Dearomative Tandem Annulation to Access Chiral Indoline-Fused Bicycle[2.2.2]octanes using the Modularly Designed Organocatalysts

 Long $\mathrm{Li}^{* c}$ and Bo Han*b,c
${ }^{\text {a. Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan }}$ Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China
${ }^{b}$ State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China. E-mail: hanbo@cdutcm.edu.cn
c.Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China. E-mail: lijunlong709@hotmail.com

Supporting Information

Table of Contents

1. General Information 2
2. Optimization of Reaction Conditions 4
3. General Procedure for the Dearomative Tandem Annulations 6
4. Synthetic Applications 19
5. Crystal Data and Structure Refinement for 5d 22
6. References and Notes 23
7. Copies of NMR Spectra 24

1. General Information

General Procedures. All reactions were performed in oven-dried or flame-dried reaction vessels, modified Schlenk flasks, or round-bottom flasks. The flasks were fitted with Teflon screw caps and reactions were conducted under an atmosphere of argon if needed. Gas-tight syringes with stainless steel needles were used to transfer air- and moisture-sensitive liquids. All moisture and/or air sensitive solid compounds were manipulated inside normal desiccators. Flash column chromatography was performed over silica gel ($40-45 \mu \mathrm{~m}, 300-400$ mesh $)$.

Analytical thin layer chromatography (TLC) was performed on silica gel HSGF 254 glass plates (purchased from Jiangyou silica gel development Co., Ltd, Yantai, China) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light $(254 \mathrm{~nm})$ or I_{2} and to a solution of $\mathrm{KMnO}_{4}\left(1 \mathrm{~g}\right.$ of $\mathrm{KMnO}_{4}, 6 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.1 g of KOH in 100 mL of $\mathrm{H}_{2} \mathrm{O}$) or vanillin (2 g of vanillin and 4 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL of EtOH) followed by heating.

Organic solutions were concentrated at $30-40^{\circ} \mathrm{C}$ on rotary evaporators at $\sim 80 \mathrm{mbar}$ followed by drying on vacuum pump below 1 mbar. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated.

Materials. Commercial reagents and solvents were obtained from Adamas-beta, Aldrich Chemical Co., Alfa Aesar, Macklin and Energy Chemical and used as received with the following exceptions: THF and toluene were purified by refluxing over Na-benzophenone under positive argon pressure followed by distillation. ${ }^{1}$ The 3 -nitroindoles $\mathbf{1}^{2}$ and trans-7-oxo-5-heptenals $\mathbf{2}^{3}$ were prepared according to literature procedure.

Instrumentation.

> Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were measured on a JEOL JNMECZ600R/S1 spectrometer at ambient temperature for ${ }^{1} \mathrm{H}$ at 600 MHz . Proton chemical shifts are reported in parts per million (δ scale), and are referenced using tetramethylsilane (TMS) as an internal standard or residual protium in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 7.26\left(\mathrm{CHCl}_{3}\right)\right.$ or DMSO- d_{6} : $\left.\delta 2.50\left(\mathrm{CD}_{2} \mathrm{HSOCD}_{3}\right)\right)$. Data are reported as follows: chemical shift [multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, brs $=$ broad singlet), coupling constant(s$)(\mathrm{Hz})$, integration].
> Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra measured on a JEOL JNMECZ600R/S1 spectrometer at ambient temperature for ${ }^{13} \mathrm{C}$ at 151 MHz. . Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon
resonances of the solvent $\left(\delta 77.00\left(\mathrm{CDCl}_{3}\right)\right.$ or $\delta 39.52\left(\mathrm{DMSO}-d_{6}\right)$). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment $\left(\mathrm{C}_{\mathrm{q}}=\right.$ fully substituted carbon)].
> High resolution mass spectra (HRMS) were performed on an Agilent 6230 time-of-flight (TOF) LC/MS instrument or a Waters SYNAPT G2 mass spectrometer by using an electrospray ionization (ESI) ionization source analyzed by quadrupole time-of-flight (QTOF). Melting points were determined on a SGW X-4 digital melting point apparatus and temperatures were not corrected.
> Enantiomeric excess (ee) values were determined on an Agilent 1260 Infinity II chiral HPLC or Waters ACQUITY UPC ${ }^{2}$ using Daicel CHIRALPAK® IC columns with 2-propanol and hexane or CO_{2} as eluent.
$>$ Optical rotation was measured with a Rudolph Autopol IV automatic polarimeter at $20{ }^{\circ} \mathrm{C}$ using 100 mm cell of 2.5 mL capacity, and $[\alpha]_{D}{ }^{20}$ values reported in degrees; concentration (c) is in $10 \mathrm{mg} / \mathrm{mL}$.
> Melting points were determined on an OptiMelt Automated Meling Point System using open glass capillaries and temperatures were not corrected, reported in degrees Celsius.

