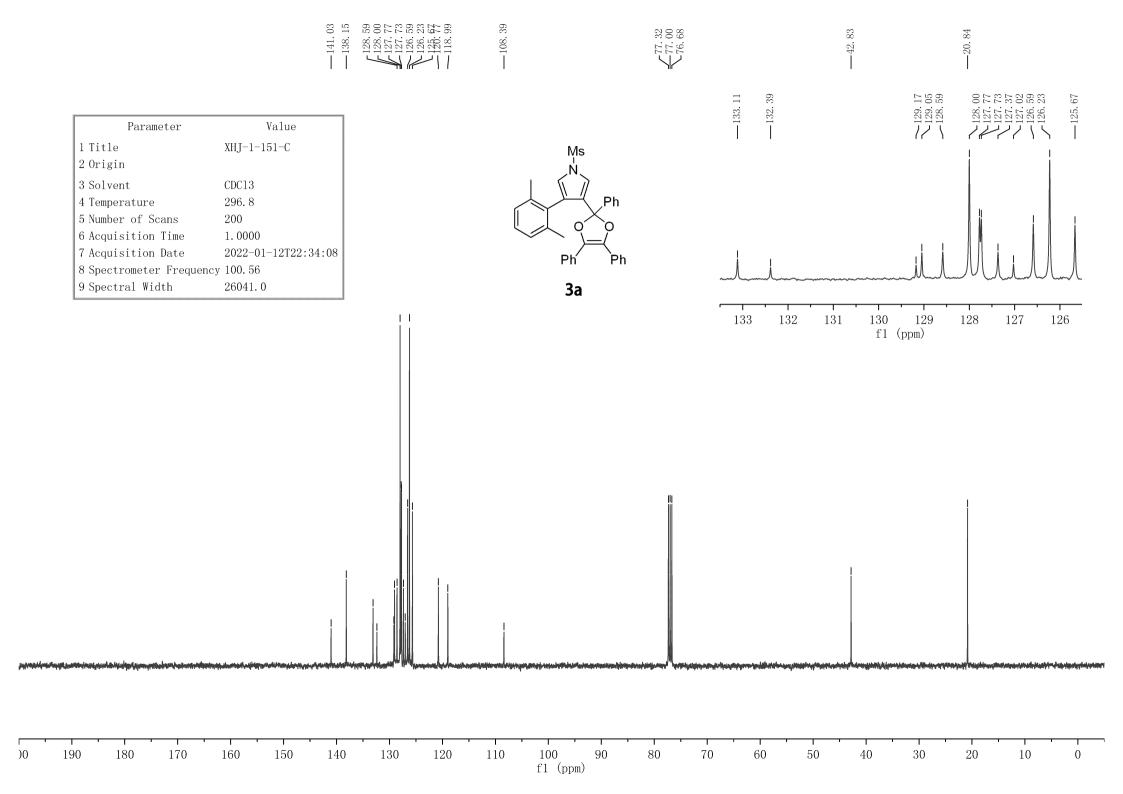


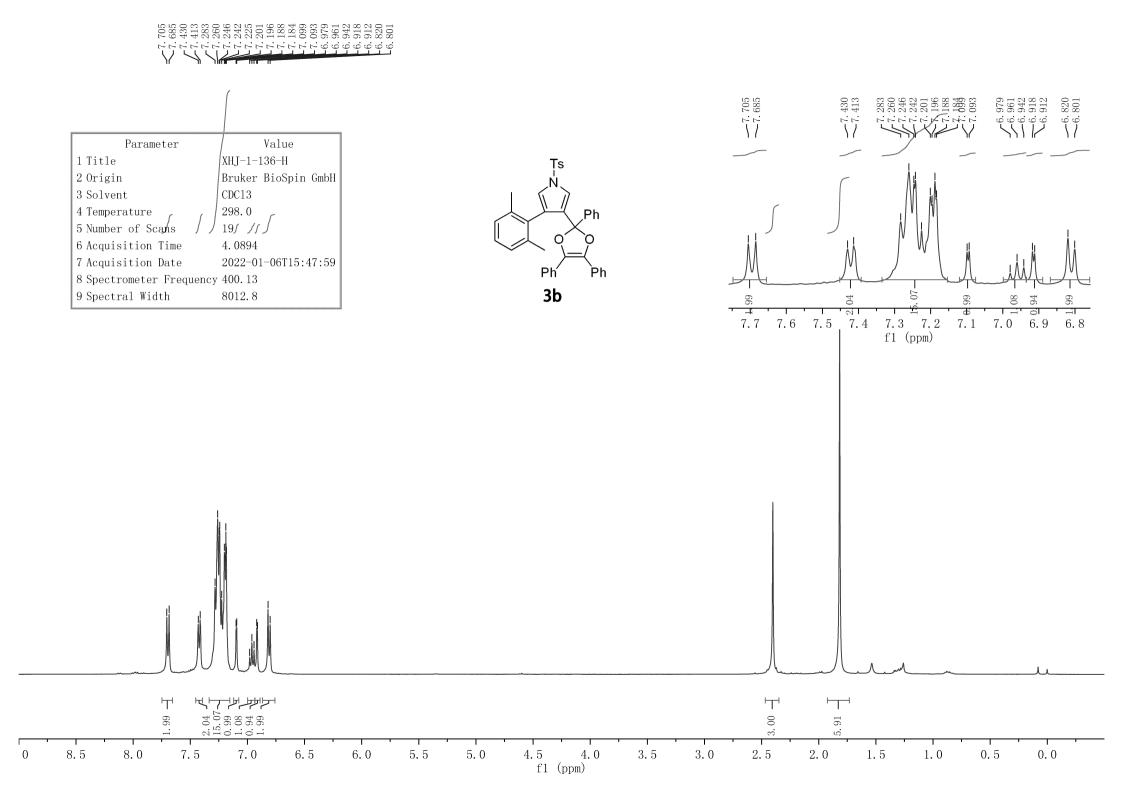
/	/
Parameter	Value
1 Title	XHJ-2-DIKETONE-2-H
2 Origin	Bruker BioSpin GmbH
3 Solvent // /	CDC/13
4 Temperature	298.0
5 Number of Scans	20
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-08-16T15:58:13
8 Spectrometer Freque	ncy 400.13
9 Spectral Width	8012.8

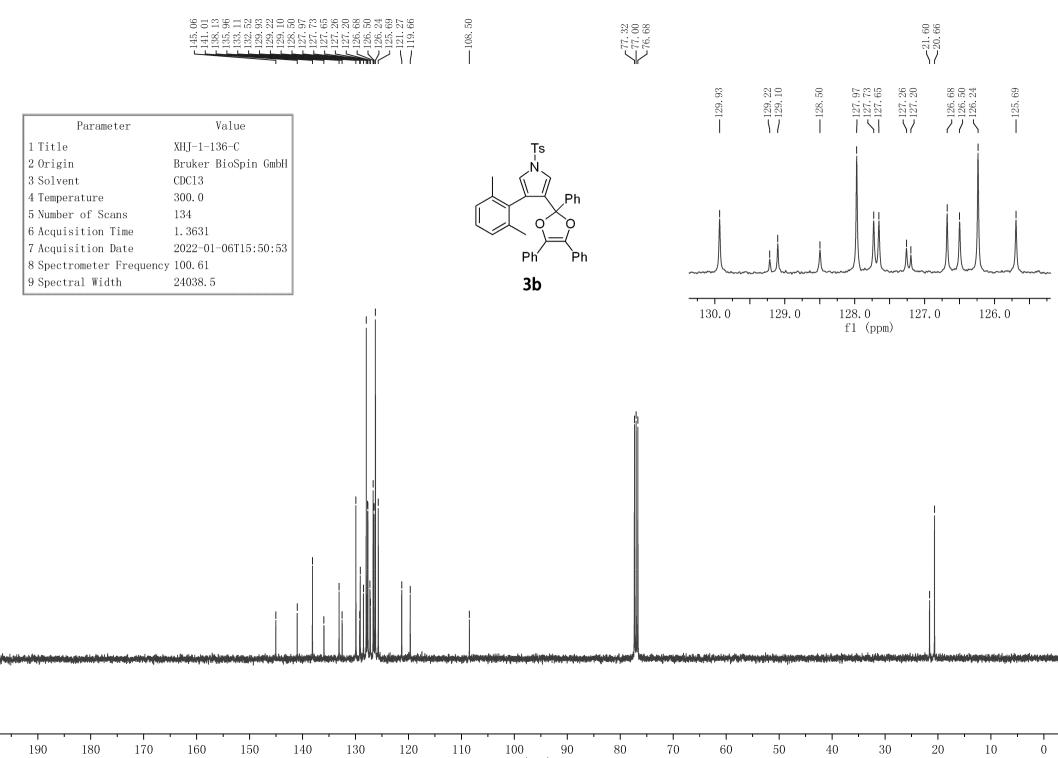



	(
Parameter	Value
1 Title	XHJ-2-diketone-H
2 Origin	
3 Solvent	CDC13
4 Temperature	299.6
5 Number of Scans	16
6 Acquisition Time	4.000/2
7 Acquisition Date	2022 ¹ 08-11T15:47:48
8 Spectrometer Frequency	399.92
9 Spectral Width	8012.0


 $<^{1.193}_{1.176}$

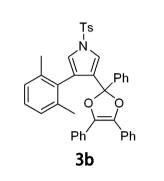


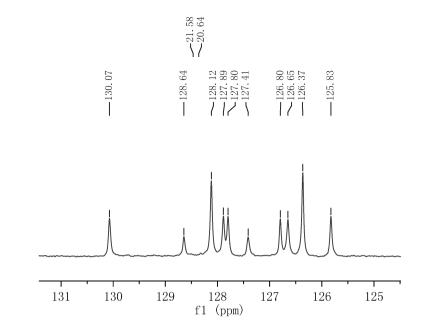

			134, 56 133, 72 133, 72 132, 37 132, 37 132, 68 132, 68 128, 91 128, 91 126, 96		$\overbrace{76, 68}^{77. 32}$		
	Parameter 1 Title	Value XHJ-2-DIKETONE-1-C				-134.56 -133.72 -133.04 -131.68 -131.68 -129.84	
	2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence 9 Spectral Width	Bruker BioSpin Gmb CDC13 300.0 7 1.3631 2022-08-16T20:53:2 cy 100.61 24038.5		Pr O O 2c			
						135 134 133 132 131 130 129 f1 (ppm)	128 127 126 125
							1
	k o poline selectedný starti přistěk na stranov, ski belova po stra strav	nation at the start of both and you to block and but for a fut		le påver, och i bjern andre blirder, og af som bese blirder, og och be å fåret, og abbed		by an (11 bets or four calls), providing these muscles and the most of the sound of source calls, as well, a bet of	, beforeten, beter words a substantion and atte
- , and define and a set of the s		a fa dhuan a gu an stanan ann an an an an ann an a stath a saith a saith an ann an	an the second is an onlike is the second short	a for a sub-state for an an an an an an for the sub-state of the sub-state of the sub-state of the sub-state of	ni ng mi ng 1 - ng mga ng ng ng	and an	an an an thair a san tan an a

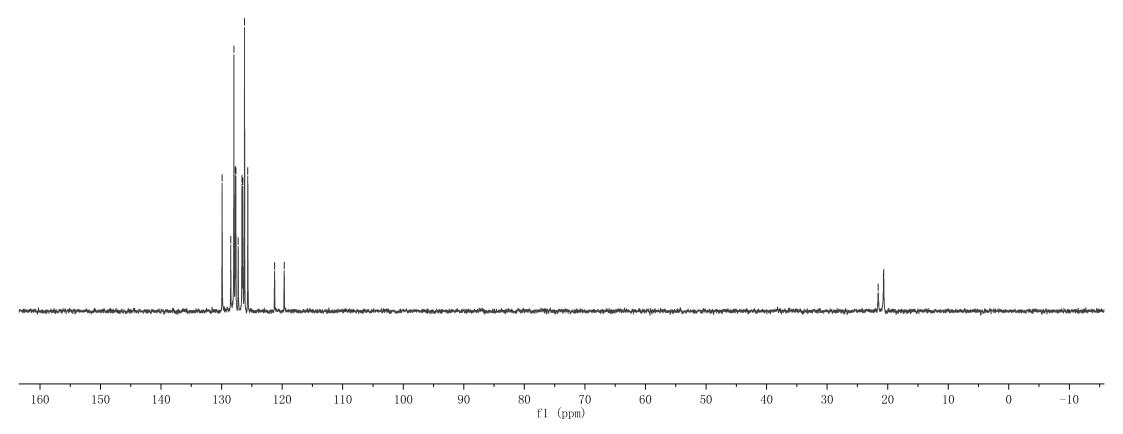

f1 (ppm) . 50

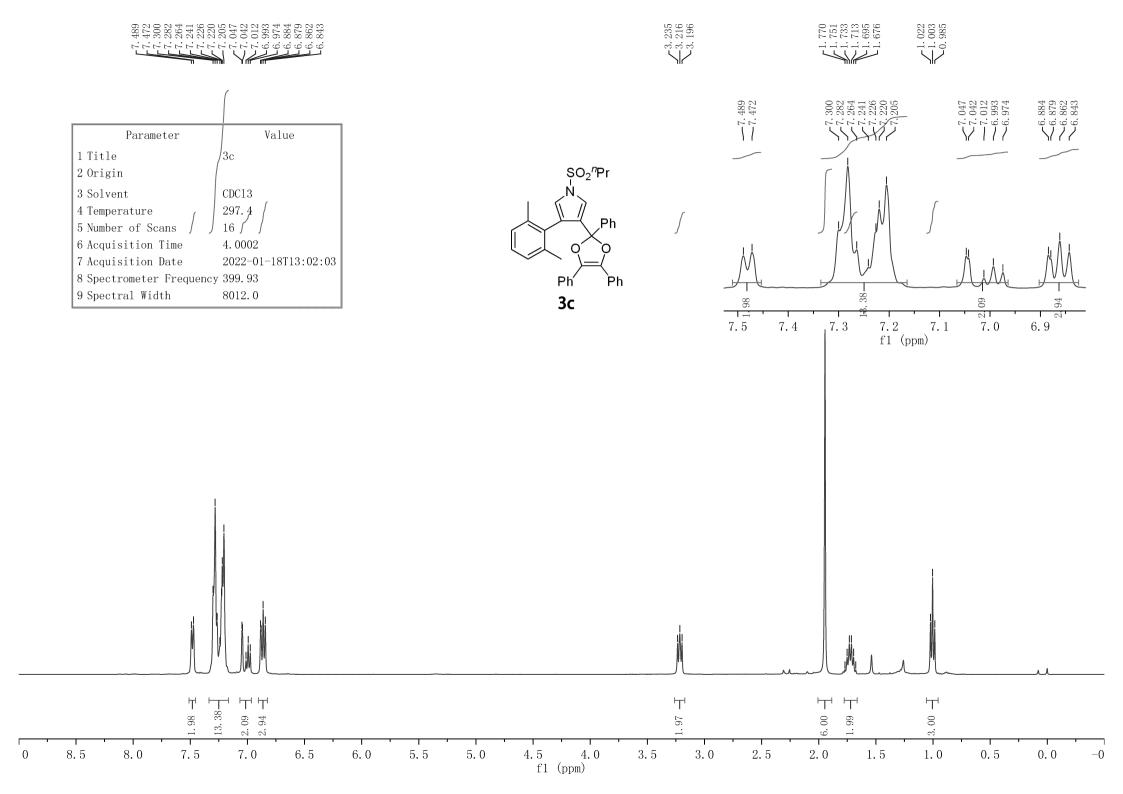
fl (ppm)

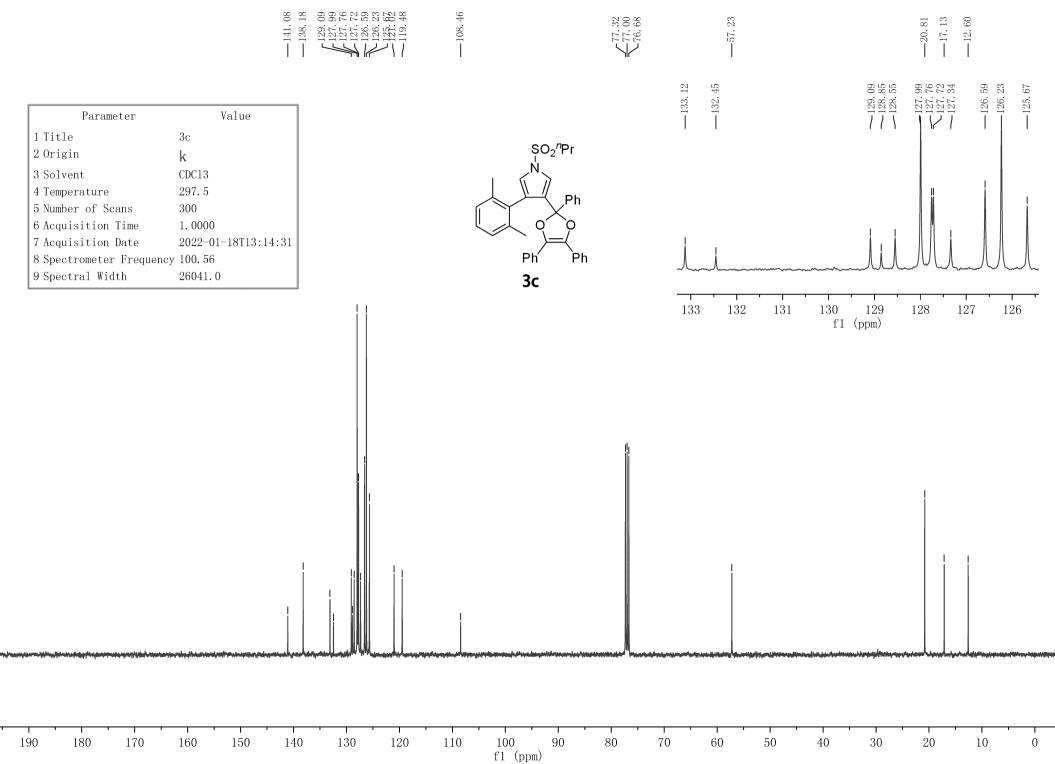


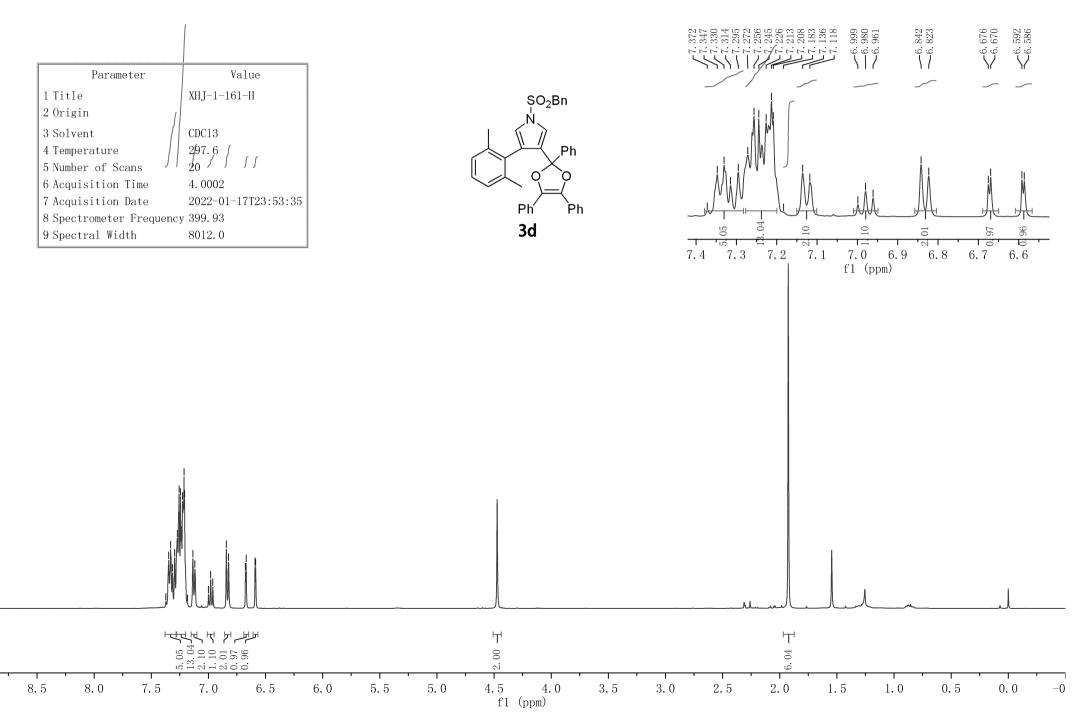


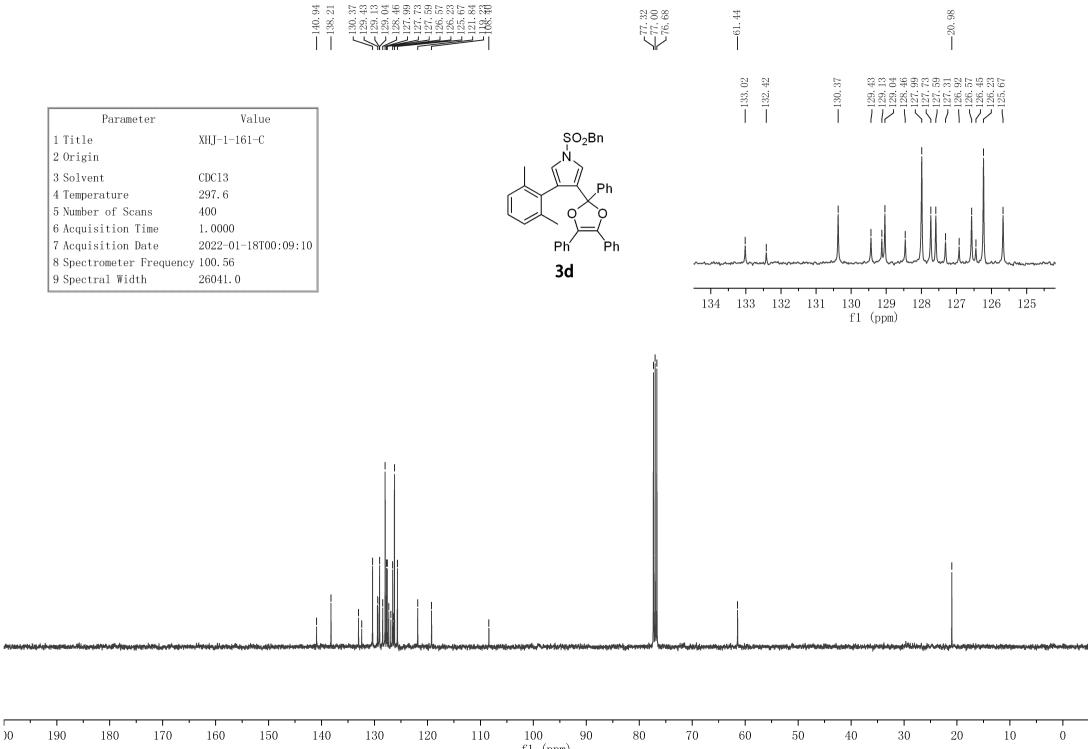

fl (ppm)

