Supporting Information

Divergent Construction of Fused and Bridged Carbo-/Heterocyclic Scaffolds via Cascade

Reactions of Aryl Azomethine Imines with Vinyl Cyclic Carbonates

Xinyuan Cai, Xia Song, Xueying Yang, Xinying Zhang*, Xuesen Fan*

NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of

Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and

Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University,

Xinxiang, Henan 453007, China

E-mail: xinyingzhang@htu.cn; xuesen.fan@htu.cn

Table of Contents

Ι	General experimental information	S3-S3	
Π	Experimental procedures and spectroscopic data	S4-S31	
III	Mechanistic studies	\$32-\$35	
IV	Copies of NMR spectra of 3a-3v	S36-S63	
V	Copies of NMR spectra of 5a-5u	S64-S88	
VI	Copies of NMR spectra of 6-9	S89-S92	
VII	X-ray crystal structure and data of 3p	S93-S94	
VIII	X-ray crystal structure and data of 5a	S95-S96	
IX	References	S97-S97	

I. General experimental information

Commercial reagents were used without further purification. Aryl azomethine imines (1)^[1] and 5-methylene-1,3-dioxan-2-one (4)^[2] were prepared based on literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet), br s (broad singlet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. All reactions were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. Typical procedure for the synthesis of 3a and spectroscopic data of 3a-3v

To a reaction tube equipped with a stir bar were charged with 2-benzylidene-3,3-dimethyl-5oxopyrazolidin-2-ium-1-ide (**1a**, 40.4 mg, 0.2 mmol), 4-vinyl-1,3-dioxolan-2-one (**2**, 34.2 mg, 0.3 mmol), $[RhCp*(MeCN)_3](SbF_6)_2$ (8.3 mg, 0.01 mmol), AgSbF_6 (6.9 mg, 0.02 mmol) and TFE (2 mL). The mixture was stirred at 120 °C under air for 6 h. Upon completion, it was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **3a**. **3b-3v** were obtained in a similar manner.

10-(Hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-o ne (3a)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish oil (44.7 mg, 82%). ¹H NMR (600 MHz, CDCl₃): δ 7.29-7.25 (m, 3H), 7.22-7.21 (m, 1H), 5.55 (br s, 1H), 4.62 (d, *J* = 8.4 Hz, 1H), 3.99 (d, *J* = 12.0 Hz, 1H), 3.88 (dd, *J*₁ = 12.0 Hz, *J*₂ = 8.4 Hz, 1H), 3.23 (t, *J* = 9.0 Hz, 1H), 3.10 (dd, *J*₁ = 16.8 Hz, *J*₂ = 7.8 Hz, 1H), 2.85-2.79 (m, 3H), 2.37 (d, *J* = 15.6 Hz, 1H), 1.50 (s, 3H), 1.27 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 142.5, 140.3, 128.4, 127.6, 125.5, 125.3, 64.0, 63.75, 63.69, 61.6, 49.7, 46.8, 34.3, 26.3, 19.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₁N₂O₂ 273.1598; Found 273.1590.

10-(Hydroxymethyl)-3,3,7-trimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-one (3b) Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (41.1 mg, 72%), mp 137.0-137.9 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.11 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 7.06 (s, 1H), 5.55 (dd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, 1H), 4.61 (d, *J* = 8.4 Hz, 1H), 4.03-3.99 (m, 1H), 3.92-3.88 (m, 1H), 3.25 (t, *J* = 9.0 Hz, 1H), 3.07 (dd, *J*₁ = 16.2 Hz, *J*₂ = 7.2 Hz, 1H), 2.86-2.81 (m, 2H), 2.77 (d, *J* = 16.2 Hz, 1H), 2.40 (d, *J* = 15.0 Hz, 1H), 2.36 (s, 3H), 1.54 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 140.7, 138.6, 128.6, 126.1, 125.0, 64.1, 63.8, 61.6, 49.6, 47.2, 34.3, 26.2, 21.3, 19.9. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1750.

7-(*tert*-Butyl)-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2*a*]pyrazol-1-one (3c)

Eluent: petroleum ether/ethyl acetate (1:1). Yollowish solid (43.8 mg, 67%), mp 190.4-191.0 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.33 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 7.25 (s, 1H), 7.20 (d, J = 7.8 Hz, 1H), 5.56 (dd, $J_1 = 11.4$ Hz, $J_2 = 3.6$ Hz, 1H), 4.62 (d, J = 8.4 Hz, 1H), 4.01 (td, $J_1 = 12.6$ Hz, $J_2 = 2.4$ Hz, 1H), 3.92-3.88 (m, 1H), 3.29 (t, J = 8.4 Hz, 1H), 3.11 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.2$ Hz, 1H), 2.88-2.81 (m, 3H), 2.39 (d, J = 15.6 Hz, 1H), 1.51 (s, 3H), 1.30 (s, 9H), 1.29 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.8, 151.9, 140.3, 139.5, 125.1, 124.7, 122.2, 63.8, 63.7, 63.6, 61.8, 49.8, 47.1, 34.7, 34.5, 31.5, 26.4, 19.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₉N₂O₂ 329.2224; Found 329.2215.

10-(Hydroxymethyl)-7-methoxy-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*] pyrazol-1-one (3d) Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (38.5 mg, 64%), mp 114.3-115.1 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.16 (d, *J* = 8.4 Hz, 1H), 6.83 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 6.74 (d, *J* = 1.8 Hz, 1H), 5.57 (br s, 1H), 4.59 (d, *J* = 8.4 Hz, 1H), 4.00 (dd, *J*₁ = 12.0 Hz, *J*₂ = 2.4 Hz, 1H), 3.89 (dd, *J*₁ = 12.6 Hz, *J*₂ = 8.4 Hz, 1H), 3.79 (s, 3H), 3.29 (t, *J* = 9.0 Hz, 1H), 3.09 (dd, *J*₁ = 16.2 Hz, *J*₂ = 7.2 Hz, 1H), 2.87-2.78 (m, 3H), 2.39 (d, *J* = 15.0 Hz, 1H), 1.50 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 160.3, 142.1, 134.4, 126.0, 114.3, 110.1, 63.8, 63.6, 63.5, 61.8, 55.5, 49.7, 47.5, 34.6, 26.4, 19.8. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃ 303.1703; Found 303.1704.

7-Fluoro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3e)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (38.9 mg, 67%), mp 149.7-150.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.21 (dd, $J_1 = 8.0$ Hz, $J_2 = 5.2$ Hz, 1H), 6.98 (td, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 5.47 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.6$ Hz, 1H), 4.60 (d, J = 8.0 Hz, 1H), 4.05-3.98 (m, 1H), 3.92-3.86 (m, 1H), 3.27 (t, J = 8.8 Hz, 1H), 3.12 (dd, $J_1 = 16.4$ Hz, $J_2 = 7.2$ Hz, 1H), 2.92-2.88 (m, 1H), 2.85-2.79 (m, 2H), 2.39 (d, J = 15.2 Hz, 1H), 1.50 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.0, 163.3 (d, ¹ $J_{C-F} = 244.1$ Hz), 142.6 (d, ³ $J_{C-F} = 8.7$ Hz), 138.1 (d, ⁴ $J_{C-F} = 2.9$ Hz), 126.6 (d, ³ $J_{C-F} = 9.4$ Hz), 115.0 (d, ² $J_{C-F} = 23.1$ Hz), 112.2 (d, ² $J_{C-F} = 22.4$ Hz), 63.8, 63.7, 63.3, 61.5, 49.6, 47.3, 34.3 (d, ⁴ $J_{C-F} = 2.1$ Hz), 26.3, 19.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -114.30 – -114.34 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1503.

7-Chloro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3f)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (43.4 mg, 71%), mp 153.2-154.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.25 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 7.21 (s, 1H), 7.18 (d, J = 7.8 Hz, 1H), 5.47-5.45 (m, 1H), 4.59 (d, J = 7.8 Hz, 1H), 4.01 (t, J = 10.2 Hz, 1H), 3.88 (dd, $J_1 = 12.6$ Hz, $J_2 = 8.4$ Hz, 1H), 3.24 (t, J = 9.0 Hz, 1H), 3.10 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.2$ Hz, 1H), 2.87 (dd, $J_1 = 15.6$ Hz, $J_2 = 7.8$ Hz, 1H), 2.83-2.78 (m, 2H), 2.39 (d, J = 15.6 Hz, 1H), 1.49 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 142.3, 141.1, 134.3, 128.0, 126.5, 125.6, 63.7, 63.6, 63.4, 61.5, 49.6, 47.0, 34.1, 26.3, 19.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀ClN₂O₂ 307.1208; Found 307.1204.