2. Optimization of Reaction Conditions.

Table S1. Optimization of the asymmetric dearomative tandem reactions. ${ }^{a}$

Entry	Cat.	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$5 \mathrm{a} / 6 \mathrm{a}^{\text {b }}$	Yield of $\mathbf{6 a}$ (\%) ${ }^{c}$	$\begin{gathered} \text { Yield of 5a } \\ (\%)^{d} \\ \hline \end{gathered}$	Ee (\%) ${ }^{e}$
1	3a/4a	Tol	rt	75:25	24	71	87
2	3a/4a	DCM	rt	ND	<5	<5	ND
3	3a/4a	MeCN	rt	ND	<5	<5	ND
4	3a/4a	THF	rt	ND	<5	<5	ND
5	3a/4a	$i \mathrm{Pr}_{2} \mathrm{O}$	rt	ND	<5	<5	ND
6	3a/4a	Actone	rt	ND	<5	<5	ND
7	3a/4a	p-Xylene	rt	60:40	23	36	82
8	3a/4a	o-Xylene	rt	62:38	35	56	84
9	3a/4a	m-Xylene	rt	57:43	38	52	83
10	3a/4a	Mesitylene	rt	54:46	33	40	83
11	3a/4a	PhCl	rt	53:47	43	49	78
12	3a/4a	PhF	rt	55:45	34	41	75
13	3 a	Tol	rt	ND	<5	<5	ND
14	4a	Tol	rt	ND	<5	<5	ND

15	3a/4b	Tol	rt	ND	<5	<5	ND
16	3b/4b	Tol	rt	71:29	26	64	84
17	$3 \mathrm{~b} / 4 \mathrm{a}$	Tol	rt	ND	<5	<5	ND
18	3c/4a	Tol	rt	68:34	30	58	77
19	3d/4a	Tol	rt	70:30	28	65	76
20	3e/4a	Tol	rt	81:19	16	66	0
21^{f}	3f/4a	Tol	rt	ND	<5	<5	ND
23	$3 \mathrm{a} / 4 \mathrm{c}$	Tol	rt	ND	<5	<5	ND
24	3a/4d	Tol	rt	ND	<5	<5	ND
25	3a/4e	Tol	rt	ND	<5	<5	ND
26^{9}	3a/4a	Tol	rt	74:26	15	41	80
27^{h}	3a/4a	Tol	rt	71:29	10	23	82
28	3a/4a	Tol	60	ND	<5	<5	ND
29	3a/4a	Tol	0	88:12	11	80	98
30^{i}	3a/4a	Tol	0	73:27	21	56	94
31^{j}	3a/4a	Tol	0	ND	<5	<5	ND

${ }^{a}$ The reactions were carried out with $\mathbf{1 a}(0.10 \mathrm{mmol})$, $\mathbf{2 a}(0.15 \mathrm{mmol}), \mathbf{3}(0.02 \mathrm{mmol})$ and $\mathbf{4}(0.04 \mathrm{mmol})$ in solvent $(1.0 \mathrm{~mL})$.
${ }^{b}$ The ratio of $\mathbf{5 a}$ and $\mathbf{6 a}$ was determined by crude ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c}$ Yield of $\mathbf{6 a}$ were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{d}$ Isolated yield of $\mathbf{5 a}$. ${ }^{e}$ Determined by chiral-phase HPLC analysis of $\mathbf{5 a}$. ${ }^{f} 0.2 \mathrm{~mL}$ of $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ (aq.) was added. ${ }^{g} \mathbf{3}(0.02 \mathrm{mmol})$ and $\mathbf{4}(0.02 \mathrm{mmol})$ were used. ${ }^{h} \mathbf{3}(0.02 \mathrm{mmol})$ and $\mathbf{4}(0.01$ mmol) were used. ${ }^{i}$ Concentration was increased to 0.2 M using 0.5 mL of Tol. ${ }^{j} 4 \AA \mathrm{MS}(80 \mathrm{mg})$ was added. NR: no reaction.

3. General Procedure for the Dearomative Tandem Annulations

3.1 General Procedure for the Asymmetric Dearomative Tandem Annulations to Synthesize Bridged-ring Indoline Products 5

To a glass tube were added $\mathbf{3 a}(0.02 \mathrm{mmol}), \mathbf{4 a}(0.04 \mathrm{mmol})$ and $\mathbf{1}(0.1 \mathrm{mmol})$ in $\mathrm{Tol}(1.0$ $\mathrm{mL})$. After the mixture cooled to $0{ }^{\circ} \mathrm{C}, 2(0.15 \mathrm{mmol})$ was added and the resulting suspension stirred at $0{ }^{\circ} \mathrm{C}$ until complete conversion of 3-nitroindoles as indicated by TLC. Then the reaction mixture was purified by column chromatography on silica gel to afford the corresponding products 5 , which were dried under vacuum and further analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS, HPLC, etc.