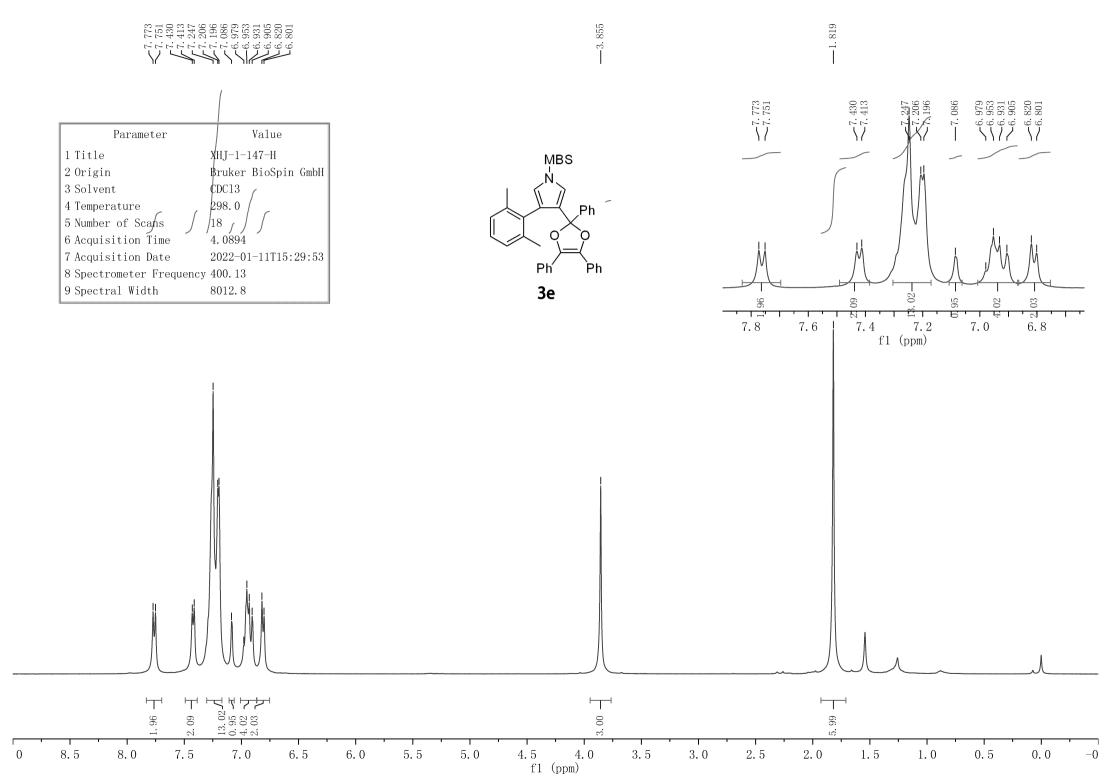

)0

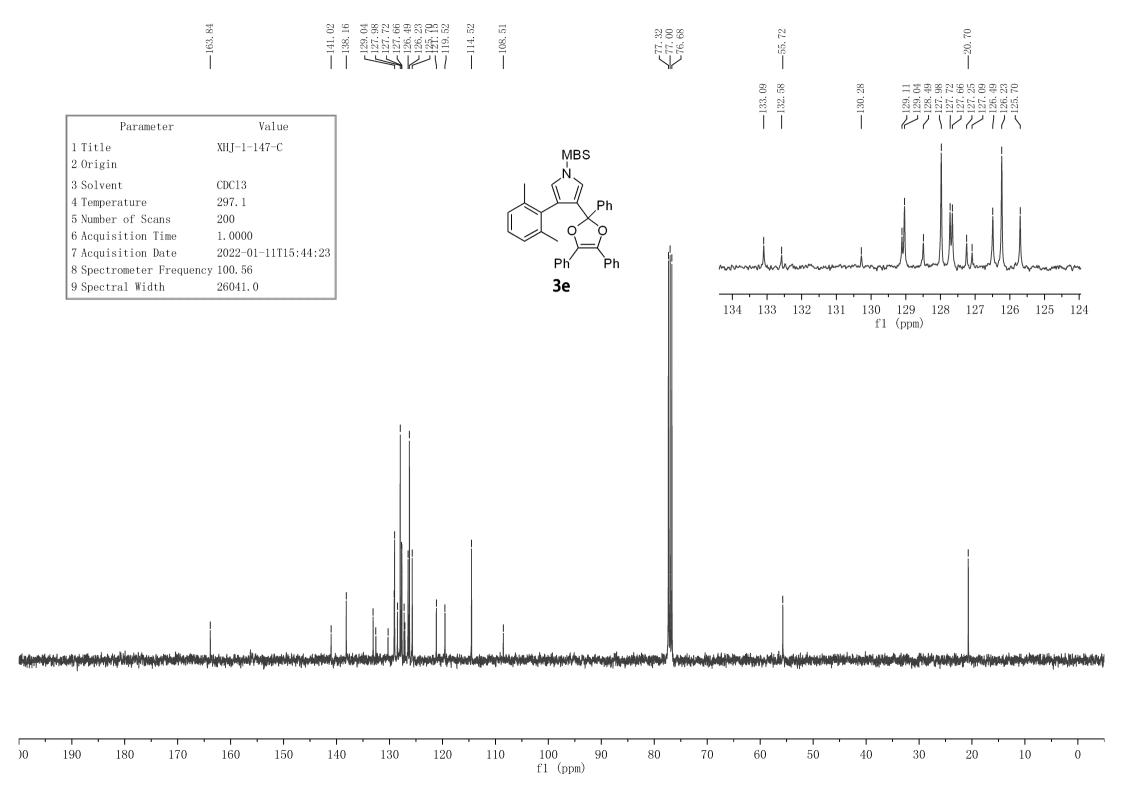


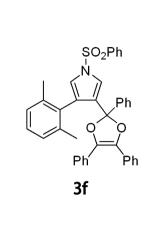

Parameter	Value
1 Title	XHJ-3b-DEPT135
2 Origin	
3 Solvent	CDC13
4 Temperature	300. 0
5 Number of Scans	50
6 Acquisition Time	1.0001
7 Acquisition Date	2022-08-28T16:53:40
8 Spectrometer Frequency	100.56
9 Spectral Width	18028.0

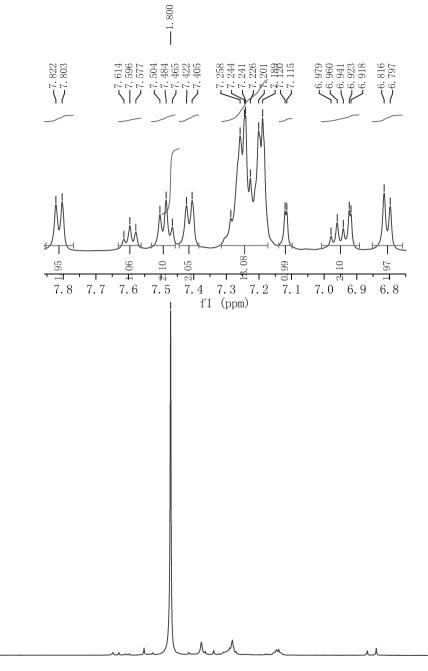


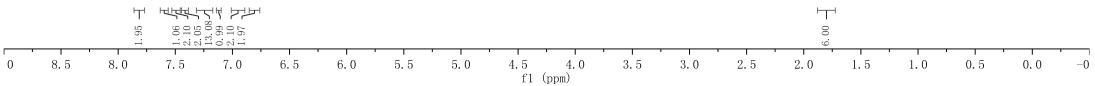



)()

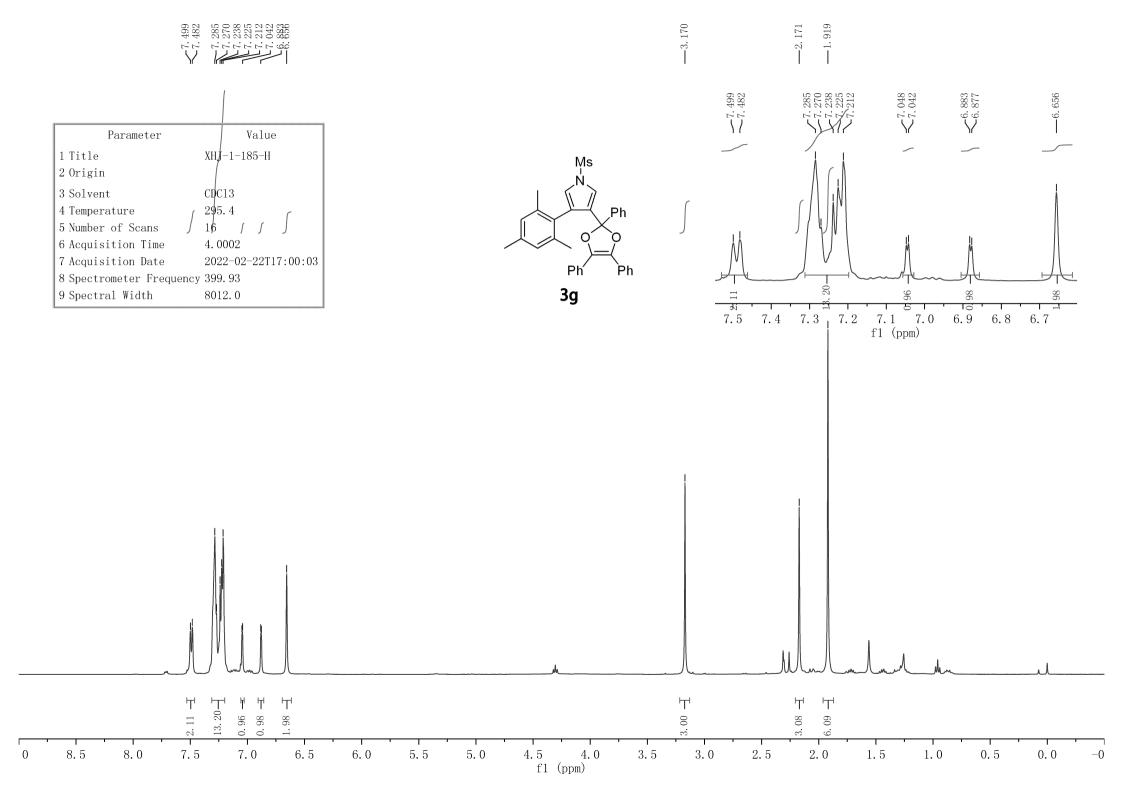


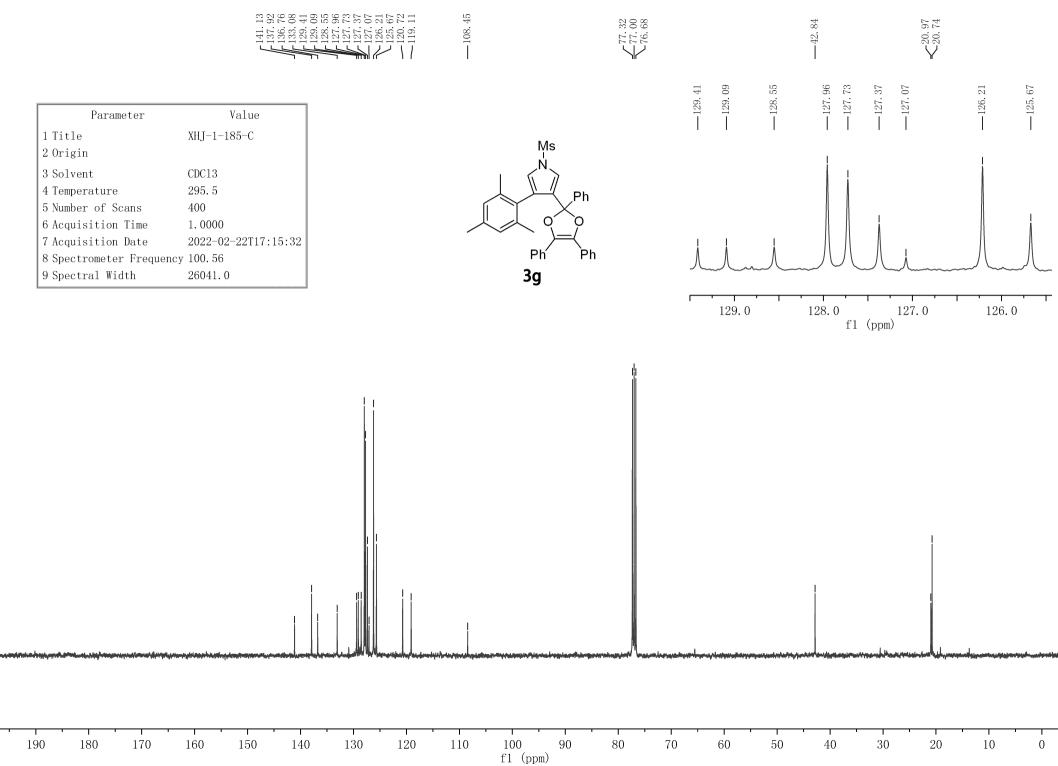

fl (ppm)





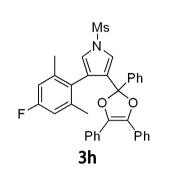
Parameter	Value
1 Title	ХНЈ−1−139−Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298. 0
5 Number of Sgans //	16 / /
6 Acquisition Time	4.0894
7 Acquisition Date	2022-01-06T16:02:43
8 Spectrometer Frequenc	y 400.13
9 Spectral Width	8012.8

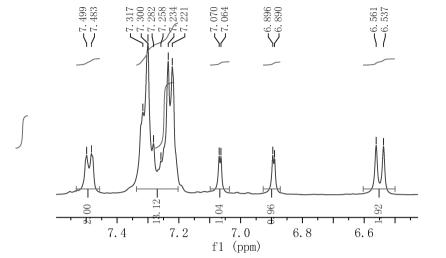




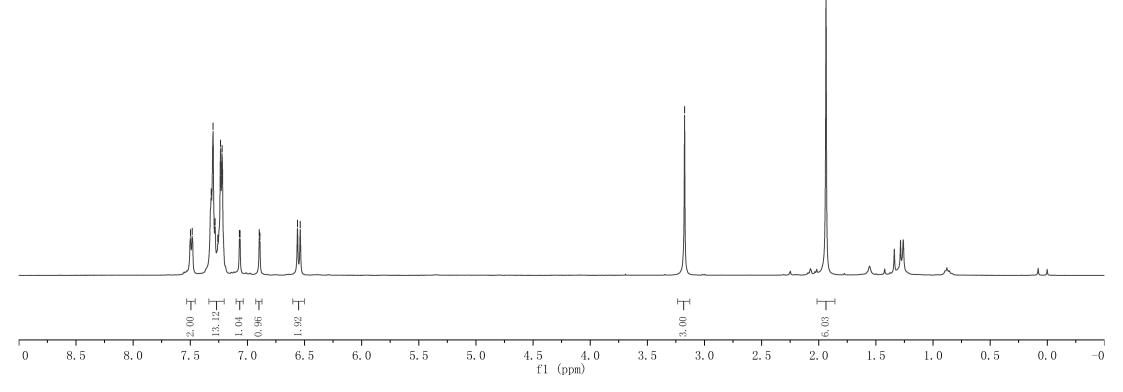
$\frac{ Parameter}{1 \text{ Title}} \\ \frac{2 \text{ Origin}}{3 \text{ Solvent}} \\ \frac{3 \text{ Solvent}}{6 \text{ Accust it for Time}} \\ \frac{2 \text{ Solvent}}{2 \text{ Colored}} \\ \frac{3 \text{ Solvent}}{2 \text{ Colored}} \\$	\[\] \[\[\] \[\] \[\] \[129. 34 127. 55 127. 68 127. 68 126. 59 126. 59 126. 53 119. 72	— 108. 42	$\overbrace{77.00}^{77.32}$		
3 Solvent CDC13 4 Temperature 297.2 5 Number of Scans 200 6 Acquisition Time 1.0000 7 Acquisition Date 2022-01-06T21:04:01 8 Spectrometer Frequency 100.56 9 Spectral Width 9 Spectral Width 26041.0	1 Title XHJ-1-139-C		ŞO ₂ Ph		— 132. 38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3 SolventCDC134 Temperature297.25 Number of Scans2006 Acquisition Time1.00007 Acquisition Date2022-01-06T21:04:018 Spectrometer Frequency100.56		Ph Ph Ph Ph		33 132 131 130 132 131 130	

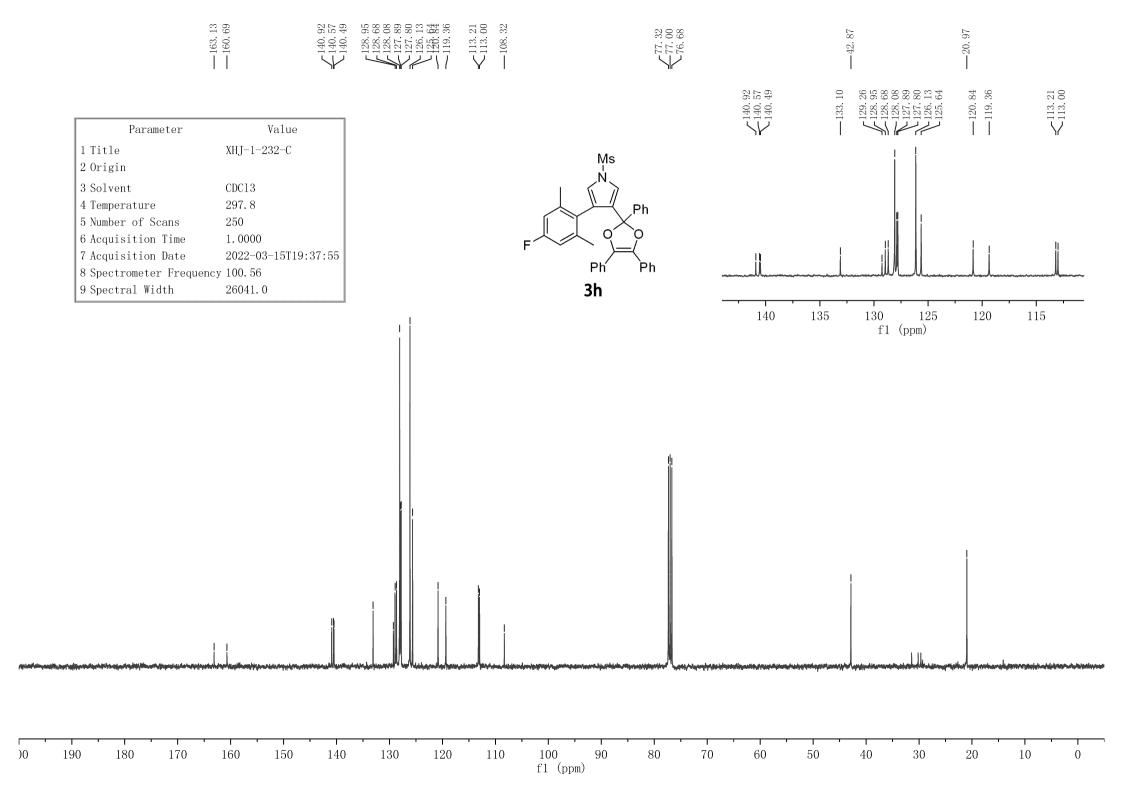
)0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