7-Bromo-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3g)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (45.5 mg, 65%), mp 176.7-177.7 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.40 (d, J = 7.8 Hz, 1H), 7.38 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 5.44 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.6$ Hz, 1H), 4.57 (d, J = 8.4 Hz, 1H), 4.03-3.99 (m, 1H), 3.90-3.86 (m, 1H), 3.24 (t, J = 9.0 Hz, 1H), 3.12 (dd, $J_1 = 16.8$ Hz, $J_2 = 7.2$ Hz, 1H), 2.88-2.79 (m, 3H), 2.39 (d, J = 15.0 Hz, 1H), 1.49 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO- d_6): δ 164.5, 144.9, 142.9, 130.2, 128.5, 128.0, 121.4, 63.3, 63.0, 62.3, 60.0, 49.8, 48.7, 35.0, 26.3, 19.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₉BrN₂NaO₂ 373.0522; Found 373.0512.

10-(Hydroxymethyl)-3,3-dimethyl-7-(trifluoromethyl)-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazo lo[1,2-*a*]pyrazol-1-one (3h)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (32.4 mg, 48%), mp 175.4-176.0 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.50 (s, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 5.38-5.37 (m, 1H), 4.67 (d, *J* = 8.4 Hz, 1H), 4.04 (t, *J* = 10.8 Hz, 1H), 3.92-3.89 (m, 1H), 3.23 (t, *J* = 9.0 Hz, 1H), 3.18 (dd, *J*₁ = 16.2 Hz, *J*₂ = 7.2 Hz, 1H), 2.93 (dd, *J*₁ = 16.2 Hz, *J*₂ = 8.4 Hz, 1H), 2.88 (d, *J* = 16.8 Hz, 1H), 2.84 (d, *J* = 15.6 Hz, 1H), 2.41 (d, *J* = 15.6 Hz, 1H), 1.53 (s, 3H), 1.30 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): 165.0, 146.5, 141.1, 131.0 (q, ²*J*_{C-F} = 32.9 Hz), 125.9, 124.9 (q, ³*J*_{C-F} = 4.4 Hz), 124.1 (q, ¹*J*_{C-F} = 271.4 Hz), 122.5 (q, ³*J*_{C-F} = 4.4 Hz), 63.9, 63.8, 63.5, 61.3, 49.5, 46.8, 34.1, 26.4, 19.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -62.24 (s). HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₀F₃N₂O₂ 341.1471; Found 341.1467.

10-(Hydroxymethyl)-3,3,6-trimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-one (3i)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (37.0 mg, 65%), mp 153.4-154.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.15 (d, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 7.04 (s, 1H), 5.60 (dd, *J*₁ = 10.8 Hz, *J*₂ = 3.6 Hz, 1H), 4.60 (d, *J* = 8.4 Hz, 1H), 4.02-3.98 (m, 1H), 3.91-3.87 (m, 1H), 3.28 (t, *J* = 9.0 Hz, 1H), 3.08 (dd, *J*₁ = 16.2 Hz, *J*₂ = 7.2 Hz, 1H), 2.86-2.82 (m, 2H), 2.78 (d, *J* = 16.8 Hz, 1H), 2.39 (d, *J* = 15.0 Hz, 1H), 2.34 (s, 3H), 1.51 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃) : δ 165.0, 142.5, 137.5, 137.2, 129.5, 125.7, 125.3, 64.0, 63.9, 63.8, 61.6, 49.6, 47.0, 33.8, 26.3, 21.4, 19.7. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1749.

6-Chloro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3j)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (37.5 mg, 61%), mp 150.0-151.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.22 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 1H), 5.42 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.0 Hz, 1H), 4.61 (d, *J* = 8.4 Hz, 1H), 4.05-3.99 (m, 1H), 3.92-3.86 (m, 1H), 3.23 (t, *J* = 9.2 Hz, 1H), 3.08 (dd, *J*₁ = 16.4 Hz, *J*₂ = 7.2 Hz, 1H), 2.90-2.82 (m, 2H), 2.78 (d, *J* = 16.8 Hz, 1H), 2.39 (d, *J* = 15.2 Hz, 1H), 1.52 (s, 3H), 1.27 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.1, 144.6, 138.6, 133.4, 128.8, 126.6, 125.6, 63.9, 63.8, 63.7, 61.4, 49.6, 47.0, 33.7, 26.3, 19.6. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₂₀ClN₂O₂ 307.1208; Found 307.1206.

6-Bromo-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3k)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (44.8 mg, 64%). mp 147.4-148.3 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.38 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 7.37 (s, 1H), 7.10 (d, J = 7.8 Hz, 1H), 5.42 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.6$ Hz, 1H), 4.62 (d, J = 8.4 Hz, 1H), 4.04-3.00 (m, 1H), 3.91-3.87 (m, 1H), 3.23 (t, J = 9.0 Hz, 1H), 3.06 (dd, $J_1 = 16.8$ Hz, $J_2 = 7.2$ Hz, 1H), 2.87-2.82 (m, 2H), 2.76 (d, J = 16.8 Hz, 1H), 2.39 (d, J = 15.6 Hz, 1H), 1.52 (s, 3H), 1.27 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.1, 145.0, 139.2, 131.6, 128.6, 127.0, 121.4, 63.9, 63.8, 63.7, 61.4, 49.5, 46.9, 33.7, 26.4, 19.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀BrN₂O₂ 351.0703; Found 351.0701.

10-(Hydroxymethyl)-6-methoxy-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*] pyrazol-1-one (3l)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (11.5 mg, 19%), mp 114.7-115.3 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.13 (d, J = 7.8 Hz, 1H), 6.83 (dd, J_1 = 8.4 Hz, J_2 = 1.8 Hz, 1H), 6.78 (d, J = 1.8 Hz, 1H), 5.52-5.50 (m, 1H), 4.60 (d, J = 7.8 Hz, 1H), 4.01 (t, J = 10.8 Hz, 1H), 3.91-3.88 (m, 1H), 3.81 (s, 3H), 3.26 (t, J = 9.6 Hz, 1H), 3.05 (dd, J_1 = 15.6 Hz, J_2 = 7.2 Hz, 1H), 2.86-2.82 (m, 2H), 2.74 (d, J = 16.2 Hz, 1H), 2.39 (d, J = 15.0 Hz, 1H), 1.52 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 159.7, 144.0, 132.1, 126.2, 114.7, 110.3, 64.1, 63.8, 63.7, 61.7, 55.5, 49.7, 47.3, 33.4, 26.4, 19.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃ 303.1703; Found 303.1696.

10-(Hydroxymethyl)-8-methoxy-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*] pyrazol-1-one (3m)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (31.3 mg, 52%), mp 150.6-151.3 °C. ¹H NMR (600MHz, CDCl₃): δ 7.28-7.26 (m, 1H), 6.87 (d, J = 7.2 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 5.50 (br s, 1H), 4.64 (d, J = 8.4 Hz, 1H), 4.03-4.01 (m, 1H), 3. 89 (dd, $J_1 = 12.6$ Hz, $J_2 = 8.4$ Hz, 1H), 3.83 (s, 3H), 3.26 (t, J = 9.0 Hz, 1H), 2.97 (dd, $J_1 = 16.2$ Hz, $J_2 = 6.6$ Hz, 1H), 2.88-2.82 (m, 3H), 2.39 (d, J = 15.0 Hz, 1H), 1.51 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 156.5, 144.3, 129.4, 128.3, 117.1, 109.4, 64.5, 63.9, 63.7, 61.6, 55.3, 49.7, 46.7, 31.1, 26.4, 19.6. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃ 303.1703; Found 303.1702.

6-Fluoro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3n)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (11.6 mg, 20%), mp 117.5-118.1 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.17 (dd, J_1 = 8.4 Hz, J_2 = 6.0 Hz, 1H), 6.98-6.93 (m, 2H), 5.45 (dd, J_1 = 10.8 Hz, J_2 = 3.6 Hz, 1H), 4.61 (d, J = 8.4 Hz, 1H), 4.04-4.00 (m, 1H), 3.91-3.87 (m, 1H), 3.24 (t, J = 8.4 Hz, 1H), 3.08 (dd, J_1 = 16.2 Hz, J_2 = 7.2 Hz, 1H), 2.88 (q, J = 7.8 Hz, 1H), 2.83 (d, J = 15.6 Hz, 1H), 2.77 (d, J = 16.8 Hz, 1H), 2.39 (d, J = 15.0 Hz, 1H), 1.51 (s, 3H), 1.27 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 162.8 (d, ¹ $_{J_{C-F}}$ = 243.9 Hz), 144.8 (d, ³ $_{J_{C-F}}$ = 7.7 Hz), 135.5 (d, ⁴ $_{J_{C-F}}$ = 2.3 Hz), 126.6 (d, ³ $_{J_{C-F}}$ = 8.9 Hz), 115.7 (d, ² $_{J_{C-F}}$ = 21.9 Hz), 112.2 (d, ² $_{J_{C-F}}$ = 23.1 Hz), 63.9 (d, ⁴ $_{J_{C-F}}$ = 2.1 Hz), 63.8, 63.7, 61.5, 49.6, 47.3, 33.5, 26.3, 19.6. ¹⁹F NMR (565 MHz, CDCl₃): δ -115.2 - -115.3 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1500.