3.2 Gram-scale Synthesis of the Product 5a

To a glass tube were added $\mathbf{3 a}(0.2 \mathrm{mmol}), \mathbf{4 a}(0.4 \mathrm{mmol})$ and $\mathbf{1 a}(2.0 \mathrm{mmol})$ in $\mathrm{Tol}(20 \mathrm{~mL})$. After the mixture cooled to $0{ }^{\circ} \mathrm{C}, \mathbf{2 a}(3.0 \mathrm{mmol})$ was added and the resulting suspension stirred at $0{ }^{\circ} \mathrm{C}$ until complete conversion of 3 -nitroindoles as indicated by TLC. Then the reaction mixture was purified by column chromatography on silica gel to afford the product $\mathbf{5 a}$ (674.2 mg) as white solid in 65% yield. The enantiomeric excess of the product was determined to be 98\% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$).

((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-

ethanocarbazol-3-yl)(phenyl)methanone 5a

Prepared according to the general procedure to afford 5a (41.5 mg, m. p. $=197.8-201.1^{\circ} \mathrm{C}$) in 80% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the product was determined to be 98% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=18.12 \mathrm{~min}$, tminor $=14.55 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-160.3\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 5a:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.16$ - $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.47$ (td, $J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 198.9, 145.1, 143.0, 136.9, 133.5, 132.7, 132.5, 129.9, $129.0,127.7,127.6,127.0,125.1,125.0,116.1,97.3,66.0,64.0,44.1,38.0,36.6,21.6,15.9$, 15.1.

HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$519.1584; found 519.1584.

(4-fluorophenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-

 hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5b

Prepared according to the general procedure to afford $\mathbf{5 b}\left(33.8 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=216.7-218.9^{\circ} \mathrm{C}\right)$ in 63% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 96% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=15.34 \mathrm{~min}$, tminor $=10.50 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-171.3\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ NMR and HRMS data for the product $5 \boldsymbol{5 b}$:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.12$ $-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 197.1, $165.8\left(\mathrm{C}-\mathrm{F},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=255.9 \mathrm{~Hz}\right), 145.2,143.0$, $133.4\left(\mathrm{C}-\mathrm{F},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 132.6,132.5,130.4\left(\mathrm{C}-\mathrm{F},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.1 \mathrm{~Hz}\right), 129.9,127.6,127.0$, $125.1,124.9,116.1\left(\mathrm{C}-\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right), 116.1,97.2,66.0,64.0,44.1,38.0,36.6,21.6,15.8$, 15.1.
${ }^{19}$ F NMR ($\mathbf{5 6 4} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): -103.88--103.93 (m, 1F).
HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$559.1310; found 559.1308.

(4-chlorophenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-

 hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5c

Prepared according to the general procedure to afford 5c (35.9 mg, m. p. $\left.=221.7-224.6^{\circ} \mathrm{C}\right)$ in 65% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 91% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=21.29 \mathrm{~min}$, tminor $=15.88 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-182.8\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ NMR and HRMS data for the product 5c:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.13(\mathrm{~m}$, 2H), $1.49-1.45$ (m, 1H), $1.38-1.32(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 197.4, 145.2, 143.0, 139.9, 135.4, 132.6, 132.5, 129.9, $129.3,129.1,127.7,127.0,125.1,124.9,116.1,97.2,66.0,64.0,44.3,38.0,36.5,21.6,15.8$, 15.2.

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+} 553.1195, \mathrm{C}_{28} \mathrm{H}_{26}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$ 555.1165; found 553.1202, 555.1171.

(4-bromophenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-

hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5d

Prepared according to the general procedure to afford $\mathbf{5 d}\left(36.4 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=220.4-224.5^{\circ} \mathrm{C}\right)$ in 61% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 95% by chiral HPLC analysis on Chiralpak IC column (15% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=14.51 \mathrm{~min}$, tminor $=11.76 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-296.7\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
NMR and HRMS data for the product 5d:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 197.6, 145.2, 142.9, 135.8, 132.5, 132.2, 129.9, 129.2, 128.6, 127.6, 127.0, 125.1, 124.9, 116.1, 97.2, 65.9, 64.0, 44.3, 38.0, 36.5, 21.6, 15.8, 15.1.

