SUPPORTING INFORMATION

Synthesis of 5 H -chromeno[3,4-c]pyridine derivatives through rutheniumcatalyzed [2+2+2] cycloaddition

William Parisot, ${ }^{\text {a }}$ Steve Huvelle, ${ }^{\text {a }}$ Mansour Haddad, ${ }^{\text {a }}$ Guillaume Lefèvre, ${ }^{\text {a }}$ Phannarath Phansavath, ${ }^{\text {a }}$ Virginie Ratovelomanana-Vidal ${ }^{\text {a }}$
a PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 11 Rue Pierre et Marie Curie, 75005 Paris, France
e-mail : virginie.vidal@chimieparistech.psl.eu

Table of Contents

I. General informations S-2
II. Cyanamide syntheses S-3
III. General procedures S-3

1. Sonogashira coupling (general procedure A) S-3
2. Ether formation and alkyne deprotection (general procedure B) S-4
3. $[2+2+2]$ Cycloaddition method (general procedure C) S-4
4. $\quad[2+2+2]$ Cycloaddition method (general procedure D) S-5
IV. Optimization S-6
V. Characterization S-7
5. Characterization of 2-((trimethylsilyl)ethynyl)phenol derivatives S-7
6. Characterization of 1-ethynyl-2-(prop-2-yn-1-yloxy)benzene derivatives S-15
7. Characterization of 5 H -chromeno[3,4-c] pyridines derivatives S-25
VI. NMR spectra S-49
VII. X-Ray crystallographic data for compound 3aa S-128
8. X-Ray crystal structure determination S-128
9. Crystal data for 3aa S-129

I. General informations

General Methods: Unless otherwise stated, all reactions were carried out under argon. Thinlayer chromatography was performed on silica gel 60 F254 on aluminum plates (Merck). Visualization was accomplished using UV light ($\lambda=254$ or 365 nm) or by staining in basic KMnO4, p-anisaldehyde or phosphomolybdic acid solution followed by heating. Flash chromatography was performed under positive air pressure using silica gel ($40-63 \mu \mathrm{~m}$) from VWR Chemical.

Instrumentation and Data Acquisition: Proton $\left({ }^{1} \mathrm{H}\right)$, carbon $\left({ }^{13} \mathrm{C}\right)$ and fluorine $\left({ }^{19} \mathrm{~F}\right)$ nuclear magnetic resonance spectra were recorded on Bruker AV400 instrument, using non deuterated chloroform (${ }^{1} \mathrm{H}$ NMR : $\delta=7.26 \mathrm{ppm}$) as an internal chemical shift reference for Proton $\left({ }^{1} \mathrm{H}\right)$ and $\left({ }^{13} \mathrm{C}\right.$ NMR : $\left.\delta=77.16 \mathrm{ppm}\right)$ relative to the centre line of the triplet as an internal chemical shift reference for Carbon (${ }^{13} \mathrm{C}$). Melting points (M. p.) were determined on a Köfler melting point apparatus. High resolution mass spectrometric (HRMS) analyses were measured on Q-Tof 6545LTQ-Orbitrap (Agilent) by ESI or APCI. Low resolution mass spectrometric (LRMS) analyses were measured on DSQII (ThermoScientific) by DEP.

Data Reporting: The presentation of ${ }^{1} \mathrm{H}$ NMR spectroscopic data: magnet strength, analysis solvent, chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. = quintuplet, sext. = sextuplet sept. = septuplet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad, app. = apparent), J-coupling constants (Hz), and integration. The regioisomeric ratio was determined by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals. The response factor of both regioisomers was assumed to be equal in each case. For regioisomeric ratios greater than 90:10 only the major isomer is depicted in the following NMR characterizations. HRMS were given for the mixture of regioisomers of 5 H -chromeno $[3,4-c$]pyridines and 5 H -chromeno $[4,3-c]$ pyridines.

Materials: All reagents were purchased in the highest purity grade available from Acros Organics, Sigma-Aldrich, Tokyo Chemical Industry, Alfa Aesar and Fluorochem. They were used without further purification unless otherwise specified. Argon and liquid nitrogen were provided from Air liquid. Anhydrous solvents were freshly distilled before use or obtained from solvent purificator Pure Solv ${ }^{\top M}$. Petroleum ether, pentane, ethyl acetate, dichloromethane and diethyl ether were used as received. Anhydrous 2-methyltetrahydrofuran was obtained by distillation over sodium in the presence of benzophenone under argon prior to use.

Safety Notice: Cyanamides are volatile and toxic. Propargyl bromide is toxic and carcinogenic. lodophenols reagents are known to be harmful. All these reagents must be handled under a fume hood and with gloves.