8-Fluoro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (30)

Eluent: petroleum ether/ethyl acetate (1:1). Yollow solid (29.7 mg, 51%), mp 148.7-149.1 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.29-7.27 (m, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.96 (t, *J* = 9.0 Hz, 1H), 5.42 (dd, *J*₁ = 10.8 Hz, *J*₂ = 3.6 Hz, 1H), 4.66 (d, *J* = 7.8 Hz, 1H), 4.06-4.02 (m, 1H), 3.92-3.88 (m, 1H), 3.26 (t, *J* = 8.4 Hz, 1H), 3.08 (dd, *J*₁ = 16.8 Hz, *J*₂ = 7.2 Hz, 1H), 2.93-2.90 (m, 2H), 2.83 (d, *J* = 15.6 Hz, 1H), 2.40 (d, *J* = 15.6 Hz, 1H), 1.51 (s, 3H), 1.29 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 159.7 (d, ¹*J*_{C-F} = 247.2 Hz), 146.1 (d, ³*J*_{C-F} = 5.6 Hz), 129.8 (d, ³*J*_{C-F} = 7.8 Hz), 126.8 (d, ²*J*_{C-F} = 17.6 Hz), 120.9 (d, ⁴*J*_{C-F} = 3.3 Hz), 114.7 (d, ²*J*_{C-F} = 20.7 Hz), 64.2 (d, ⁴*J*_{C-F} = 2.1 Hz), 63.8, 63.6, 61.4, 49.6, 46.8, 30.3, 26.4, 19.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -117.50 – -117.53 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1504.

10-(Hydroxymethyl)-3,3,5-trimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-one (3p)

Eluent: petroleum ether/ethyl acetate (1:1). Orange solid (35.6 mg, 62%), mp 205.5-206.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (t, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 5.30 (dd, *J*₁ = 10.4 Hz, *J*₂ = 3.6 Hz, 1H), 4.70 (d, *J* = 7.2 Hz, 1H), 4.08-4.01 (m, 1H), 3.96-3.90 (m, 1H), 3.22 (t, *J* = 8.8 Hz, 1H), 3.01 (dd, *J*₁ = 16.0 Hz, *J*₂ = 6.8 Hz, 1H), 2.84 (d, *J* = 15.2 Hz, 1H), 2.78-2.74 (m, 2H), 2.48 (s, 3H), 2.27 (d, *J* = 14.8 Hz, 1H), 1.52 (s, 3H), 1.25 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.1, 140.6, 139.6, 136.1, 129.4, 128.7, 123.2, 66.8, 65.2, 64.3, 61.6, 49.5, 46.7, 33.5, 26.5, 19.9, 19.3. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1746.

5-Fluoro-10-(hydroxymethyl)-3,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]py razol-1-one (3q)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (38.5 mg, 66%), mp 186.7-187.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.23 (m, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.92 (t, *J* = 8.4 Hz, 1H), 5.49 (br s, 1H), 4.80 (d, *J* = 8.0 Hz, 1H), 4.01 (dd, *J*₁ = 12.4 Hz, *J*₂ = 2.4 Hz, 1H), 3.90 (dd, *J*₁ = 12.4 Hz, *J*₂ = 8.0 Hz, 1H), 3.39 (t, *J* = 8.4 Hz, 1H), 3.12 (dd, *J*₁ = 16.8 Hz, *J*₂ = 8.0 Hz, 1H), 2.95-2.89 (m, 2H), 2.86 (d, *J* = 16.0 Hz, 1H), 2.39 (d, *J* = 15.2 Hz, 1H), 1.47 (d, *J* = 2.0 Hz, 3H), 1.32 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 160.1 (d, ¹*J*_{C-F} = 248.3 Hz), 144.6 (d, ³*J*_{C-F} = 5.4 Hz), 130.8 (d, ³*J*_{C-F} = 7.8 Hz), 128.4 (d, ²*J*_{C-F} = 14.3 Hz), 121.2 (d, ⁴*J*_{C-F} = 3.3 Hz), 114.3 (d, ²*J*_{C-F} = 20.7 Hz), 64.4, 63.2, 62.1 (d, ⁴*J*_{C-F} = 2.3 Hz), 62.0, 50.0, 47.9, 35.1, 25.8 (d, ³*J*_{C-F} =

5.4 Hz), 19.6. ¹⁹F NMR (565 MHz, CDCl₃): δ -116.08 - -116.11 (m). HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1502.

10-(Hydroxymethyl)-3,3,6,7-tetramethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyra zol-1-one (3r)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (38.9 mg, 65%), mp 181.5-182.1 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.01 (s, 1H), 7.00 (s, 1H), 5.56 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.0$ Hz, 1H), 4.59 (d, J = 8.4 Hz, 1H), 4.02-3.98 (m, 1H), 3.91-3.87 (m, 1H), 3.25 (t, J = 9.0 Hz, 1H), 3.05 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.2$ Hz, 1H), 2.84-2.81 (m, 2H), 2.74 (d, J = 16.2 Hz, 1H), 2.39 (d, J = 15.6 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H), 1.53 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.9, 140.0, 137.8, 137.1, 136.2, 126.4, 126.0, 63.91, 63.89, 63.7, 61.8, 49.7, 47.1, 34.0, 26.4, 19.94, 19.88, 19.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₂₅N₂O₂ 301.1911; Found 301.1903.

7-Fluoro-10-(hydroxymethyl)-3,3,6-trimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*] pyrazol-1-one (3s)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (37.1 mg, 61%), mp 181.4-182.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.04 (d, J = 7.2 Hz, 1H), 6.86 (d, J = 9.6 Hz, 1H), 5.46 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.0$ Hz, 1H), 4.58 (d, J = 7.8 Hz, 1H), 4.03-3.99 (m, 1H), 3.91-3.87 (m, 1H), 3.25 (t, J = 9.0 Hz, 1H), 3.07 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.2$ Hz, 1H), 2.88-2.83 (m, 2H), 2.76 (d, J = 16.2 Hz, 1H), 2.39 (d, J = 15.0 Hz, 1H), 2.27 (s, 3H), 1.52 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 161.7 (d, ¹ $J_{C-F} = 243.9$ Hz), 139.5 (d, ³ $J_{C-F} = 8.7$ Hz), 137.8 (d, ⁴ $J_{C-F} = 2.3$ Hz), 127.7 (d, ³ $J_{C-F} = 5.4$ Hz), 124.6 (d, ² $J_{C-F} = 18.5$ Hz), 111.8 (d, ² $J_{C-F} = 23.1$ Hz),

63.81, 63.78, 63.5, 61.5, 49.6, 47.3, 34.0 (d, ${}^{4}J_{C-F} = 2.3 \text{ Hz}$), 26.4, 19.7, 14.8 (d, ${}^{3}J_{C-F} = 4.4 \text{ Hz}$). ¹⁹F NMR (565 MHz, CDCl₃): δ -117.93 - -117.96 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₂₂FN₂O₂ 305.1660; Found 305.1655.

10-(Hydroxymethyl)-3-methyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-one (3t)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (34.6 mg, 67%), mp 123.7-124.6 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.32-7.30 (m, 1H), 7.29-7.27 (m, 2H), 7.25-7.23 (m, 1H), 5.43-5.41 (m, 1H), 4.34 (d, *J* = 8.4 Hz, 1H), 4.04-4.00 (m, 1H), 3.93-3.90 (m, 1H), 3.46-3.41 (m, 1H), 3.39-3.35 (m, 1H), 3.15 (dd, *J*₁ = 16.2 Hz, *J*₂ = 7.8 Hz, 1H), 3.06-3.01 (m, 1H), 2.89 (dd, *J*₁ = 16.8 Hz, *J*₂ = 2.4 Hz, 1H), 2.74 (dd, *J*₁ = 15.6 Hz, *J*₂ = 7.2 Hz, 1H), 2.65-2.60 (m, 1H), 1.50 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): 164.8, 141.3, 141.2, 128.8, 127.6, 125.6, 125.4, 73.4, 64.3, 63.2, 61.6, 46.8, 43.2, 34.8, 18.7. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₅H₁₉N₂O₂ 259.1441; Found 259.1437.

10-(Hydroxymethyl)-3-propyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-one (3u)

Eluent: petroleum ether/ethyl acetate (1:1). Orange solid (33.1 mg, 58%), mp 120.7-121.1 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.31-7.28 (m, 3H), 7.24-7.23 (m, 1H), 5.38 (dd, $J_1 = 10.2$ Hz, $J_2 = 3.6$ Hz, 1H), 4.36 (d, J = 9.0 Hz, 1H), 4.05-4.01 (m, 1H), 3.93-3.89 (m, 1H), 3.37-3.32 (m, 2H), 3.14 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.8$ Hz, 1H), 3.04-3.00 (m, 1H), 2.87 (d, J = 16.2 Hz, 1H), 2.73 (dd, $J_1 = 16.2$ Hz, $J_2 = 7.2$ Hz, 1H), 2.63-2.58 (m, 1H),

1.96-1.90 (m, 1H), 1.76-1.70 (m, 1H), 1.49-1.37 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.0, 141.4, 141.2, 128.8, 127.6, 125.6, 125.4, 73.5, 67.6, 64.1, 61.5, 46.6, 41.0, 35.7, 34.6, 19.2, 14.2. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1753.