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$597.0689, $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$ 599.0669; found 597.0679, 599.0669.
($(1 S, 2 S, 3 R, 4 S, 4 \mathrm{a} R, 9 \mathrm{aS})$-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-ethanocarbazol-3-yl)(p-tolyl)methanone 5e

Prepared according to the general procedure to afford 5e (34.6 mg, m. p. $\left.=212.9-215.6^{\circ} \mathrm{C}\right)$ in 65% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak IC column (15% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=25.09 \mathrm{~min}$, tminor $=20.11 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-289.5\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
NMR and HRMS data for the product 5 e:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 198.8, 145.1, 144.7, 143.0, 134.3, 132.8, 132.5, 129.9, 129.7, 127.9, 127.6, 127.1, 125.0, 116.1, 97.4, 66.0, 64.0, 43.7, 38.1, 36.8, 21.6, 21.6, 15.9, 15.1.

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$533.1741; found 533.1734.

(4-ethylphenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-

hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5 f

Prepared according to the general procedure to afford $\mathbf{5 f}\left(34.4 \mathrm{mg}, \mathrm{m}\right.$. p. $\left.=194.7-198.0^{\circ} \mathrm{C}\right)$ in 63% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 95% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=22.62 \mathrm{~min}$, tminor $=18.40 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-216.7\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product $5 \boldsymbol{f}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.28(\mathrm{~m}$, $1 \mathrm{H}), 1.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 198.8, 150.8, 145.0, 143.0, 134.4, 132.8, 132.5, 129.8, $128.5,128.0,127.6,127.1,125.0,125.0,116.1,97.4,66.0,64.0,43.7,38.1,36.8,28.9,21.6$, 15.9, 15.1, 15.0.

HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$547.1897; found 547.1893.

Prepared according to the general procedure to afford $\mathbf{5 g}\left(34.0 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=184.7-187.1^{\circ} \mathrm{C}\right)$ in 62% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 94% by chiral HPLC analysis on Chiralpak IC column (40\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=14.68 \mathrm{~min}$, tminor $=10.45 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-163.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ NMR and HRMS data for the product $\mathbf{5 g}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.48(\mathrm{~m}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.32-$ 1.26 (m, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 197.9, 163.9, 145.0, 143.1, 132.9, 132.5, 130.2, 129.9, $129.6,127.6,127.1,125.0,116.2,114.2,97.4,66.0,64.0,55.6,43.1,38.2,37.1,21.6,16.0$, 15.1.

HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}$549.1690; found 549.1695.

(3-chlorophenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5 h

Prepared according to the general procedure to afford $\mathbf{5 h}\left(40.4 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=192.4-195.9^{\circ} \mathrm{C}\right)$ in 73% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 92% by chiral HPLC analysis on Chiralpak IC column (15% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm, tmajor $=11.84 \mathrm{~min}$, tminor $=10.32 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-208.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 5h:

${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64$ $(\mathrm{s}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.50-$ $1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl3) $\boldsymbol{\delta}$ (ppm): 197.5, 145.2, 142.9, 138.6, 135.3, 133.3, 132.6, 130.2, $129.9,127.9,127.6,126.9,125.7,125.2,124.9,116.2,97.2,65.9,63.9,44.3,37.9,36.5,21.6$, 15.8, 15.1 .

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: \quad[\mathbf{M}+\mathbf{N a}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{25}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+} \quad 575.1014$, $\mathrm{C}_{28} \mathrm{H}_{25}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$577.0985; found 577.0995.
((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-ethanocarbazol-3-yl)(3-methoxyphenyl)methanone 5 i

Prepared according to the general procedure to afford $5 \mathbf{i}\left(39.5 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=167.9-170.2{ }^{\circ} \mathrm{C}\right)$ in 72% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak IC column (30\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm, tmajor $=11.82 \mathrm{~min}$, tminor $=9.95 \mathrm{~min} ;[\alpha]^{20}=-188.3\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 5i:
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-$ $4.52(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.44$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 198.7, 160.1, 145.1, 143.0, 138.3, 132.7, 132.5, 130.0, $129.8,127.6,127.0,125.1,125.0,120.0,120.0,116.1,112.1,97.3,66.0,64.0,55.4,44.2,38.0$, 36.6, 21.6, 15.9, 15.1.

HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}$549.1690; found 549.1697.

(3,4-dichlorophenyl)((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-

 hexahydro-1H-1,4-ethanocarbazol-3-yl)methanone 5 j

Prepared according to the general procedure to afford $\mathbf{5 j}\left(38.8 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=211.5-214.6^{\circ} \mathrm{C}\right)$ in 66% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 91% by chiral HPLC analysis on Chiralpak IC column (15% 2-propanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=11.26 \mathrm{~min}$, tminor $=9.15 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-92.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ NMR and HRMS data for the product $\mathbf{5 j}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.48-$ $1.42(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $196.4,145.2,142.9,137.9,136.7,133.6,132.6,132.5$, $130.9,129.9,129.7,127.6,126.9,126.6,125.3,124.9,116.2,97.1,65.9,63.9,44.4,37.9,36.4$, 21.6, 15.7, 15.1.