II. Cyanamide syntheses

Dimethylcyanamide 2a, pyrrolidine carbonitrile 2d, cyanamide $\mathbf{2 f}$ and 4morpholinecarbonitrile $\mathbf{2 e}$ were purchased from commercial sources. Cyanamides $\mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{2 g}$ were prepared according to reported procedures. ${ }^{1,2}$

2a

2b

2c

2d

2e

2g

III. General procedures

1. Sonogashira coupling (general procedure A)

In a 100 mL round bottom flask was suspended $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(255 \mathrm{mg}, 0.36 \mathrm{mmol}$, 0.02 equiv.) and Cul ($139 \mathrm{mg}, 0.73 \mathrm{mmol}, 0.04$ equiv.) in 26 mL of $\mathrm{THF} / \mathrm{NEt}_{3}$ (8:2). Under argon, a solution of 2-iodophenol ($4.00 \mathrm{~g}, 18.2 \mathrm{mmol}, 1.0$ equiv.) and trimethylsilyl acetylene
 black. The resulting mixture was stirred overnight at room temperature. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography $\quad\left(\mathrm{SiO}_{2}, \quad\right.$ cyclohexane/EtOAc ; 100:0 to $\left.95: 5\right)$ affording 2-((trimethylsilyl)ethynyl)phenol as a yellow oil ($3.36 \mathrm{~g}, 17.6 \mathrm{mmol}, 97 \%$).

[^0]
2. Ether formation and alkyne deprotection (general procedure B)

In a 100 mL round bottom flask 2-((trimethylsilyl)ethynyl)phenol ($3.36 \mathrm{~g}, 17.6 \mathrm{mmol}$, 1.0 equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.88 \mathrm{~g}, 35.3 \mathrm{mmol}, 2.0$ equiv.) were mixed in 50 mL of anhydrous DMF at room temperature. Under argon, propargyl bromide (80% in toluene) (2.93 mL , 26.4 mmol, 1.5 equiv.) was added and the brownish mixture was stirred 4 h at room temperature. When the reaction was complete (NMR monitoring), 20 mL of water was added. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over MgSO_{4} and the filtrate was concentrated under reduced pressure. The residue was dissolved in 50 mL of THF and tetrabutylammonium fluoride ($5.52 \mathrm{~g}, 21.1 \mathrm{mmol}, 1.2$ equiv.) was added, the solution turns to black. The solution was stirred 1 h at room temperature, then water (20 mL) was added. The resulting solution was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, cyclohexane/EtOAc ; 95:5) affording 1a as a pale-yellow solid ($2.31 \mathrm{~g}, 14.8 \mathrm{mmol}, 84 \%$).
3. $[2+2+2]$ Cycloaddition method (general procedure C)

A sealed tube was charged with $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}\left(6.5 \mathrm{mg}, 1.28 \times 10^{-2} \mathrm{mmol}, 0.02\right.$ equiv.) and dimethylcyanamide $\mathbf{2 a}$ ($76 \mu \mathrm{~L}, 0.96 \mathrm{mmol}, 1.5$ equiv.) was added. Under argon a solution of diyne 1a ($100 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.0$ equiv.) in 1.8 mL of anhydrous toluene was added. The tube was sealed, and the reaction mixture was stirred vigorously at $100^{\circ} \mathrm{C}$ for 24 h . When the reaction was complete, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/EtOAc ; 80:20), then the excess of cyanamide was distilled off with a Kugelrohr distillation apparatus, affording a mixture of 3aa and 3aa' as a pale-brown oil ($121 \mathrm{mg}, 535 \mu \mathrm{~mol}, 84 \%$).

4. $[2+2+2]$ Cycloaddition method (general procedure D)

1

3

A sealed tube was charged with $\left[\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}\left(9.7 \mathrm{mg}, 1.92 \times 10^{-2} \mathrm{mmol}, 0.03\right.$ equiv.) and 4-morpholinecarbonitrile $\mathbf{2 e}(97 \mu \mathrm{~L}, 0.96 \mathrm{mmol}, 1.5$ equiv.) was added. Under argon a solution of diyne 1a ($100 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.0$ equiv.) in 1.8 mL of anhydrous toluene was added. The tube was sealed, and the reaction mixture was stirred vigorously at $100{ }^{\circ} \mathrm{C}$ for 48 h . When the reaction was complete, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/EtOAc ; 80:20 to 70:30), then the excess of cyanamide was distilled off with a Kugelrohr distillation apparatus, affording a mixture of 3ae and 3ae' as a pale-brown oil ($148 \mathrm{mg}, 552 \mu \mathrm{~mol}, 86 \%$).