10-(Hydroxymethyl)-2,3-dimethyl-2,3,4a,9,9a,10-hexahydro-1*H*-indeno[1,2-*c*]pyrazolo[1,2-*a*]pyrazol-1-o ne (3v)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (30.6 mg, 56%), mp 126.3-127.6 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.33-7.32 (m, 1H), 7.29-7.28 (m, 2H), 7.25-7.23 (m, 1H), 5.47 (dd, $J_1 = 10.8$ Hz, $J_2 = 4.2$ Hz, 1H), 4.32 (d, J = 8.4 Hz, 1H), 4.05-4.01 (m, 1H), 3.91-3.87 (m, 1H), 3.38 (t, J = 8.4 Hz, 1H), 3.15 (dd, $J_1 = 16.8$ Hz, $J_2 = 8.4$ Hz, 1H), 3.04-3.00 (m, 1H), 2.93-2.88 (m, 2H), 2.60-2.57 (m, 1H), 1.50 (d, J = 6.0 Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.1, 141.3, 141.2, 128.8, 127.6, 125.6, 125.5, 73.3, 70.6, 64.2, 61.6, 47.8, 46.6, 34.7, 17.3, 12.1. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₂₁N₂O₂ 273.1598; Found 273.1589.

2. Optimization study for the formation of $5a^{a}$

Entry	Catalyst (mol%)	Additive	Solvent	T (°C)	Yield $(\%)^b$
1 ^{<i>c</i>}	[RhCp*(MeCN) ₃](SbF ₆) ₂ (5)	AgSbF ₆	TFE	120	21
2	[RhCp*(MeCN) ₃](SbF ₆) ₂ (5)	AgSbF ₆	TFE	120	40
3	$[RhCp*Cl_2]_2$ (5)	AgSbF ₆	TFE	120	15
4	$CoCp^{*}(CO)I_{2}(5)$	AgSbF ₆	TFE	120	ND
5	$[IrCp*Cl_2]_2(5)$	AgSbF ₆	TFE	120	trace
6	$[Ru(p-cymene)Cl_2]_2$ (5)	$AgSbF_6$	TFE	120	50
7	$[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2(5)$	AgSbF ₆	DCE	120	trace
8	$[Ru(p-cymene)Cl_2]_2$ (5)	AgSbF ₆	MeOH	120	trace
9	$[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2(5)$	AgSbF ₆	HFIP	120	65
10	$[Ru(p-cymene)Cl_2]_2$ (2.5)	AgSbF ₆	HFIP	120	66
11	$[Ru(p-cymene)Cl_2]_2$ (2.5)	$AgSbF_6$	HFIP	60	53
12	$[Ru(p-cymene)Cl_2]_2 (2.5)$	AgSbF ₆	HFIP	80	72
13	$[Ru(p-cymene)Cl_2]_2 (2.5)$	AgSbF ₆	HFIP	100	70
14	$[Ru(p-cymene)Cl_2]_2 (2.5)$	$AgBF_4$	HFIP	80	65
15	$[Ru(p-cymene)Cl_2]_2$ (2.5)	Ag ₂ CO ₃	HFIP	80	22
16	$[Ru(p-cymene)Cl_2]_2$ (2.5)	AgOAc	HFIP	80	20
17	$[Ru(p-cymene)Cl_2]_2$ (2.5)	Cu(OAc) ₂	HFIP	80	11
18	$[Ru(p-cymene)Cl_2]_2 (2.5)$	NaOAc	HFIP	80	67
19^{d}	$[Ru(p-cymene)Cl_2]_2 (2.5)$	AgSbF ₆	HFIP	80	76
20		AgSbF ₆	HFIP	80	ND
21	$[Ru(p-cymene)Cl_2]_2$ (2.5)		HFIP	80	trace
22 ^e	$[Ru(p-cymene)Cl_2]_2$ (2.5)	AgSbF ₆	HFIP	80	75

^{*a*}Reaction conditions: **1a** (0.2 mmol), **4** (0.3 mmol), additive (0.02 mmol), solvent (2 mL), argon, 6 h. ^{*b*}Isolated yields. ^{*c*}Under air. ^{*d*}**4** (0.4 mmol). ^{*e*}8 h.

3. Typical procedure for the synthesis of 5a and spectroscopic data of 5a-5u

To a reaction tube equipped with a stir bar were charged with 2-benzylidene-3,3-dimethyl-5oxopyrazolidin-2-ium-1-ide (**1a**, 40.4 mg, 0.2 mmol), 5-methylene-1,3-dioxan-2-one (**4**, 45.6 mg, 0.4 mmol), $[Ru(p-cymene)Cl_2]_2$ (3.1 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol) and HFIP (2 mL). The mixture was stirred at 80 °C under argon for 6 h. Upon completion, it was cooled to room temperature, filtered through a pad of celite, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **5a**. **5b-5u** were obtained in a similar manner.

11-(Hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5a)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (41.5 mg, 76%), mp 172.6-173.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.23 (td, $J_1 = 7.2$ Hz, $J_2 = 0.6$ Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 1H), 5.21 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.8$ Hz, 1H), 4.12 (d, J = 5.4 Hz, 1H), 4.08-4.05 (m, 2H), 3.50 (d, J = 17.4 Hz, 1H), 2.99 (d, J = 17.4 Hz, 1H), 2.60 (d, J = 15.0 Hz, 1H), 2.32 (d, J = 15.6 Hz, 1H), 2.26 (dd, $J_1 = 11.4$ Hz, $J_2 = 4.8$ Hz, 1H), 1.87 (d, J = 10.8 Hz, 1H), 1.22 (s, 3H) 1.15 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.8, 140.4, 133.5, 129.7, 128.2, 126.2, 126.1, 65.9, 65.8, 64.5, 56.0, 49.4, 38.7, 38.3, 24.9, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₁N₂O₂ 273.1598; Found 273.1595.

11-(Hydroxymethyl)-3,3,8-trimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5b)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (48.0 mg, 84%), mp 187.0-187.8 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.00 (s, 1H), 6.96 (s, 2H), 5.21 (br s, 1H), 4.10 (d, *J* = 5.4 Hz, 1H), 4.07-4.02 (m, 2H), 3.47 (d, *J* = 18.0 Hz, 1H), 2.94 (d, *J* = 18.0 Hz, 1H), 2.58 (d, *J* = 15.0 Hz, 1H), 2.33-2.30 (m, 4H), 2.25 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.8 Hz, 1H), 1.85 (d, *J* = 10.8 Hz, 1H), 1.21 (s, 3H) 1.14 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.8, 138.0, 137.5, 133.2, 130.4, 126.9, 126.0, 66.0, 65.9, 64.5, 55.7, 49.4, 38.9, 38.2, 24.9, 21.7, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1749.

8-(*tert*-Butyl)-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyra zolo[1,2-*a*][1,2]diazepin-1-one (5c)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (44.2 mg, 67%), mp 226.8-227.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.18 (s, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.8 Hz, 1H), 5.16 (t, *J* = 7.8 Hz, 1H), 4.10 (d *J* = 4.2 Hz, 1H), 4.06 (d, *J* = 7.2 Hz, 2H), 3.48 (d, *J* = 17.4 Hz, 1H), 2.98 (d, *J* = 18.0 Hz, 1H), 2.62 (d, *J* = 15.0 Hz, 1H), 2.31 (d, *J* = 15.0 Hz, 1H), 2.25 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.2 Hz, 1H), 1.85 (d, *J* = 11.4 Hz, 1H), 1.28 (s, 9H), 1.21 (s, 3H) 1.16 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.0, 151.1, 137.5, 132.7, 126.6, 125.6, 123.2, 66.2, 65.8, 64.5, 55.6, 49.4, 38.7, 38.4, 34.5, 31.4, 24.9, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₉N₂O₂ 329.2224; Found 329.2214.

11-(Hydroxymethyl)-8-methoxy-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazo lo[1,2-*a*][1,2]diazepin-1-one (5d)

Eluent: petroleum ether/ethyl acetate (1:1). Yollowish solid (47.1 mg, 78%), mp 138.3-139.3 °C. ¹H NMR (600 MHz, CDCl₃): δ 6.99 (d, J = 7.8 Hz, 1H), 6.72 (s, 1H), 6.69 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 5.23 (br s,

1H), 4.10 (d J = 4.8 Hz, 1H), 4.07-4.01 (m, 2H), 3.77 (s, 3H), 3.51 (d, J = 17.4 Hz, 1H), 2.96 (d, J = 18.0 Hz, 1H), 2.56 (d, J = 15.6 Hz, 1H), 2.35 (d, J = 15.0 Hz, 1H), 2.27 (dd, $J_1 = 10.8$ Hz, $J_2 = 4.8$ Hz, 1H), 1.85 (d, J = 10.8 Hz, 1H), 1.22 (s, 3H) 1.11 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.8, 159.5, 134.9, 132.6, 127.3, 114.8, 111.9, 66.0, 65.7, 64.3, 55.5, 55.3, 49.5, 39.3, 38.5, 24.7, 22.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃ 303.1703; Found 303.1701.