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{N a}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{35} \mathrm{Cl}^{35} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$609.0624, $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$611.0595, $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{37} \mathrm{Cl}^{37} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$613.0565; found 609.0619, 611.0598, 613.0566.

Prepared according to the general procedure to afford $\mathbf{5 k}\left(35.1 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=188.1-191.4^{\circ} \mathrm{C}\right)$ in 67% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak IC column (25% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 220 nm, tmajor $=14.39 \mathrm{~min}$, tminor $=15.95 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-209.3\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product $\mathbf{5 k}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.57(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.35$ - 1.28 (m, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $187.7,152.6,146.5,145.0,143.0,132.9,132.4,129.8$, $127.6,126.9,125.1,125.0,117.4,116.1,112.6,97.3,66.0,63.7,44.7,38.1,36.4,21.6,16.0$, 15.1.

HRMS (ESI-TOF) m/z: [M+Na] calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}^{+}$547.0968; found 547.0966.

($(1 S, 2 S, 3 R, 4 S, 4 \mathrm{a} R, 9 \mathrm{aS})$-7-bromo-2-hydroxy-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-

1H-1,4-ethanocarbazol-3-yl)(phenyl)methanone 51

Prepared according to the general procedure to afford $\mathbf{5 1}\left(37.6 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=199.6-202.3^{\circ} \mathrm{C}\right)$ in 63% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 86% by chiral HPLC analysis on Chiralpak IC column (15\% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , tmajor $=15.29 \mathrm{~min}$, tminor $=9.77 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-177.7\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 51:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.23$ $-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 198.4, 145.5, 144.1, 136.9, 133.6, 132.4, 130.1, 129.1, 128.3, 127.7, 127.6, 126.7, 126.2, 126.0, 119.1, 96.8, 66.4, 63.9, 44.3, 37.8, 36.4, 21.7, 15.8, 15.1.

HRMS (ESI-TOF) m/z: [M+H] calcd for $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$597.0689, $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$ 599.0669; found 597.0688, 599.0665.
((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-7-methyl-4a-nitro-9-tosyl-2,3,4,4a,9,9a-hexahydro-
1H-1,4-ethanocarbazol-3-yl)(phenyl)methanone 5 m

Prepared according to the general procedure to afford $\mathbf{5 m}\left(42.6 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=193.4-195.1^{\circ} \mathrm{C}\right)$ in 80% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 97% by chiral HPLC analysis on Chiralpak IC column (30\% 2-propanol/ $/ \mathrm{CO}_{2}, 1.5 \mathrm{~mL} / \mathrm{min}$), UV 230 nm, tmajor $=8.09 \mathrm{~min}$, tminor $=6.51 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-256.8\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 5m:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ ($\mathrm{s}, 1 \mathrm{H}$), $7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}$, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.2, 145.0, 143.3, 143.2, 136.9, 133.5, 132.9, 129.8, $129.0,127.8,127.6,126.1,124.6,124.3,116.5,97.3,66.3,64.0,44.1,38.2,36.6,22.0,21.6$, 15.9, 15.1.

HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$555.1560; found 555.1561.
((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-(phenylsulfonyl)-2,3,4,4a,9,9a-hexahydro-
1H-1,4-ethanocarbazol-3-yl)(phenyl)methanone 5 n

Prepared according to the general procedure to afford $\mathbf{5 n}\left(28.3 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=209.7-212.1^{\circ} \mathrm{C}\right)$ in 56% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 96% by chiral HPLC analysis on Chiralpak IC column (30\% 2-propanol/CO2, $1.5 \mathrm{~mL} / \mathrm{min}$), UV 210 nm, tmajor $=7.57 \mathrm{~min}$, tminor $=5.99 \mathrm{~min} ;\left[\alpha \mathrm{D}^{20}=-102.7\left(\mathrm{c}=0.10\right.\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product $5 \boldsymbol{n}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.50$ - $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 199.0, 142.9, 136.9, 135.7, 134.0, 133.6, 132.6, 129.3, $129.0,127.7,127.6,127.1,125.2,125.0,116.2,97.3,66.1,64.0,44.0,38.1,36.6,15.9,15.1$.

HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$527.1247; found 527.1256.

((1S,2S,3R,4S,4aR,9aS)-9-((4-chlorophenyl)sulfonyl)-2-hydroxy-4a-nitro-2,3,4,4a,9,9a-

hexahydro-1H-1,4-ethanocarbazol-3-yl)(phenyl)methanone 50

Prepared according to the general procedure to afford $\mathbf{5 0}\left(31.8 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=216.8-219.7^{\circ} \mathrm{C}\right)$ in 59% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 98% by
chiral HPLC analysis on Chiralpak IC column (25\% 2-propanol/CO2, $1.5 \mathrm{~mL} / \mathrm{min}$), UV 230 nm , tmajor $=7.34 \mathrm{~min}$, tminor $=5.91 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-220.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product 5o:
${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 199.0, 142.6, 140.8, 136.9, 134.2, 133.6, 132.7, 129.6, $129.0,129.0,127.8,127.2,125.5,125.1,116.1,97.3,66.3,63.9,43.9,38.2,36.6,15.9,15.1$.