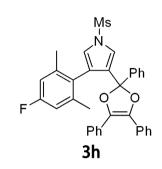




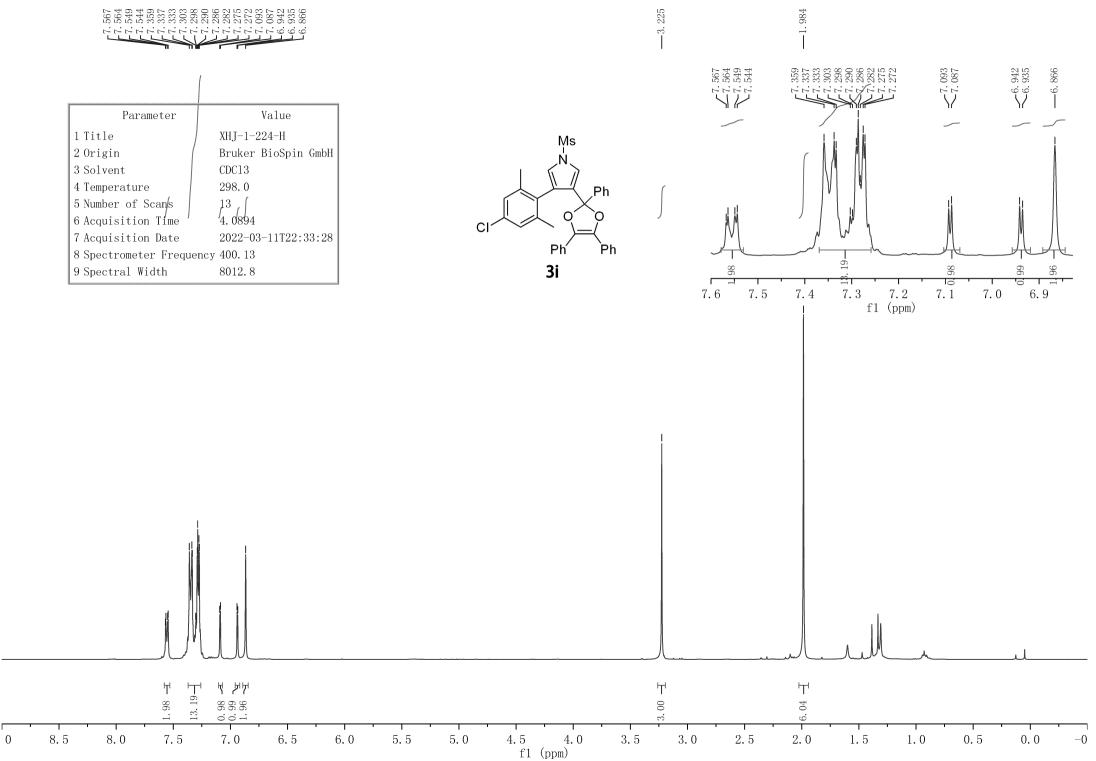
)()



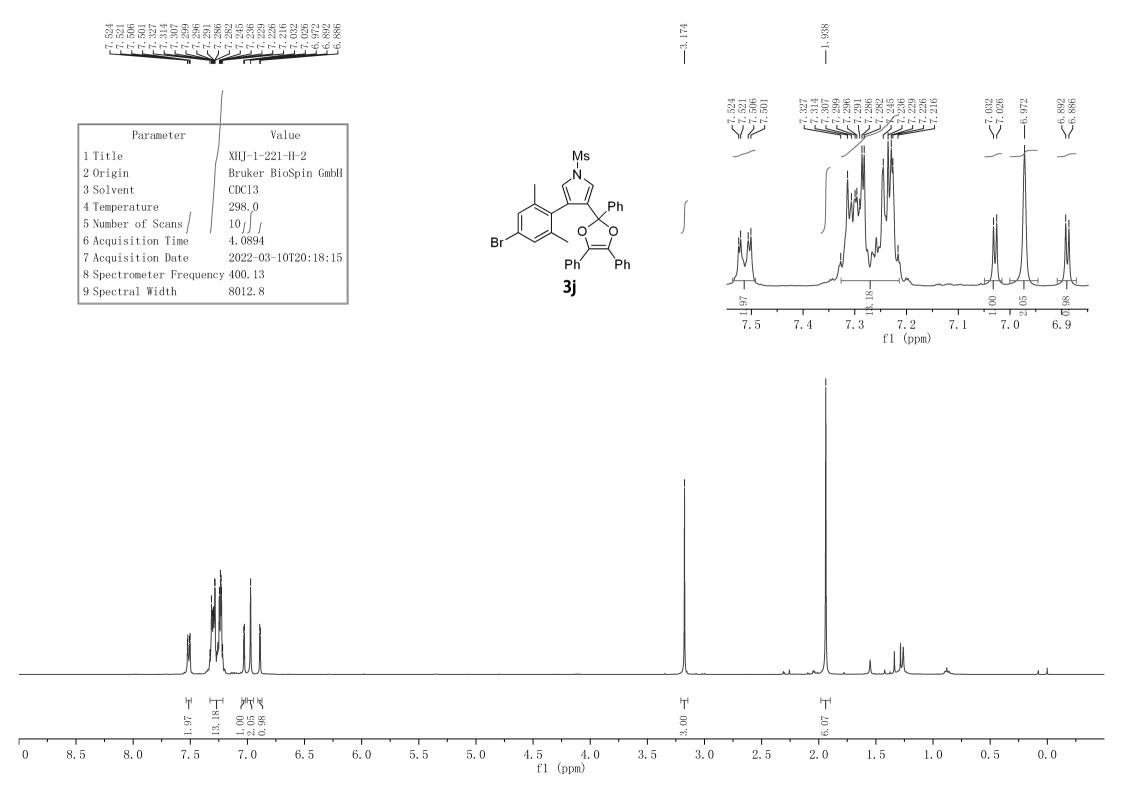

Parameter	Value
1 Title	ХНЈ-1-232-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	17
6 Acquisition Time	4.0894
7 Acquisition Date	2022-03-15T15:37:06
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8



—1. 936



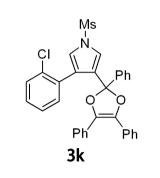
Parameter	Value
1 Title	XHJ-1-232-F
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	297.1
5 Number of Scans	16
6 Acquisition Time	0.7340
7 Acquisition Date	2022-08-16T20:07:25
8 Spectrometer Frequency	376.31
9 Spectral Width	89285.7

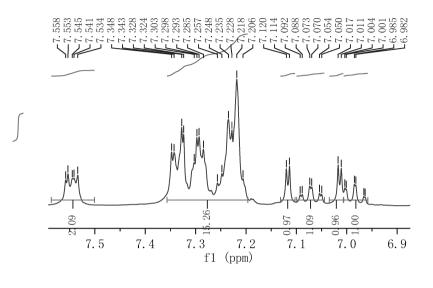


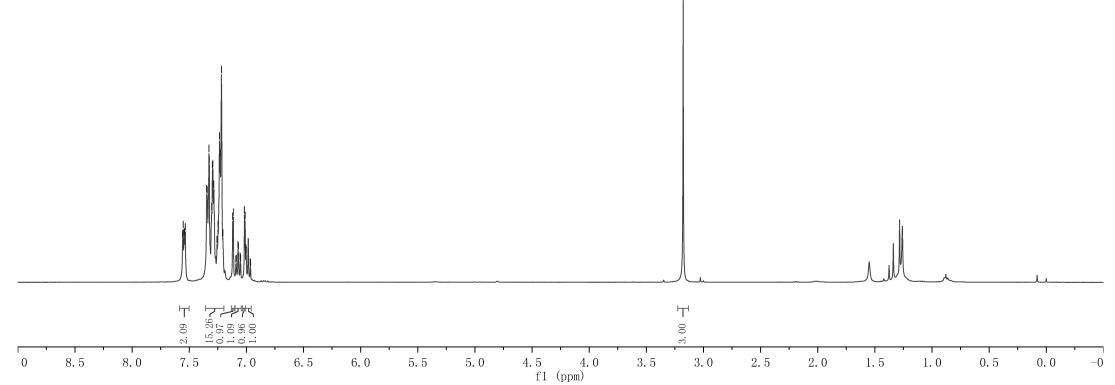
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

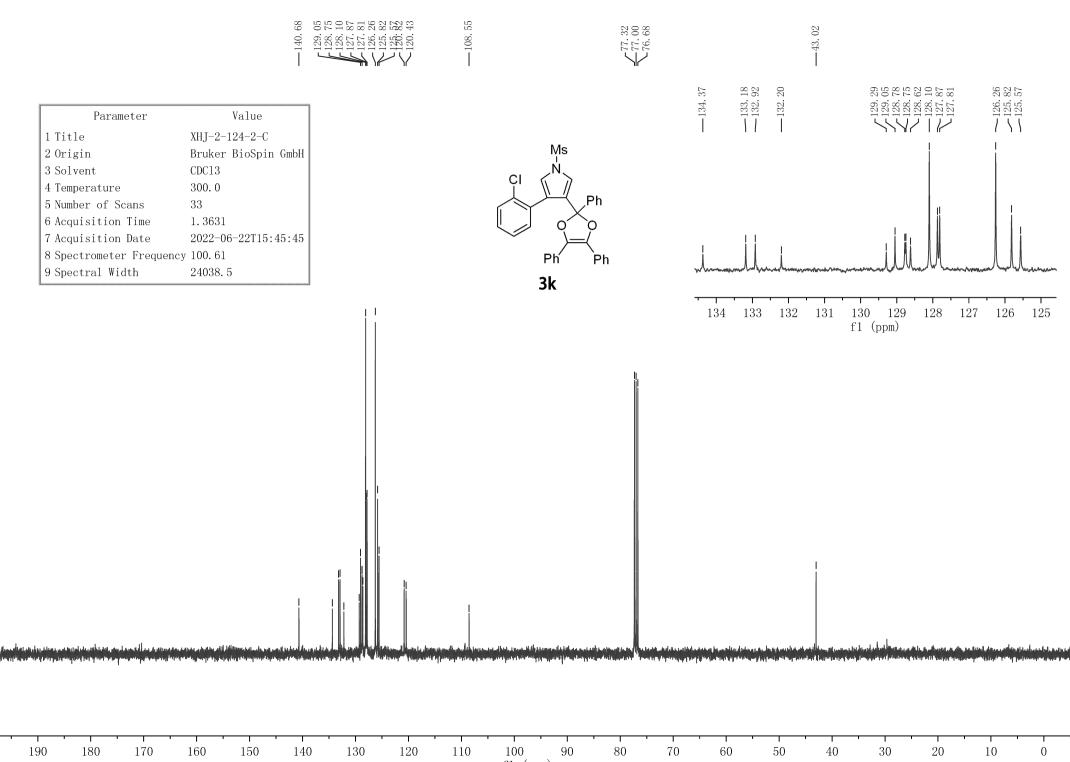
7 140.09 88	128, 87 $128, 09$ $127, 90$ $127, 83$ $126, 13$ $126, 13$ $126, 13$ $126, 13$ $126, 13$ $126, 13$ $126, 13$	— 108. 26	$\overbrace{76.68}^{77.32}$			20.75
Parameter Value 1 Title XHJ-1-224-C		Мs				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 Origin3 SolventCDC134 Temperature296.85 Number of Scans250		Ph				
6 Acquisition Time1.00007 Acquisition Date2022-03-12T02:05:308 Spectrometer Frequency100.569 Spectral Width26041.0	С	Ph Ph 3i				
				134 133 132	131 13	0 129 128 127 126 125 f1 (ppm)
			II I Hereiter	00%.40%.40%.40%.40%.40%.40%.40%.40%.40%.		

fl (ppm)

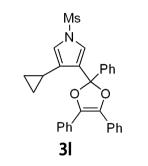


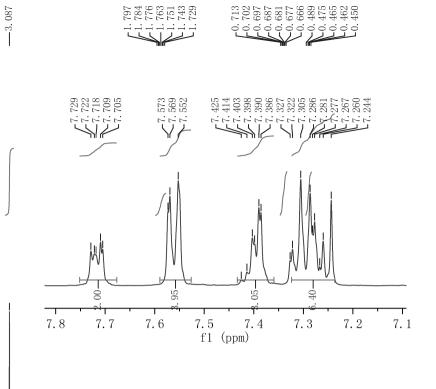

		$ \begin{array}{c} & 140.97 \\ 140.49 \\ 128.19 \\ 128.19 \\ 128.19 \\ 128.19 \\ 128.19 \\ 128.24 \\ 128.19 \\ 128.24 \\ 128.24 \\ 128.24 \\ 128.24 \\ 121.11 \\ 119.07 \\ 119.07 \\ 119.07 \\ 119.07 \\ 119.07 \\ 119.07 \\ 110.07 \\ 100.07 \\ 100.07 \\ 100.07 \\ 10$				I	I	
Parameter	Value			Ms		—131.66	- 129. 43 - 129. 43 - 128. 95 - 128. 84 - 128. 19 - 127. 94	
1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans	XHJ-1-221-C CDC13 295.5 400		Br	Ph o o				
6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width	1.0000 2022-03-10T11:13: y 100.56 26041.0	17	ים	Ph Ph 3j	 	 		
							fl (ppm)	
				ĥ				
ĸġŔġŎĸŦĸţĬġĸŶĸĸĸġĸĸŊĸĸĊŎġĸġĿĸŔĸĸĸŎŊĸĸĸĸŎŊĸĸĸĸŎĬŢĸĸĸĸŎŢĸ	ĸĬĬſĸĸġŧĸġſĸĸĊĸĸĸĸĸĸĸĸĸĸĸĸţĸţġĸţĸĸ	searchfann, ar george an Indiana (11 ha Massance Incolme	anterioren en e	austanateinpartitientententen oppent Turnstatie	dhijilingd Madeluartig-KasalofijiHea	nitundeeprennendeeprendeepe	saaruaneendeddaanaraanaafardaaanaaaaafaar	hourspitstyphtersethours


	·	·		·	·				·	·		·	·	· 1						
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
ł										f1 (p	pm)									

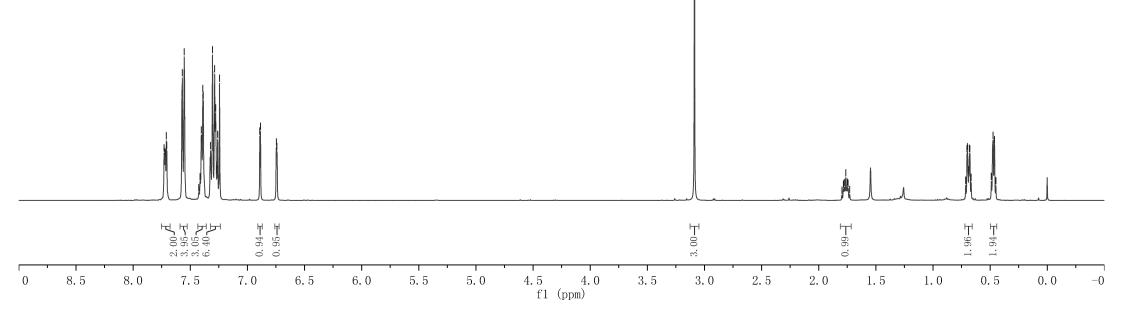


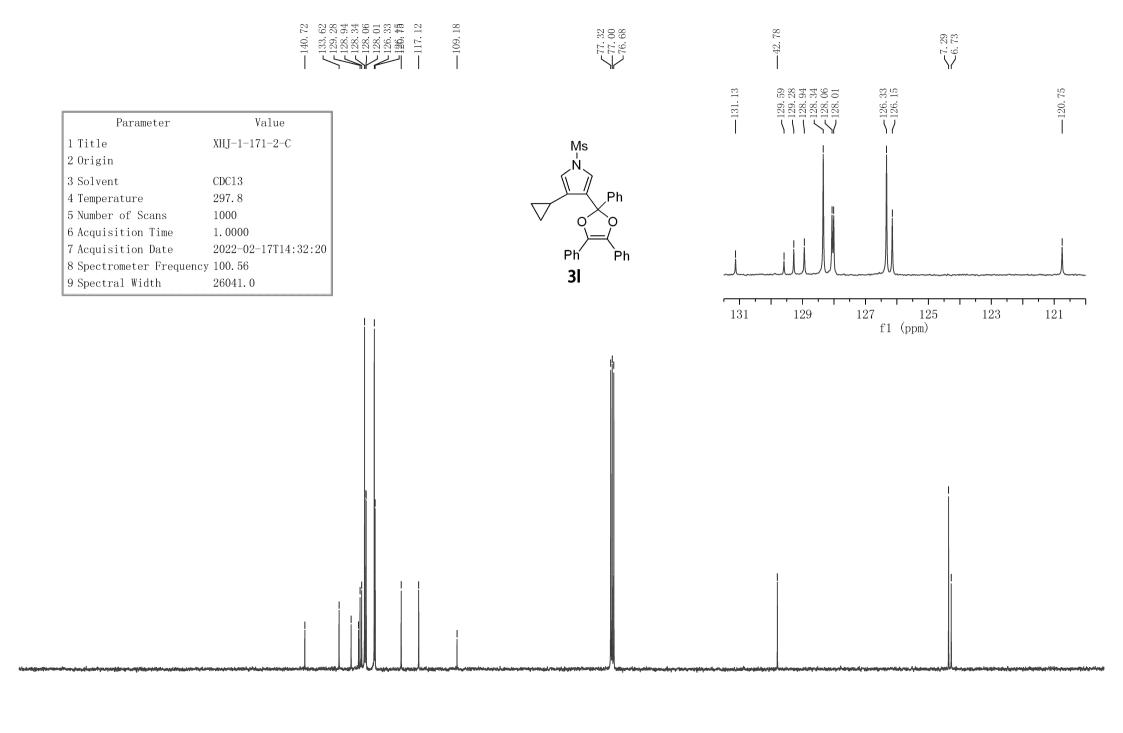
Parameter	Value
1 Title	/ХНЈ-2-124-2-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans /	10////
6 Acquisition Time	4.0894
7 Acquisition Date	2022-06-22T15:44:05
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

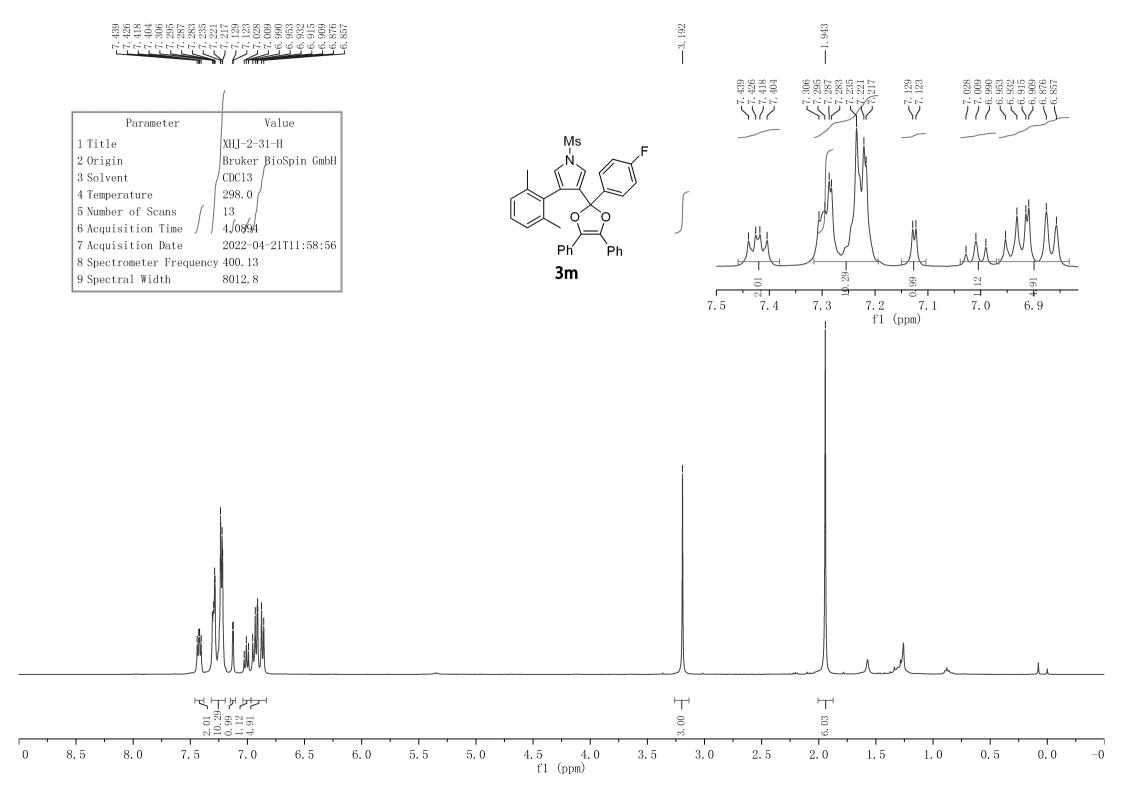


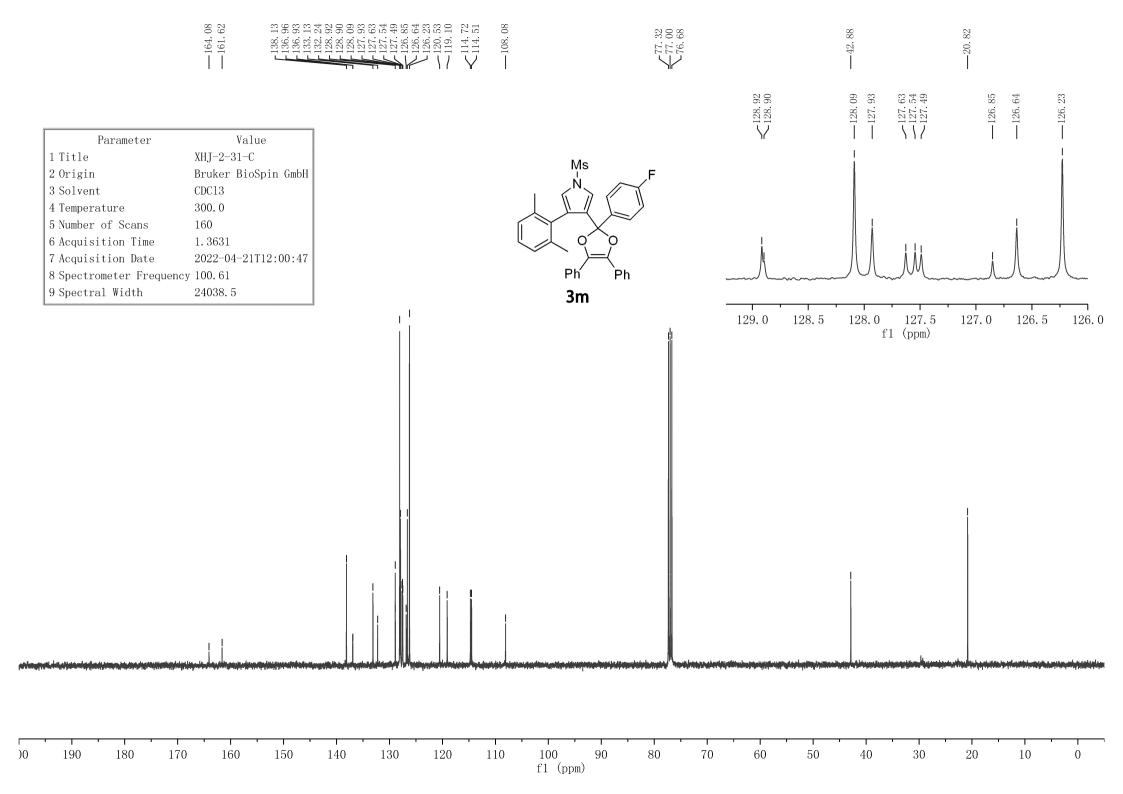

fl (ppm)