8-Fluoro-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5e)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (29.0 mg, 50%), mp 219.3-220.0 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.04 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.0$, 1H), 6.89 (d, J = 9.6 Hz, 1H), 6.85 (td, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 5.16 (br s, 1H), 4.13 (d, J = 4.8 Hz, 1H), 4.09-4.05 (m, 2H), 3.49 (d, J = 18.0 Hz, 1H), 2.97 (d, J = 18.0 Hz, 1H), 2.61 (d, J = 15.0 Hz, 1H), 2.33 (d, J = 15.0 Hz, 1H), 2.27 (dd, $J_1 = 10.8$ Hz, $J_2 = 4.8$ Hz, 1H), 1.84 (d, J = 11.4 Hz, 1H), 1.22 (s, 3H) 1.16 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.9, 162.4 (d, ¹ $_{J_{C-F}} = 245.0$ Hz), 136.4, 135.9 (d, ³ $_{J_{C-F}} = 7.7$ Hz), 127.5 (d, ³ $_{J_{C-F}} = 8.7$ Hz), 116.5 (d, ² $_{J_{C-F}} = 21.9$ Hz), 113.1 (d, ² $_{J_{C-F}} = 20.7$ Hz), 65.61, 65.59, 64.6, 55.3, 49.3, 38.8, 38.5, 25.0, 21.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -114.04 - -114.10 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1501.

8-Chloro-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5f)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (34.2 mg, 56%), mp 208.4-209.4 °C. ¹H NMR (600 MHz, DMSO- d_6): δ 7.24 (s, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.18 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 1H), 5.16 (br s,

1H), 4.39 (d, J = 4.2 Hz, 1H), 3.94 (s, 2H), 3.13 (d, J = 17.4 Hz, 1H), 3.00 (d, J = 17.4 Hz, 1H), 2.36 (d, J = 15.0 Hz, 1H), 2.19 (dd, $J_1 = 11.4$ Hz, $J_2 = 4.8$ Hz, 1H), 2.15 (d, J = 15.6 Hz, 1H), 1.80 (d, J = 10.8 Hz, 1H), 1.14 (s, 3H) 1.11 (s, 3H). ${}^{13}C{}^{1}H$ NMR (150 MHz, DMSO- d_6): δ 167.4, 140.4, 137.0, 132.2, 129.3, 128.5, 126.1, 65.6, 64.2, 63.8, 54.7, 48.9, 38.6, 38.0, 25.1, 21.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₀ClN₂O₂ 307.1208; Found 307.1206.

8-Bromo-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5g)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (41.8 mg, 60%), mp 198.5-199.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (s, 1H), 7.30-7.27 (m, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.13 (br s, 1H), 4.11 (d, *J* = 4.8 Hz, 1H), 4.06 (s, 2H), 3.47 (d, *J* = 18.0 Hz, 1H), 2.95 (d, *J* = 18.0 Hz, 1H), 2.61 (d, *J* = 15.2 Hz, 1H), 2.31(d, *J* = 15.2 Hz, 1H), 2.28-2.24 (m, 1H), 1.82 (d, *J* = 10.8 Hz, 1H), 1.21 (s, 3H) 1.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 139.5, 135.9, 132.6, 129.4, 127.5, 121.8, 65.7, 65.5, 64.7, 55.4, 49.2, 38.4, 38.2, 25.1, 21.3. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀BrN₂O₂ 351.0703; Found 351.0695.

11-(Hydroxymethyl)-3,3-dimethyl-8-phenyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo [1,2-*a*][1,2]diazepin-1-one (5h)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (45.9 mg, 66%), mp 185.3-186.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.52 (m, 2H), 7.44-7.32 (m, 5H), 7.14 (d, *J* = 7.6 Hz, 1H), 5.18 (t, *J* = 7.2 Hz, 1H), 4.18 (d, *J* = 4.8 Hz, 1H), 4.09 (d, *J* = 6.8 Hz, 1H), 3.57 (d, *J* = 17.6 Hz, 1H), 3.05 (d, *J* = 17.6 Hz, 1H), 2.65 (d, *J* = 15.2 Hz, 1H), 2.35-2.28 (m, 3H), 1.90 (d, *J* = 11.2 Hz, 1H), 1.24 (s, 3H) 1.21 (s, 3H). ¹³C{¹H} NMR (150

MHz, CDCl₃): δ 167.0, 141.3, 140.7, 139.6, 133.9, 128.8, 128.5, 127.4, 127.1, 126.4, 125.2, 66.1, 65.7, 64.7, 55.7, 49.4, 38.7, 38.5, 25.1, 21.4. HRMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₂₂H₂₄N₂NaO₂ 371.1730; Found 371.1726.

11-(Hydroxymethyl)-3,3,7-trimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5i)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (50.9 mg, 89%), mp 178.9-179.5 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.06 (d, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.88 (s, 1H), 5.20 (br s, 1H), 4.07-4.05 (m, 3H), 3.44 (d, *J* = 17.4 Hz, 1H), 2.93 (d, *J* = 18.0 Hz, 1H), 2.60 (d, *J* = 15.0 Hz, 1H), 2.31-2.29 (m, 4H), 2.24 (dd, *J*₁ = 11.4 Hz, *J*₂ = 4.8 Hz, 1H), 1.84 (d, *J* = 11.4 Hz, 1H), 1.21 (s, 3H) 1.17 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.9, 140.3, 135.9, 130.2, 129.6, 128.9, 126.7, 66.2, 65.8, 64.7, 56.0, 49.4, 38.7, 37.9, 24.9, 21.4, 21.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1745.

7-Bromo-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5j)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (38.6 mg, 55%), mp 206.8-207.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.35 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 1H), 7.22 (d, J = 1.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 5.12 (br s, 1H), 4.08-4.06 (m, 3H), 3.42 (d, J = 18.0 Hz, 1H), 2.91 (d, J = 18.0 Hz, 1H), 2.63 (d, J = 15.6 Hz, 1H), 2.31 (d, J = 15.0 Hz, 1H), 2.25 (dd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, 1H), 1.83 (d, J = 11.4 Hz, 1H), 1.21 (s, 3H) 1.19 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.9, 142.6, 132.5, 131.4, 131.0, 128.8, 119.7, 65.8, 65.5,

64.8, 55.6, 49.2, 38.3, 38.0, 25.1, 21.2. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₂₀BrN₂O₂ 351.0703; Found 351.0698.

11-(Hydroxymethyl)-3,3-dimethyl-7-(trifluoromethyl)-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5k)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (27.3 mg, 40%), mp 176.4-177.2 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.49 (d, J = 7.8 Hz, 1H), 7.32 (s, 1H), 7.30 (d, J = 7.8 Hz, 1H), 5.12 (dd, $J_1 = 9.6$ Hz, $J_2 = 5.4$ Hz, 1H), 4.19 (d, J = 4.8 Hz, 1H), 4.01-4.08 (m, 2H), 3.54 (d, J = 18.6 Hz, 1H), 3.03 (d, J = 18.0 Hz, 1H), 2.65 (d, J = 15.6 Hz, 1H), 2.33-2.28 (m, 2H), 1.85 (d, J = 11..4 Hz, 1H), 1.23 (s, 3H), 1.20 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.0, 141.4, 137.9, 130.2, 128.6 (q, ²J_{C-F} = 32.9 Hz), 124.9 (q, ³J_{C-F} = 3.3 Hz), 124.0 (q, ¹J_{C-F} = 270.2 Hz), 122.6 (q, ³J_{C-F} = 4.4 Hz), 65.8, 65.4, 64.9, 64.8, 55.6, 49.2, 38.5, 38.2, 25.2, 21.1. ¹⁹F NMR (565 MHz, CDCl₃): δ -62.4 (s). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀F₃N₂O₂ 341.1471; Found 341.1462.

7-Chloro-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one and 9-Chloro-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5, 11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5l and 5l' as 1:1 mixture of diastereoisomers) Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (40.5 mg, 66%, the ratio of two isomers = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.27 (m, 1H), 7.20 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.0 Hz, 1H), 7.14-7.10 (m, 2H), 7.07 (d, *J* = 2.0 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 5.11 (br s, 2H), 4.14 (d, *J* = 5.2 Hz, 2H), 4.13-4.07 (m, 4H), 3.47-3.39 (m, 2H), 2.96-2.89 (m, 2H), 2.68-2.61 (m, 2H), 2.33-2.23 (m, 4H), 1.84-1.80 (m, 2H), 1.21-1.19 (m, 12H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.9, 166.8, 142.8, 142.3, 135.4, 131.94, 131.85, 131.7, 131.1, 128.8, 128.1, 127.6, 125.9, 124.1, 65.9, 65.7, 65.5, 65.4, 64.9, 64.8, 55.8, 55.6, 49.23, 49.17, 38.3, 37.9, 37.8, 37.7, 25.2, 25.1, 21.2, 20.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀ClN₂O₂ 307.1208; Found 307.1205.