Proposed mechanism ${ }^{3}$

[^1]IV. Optimization

Entry	Catalyst (mol \%)	Solvent	$\mathrm{T}^{\circ} \mathrm{C}$	Conv. (\%)	Yield (\%)	Ratio
1	$\begin{gathered} {\left[\mathrm{Cp}^{*} \mathrm{RuCl}\right]_{4}} \\ (2 \mathrm{~mol}) \end{gathered}$	Toluene	100	100	43	>99/1
2	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (5 \mathrm{~mol} \%) \end{gathered}$	Toluene	100	100	83	96/4
3	$\begin{gathered} \mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl} \\ (5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	Toluene	100	92	37	>99/1
4	$\begin{gathered} {[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}} \\ (5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	Toluene	100	100	0	ND
5	$\begin{gathered} \mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O} \\ (5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	Toluene	100	58	33	92/8
6	$\begin{gathered} {[\mathrm{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}} \\ (5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	Toluene	100	100	0	ND
7	$\ln (\mathrm{OTf})_{3}$ (5 mol\%)	Toluene	100	0	0	ND
8	$\mathrm{Fe}(\mathrm{acac})_{3}$ (5 mol\%)	Toluene	100	0	0	ND
9	$\begin{gathered} \mathrm{FeSO}_{4} \\ (5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	Toluene	100	0	0	ND
10	$\begin{aligned} & \mathrm{CpCo(CO})_{2} \\ & \text { (5 mol\%) } \end{aligned}$	Toluene	100	26	21	76/24
11	[$\left.\mathrm{Cp}_{2} \mathrm{Ni}\right]$ ($5 \mathrm{~mol} \%$), Xantphos ($10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.00 equiv.)	Toluene	100	0	0	ND
12	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	Toluene	100	100	84	96/4
13	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	DCE	80	54	40	97/3
14	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	DCM	50	43	26	97/3
15	$\begin{gathered} {\left[\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	EtOH	80	10	9	92/8
16	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	MeTHF	80	71	61	96/4
17	$\begin{gathered} {\left[\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (1 \mathrm{~mol} \%) \end{gathered}$	Toluene	100	62	61	96/4
18	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}} \\ (2 \mathrm{~mol} \%) \end{gathered}$	Toluene	90	95	77	96/4

Table 1 : Optimization table

V. Characterization

1. Characterization of 2-((trimethylsilyl)ethynyl)phenol derivatives

2-((trimethylsilyl)ethynyl)phenol (A1)

A1
Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OSi}$

Prepared according to the general procedure A using 2-iodophenol ($4.00 \mathrm{~g}, 18.2 \mathrm{mmol}$, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 95:5), the expected product was obtained as a yellow oil ($3.36 \mathrm{~g}, 17.6 \mathrm{mmol}, 97 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (dd, $\mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.22$ (m, 1H), 6.94 (dd, J = 8.3, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, \mathrm{J}=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,131.7,130.8,120.4,114.7,109.6,102.5,99.1,0.1$ (3C).
LRMS (EI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 175 (100) found 175 (100).

4-methyl-2-((trimethylsilyl)ethynyl)phenol (A2)

A2
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OSi}$

Prepared according to the general procedure \mathbf{A} using 2-iodo-4-methylphenol (1.65 g, $7.05 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 95:5), the expected product was obtained as a yellow oil ($1.40 \mathrm{~g}, 6.85 \mathrm{mmol}, 97 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}$, $J=8.4, H z, 1 H), 5.69(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.1, 131.8, 131.6, 129.5, 114.4, 109.2, 102.0, 99.4, 20.4, 0.1 (3C).

LRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 189 (100) found 189 (100).

4-isopropyl-2-((trimethylsilyl)ethynyl)phenol (A3)

A3
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}$

Prepared according to the general procedure A using 2-iodo-4-isopropylphenol (5.80 g , 22.1 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 98:2), the expected product was obtained as a yellow oil ($3.72 \mathrm{~g}, 16.0 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 ($\mathrm{dd}, \mathrm{J}=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (s, 1H), 2.80 (sept., $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.28 (app. s, 3H), 1.27 (app. s, 3H), 0.29 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 155.3,140.6,129.2,129.1,114.6,109.2,101.6,99.7,33.3$, 24.1 (2C), 0.1 (3C).

LRMS (EI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 217 (100) found 217 (100).