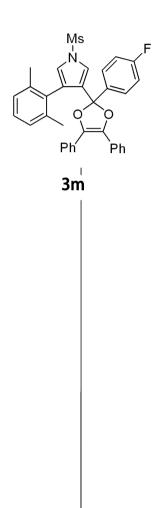
)0



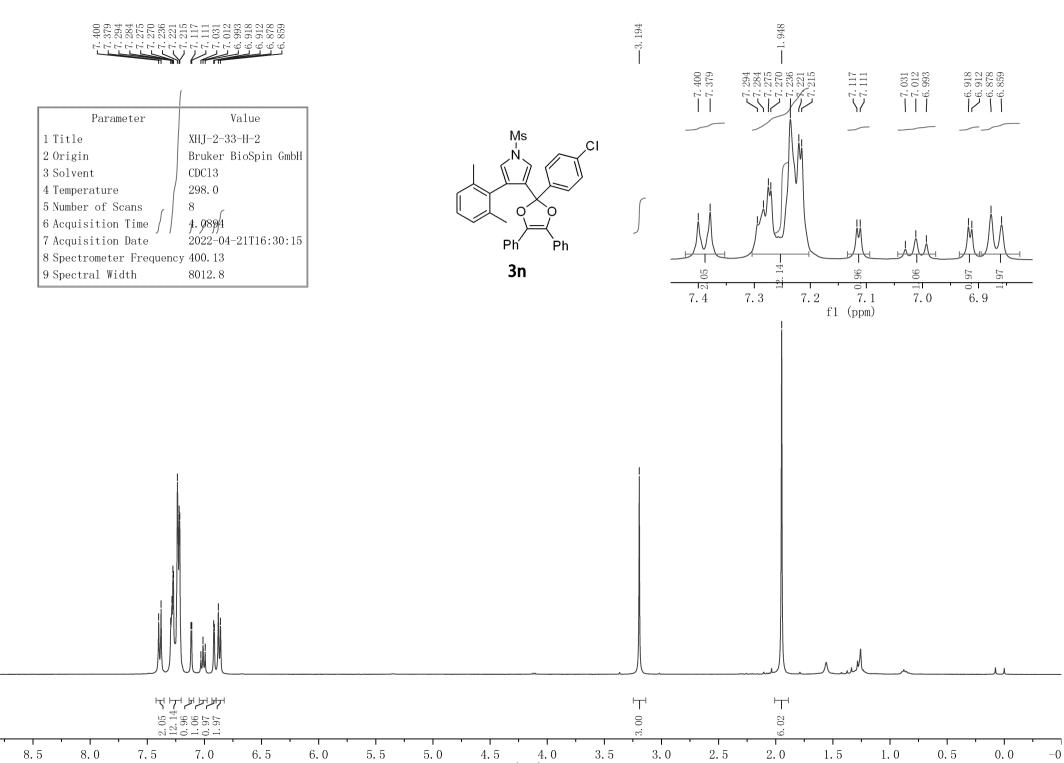

	,
Parameter	Value
1 Title	ХНЈ-1-171-2-Н
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-02-17T13:56:39
8 Spectrometer Frequen	су 399.93
9 Spectral Width	8012.0

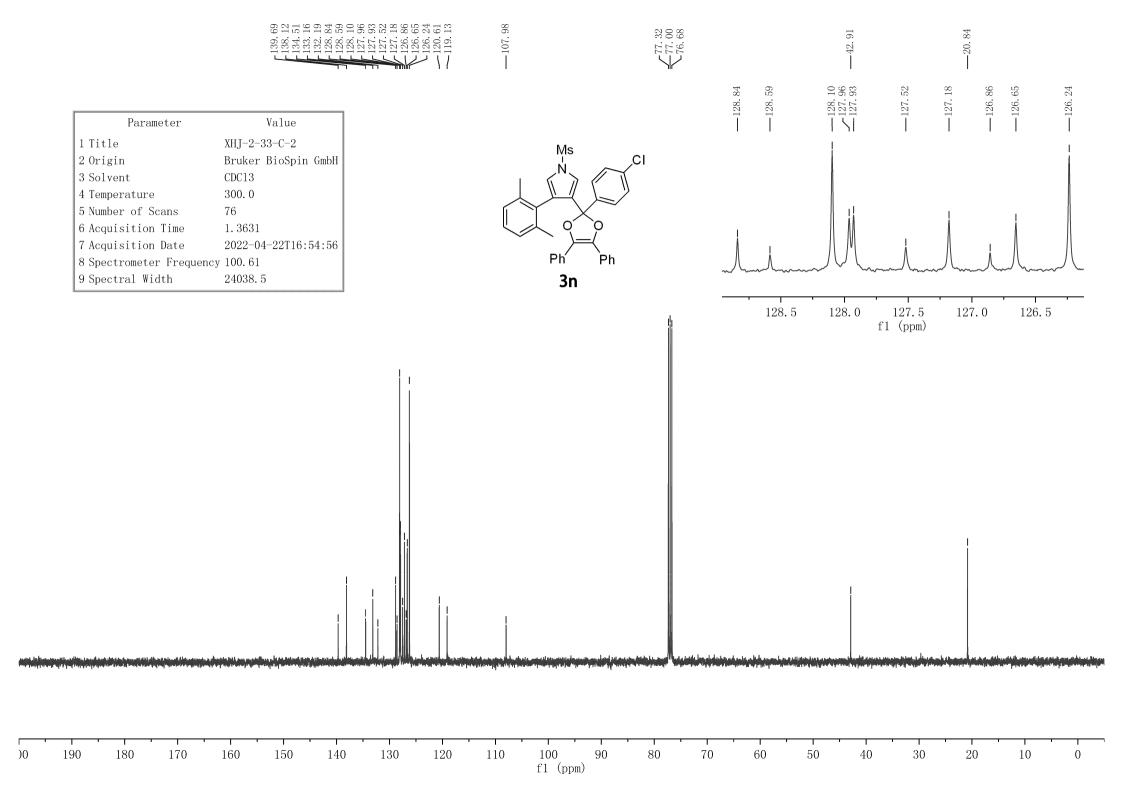


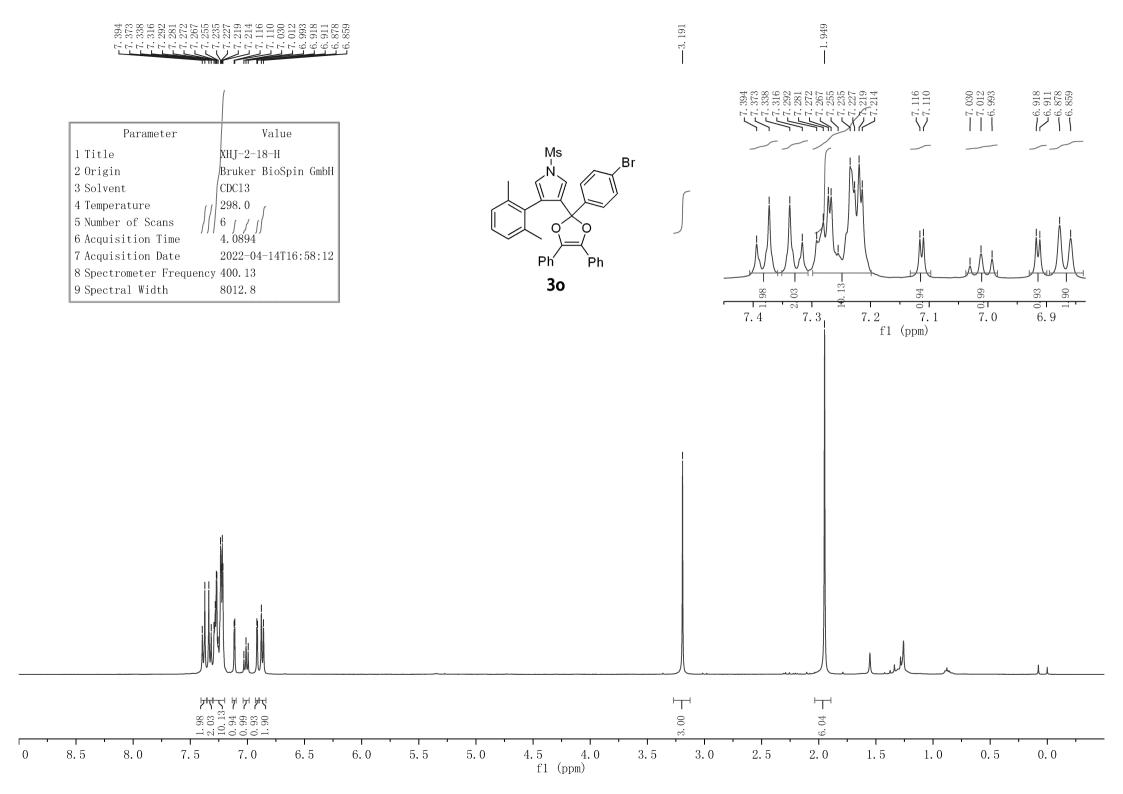

 $\begin{array}{c} 713\\ 697\\ 687\\ 687\\ 687\\ 6681\\ 6677\\ 666\\ 666\\ 666\\ 686\\ 4475\\ 4466\\ 4466\\ 44$

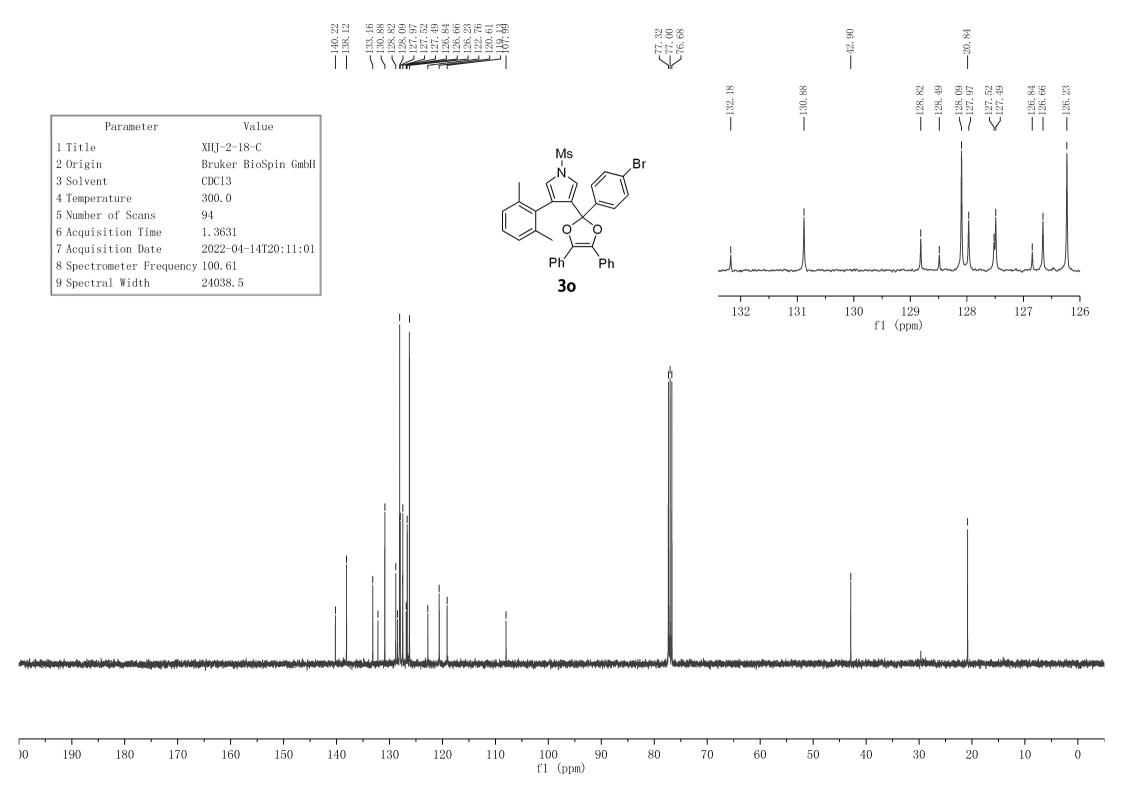


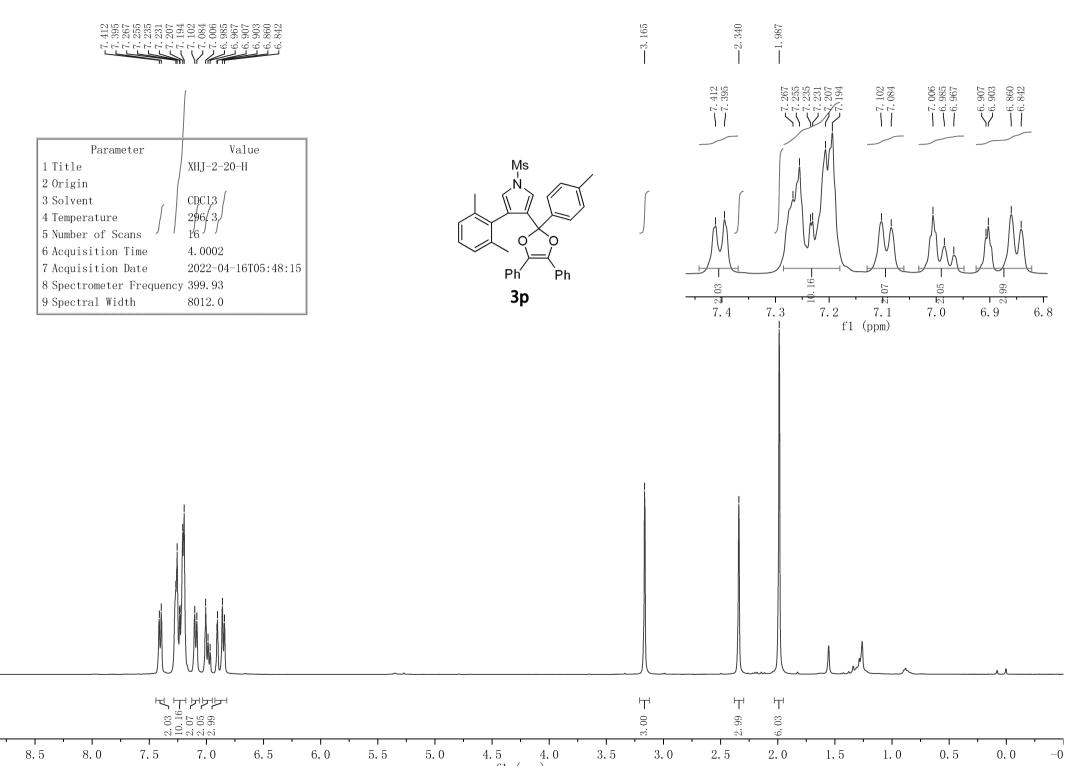
f1 (ppm) -10-20)()



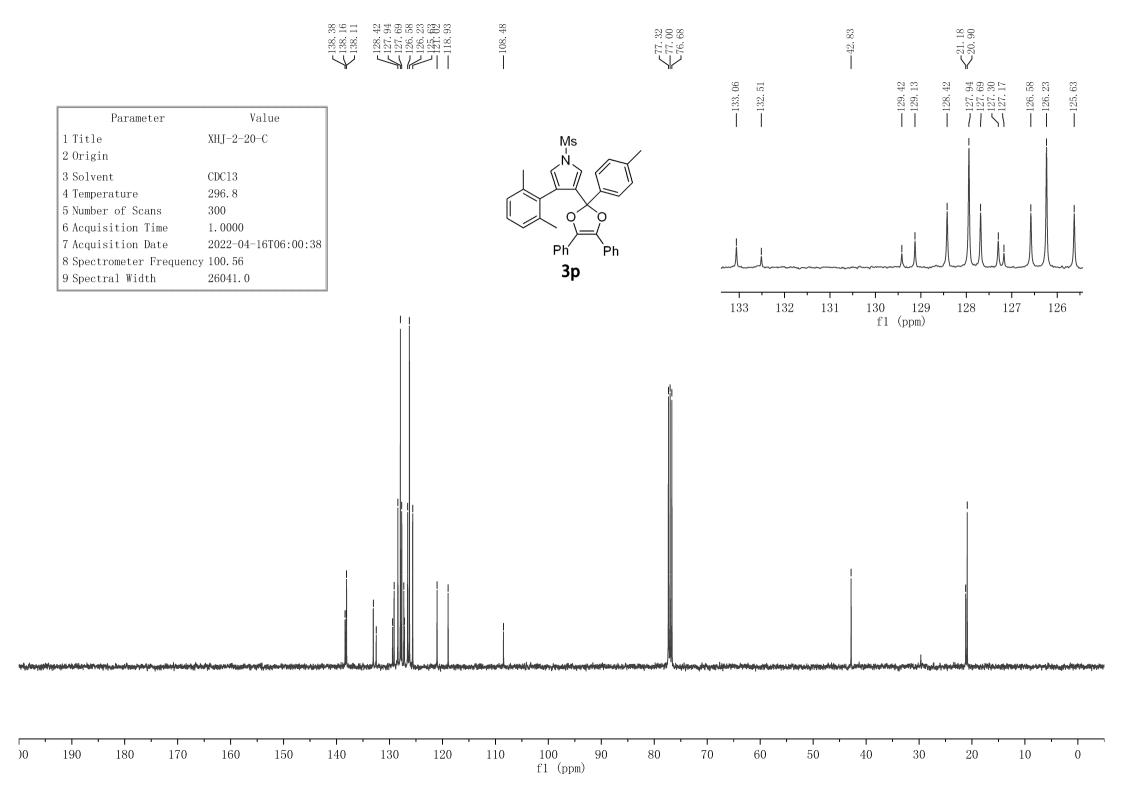

Parameter	Value
1 Title	XHJ-2-31-F
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	297.3
5 Number of Scans	16
6 Acquisition Time	0.7340
7 Acquisition Date	2022-08-16T20:23:01
8 Spectrometer Frequency	376.31
9 Spectral Width	89285.7