9-Fluoro-11-(hydroxymethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5m)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (31.8 mg, 55%), mp 178.4-179.5 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.15 (td, $J_1 = 7.8$ Hz, $J_2 = 5.4$ Hz, 1H), 6.96-6.93 (m, 1H), 6.88 (d, J = 7.2 Hz, 1H), 5.09 (dd, $J_1 = 9.6$ Hz, $J_2 = 5.4$ Hz, 1H), 4.16 (dd, $J_1 = 4.8$ Hz, $J_2 = 1.2$ Hz, 1H), 4.14-4.07 (m, 2H), 3.41 (d, J = 18.0 Hz, 1H), 2.91 (d, J = 18.6 Hz, 1H), 2.65 (d, J = 15.0 Hz, 1H), 2.31 (d, J = 15.0 Hz, 1H), 2.29-2.26 (m, 1H), 1.83 (d, J = 10.8 Hz, 1H), 1.22 (s, 3H) 1.19 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.9, 161.5 (d, ¹ $_{J_{C-F}} = 246.2$ Hz), 143.1 (d, ³ $_{J_{C-F}} = 4.4$ Hz), 127.9 (d, ³ $_{J_{C-F}} = 7.7$ Hz), 121.2 (d, ⁴ $_{J_{C-F}} = 3.2$ Hz), 120.8 (d, ² $_{J_{C-F}} = 16.5$ Hz), 114.8 (d, ² $_{J_{C-F}} = 20.9$ Hz), 65.5, 65.3, 64.8, 55.4 (d, ⁴ $_{J_{C-F}} = 2.1$ Hz), 49.3, 38.2, 32.9, 25.1, 21.0. ¹⁹F NMR (565 MHz,CDCl₃): δ -115.65 – -115.68 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₀FN₂O₂ 291.1503; Found 291.1499.

11-(Hydroxymethyl)-9-methoxy-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazo lo[1,2-*a*][1,2]diazepin-1-one (5n)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (38.1 mg, 63%), mp 192.5-193.7 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.15 (t, J = 8.4 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 7.2 Hz, 1H), 5.12 (dd, J_1 = 9.6 Hz, J_2 = 4.8 Hz, 1H), 4.13-4.10 (m, 2H), 4.06 (dd, J_1 = 12.6 Hz, J_2 = 4.8 Hz, 1H), 3.79 (s, 3H), 3.31 (d, J =

18.6 Hz, 1H), 2.81 (d, J = 18.6 Hz, 1H), 2.63 (d, J = 15.0 Hz, 1H), 2.29 (d, J = 15.6 Hz, 1H), 2.25 (dd, $J_1 = 10.8$ Hz, $J_2 = 4.8$ Hz, 1H), 1.82 (d, J = 11.4 Hz, 1H), 1.21 (s, 3H) 1.18 (s, 3H). ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 166.8, 158.0, 141.9, 127.3, 121.8, 117.9, 109.6, 65.71, 65.65, 64.7, 55.7, 55.2, 49.3, 38.2, 34.1, 25.0, 21.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₃ 303.1703; Found 303.1695.

11-(Hydroxymethyl)-3,3,6-trimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (50)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (37.1 mg, 65%), mp 188.7-189.9 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.11 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 5.19 (t, J = 7.2 Hz, 1H), 4.45 (d, J = 5.4 Hz, 1H), 4.08 (d, J = 6.6 Hz, 2H), 3.43 (d, J = 17.4 Hz, 1H), 3.00 (d, J = 18.0 Hz, 1H), 2.67 (d, J = 15.0 Hz, 1H), 2.38 (s, 3H), 2.29 (d, J = 15.0 Hz, 1H), 2.23 (dd, J_1 = 10.8 Hz, J_2 = 4.8 Hz, 1H), 1.81 (d, J = 10.8 Hz, 1H), 1.23 (s, 3H) 1.22 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.0, 139.0, 133.4, 132.7, 128.1, 127.6, 66.0, 65.5, 64.9, 51.0, 49.3, 38.8, 38.1, 25.2, 20.8, 19.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₂N₂NaO₂ 309.1573; Found 309.1570.

11-(Hydroxymethyl)-3,3,7,8-tetramethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2 -*a*][1,2]diazepin-1-one (5p)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (32.6 mg, 54%), mp 157.6-158.5 °C. ¹H NMR (400 MHz,CDCl₃): δ 6.88 (s, 1H), 6.76 (s, 1H), 5.12 (t, *J* = 8.0 Hz, 1H), 3.98-3.96 (m, 3H), 3.35 (d, *J* = 17.6 Hz, 1H), 2.84 (d, *J* = 17.6 Hz, 1H), 2.53 (d, *J* = 15.6 Hz, 1H), 2.22 (d, *J* = 15.2 Hz, 1H), 2.18-2.15 (m, 4H), 2.13 (s, 3H), 1.76 (d, *J* = 10.8 Hz, 1H), 1.14 (s, 3H) 1.10 (s, 3H). ¹³C{¹H} NMR (100 MHz,CDCl₃): δ 167.0,

137.9, 136.5, 134.4, 130.9, 130.4, 127.2, 66.2, 65.9, 64.6, 55.6, 49.4, 38.9, 37.8, 24.9, 21.5, 19.5, 19.3. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₈H₂₅N₂O₂ 301.1911; Found 301.1902.

8-Fluoro-11-(hydroxymethyl)-3,3,7-trimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazo lo[1,2-*a*][1,2]diazepin-1-one (5q)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (37.0 mg, 61%), mp 181.7-182.3 °C. ¹H NMR (600 MHz, CDCl₃): δ 6.88 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 10.2 Hz, 1H), 5.16 (dd, $J_1 = 9.6$ Hz, $J_2 = 5.4$ Hz, 1H), 4.08-4.02 (m, 3H), 3.44 (d, J = 18.0 Hz, 1H), 2.93 (d, J = 18.0 Hz, 1H), 2.62 (d, J = 15.0 Hz, 1H), 2.31 (d, J = 15.0 Hz, 1H), 2.26-2.23 (m, 4H), 1.82 (d, J = 10.8 Hz, 1H), 1.21 (s, 3H) 1.17 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.0, 160.9 (d, ¹ $_{J_{C-F}} = 243.9$ Hz), 136.1 (d, ⁴ $_{J_{C-F}} = 3.3$ Hz), 132.7 (d, ³ $_{J_{C-F}} = 7.7$ Hz), 128.8 (d, ³ $_{J_{C-F}} = 5.4$ Hz), 122.6 (d, ² $_{J_{C-F}} = 17.6$ Hz), 116.0 (d, ² $_{J_{C-F}} = 23.0$ Hz), 65.8, 65.7, 64.6, 55.3, 49.3, 38.7, 38.1, 25.0, 21.4, 14.2 (d, ⁴ $_{J_{C-F}} = 3.3$ Hz). ¹⁹F NMR (565 MHz,CDCl₃): δ -118.39 - -118.42 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₁FN₂NaO₂ 327.1479; Found 327.1471.

8-(Hydroxymethyl)-12,12-dimethyl-7,11,12,14-tetrahydro-8*H*,10*H*-8,14-methanonaphtho[1,2-*d*]pyrazolo [1,2-*a*][1,2]diazepin-10-one (5r)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (36.6 mg, 57%), mp 221.3-224.0 °C. ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 5.30 (br s, 1H), 5.07 (d, J = 5.4 Hz, 1H), 4.17-4.13 (m, 2H), 3.62 (d, J = 17.4 Hz, 1H), 3.18 (d, J = 18.0 Hz, 1H), 2.59 (d, J = 15.0 Hz, 1H), 2.41 (dd, J_1

= 10.8 Hz, J_2 = 4.8 Hz, 1H), 2.38 (d, J = 15.6 Hz, 1H), 1.96 (d, J = 10.8 Hz, 1H), 1.32 (s, 3H) 1.08 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.8, 135.2, 132.4, 131.4, 129.6, 129.0, 128.1, 127.5, 126.7, 125.3, 121.4, 65.8, 64.8, 49.64, 49.55, 39.6, 38.7, 24.7, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃N₂O₂ 323.1754; Found 323.1745.

11-(Hydroxymethyl)-3-methyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]di azepin-1-one (5s)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (47.1 mg, 91%), mp 199.4-200.2 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.25-7.22 (m, 1H), 7.18-7.15 (m, 2H), 7.09 (d, *J* = 7.2 Hz, 1H), 4.85 (br s, 1H), 4.09 (s, 2H), 4.01 (d, *J* = 5.4 Hz, 1H), 3.42 (d, *J* = 17.4 Hz, 1H), 3.30-3.26 (m, 1H), 2.98 (d, *J* = 18.0 Hz, 1H), 2.55 (dd, *J*₁ = 15.6 Hz, *J*₂ = 12.6 Hz, 1H), 2.45 (dd, *J*₁ = 15.6 Hz, *J*₂ = 6.6 Hz, 1H), 2.17 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.8 Hz, 1H), 1.88 (d, *J* = 11.4 Hz, 1H) 1.33 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.9, 140.1, 133.0, 129.7, 128.3, 126.4, 125.7, 68.8, 65.7, 62.5, 59.9, 42.1, 38.3, 35.9, 17.8. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₅H₁₉N₂O₂ 259.1441; Found 259.1436.