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{N a}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Cl}^{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}$561.0858, $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Cl}^{37} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+} 563.0828$; found 561.0858, 563.0835.
((1S,2S,3R,4S,4aR,9aS)-2-hydroxy-4a-nitro-9-((4-nitrophenyl)sulfonyl)-2,3,4,4a,9,9a-
hexahydro-1H-1,4-ethanocarbazol-3-yl)(phenyl)methanone 5p

Prepared according to the general procedure to afford $\mathbf{5 p}\left(26.9 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=208.9-210.6^{\circ} \mathrm{C}\right.$) in 49% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak IC column (25% 2-propanol/CO ${ }_{2}, 1.5 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=12.58 \mathrm{~min}$, tminor $=11.89 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-195.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

NMR and HRMS data for the product $\mathbf{5 p}$:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.27$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.29-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $199.2,150.8,142.2,141.3,136.7,133.8,133.0,129.1$, $128.9,127.8,127.5,126.0,125.1,124.4,116.1,97.2,66.6,63.7,43.6,38.5,36.5,16.0,15.1$.

HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}^{+}$550.1279; found 550.1277.

4a-nitro-4-(2-oxo-2-phenylethyl)-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-carbazole-1-

carbaldehyde 6

Prepared according to the general procedure to afford $\mathbf{6}\left(5.6 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=137.6-140.1^{\circ} \mathrm{C}\right)$ in 11% yield as white solid.

NMR and HRMS data for the product 6:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 10.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.8,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.02$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 200.8, 195.8, 145.0, 142.6, 136.1, 134.5, 133.7, 132.4, $129.7,128.8,127.9,127.1,126.2,125.3,118.4,100.7,67.1,54.2,39.2,38.1,26.1,21.8,21.6$. HRMS (ESI-TOF) m/z: [M+ H] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}^{+}$519.1584; found 519.1593.

4. Synthetic Applications

The bridged-ring indoline product 5 a $(0.1 \mathrm{mmol})$ was dissolved in DCM (1.0 mL). Subsequently, DBU (0.25 mmol) was added and the resulting suspension stirred at room temperature until complete conversion of $\mathbf{5 a}$ as indicated by TLC. Then the reaction mixture was purified by column chromatography on silica gel to afford the corresponding product 7, which were dried under vacuum and further analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS, HPLC, etc.

The bridged-ring indoline product $5 \mathrm{a}(0.1 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Subsequently, Zn powder $(0.22 \mathrm{mmol})$ and $\mathrm{HCl}(1 \mathrm{~mL}, 1 \mathrm{M})$ was added at $0^{\circ} \mathrm{C}$. Then the reaction mixture stirred at room temperature until complete conversion of $\mathbf{5 a}$ as indicated by TLC. $\mathrm{NaHCO}_{3}(\mathrm{aq})$ was added until $\mathrm{pH}>10$, followed by the extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, then dried over sodium sulfate and concentrated under reduced pressure. After removal of the solvent under reduced pressure, the resulting crude material was purified by column chromatography on silica gel to afford the corresponding product $\mathbf{8}$, which were dried under vacuum and further analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS, HPLC.
((1R,4S,4aR,9aS)-4a-nitro-9-tosyl-4,4a,9,9a-tetrahydro-1H-1,4-ethanocarbazol-3-

yl)(phenyl)methanone 7

Prepared according to the general procedure to afford $7\left(37.0 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=208.9-210.6^{\circ} \mathrm{C}\right)$ in 74% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 96% by chiral HPLC analysis on Chiralpak IC column (10% 2-propanol/n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , tmajor $=17.83 \mathrm{~min}$, tminor $=16.25 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-401.3\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
NMR and HRMS data for the product 7:
$\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{(p p m}\right): 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.93-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $192.5,145.2,145.0,143.4,141.7,136.8,133.1,132.2$, 131.6, 129.8, 128.7, 128.6, 128.2, 127.5, 125.6, 125.0, 115.5, 98.4, 67.6, 38.5, 38.0, 21.6, 21.4, 20.0 .

HRMS (ESI-TOF) m/z: $[\mathbf{M}+\mathbf{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}$501.1479; found 501.1477.