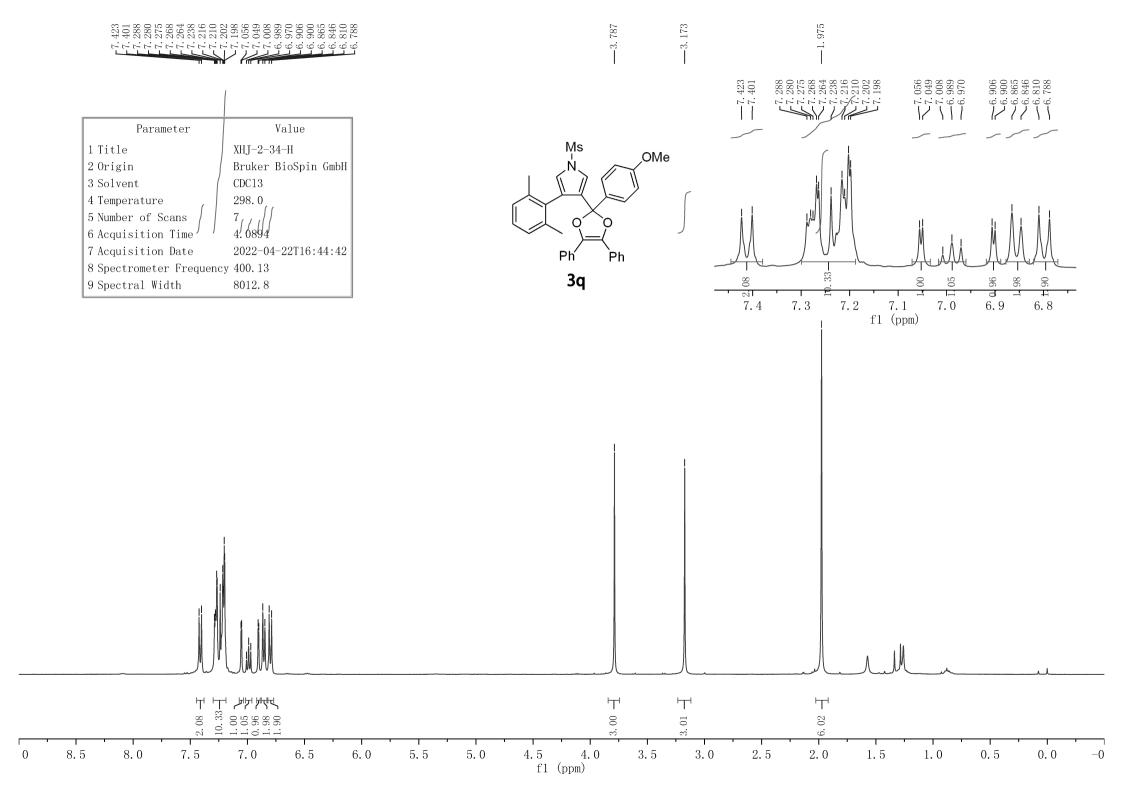


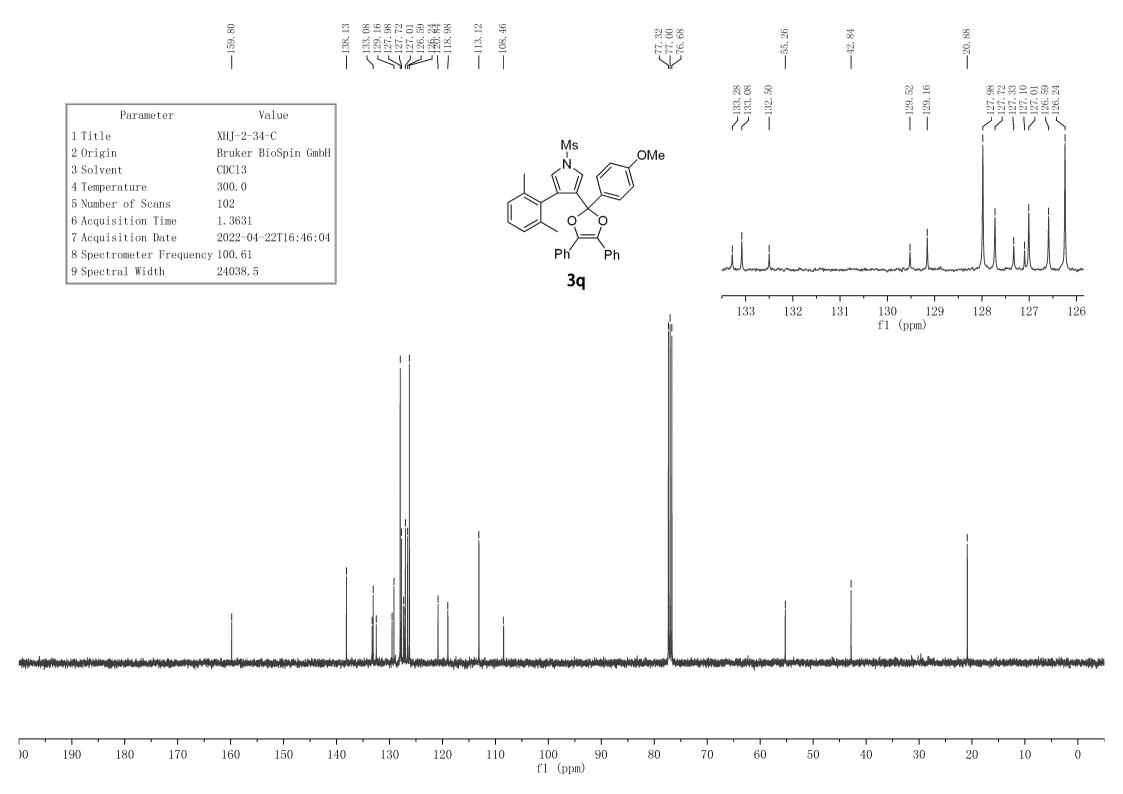

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

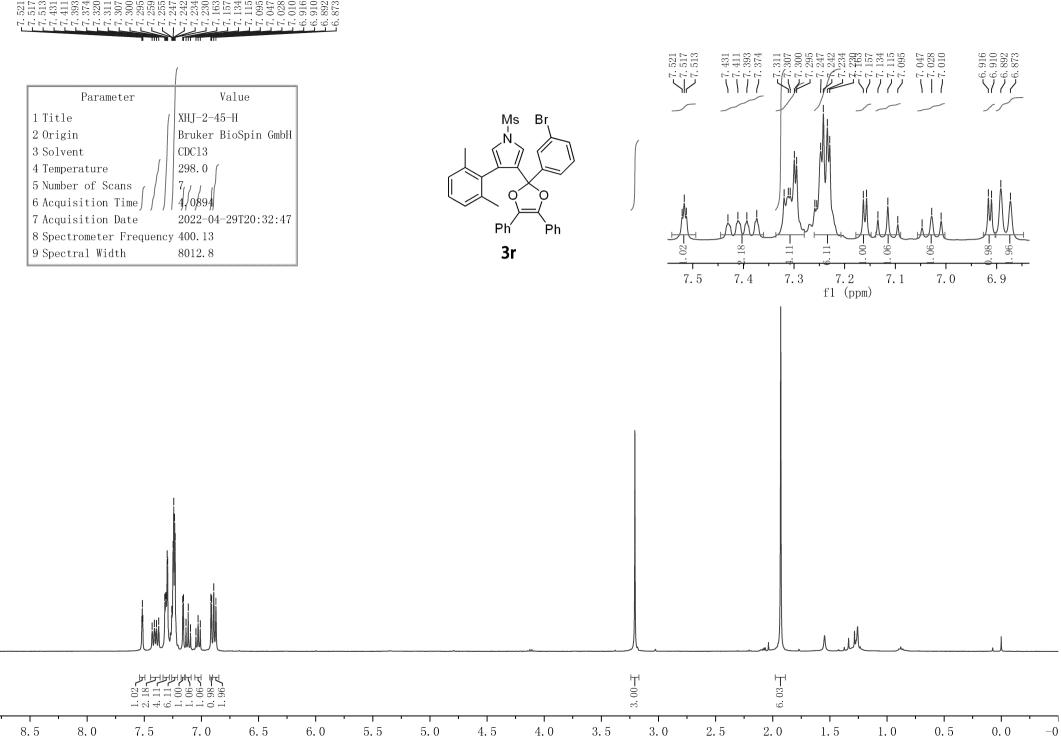


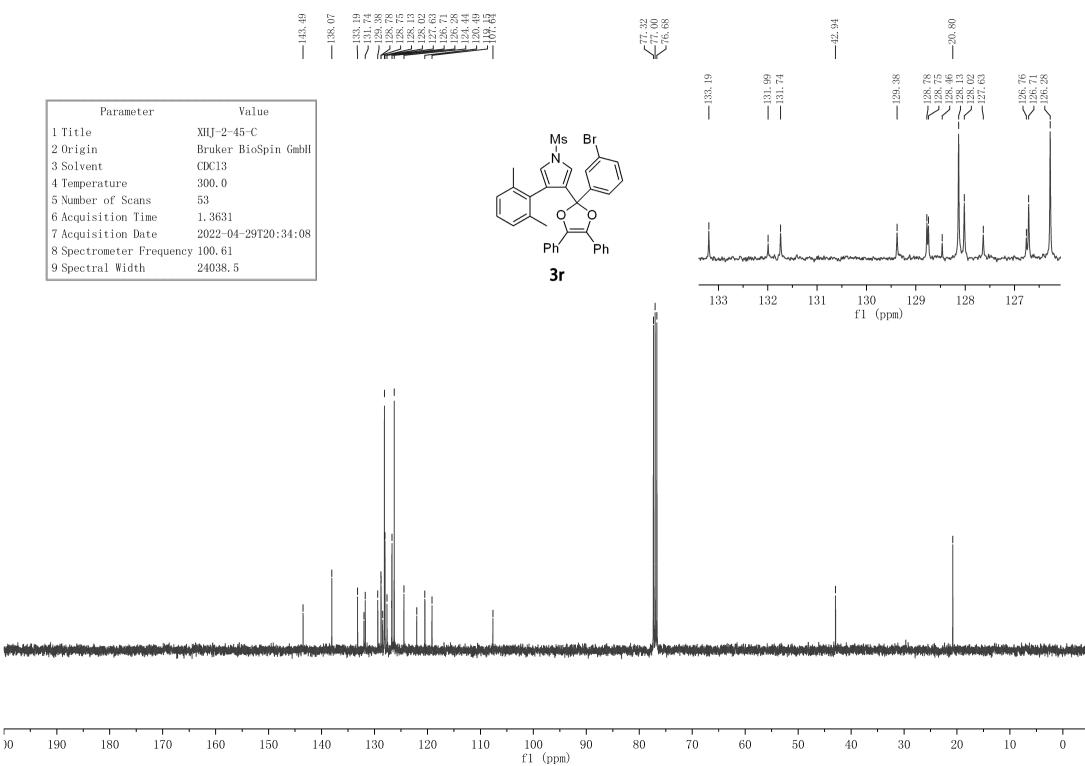
fl (ppm)