11-(Hydroxymethyl)-3-propyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-1-one (5t)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (40.8 mg, 71%), mp 176.9-177.4 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.23 (t, J = 7.2 Hz, 1H), 7.18-7.15 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H), 4.84 (t, J = 7.8 Hz, 1H), 4.09 (d, J = 7.2 Hz, 2H), 4.03 (d, J = 4.8 Hz, 1H), 3.42 (d, J = 18.0 Hz, 1H), 3.22-3.16 (m, 1H), 2.98 (d, J = 18.0 Hz, 1H), 2.56-2.46 (m, 2H), 2.16 (dd, J_1 = 10.8 Hz, J_2 = 5.4 Hz, 1H), 1.87 (d, J = 11.4 Hz, 1H), 1.75-1.70 S26

(m, 1H), 1.64-1.57 (m, 1H), 1.42-1.35 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.7, 140.3, 133.0, 129.7, 128.2, 126.4, 125.5, 68.4, 67.1, 65.7, 60.3, 40.6, 38.3, 35.9, 35.5, 19.7, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃N₂O₂ 287.1754; Found 287.1751.

11-(Hydroxymethyl)-2,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1, 2]diazepin-1-one (5u)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (32.0 mg, 59%), mp 184.9-185.9 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.25-7.22 (m, 1H), 7.18-7.15 (m, 2H), 7.09 (d, J = 7.8 Hz, 1H), 4.83 (dd, $J_1 = 10.2$ Hz, $J_2 = 5.4$ Hz, 1H), 4.12 (dd, $J_1 = 13.2$ Hz, $J_2 = 10.8$ Hz, 1H), 4.04 (dd, $J_1 = 12.6$ Hz, $J_2 = 5.4$ Hz, 1H), 4.00 (d, J = 4.8 Hz, 1H), 3.42 (d, J = 17.4 Hz, 1H), 2.99 (d, J = 18.0 Hz, 1H), 2.79-2.75 (m, 1H), 2.52-2.49 (m, 1H), 2.14 (dd, $J_1 = 11.4$ Hz, $J_2 = 4.8$ Hz, 1H), 1.86 (d, J = 11.4 Hz, 1H), 1.32 (d, J = 6.6 Hz, 3H), 1.12 (d, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 173.3, 140.3, 133.1, 129.7, 128.3, 126.4, 125.6, 69.4, 68.5, 65.7, 59.7, 46.1, 38.3, 35.6, 16.7, 11.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₁N₂O₂ 273.1598; Found 273.1593.

4. Structural elaborations of 5a

4.1. Synthesis of 6

To a reaction tube equipped with a stir bar were charged with **5a** (0.2 mmol, 54.4 mg) and toluene (10 mL). The resulting solution was then added with iodine (0.4 mmol, 103 mg), triphenylphosphine (0.6 mmol, 157 mg) and imidazole (0.6 mmol, 40 mg) under argon. The rsulting mixture was stirred at 110 $^{\circ}$ C for 6 h. Upon completion, it was cooled to room temperature, and then concentrated under reduced pressure. The residual was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **6**.

11-(Iodomethyl)-3,3-dimethyl-2,3,10,11-tetrahydro-1*H*,5*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]dia zepin-1-one (6)

Eluent: petroleum ether/ethyl acetate (1:1). Yellowish solid (52.1 mg, 68%), mp 145.7-146.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.22 (m, 1H), 7.19-7.16 (m, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 4.20 (d, *J* = 4.0 Hz, 1H), 3.91 (d, *J* = 10.4 Hz, 1H), 3.84 (d, *J* = 10.8 Hz, 1H), 3.69 (d, *J* = 16.8 Hz, 1H), 3.29 (d, *J* = 16.8 Hz, 1H), 2.62-2.58 (m, 1H), 2.23 (d, *J* = 15.6 Hz, 1H), 2.11 (d, *J* = 10.4 Hz, 1H), 1.94 (d, *J* = 15.6 Hz, 1H), 1.29 (s, 3H), 1.06 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.8, 136.5, 134.3, 129.4, 128.8, 128.5, 126.3, 62.2, 59.6, 58.4, 48.2, 45.6, 37.9, 27.9, 23.7, 11.1. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₂₀IN₂O 383.0615; Found 383.0614.

4.2. Synthesis of 7

To a reaction tube equipped with a stir bar were added **5a** (81.7 mg, 0.3 mmol), DMAP (110.0 mg, 0.9 mmol), *p*-TsCl (85.8 mg, 0.45 mmol) and DCM (1.5 mL). The resulting mixture was stirred at room temperature for 3 h. Upon completion, it was filtered through a pad of celite, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **7**.

(3,3-Dimethyl-1-oxo-2,3,5,10-tetrahydro-1*H*,11*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-11yl)methyl 4-methylbenzenesulfonate (7)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (94.6 mg, 74%), mp 182.8-183.5 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.23-7.20 (m, 1H), 7.17-7.13 (m, 2H), 7.09

(d, J = 7.8 Hz, 1H), 4.62 (d, J = 10.2 Hz, 1H), 4.52 (d, J = 10.2 Hz, 1H), 4.17 (d, J = 4.2 Hz, 1H), 3.42 (d, J = 16.8 Hz, 1H), 3.03 (d, J = 16.8 Hz, 1H), 2.51 (dd, $J_1 = 11.4$ Hz, $J_2 = 3.6$ Hz, 1H), 2.46 (s, 3H), 2.13 (d, J = 16.2 Hz, 1H), 2.08-2.04 (m, 2H), 1.20 (s, 3H), 1.12 (s, 3H). ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 170.1, 145.1, 137.4, 133.2, 132.6, 130.0, 129.6, 128.4, 128.11, 128.08, 126.4, 71.1, 62.0, 60.6, 57.4, 48.1, 40.9, 36.4, 26.2, 24.2, 21.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₇N₂O₄S 427.1686; Found 427.1680.

4.3. Synthesis of 8^[3]

To a reaction tube equipped with a stir bar were added **5a** (54.4 mg, 0.2 mmol), DCC (41.3 mg, 0.2 mmol), DMAP (4.9 mg, 0.04 mmol), oxaprozin (58.7 mg, 0.2 mmol) and DCM (1 mL). The resulting mixture was stirred at room temperature under air for 24 h. Upon completion, it was filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **8**.

(3,3-Dimethyl-1-oxo-2,3,5,10-tetrahydro-1*H*,11*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-11yl)methyl 3-(4,5-diphenyloxazol-2-yl)propanoate (8)

Eluent: petroleum ether/ethyl acetate (1:1). Colorless oil (71.3 mg, 65%). ¹H NMR (600 MHz, CDCl₃): δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.34-7.30 (m, 6H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.2 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 4.82 (d, *J* = 11.4 Hz, 1H), 4.71 (d, *J* = 11.4 Hz, 1H), 4.03 (d, *J* = 4.2 Hz, 1H), 3.50 (d, *J* = 16.8 Hz, 1H), 3.25-3.18 (m, 2H), 3.00-2.97 (m, 2H), 2.94 (d, *J* = 16.8 Hz, 1H), 2.47 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.2 Hz, 1H), 2.17-2.11 (m, 2H), 1.89 (d, *J* = 10.8 Hz, 1H), 1.21 (s, 3H), 1.13 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.5, 169.7, 161.7, 145.5, 138.0, 135.1, 133.4, 132.5, 129.7,

129.0, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 127.8, 126.5, 126.3, 65.3, 62.5, 60.8, 57.1, 48.4, 40.3, 37.0, 31.0, 25.6, 24.3, 23.5. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₃₄H₃₄N₃O₄ 548.2544; Found 548.2539.

4.4. Synthesis of 9

To a reaction tube equipped with a stir bar were added **5a** (54.4 mg, 0.2 mmol), DCC (41.3 mg, 0.2 mmol), DMAP (4.9 mg, 0.04 mmol), adapalene (82.5 mg, 0.2 mmol) and DCM (1 mL). The resulting mixture was stirred at room temperature for 24 h. Upon completion, it was filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using dichloromethane/ methanol (20:1) as eluent to afford **9**.