($(1 R, 4 S, 4 \mathrm{aR}, 9 \mathrm{aS})$-4a-amino-9-tosyl-4,4a,9,9a-tetrahydro-1H-1,4-ethanocarbazol-3-

 yl)(phenyl)methanone 8

Prepared according to the general procedure to afford $\mathbf{8}\left(34.0 \mathrm{mg}, \mathrm{m} . \mathrm{p} .=99.3-102.9^{\circ} \mathrm{C}\right)$ in 70% yield as white solid. The diastereomeric ratio was determined to be $>19: 1$ by crude ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess of the major product was determined to be 97% by chiral HPLC analysis on Chiralpak IC column (30\% 2-propanol/n-CO $2,1.5 \mathrm{~mL} / \mathrm{min}$), UV 290 nm , tmajor $=19.00 \mathrm{~min}$, tminor $=12.90 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-81.6\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
NMR and HRMS data for the product $\mathbf{8}$:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H})$, $3.88(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.69(\mathrm{~m}, 1 \mathrm{H})$,
$2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 201.0, 144.4, 142.9, 137.2, 133.5, 133.2, 132.6, 130.1, $129.6,128.8,127.8,127.5,124.6,124.2,115.7,70.3,67.0,65.4,44.8,38.1,33.8,21.5,16.0$, 15.4 .

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$511.1662; found 511.1652.

5. Crystal Data and Structure Refinement for 5d

Crystal preparation and measurement

To a tube containing $\mathbf{5 d}(20 \mathrm{mg})$ was added a $5: 1$ mixture of petroleum ether and dichloromethane (about 4 mL). Tube was sealed up and kept aside for 7 days at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the structure of 5d. The data were collected by an Agilent Gemini equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at 150.0 K . CCDC 2108113 ($\mathbf{5 d}$) contains the supplementary crystallographic data for this paper.

Crystal Data (at 50\% probability level)

Identification code	$\mathbf{5 d}$
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$
Formula weight	682.39
Temperature $/ \mathrm{K}$	150.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a / \AA	$9.6602(3)$
b / \AA	$13.1717(5)$
c / \AA	$11.7135(4)$
α°	90
$\beta /{ }^{\circ}$	$108.3090(10)$
$\gamma /{ }^{\circ}$	90
$\mathrm{Volume} / \AA^{3}$	$1414.99(8)$
Z	2
$\rho_{\text {calg }} / \mathrm{cm} \mathrm{cm}^{3}$	1.602
μ / mm^{-1}	1.763
$\mathrm{~F}(000)$	696.0
Crystal size $/ \mathrm{mm}^{3}$	$0.38 \times 0.19 \times 0.17$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
4.442 to 55.008
$-12 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq 17,-15 \leq 1 \leq 15$
36907
$6450\left[\mathrm{R}_{\text {int }}=0.0515, \mathrm{R}_{\text {sigma }}=0.0501\right]$
6450/1/366
1.065
$\mathrm{R}_{1}=0.0654, \mathrm{wR}_{2}=0.1788$
$\mathrm{R}_{1}=0.0761, \mathrm{wR}_{2}=0.1870$
1.70/-2.01
0.015(4)

6. References and Notes

1. (a) E. Krell, Handbook of laboratory distillation, Elseriver Publishing Company, Amsterdam-London-New York. 1963; (b) M. J. Rosengart, The technique of distillation and rectification in the laboratory, VEB Verlag Technik, Berlin. 1954; (c) F. Stage, Angew. Chem., Int. Ed., 1947, 19, 175-183.
2. (a) M.-S. Mei, Y.-H. Wang, Q. Hu, Q.-H. Li, D.-Y. Shi, D. Gao, G. Ge, G.-Q. Lin and P. Tian, Chem., Commun., 2020, 56, 10718-10721; (b) Q. Wan, J.-H. Xie, C. Zheng, Y.-F. Yuan and S.-L. You, Angew. Chem., Int. Ed., 2021, 60, 19730-19734.
3. (a) G. Black, F. Dinon, S. Fratucello, P. Murphy, M. Nielsen, H. Williams and N. Walshe, Tetrahedron Lett., 1997, 38, 8561-8564. (b) E. L. Richards, P. J. Murphy, F. Dinon, S. Fratucello, P. M. Browm, T. Gelbrich and M. B. Hursthouse, Tetrahedron, 2001, 57, 77717784.