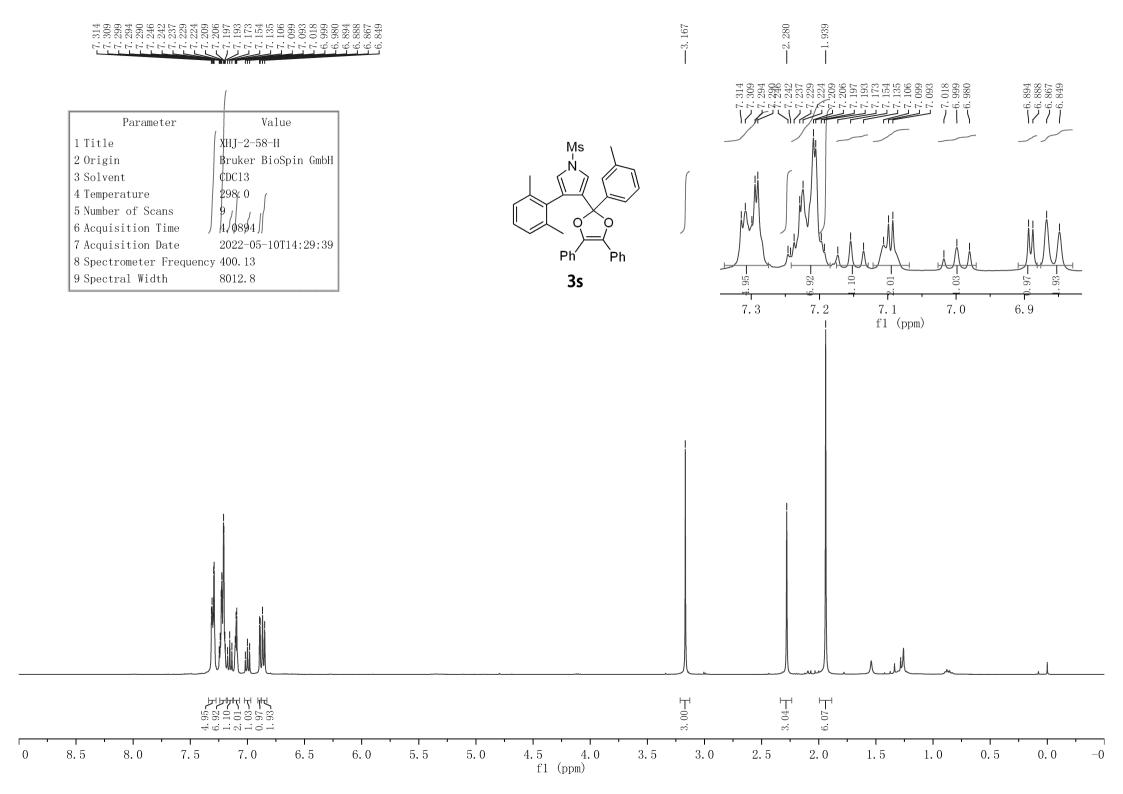


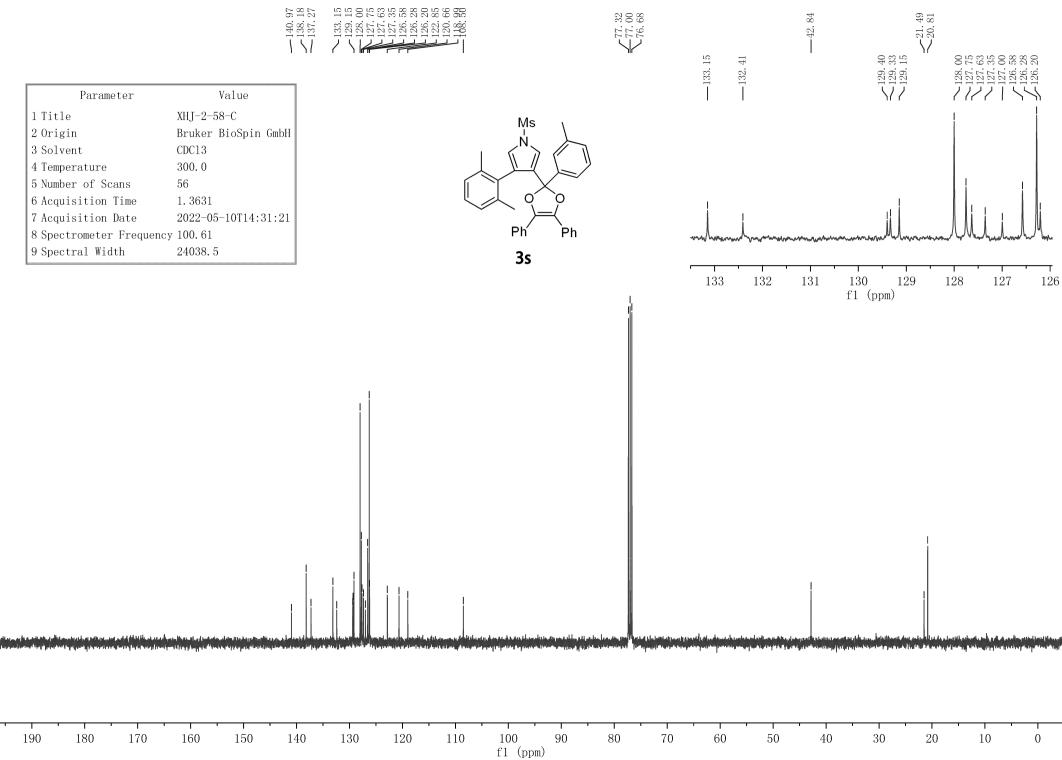


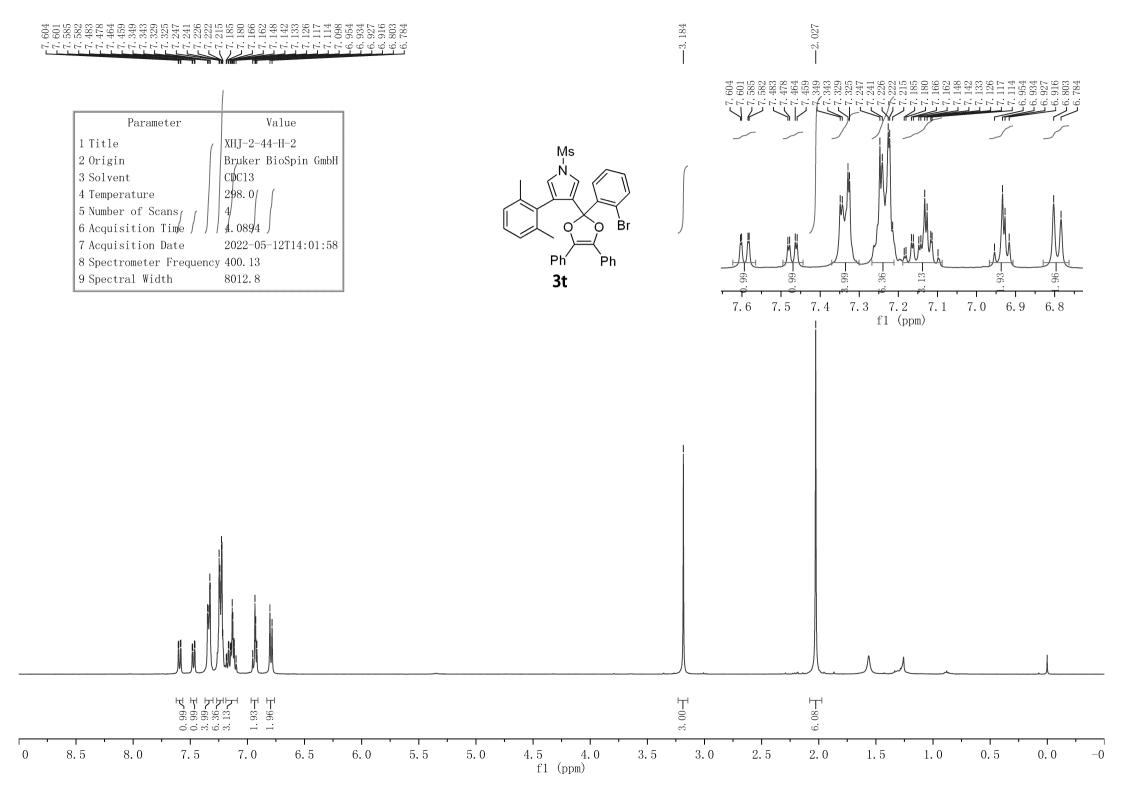


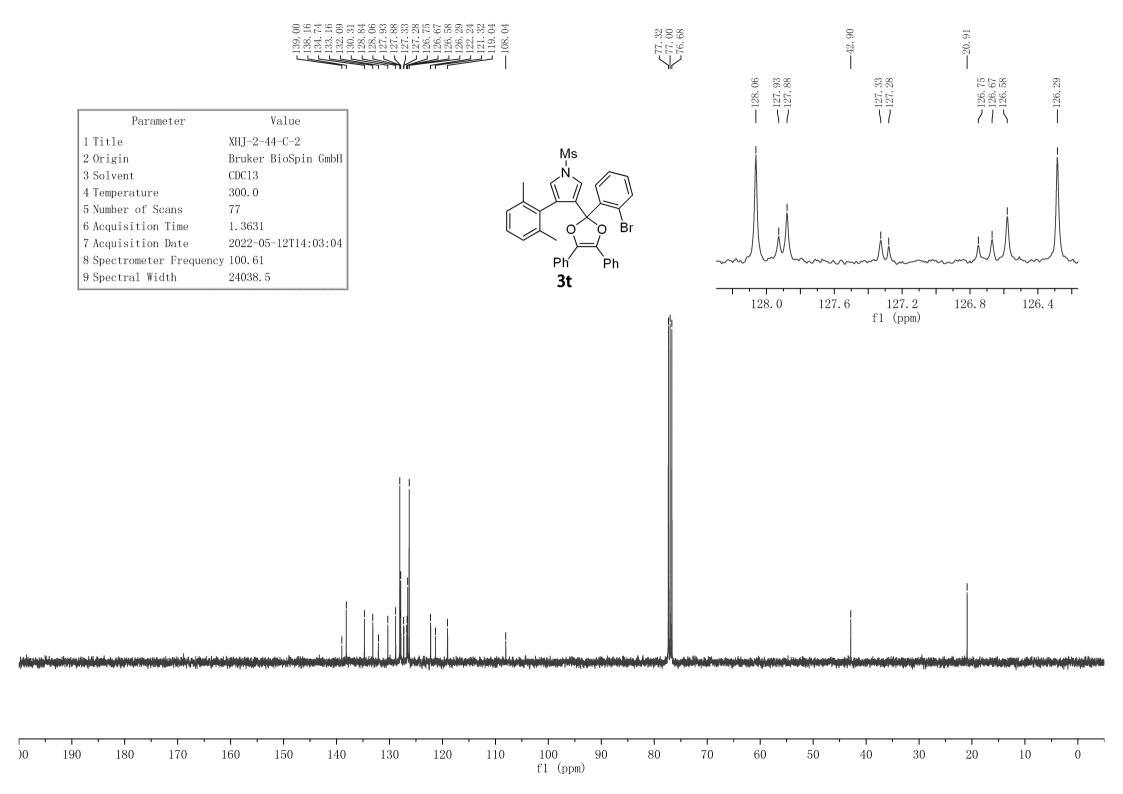


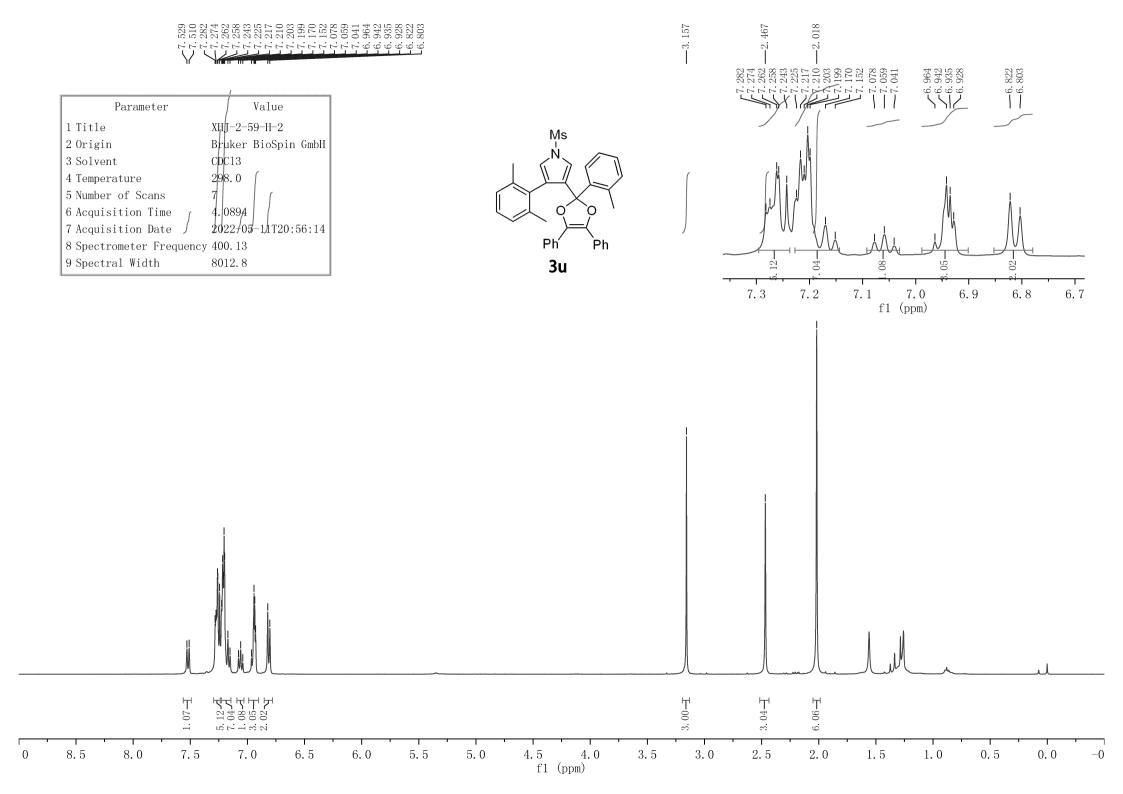

fl (ppm)



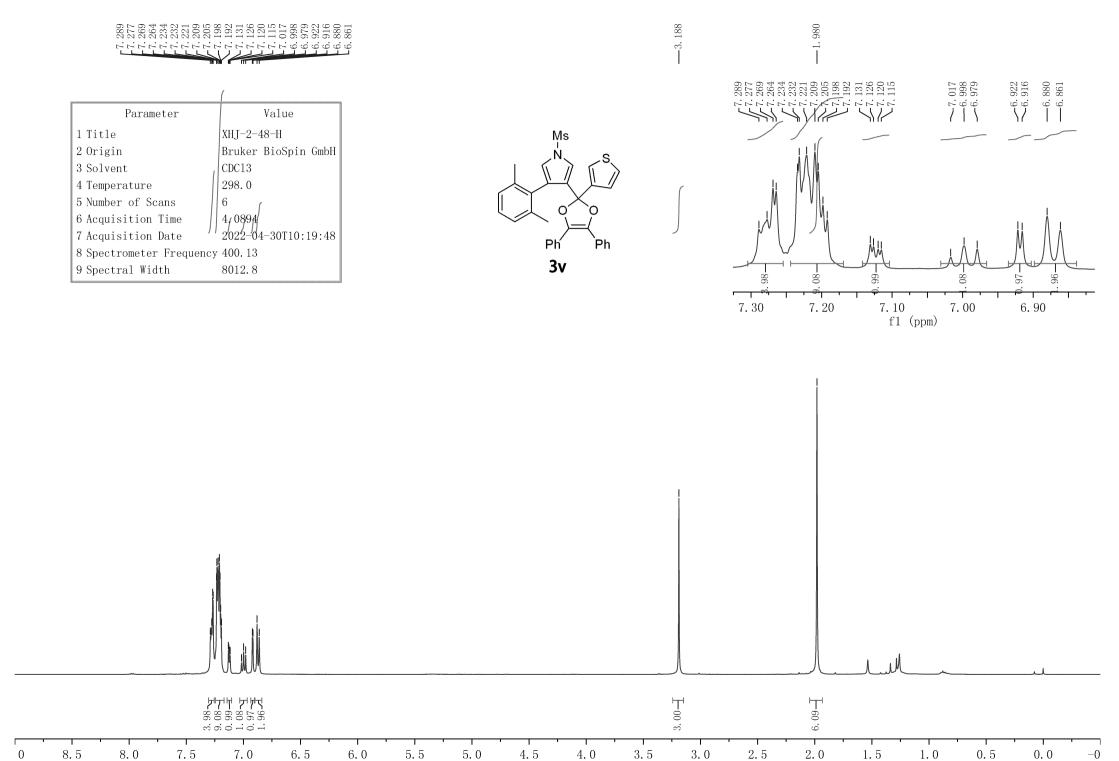


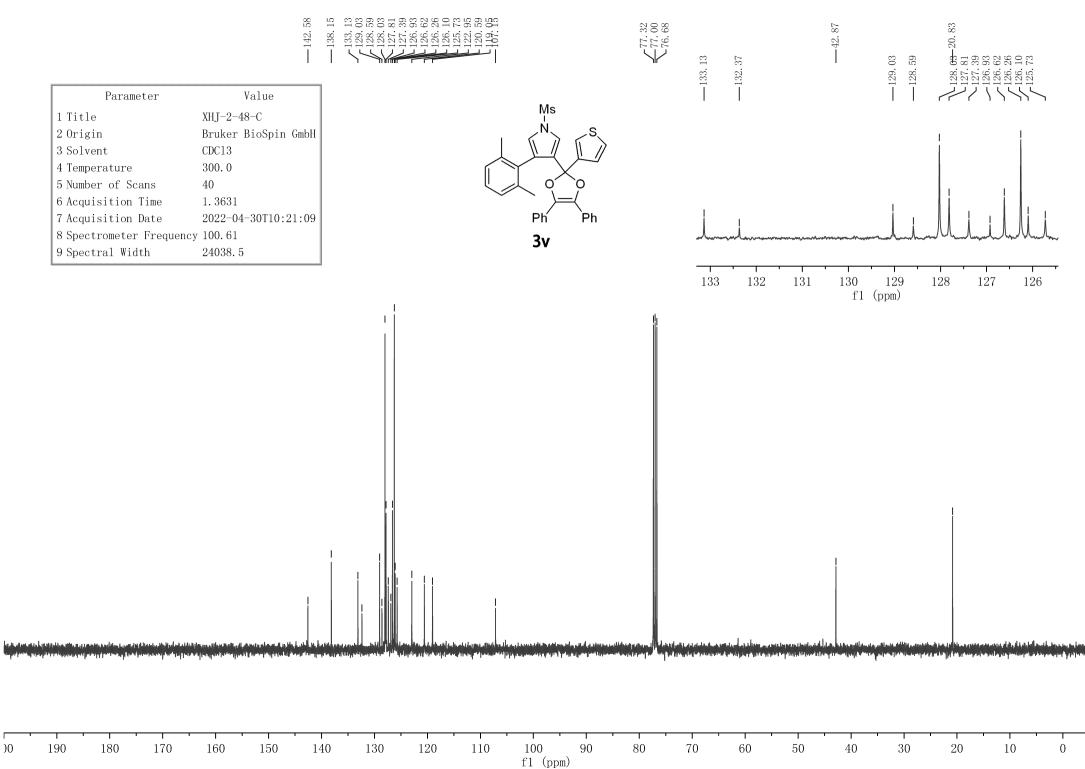


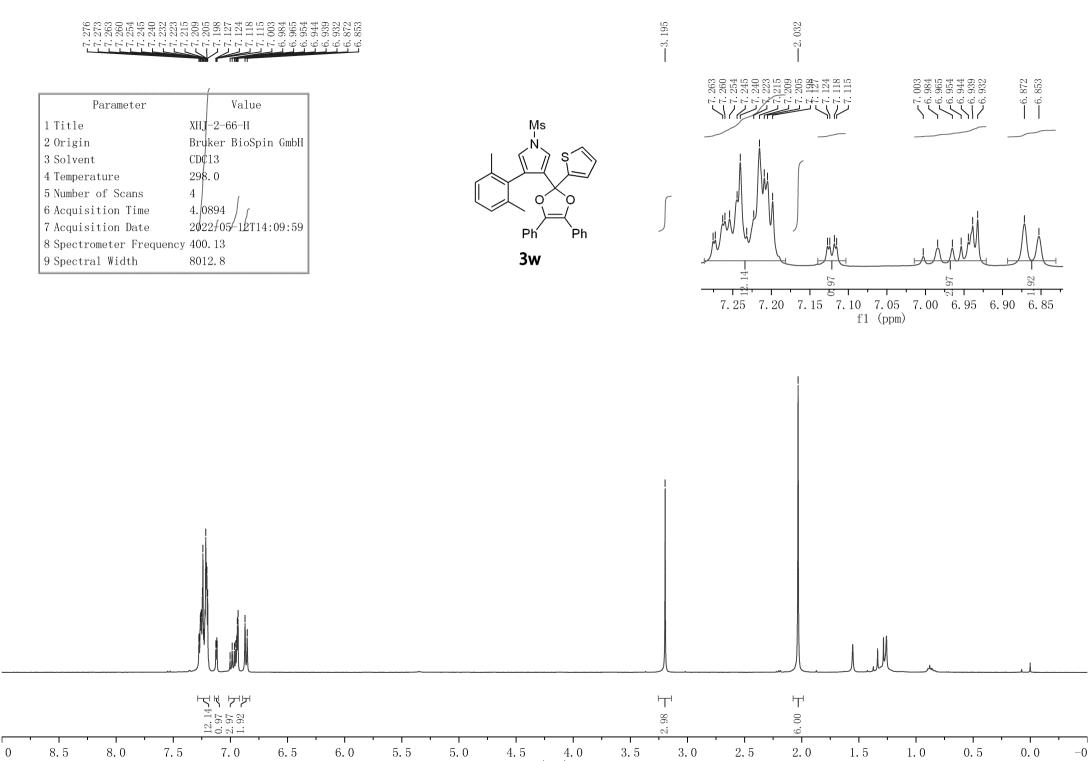




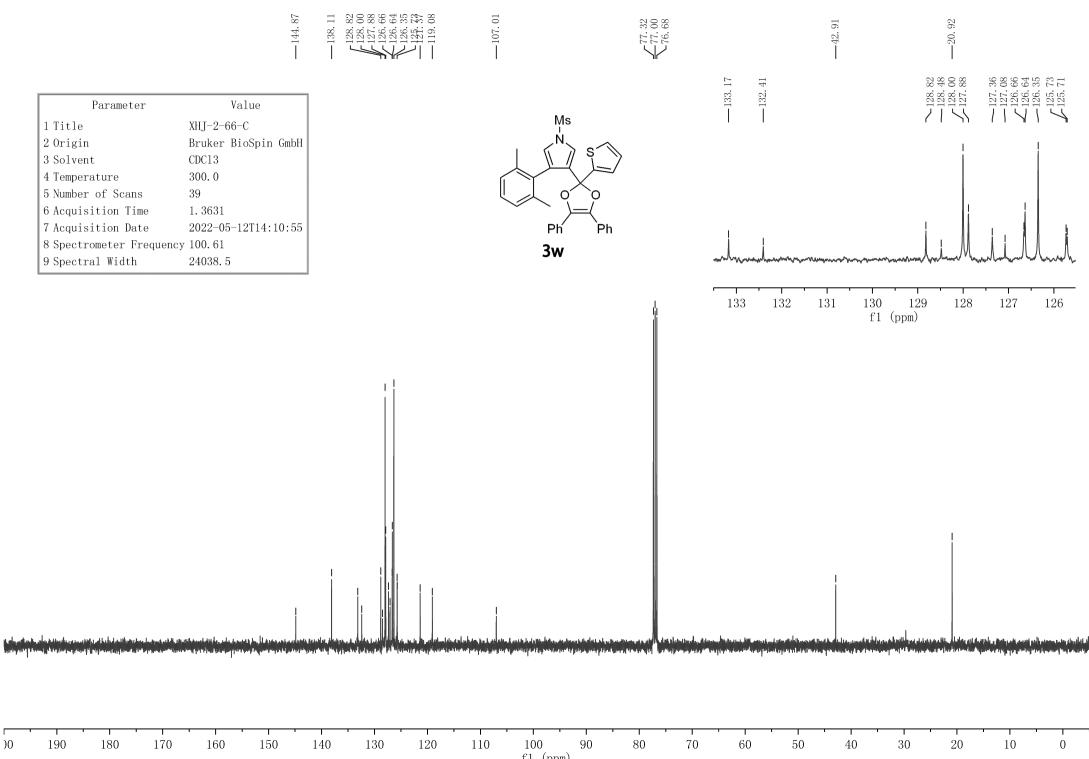
)()