(3,3-Dimethyl-1-oxo-2,3,5,10-tetrahydro-1*H*,11*H*-5,11-methanobenzo[*d*]pyrazolo[1,2-*a*][1,2]diazepin-11yl)methyl 6-(3-((3*r*,5*r*,7*r*)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoate (9)

Eluent: dichloromethane/methanol (20:1). White solid (105.8 mg, 79%), mp 167.9-168.7 °C. ¹H NMR (600 MHz, CDCl₃): δ 8.66 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.10 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 1.8 Hz, 1H), 7.53 (dd, J_1 = 8.4 Hz, J_2 = 1.8 Hz, 1H), 7.27-7.24 (m, 1H), 7.20-7.18 (m, 3H), 6.98 (d, J = 8.4 Hz, 1H), 5.02-4.96 (m, 2H), 4.21 (d, J = 4.2 Hz, 1H), 3.89 (s, 3H), 3.74 (d, J = 16.8 Hz, 1H), 3.12 (d, J = 16.8 Hz, 1H), 2.64 (dd, J_1 = 10.8 Hz, J_2 = 3.6 Hz, 1H), 2.22 (d, J = 15.6 Hz, 1H), 2.18 (s, 6H), 2.15-2.10 (m, 5H), 1.80 (s, 6H), 1.29 (s, 3H), 1.20 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.4, 166.4, 159.0, 141.5, 139.0, 137.7, 136.1, 133.7, 133.0, 132.5, 131.3, 131.2, 129.8, 128.41, 128.35, 128.1, 126.7, 126.5, 126.4, 126.0, 125.8, 125.7, 124.8, 112.2, 65.9, 62.8, 60.2, 57.6, 55.2, 48.2, 40.9, 40.6, 37.23, 37.15, 36.9, 29.1, 26.5, 24.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₄₄H₄₇N₂O₄ 667.3530; Found 667.3519.

5. Gram-Scale Synthesis of 3a and 5a

To a reaction tube equipped with a stir bar were charged with **1a** (1.01g, 5.0 mmol), **2** (0.86 g, 7.5 mmol), $[RhCp*(MeCN)_3](SbF_6)_2$ (104.0 mg, 0.125 mmol), AgSbF₆ (85.8 mg, 0.25 mmol) and TFE (10 mL). The mixture was stirred at 120 °C for 6 h. Upon completion, it was cooled to room temperature, filtered through a pad of celite, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **3a** (0.91 g, 67%).

To a reaction tube equipped with a stir bar were charged with **1a** (1.01g, 5.0 mmol), **4** (1.14 g, 10.0 mmol), $[Ru(p\text{-cymene})Cl_2]_2$ (76.5 mg, 0.125 mmol), AgSbF₆ (171.7 g, 0.5 mmol) and HFIP (10 mL). The mixture was stirred at 80 °C under argon for 6 h. Upon completion, it was cooled to room temperature, filtered through a pad of celite, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford **5a** (1.13 g, 83%).

III. Mechanim studies

1. Studies on the reversibility of C-H bond activation

To a reaction tube equipped with a stir bar were charged with **1a** (40.4 mg, 0.2 mmol), CD₃OD (0.16 mL, 4 mmol), [RhCp*(MeCN)₃](SbF₆)₂ (8.3 mg, 0.01 mmol), AgSbF₆ (6.9 mg, 0.02 mmol) and TFE (2 mL). The resulting mixture was stirred at 120 °C under air for 1 h. Afterwards, it was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel chromatography using ethyl acetate as eluent to give a mixture of **1a** and **1a**- d_n . Upon analyzing the ¹H NMR spectrum of the mixture, the deuteration ratio was determined to be 30%.

To a reaction tube equipped with a stir bar were charged with **1a** (40.4 mg, 0.2 mmol), **2** (34.2 mg, 0.3 mmol), CD₃OD (0.16 mL, 4 mmol), [RhCp*(MeCN)₃](SbF₆)₂ (8.3 mg, 0.01 mmol), AgSbF₆ (6.9 mg, 0.02 mmol) and TFE (2 mL). The resulting mixture was stirred at 120 °C under air for 1 h. Afterwards, it was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to give a mixture of **3a** and **3a**-*d_n*. Upon analyzing the ¹H NMR spectrum of the mixture, the deuteration ratio was determined to be 22%.

2. Kinetic isotope effect study

To a reaction tube equipped with a stir bar were added **1a** (40.4 mg, 0.2 mmol), **1a**- d_5 (41.5 mg, 0.2 mmol), TFE (2 mL), **2** (34.2 mg, 0.3 mmol), [RhCp*(MeCN)₃](SbF₆)₂ (8.3 mg, 0.01 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol) with stirring. The resulting mixture was stirred at 120 °C under air for 1 h. Afterwards, it was cooled to room temperature, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford a mixture of **3a** and **3a**- d_4 . Upon analyzing the ¹H NMR spectrum of the mixture, the ratio of **3a** to **3a**- d_4 was determined to be 0.5:0.5. Accordingly, the intermolecular KIE (k_H/k_D) was calculated to be 1.

3. Competition experiment between 1d and 1h

To a reaction tube equipped with a stir bar were added **1d** (46.5 mg, 0.2 mmol), **1h** (44.0 mg, 0.2 mmol), **2** (34.2 mg, 0.3 mmol), [RhCp*(MeCN)₃](SbF₆)₂ (8.3 mg, 0.01 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol). The tube was then sealed, and the mixture was stirred at 120 °C under air for 1 h. Upon completion, it was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to afford a mixture of **3d** and **3h**. Upon analyzing the ¹H NMR spectrum of the mixture, the ratio of **3d** to **3h** was determined to be about 4:1.

IV. Copies of NMR spectra of 3a-3v

S37

S39

3e OH ¹⁹F NMR (565 MHz, CDCl₃) -100 0 -50 -150 -200 PPM

S44

S46

S48

S49

3n

0	-50	-100	-150	-200 PPM

V. Copies of NMR spectra of 5a-5u

S67

S71

115.651 115.665 115.676 $\frac{5m}{19}$ HO 19 F NMR (565 MHz, CDCl₃) 0 -50 -100 -150 -200 PPM

S81

¹H NMR (600 MHz, CDCl₃)

5u _{HÓ} ¹H NMR (600 MHz, CDCl₃)

VI. Copies of NMR spectra of 6-9

S92

VII. X-ray crystal structure and data of 3p

Figure S1. X-ray crystal structure of 3p with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a dichloromethane/chloroform (1:1) solution of **3p**. Crystal data collection and refinement parameters of **3p** are summarized in Table S1. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{17}H_{22}N_2O_2$
Formula weight	286.36
Temp, K	293 (2)
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> , Å	10.6552(2)
b, Å	14.5864(2)
<i>c</i> , Å	9.8599(2)

 Table S1. Crystallographic data and structure refinement results of 3p

α()	90
β ()	104.578(2)
γ(⁹)	90
Volume, Å ³	1483.10(5)
Ζ	4
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.283
λ, Å	1.54184
μ , mm ⁻¹	0.673
No. of data collected	10291
No. of unique data	2860
R _{int}	0.0372
Goodness-of-fit on F^2	1.090
$R_1, WR_2 (I > 2\sigma(I))$	0.0613, 0.1535
R_1 , w R_2 (all data)	0.0659, 0.1596

VIII. X-ray crystal structure and data of 5a

Figure S2. X-ray crystal structure of 5a with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a petroleum ether/dichloromethane (1:1) solution of **5a**. Crystal data collection and refinement parameters of **5a** are summarized in Table S2. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{16}H_{20}N_2O_2$
Formula weight	272.34
Temp, K	293 (2)
Crystal system	triclinic
Space group	P-1
<i>a</i> , Å	7.2189(4)
b, Å	10.6828(5)

Table S2. Crystallographic data and structure refinement results of 5a

<i>c</i> , Å	10.8857(7)
α()	111.682(5)
β ()	107.730(5)
γ()	94.966(4)
Volume, Å ³	724.00(8)
Ζ	2
$\rho_{\rm calc}, {\rm g \ cm}^{-3}$	1.249
λ, Å	1.54184
μ , mm ⁻¹	0.665
No. of data collected	4574
No. of unique data	2736
R _{int}	0.0264
Goodness-of-fit on F^2	1.079
$R_1, wR_2 (I > 2\sigma(I))$	0.0750, 0.1975
R_1 , w R_2 (all data)	0.0801, 0.2050

IX. References

- M. Zhang, F. Wu, H. Wang, J. Wu and W. Chen, Copper-Catalyzed Sequential Azomethine Imine-Alkyne Cycloaddition and Umpolung Thiolation Reactions. *Adv. Synth. Catal.*, 2017, **359**, 2768–2772.
- (2) S. Zhang, Y. Zheng, Z. Zhang, S. Chen, H. Xie, B. Shu, J. Song, Y. Liu, Y. Zeng and L. Zhang, Access to Branched Allylarenes via Rhodium(III)-Catalyzed C–H Allylation of (Hetero)arenes with 2-Methylidenetrimethylene Carbonate, *Org. Lett.*, 2021, 23, 5719–5723.
- (3) X. Wang, X. Xun, H. Song, Y. Liu and Q. Wang, Palladium Metallaphotoredox-Catalyzed 2-Arylation of Indole Derivatives, *Org. Lett.*, 2022, 24, 4580–4585.