7. Copies of NMR Spectra

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	14.50	6342.467	192.9163	50.2760
2	18.19	6272.837	145.2508	49.7240

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	14.55	88.839	2.5154	1.2066
2	18.12	7274.051	166.5198	98.7934

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.50	4395.250	182.4919	49.8602
2	15.41	4419.906	117.6654	50.1398

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.50	99.517	3.2837	1.9943
2	15.34	4890.582	131.5445	98.0057

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $[\mathbf{m A U} * \mathbf{s}]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	15.47	1223.549	18.9828	50.8944
2	20.84	1180.542	15.6480	49.1056

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	15.88	289.067	7.1745	4.4645
2	21.29	6185.709	114.0182	95.5355

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $[\mathbf{m A U *} \mathbf{s}]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	11.79	585.173	20.6531	49.4379
2	14.61	598.480	15.6018	50.5621

DAD1 C, Sig=254,4 Ref=off

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	11.76	236.481	8.5729	2.3275
2	14.51	9923.606	263.6922	97.6725

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	19.76	5584.543	121.7328	50.1779
2	24.71	5544.943	91.0214	49.8221

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	20.11	65.915	1.7759	0.7402
2	25.09	8838.594	141.7842	99.2598

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathrm{mAU}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	18.36	2616.212	63.1299	49.8068
2	22.66	2636.512	46.5077	50.1932

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	18.40	80.613	2.0321	2.4112
2	22.62	3262.658	56.3014	97.5888

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.40	2509.014	89.5259	50.5684
2	14.67	2452.612	58.5872	49.4316

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.45	162.510	5.5274	3.2268
2	14.68	4873.703	115.2774	96.7732

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.19	3538.387	149.1756	49.8607
2	11.70	3558.157	123.9943	50.1393

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.32	90.701	3.9968	4.1468
2	11.84	2096.560	73.1662	95.8532

(

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	10.01	7858.137	321.3943	49.1882
2	11.86	8117.525	255.3147	50.8118

DAD1 C, Sig=254,4 Ref=off

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	9.95	7.329	0.1481	0.3005
2	11.82	2431.764	77.8186	99.6995

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	9.08	2983.310	134.4505	49.6491
2	11.16	3025.481	102.9560	50.3509

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	9.15	278.061	12.8069	4.5220
2	11.26	5870.960	195.1780	95.4780

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathrm{mAU}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	14.51	5636.539	155.7686	50.1198
2	16.29	5609.599	138.1238	49.8802

DAD1 B, Sig=220,4 Ref=off

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	14.39	17684.963	482.7234	99.5603
2	15.95	78.104	2.4308	0.4397

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U} \mathbf{*}^{\mathbf{s}}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	9.69	9022.183	394.3294	50.3623
2	15.21	8892.372	218.4385	49.6377

DAD1 B, Sig=220,4 Ref=off

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathrm{min}]$	Area $\left[\mathrm{mAU}^{*} \mathbf{s}\right]$	Height $[\mathrm{mAU}]$	Rel. Area $[\%]$
1	9.77	1565.024	69.3534	6.7557
2	15.29	21601.080	527.6303	93.2443

UV VIS WVL:230 nm

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} \star \mathbf{s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	6.508	2083763	212391	49.49
2	8.100	2118157	171599	50.41

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} * \mathbf{~ s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	6.513	27995	2814	1.39
2	8.096	1984273	159664	98.61

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} \star \mathbf{s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	5.981	2154099	242718	50.03
2	7.575	2151133	195339	49.97

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} \boldsymbol{*} \mathbf{~ s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	5.985	112957	12901	2.07
2	7.574	5334519	480111	97.93

(

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} \star \mathbf{s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	5.907	2407478	266760	49.85
2	7.337	2421736	218203	50.15

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \boldsymbol{*} \boldsymbol{*} \mathbf{~ s e c}]$	$[\boldsymbol{\mu V}]$	$[\%]$
1	5.913	56715	6914	1.15
2	7.337	4889894	450304	98.85

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\min]$	$[\boldsymbol{\mu} \mathbf{V} * \mathbf{s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	11.902	1529278	96644	49.94
2	12.597	1533014	89542	50.06

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} \boldsymbol{*} \mathbf{~ s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	11.888	26488	1813	1.11
2	12.587	2352535	133567	98.89

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	15.61	2193.441	56.6290	50.0064
2	17.03	2192.879	52.1559	49.9936

Peak Analysis Report

Peak $\#$	Ret. Time $[\mathbf{m i n}]$	Area $\left[\mathbf{m A U}^{*} \mathbf{s}\right]$	Height $[\mathbf{m A U}]$	Rel. Area $[\%]$
1	16.25	11.141	0.3572	2.0755
2	17.83	525.645	12.9703	97.9245

(

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\min]$	$[\boldsymbol{\mu} \mathbf{V} * \mathbf{~ s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	12.845	509368	23785	50.47
2	19.093	499814	16093	49.53

Peak Analysis Report

Peak	Ret. Time	Area	Height	Rel. Area
$\#$	$[\mathbf{m i n}]$	$[\boldsymbol{\mu} \mathbf{V} * \mathbf{s e c}]$	$[\boldsymbol{\mu} \mathbf{V}]$	$[\%]$
1	12.902	39108	1994	1.55
2	19.008	2494432	80717	98.45