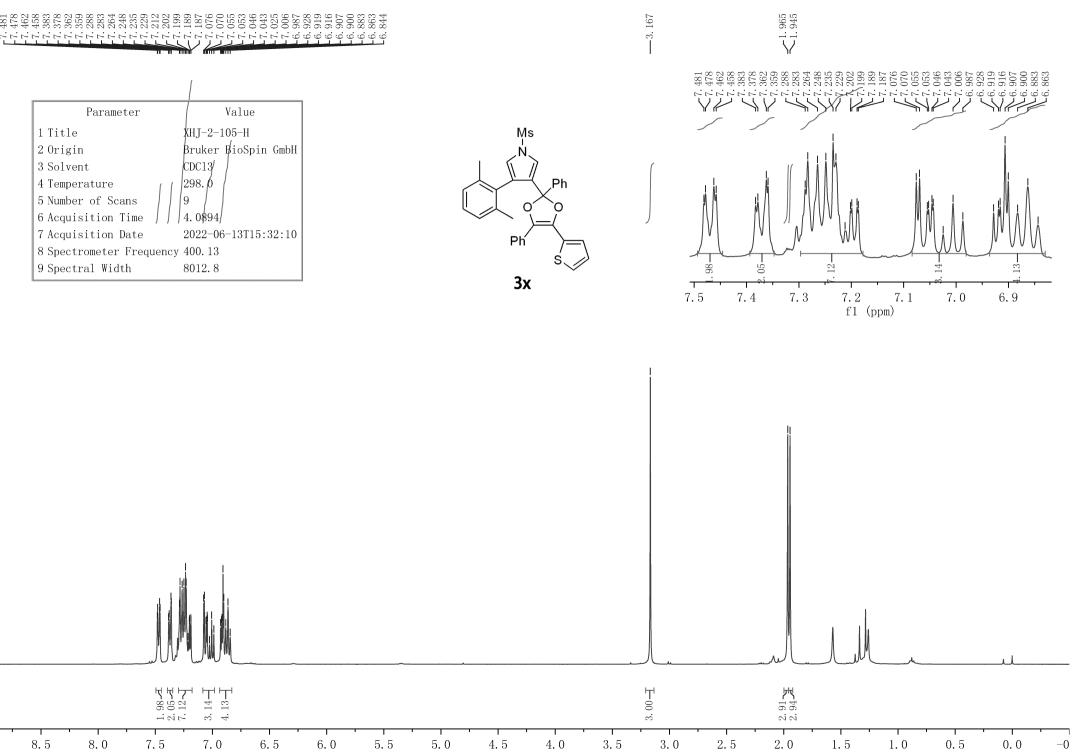


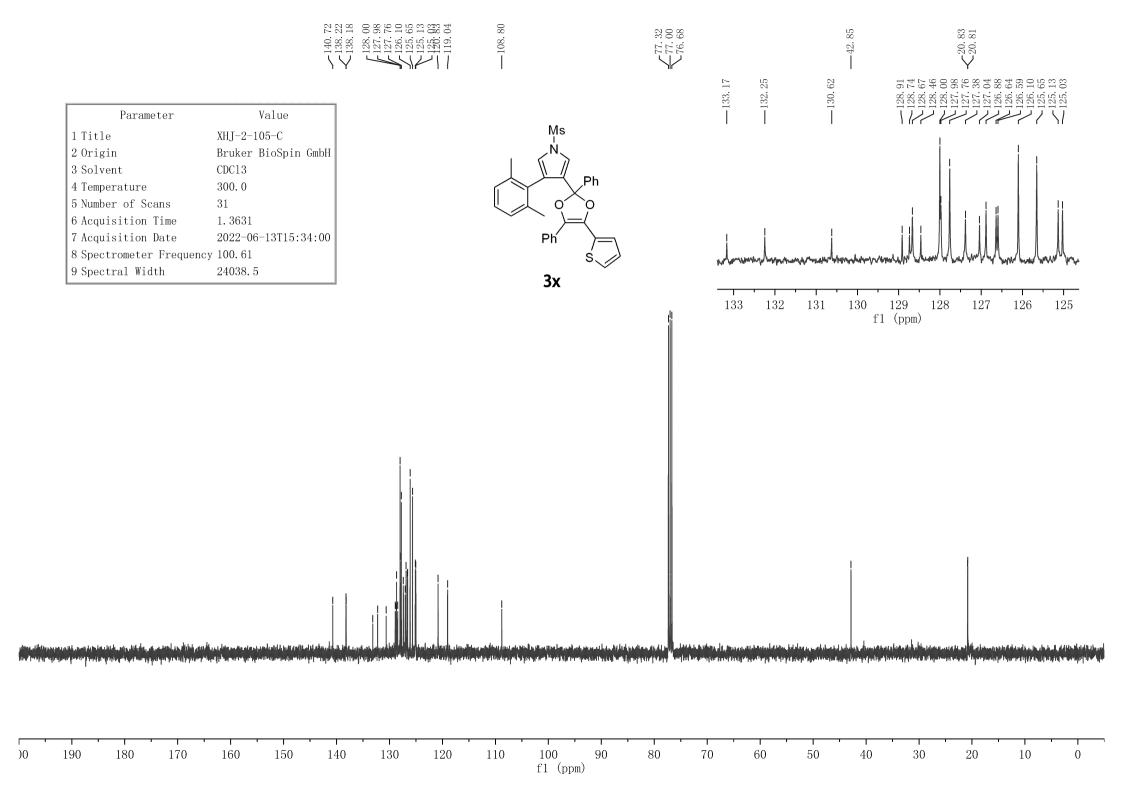


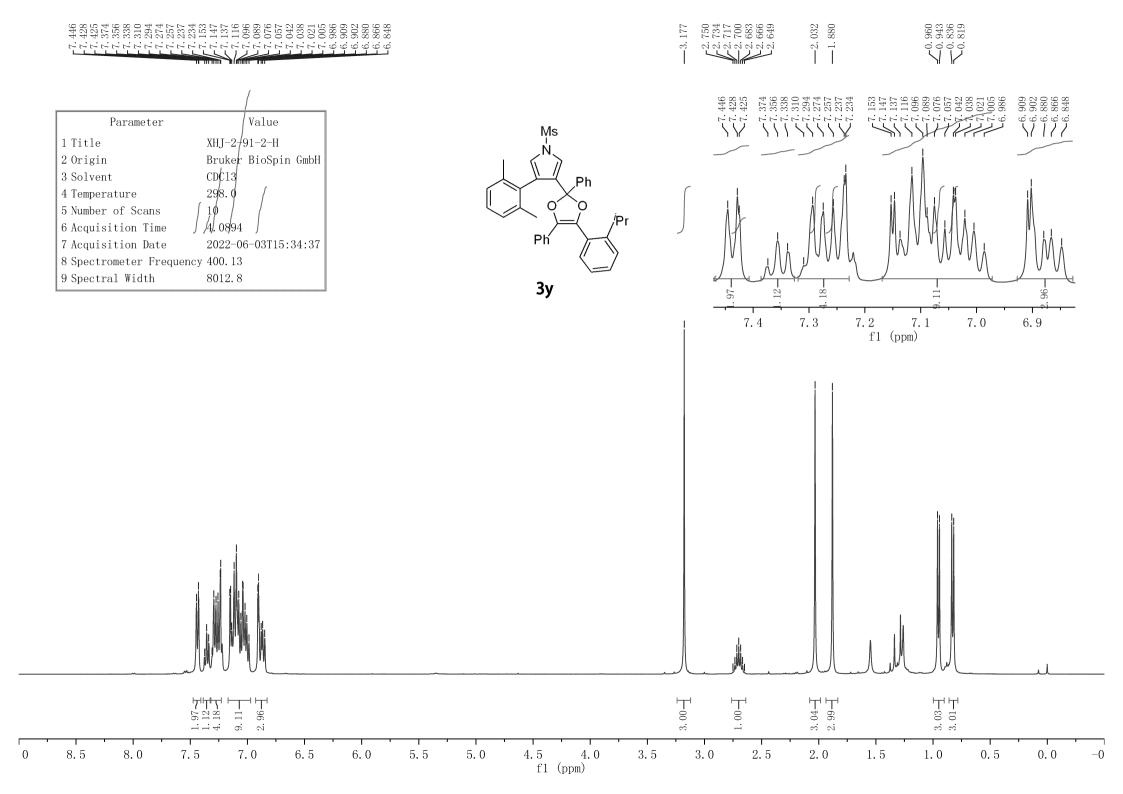

	138.37 137.99 136.32 136.32	122.12 123.73 129.10 127.97 127.69 127.69 127.65 127.65 127.65 127.65 127.65 127.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.65 126.75 126.65 126.75 127.75 126.75 127.75 126.75 127.75 126.75 127.75 126.75 127.75 127.75 126.75 127.75 126.75 127.75 12	-121.18 -119.19 -108.91	$\frac{77.\ 32}{76.\ 68}$			$<^{21.08}_{20.90}$	
	Value IJ-2-59-C-2		Мs			127.97 -127.69 127.41 127.29		
3 SolventCD4 Temperature305 Number of Scans406 Acquisition Time1.	3631 022-05-11T20:57:31		Ph	O Ph				
1	1038. 5		3u		128.5	127.5 f1 (مرسی میں میں میں میں میں میں میں میں میں می	. 5
							ļ	
ng manaka belang menangkan penangkan penangkan penangkan penangkan penangkan penangkan penangkan penangkan pen ngkan penangkan kan p	halla han na salaha, likansa kita sala dina na sida Paganan yati tanipan ngan yang bang na sala sa sa	ard Hang Canada a da a da ang na ang na Mang Dang Dagarana ang na ng na ng na ng na ang n Mang Dang Dagarana ang ng ng na ng na ang	ha den stan en el un den bas parta de mensió d'un en en en se se en	unitenten kantele de dan kenten para Mandalan kenten Yang tang dapat kenten kenten kenten dapat dapat dapat dapat Pana dapat dapat dapat dapat dapat dapat dapat dapat	ng ding kandang tanakan dang dang dang dang dang dang panganakan Perdang pengangkan dang dang dang dang dang dang dang da	a de a colo de a de colo de de la decontra de la sectión de pode y en gosta portes y secto y secto por de la grace y p	line in a minibilit na maantal a in di ka anta di anta Anta ina ang bina gina ang manganganganganganganganganganganganganga	dan tan kali dan dendera yakan kali metan penyelang bang dalam tan tan kali pertakan kali pertakan penyelang bang dalam tan kali pertakan kali pertakan kali pertakan kali pertakan kali pertakan kali pertakan ka
190 180 170 1	160 150 14	40 130 120	110 100 f1 (ppm)	90 80	70 60	50 40	30 20	10

f1 (ppm)

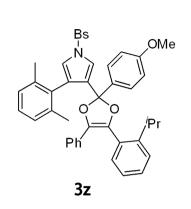


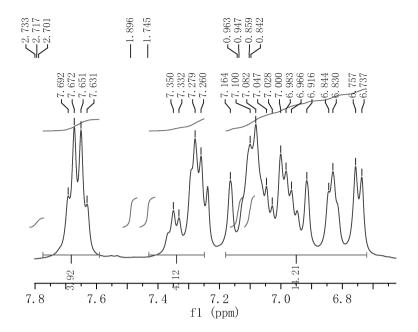

-0

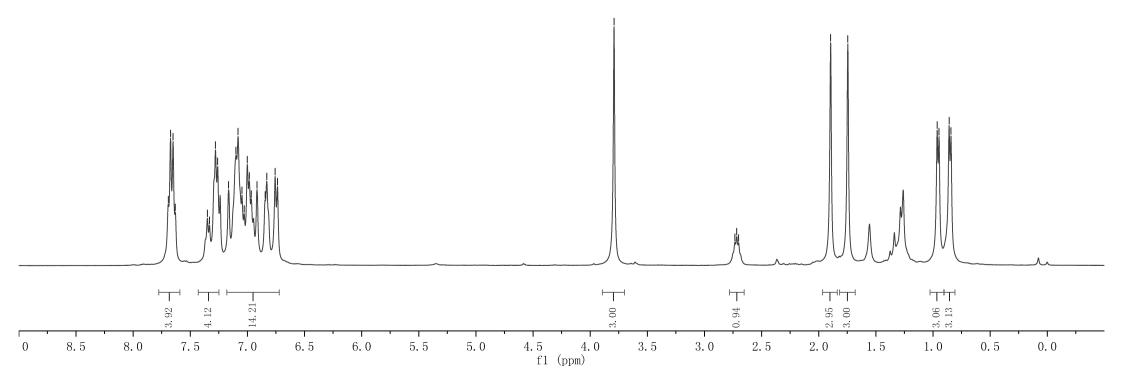


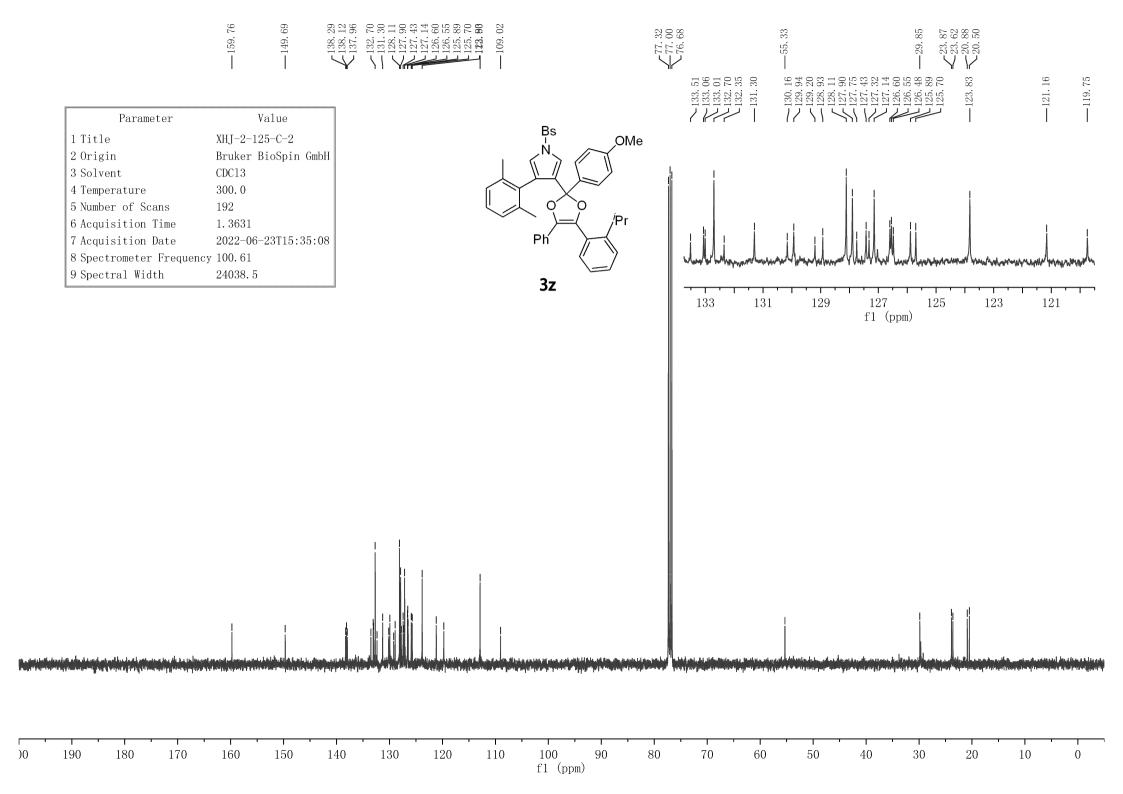


f1 (ppm)

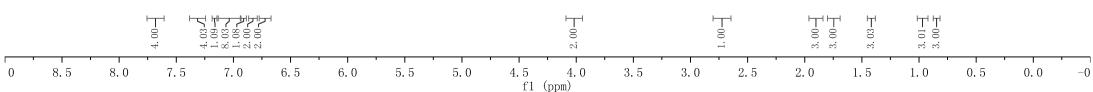


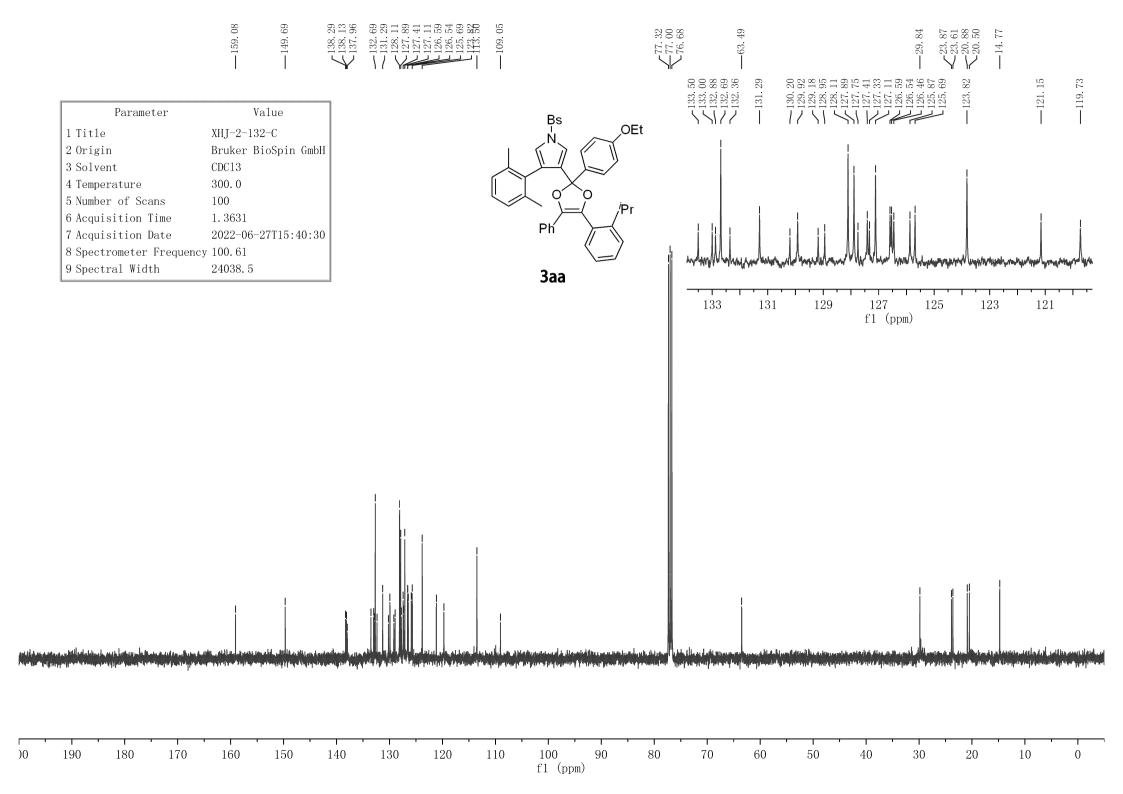

	—149.74	$\overbrace{-}^{-140.97}$	$ \begin{array}{c} 131. \\ 127. \\ 127. \\ 127. \\ 127. \\ 127. \\ 126. \\ 126. \\ 126. \\ 59 \\ 126. \\ 59 \\ 126. \\ 51 \\ 126. \\ 126$			$\underbrace{\swarrow^{77.32}_{76.68}}_{76.68}$				$\sum_{23.}^{29.}$	$\overline{20.63}$		
Parameter	Value				Ms	 ✓ 133. 57 ✓ 133. 10 ✓ 132. 48 						— 120. 84	00 011
1 Title 2 Origin 3 Solvent	XHJ-2-91-2-C Bruker BioSp: CDC13				Ph								
4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date	300.0 47 1.3631 2022-06-03T1	5:36:16			Ph	/Pr							
8 Spectrometer Frequen 9 Spectral Width					Зу	- Herentersentration	44444444444444444444444444444444444444	and name and a second second for			hulhaan maraana		Miwan
						132	2	130 128	126 f1 (ppm))	122	120	J
	1								1				
												ر والثلاء بدخلان والار او والاردور	
n de men kan kan an en en ekster for en handen er en ekster af de se dere skere ekster An jennen geseksegteret an de forset forset forset de se seren jennen for jen	the attraction property of the bary of		ernenblasslafisklif Waaghileneida blanasegy	teği devile parte dedar yaşırışırı	ng n	innin innin kiringi salah s		an a de a de la construction de la destruction de la destruction de la destruction de la destruction de la des Année de la destruction	in the second states of the second		ð Maibfeld af haf fa fh	#11.e41.jb.le.12	ų, in
te perskapi de denanske big skriptet in men forden de gege	felse militaren prover han der einen han der einen han bezeiten. Bereinen einen einen einen einen han bezeiten bei bezeiten.		enertheol doll Way through the serve	n fri			1494449m44444444					s-Information (1997)	ių initi

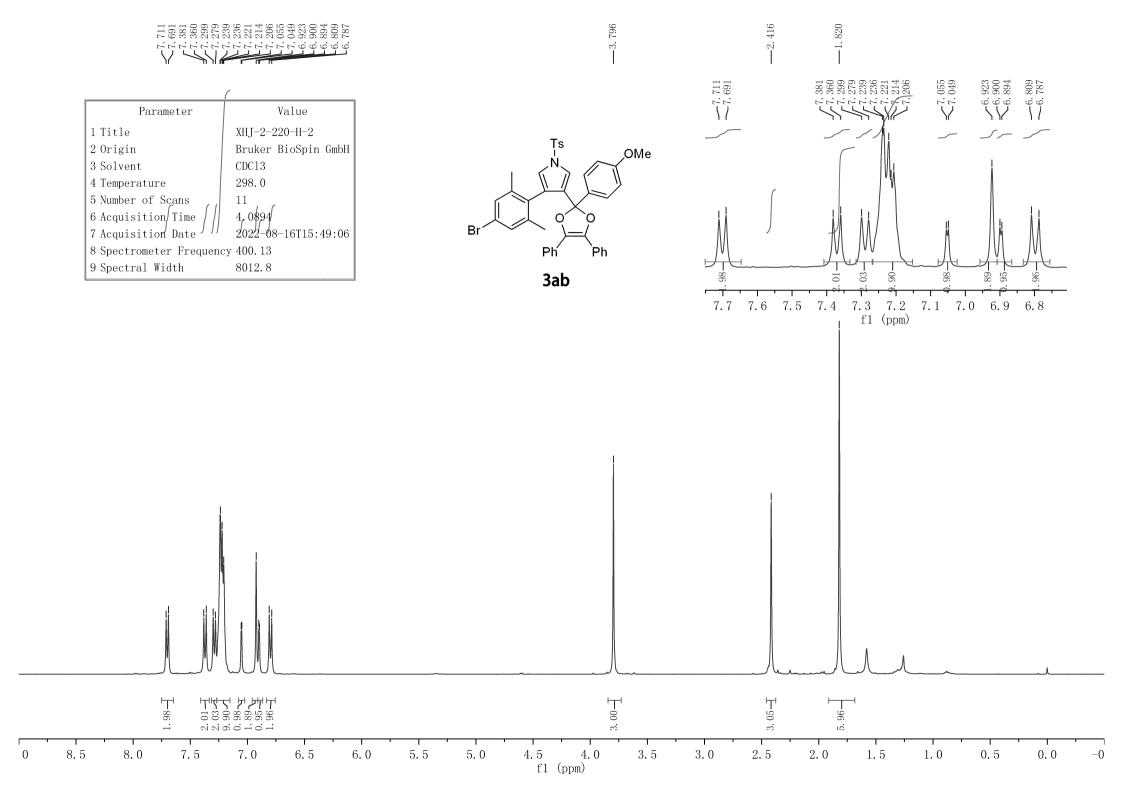

)0

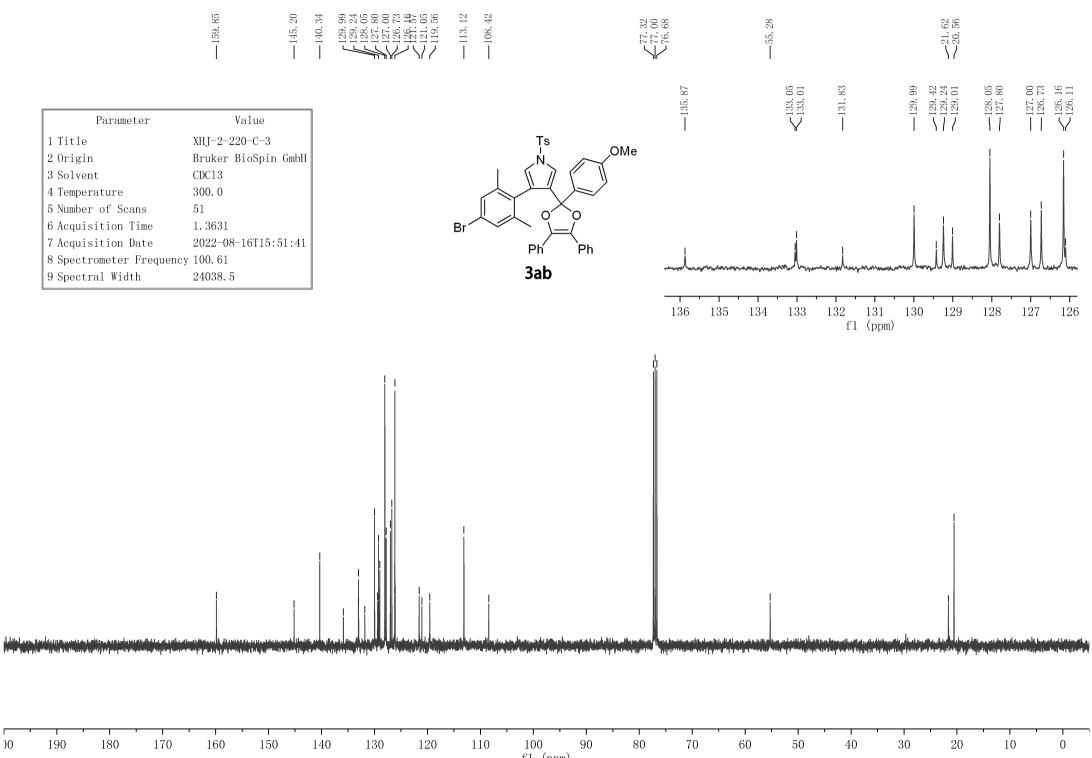

30.40	332 332 332 2560 164 1000 082 000 000 000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000000 00000 00000 000000 0000000 000000 00000000	
6666		

Parameter	Value
1 Title	ХНЈ-2-134-Н
2 Origin	Bruker/BioSpin GmbH
3 Solvent	CDC13/
4 Temperature	298. 0
5 Number of Scans	15
6 Acquisition Time	4. 0894
7 Acquisition Date	2022-06-28T10:54:01
8 Spectrometer Frequen	cy 400.13
9 Spectral Width	8012.8

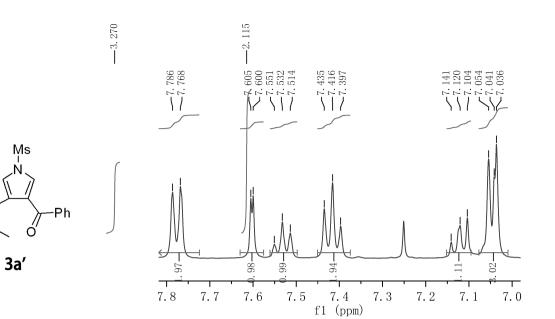


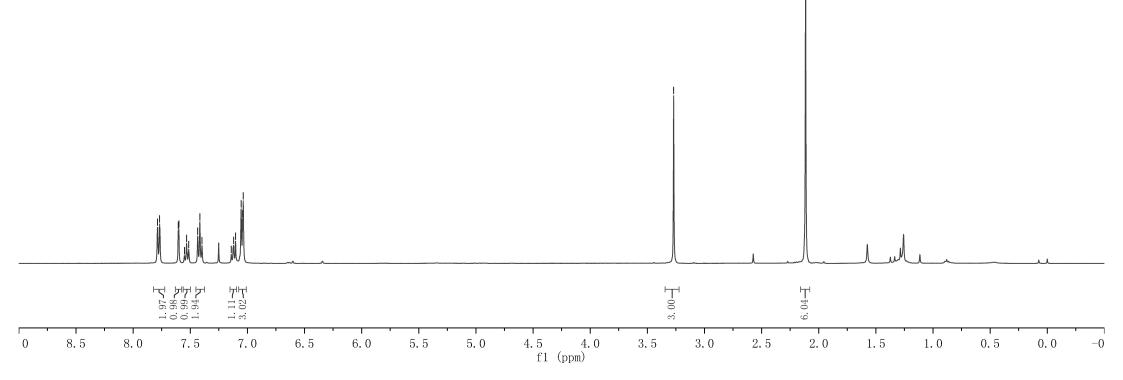








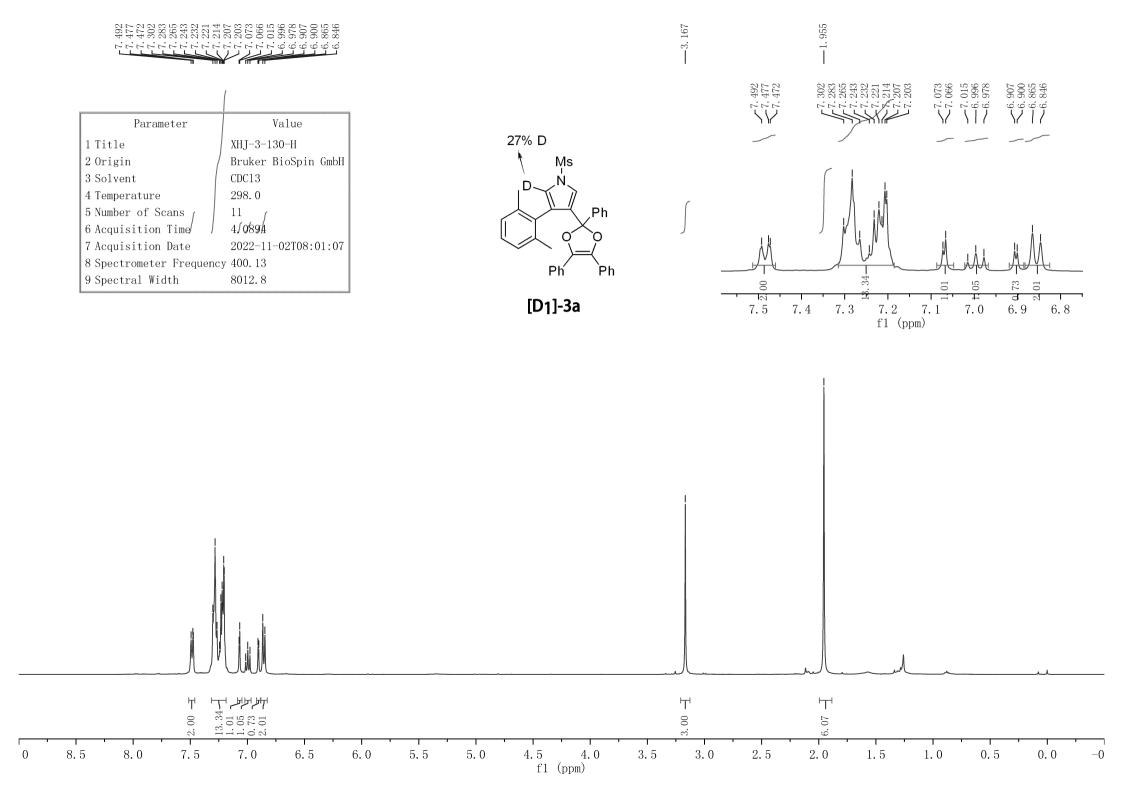


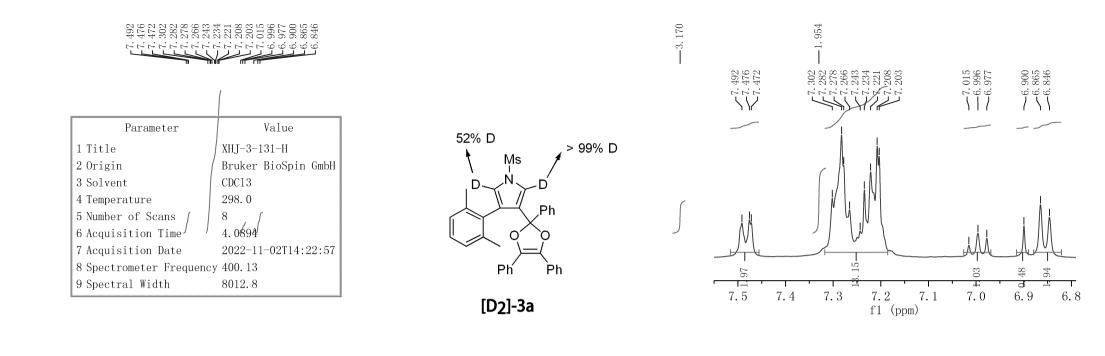


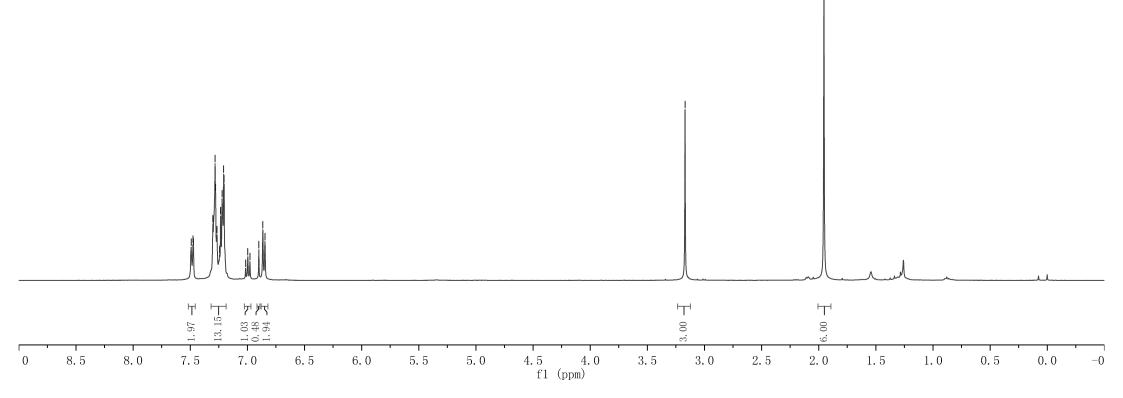
Parameter	Value
1 Title	XHJ-3-132-H-2
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298. 0
5 Number of Scans	6
6 Acquisition Time	/4. 0894
7 Acquisition Date	/ 2022-11-02T20:57:18
8 Spectrometer Frequenc	y 400.13
9 Spectral Width	8012.8

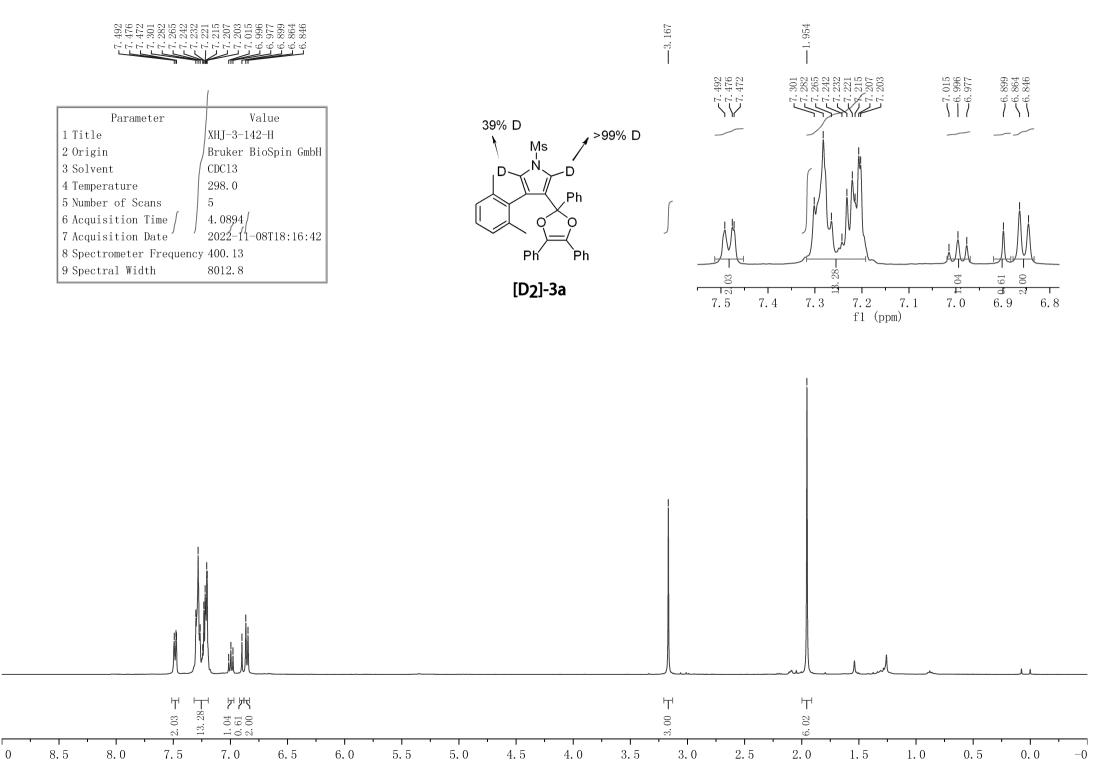
	138.28 136.966 132.48 127.129.13 127.61 127.08 129.46	$\frac{77.32}{77.6668}$			20.94	
ParameterValue1 TitleXHJ-3-132-C-22 OriginBruker BioSpin GmbH	Ms			✓ 132.48 ✓ 132.16	$\begin{array}{c} 129.13\\ 128.36\\ 128.13\\ 127.61\\ 127.61\\ 126.05\\ 126.15\end{array}$	— 119. 40
2 GrightDialet Disspin chain3 SolventCDC134 Temperature300.05 Number of Scans526 Acquisition Time1.3631		n	1			
7 Acquisition Date2022-11-02T20:58:318 Spectrometer Frequency 100.619 Spectral Width24038.5	3a'				a a constant a la factoria da la constanti a constanti da la constanti da la constanti da constanti da constant	มรั _{นสา} นทุญภาพรูปประก
	_		138 136 1	.34 132	130 128 126 124 f1 (ppm)	122 120 118
		h W				
	1! 1					

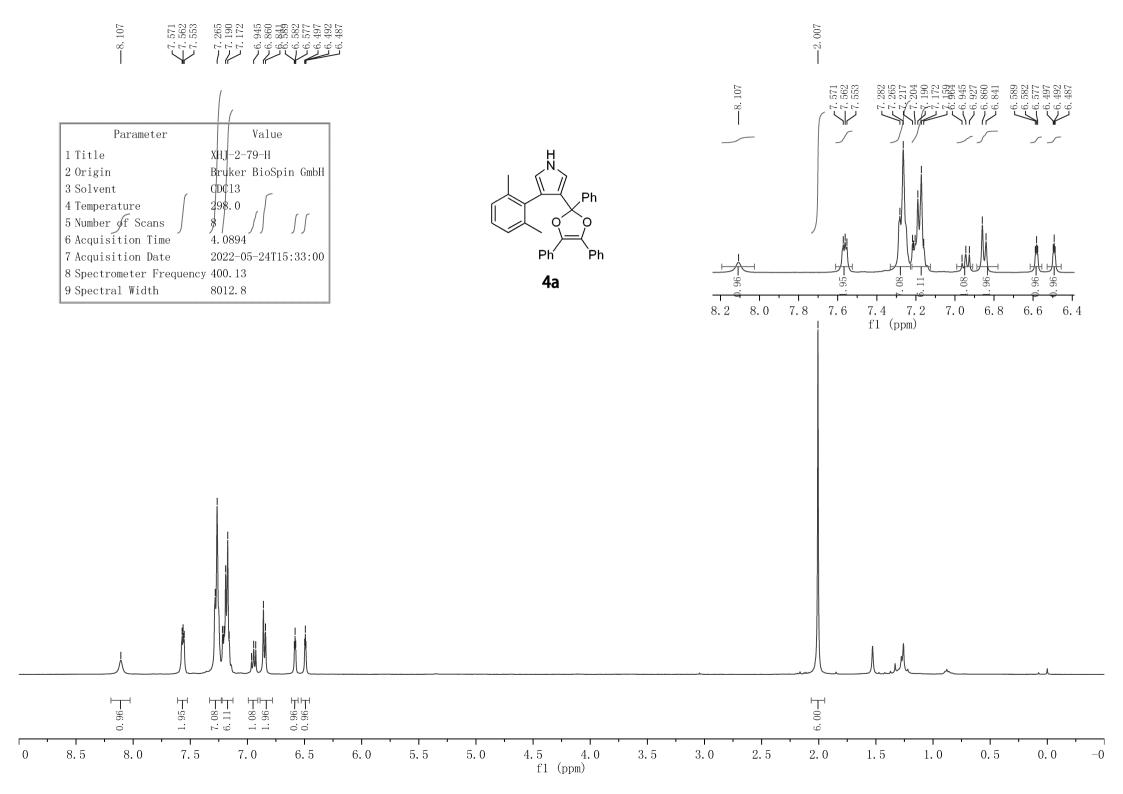
	1 1			·						1	·			'				1		· · · ·
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (pp	om)									

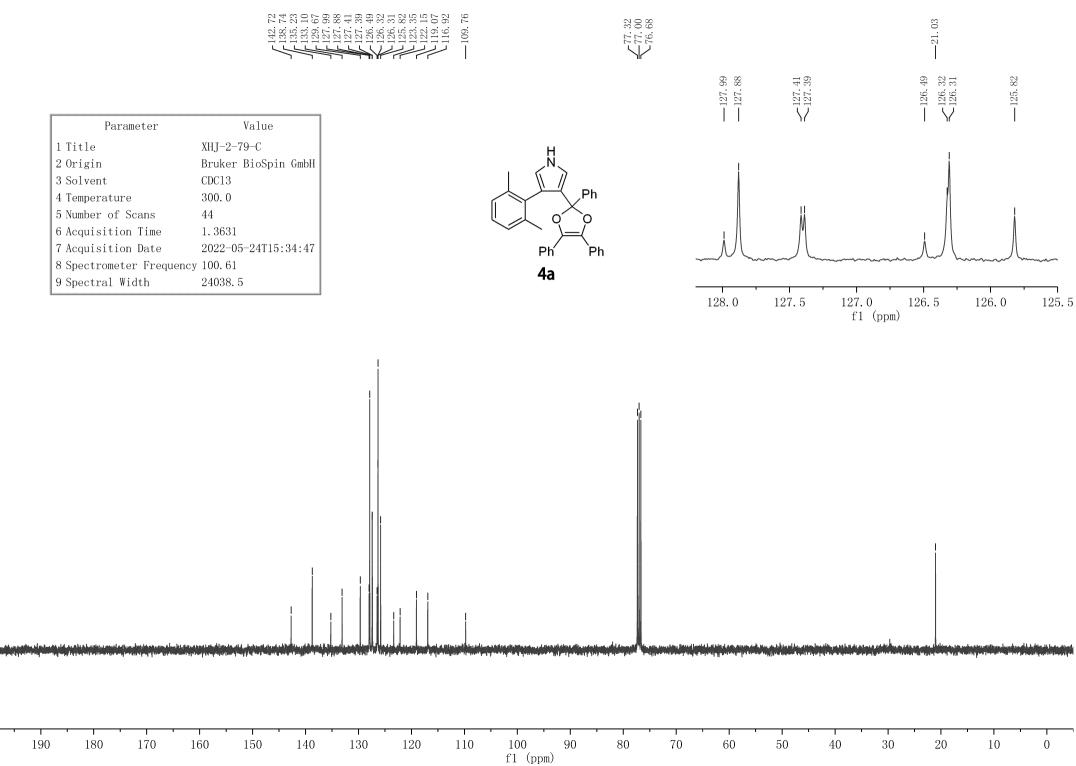

ALCONTRACTOR OF


stand and been been and the stand and the stand to search the stand to the stand t

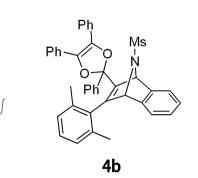

a Allia Bala

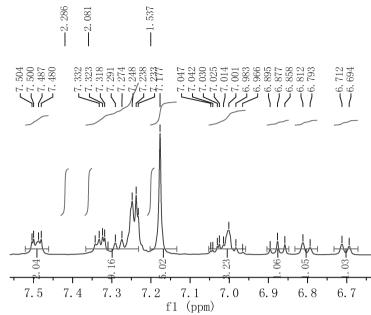

11 11 11 11

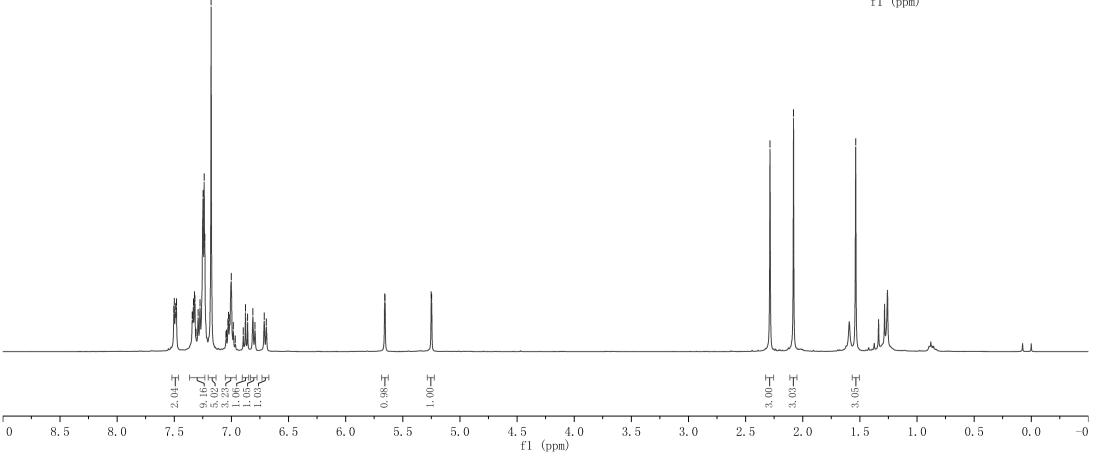


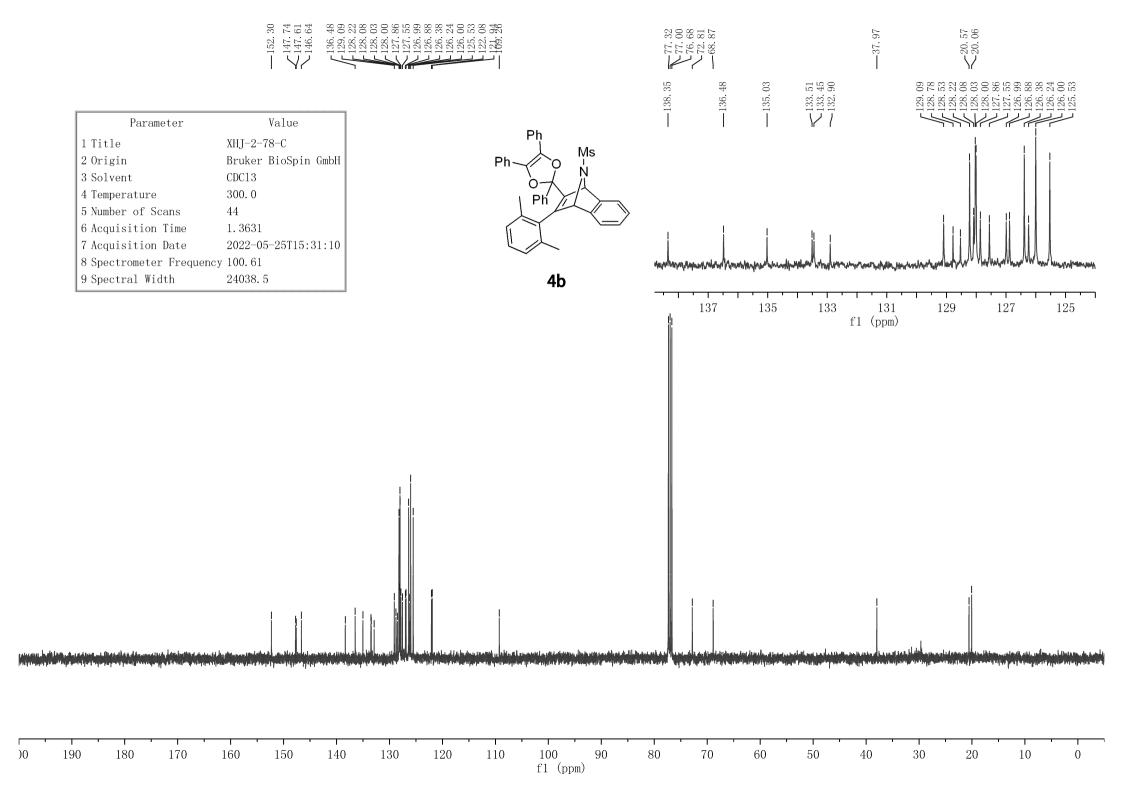


f1 (ppm)




)()




Parameter	Value
1 Title	ХНЈ-2-78-Н
2 Origin	B ŕ uker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298. Ø
5 Number of Scans	16
6 Acquisition Time / /	4.0894///
7 Acquisition Date	2022-05-25T15:29:15
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

ſ