4-(tert-butyl)-2-((trimethylsilyl)ethynyl)phenol (A4)

A4
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{OSi}$
Prepared according to the general procedure \mathbf{A} using 4-(tert-butyl)-2-iodophenol (2.90 g , $10.5 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 98:2 to 95:5), the expected product was obtained a white solid ($2.15 \mathrm{~g}, 8.72 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,143.1,128.3,128.1,114.2,108.8,101.8,99.7,34.2,31.5$ (3C), 0.2 (3C).
M.p. : $71-73^{\circ} \mathrm{C}$

LRMS (EI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{OSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}: 231$ (100) found 231 (100).

3-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-4-ol (A5)

A5
Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OSi}$
Prepared according to the general procedure \mathbf{A} using 3-iodo-[1,1'-biphenyl]-4-ol (7.50 g, $25.3 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as yellow solid ($3.40 \mathrm{~g}, 12.8 \mathrm{mmol}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=8.6$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H})$, 0.37 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,140.1,133.7,130.2,129.6,128.9$ (2C), 127.1, 126.7 (2C), 115.1, 110.0, 102.6, 99.1, 0.1 (3C).
M.p. : $98-100^{\circ} \mathrm{C}$

LRMS (EI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}: 251$ (100) found 251 (100).

4-fluoro-2-((trimethylsilyl)ethynyl)phenol (A6)

A6
Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FOSi}$

Prepared according to the general procedure A using 2-iodo-4-fluorophenol (4.20 g, $17.6 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 98:2), the expected product was obtained as a yellow oil ($3.21 \mathrm{~g}, 15.4 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ ($\mathrm{dd}, \mathrm{J}=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.97-6.92 (m, 1H), 6.89-6.86 ($\mathrm{m}, 1 \mathrm{H}$), $5.76(\mathrm{~s}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1(\mathrm{~d}, \mathrm{~J}=232.3 \mathrm{~Hz}), 153.5,117.7(\mathrm{~d}, \mathrm{~J}=31.3 \mathrm{~Hz}), 117.5(\mathrm{~d}$, $J=33.3 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}), 110.2(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 103.3,9.1(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 0.1(3 \mathrm{C})$.
${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=-123.8$.
LRMS (EI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FOSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}: 193$ (100) found 193 (100).

4-chloro-2-((trimethylsilyl)ethynyl)phenol (A7)

A7
Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClOSi}$

Prepared according to the general procedure A using 2-iodo-4-chlorophenol (3.98 g, $15.6 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/DCM ; 90:10), the expected product was obtained as a yellow oil ($3.14 \mathrm{~g}, 13.9 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 155.8,131.0,130.8,125.0,116.0,111.1,103.9,97.7,0.1$ (3C).
LRMS (EI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClOSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 209 (100), 211 (32) found 209 (100), 211 (48).

4-bromo-2-((trimethylsilyl)ethynyl)phenol (A8)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrOSi}$

Prepared according to the general procedure A using 2-iodo-4-bromophenol (4.90 g, 16.4 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 96:4 to 95:5), the expected product was obtained as a yellow oil ($4.12 \mathrm{~g}, 15.3 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,133.9,133.6,116.5,111.9,111.7,104.0,97.5,0.0$ (3C).
LRMS (EI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrOSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 253 (100), 255 (97) found 253 (100), 255 (97).

4-hydroxy-3-((trimethylsilyl)ethynyl)benzonitrile (A9)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSi}$
Prepared according to the general procedure A using 4-hydroxy-3-iodobenzonitrile (3.50 g , 14.3 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 70:30 to $60: 40$), the expected product was obtained as a white solid ($2.02 \mathrm{~g}, 9.38 \mathrm{mmol}, 66 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,136.1,134.2,118.3,116.0,111.4,105.0,104.1,96.4,0.2$ (3C).

LRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$: 200 (100) found 200 (100).

5-methoxy-2-((trimethylsilyl)ethynyl)phenol (A10)

Prepared according to the general procedure A using 2-iodo-5-methoxyphenol (3.20 g , $12.8 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as a yellow oil ($2.38 \mathrm{~g}, 10.8 \mathrm{mmol}, 84 \%$).
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=8.6$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 161.8,158.7,132.5,107.3,102.0,101.0,100.0,99.3,55.4$, 0.2 (3C).

LRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}: 205$ (100) found 205 (100).

1-((trimethylsilyl)ethynyl)naphthalen-2-ol (A11)

A11
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSi}$

Prepared according to the general procedure A using 1-iodonaphthalen-2-ol (4.00 g, $14.8 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/DCM ; 80:20), the expected product was obtained as a yellow oil ($562 \mathrm{mg}, 2.34 \mathrm{mmol}, 16 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ ($\left.\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 156.9,133.7,131.0,128.5,128.4,127.6,125.0,124.2,116.3$, 107.5, 102.9, 97.6, 0.3 (3C).

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 241.1043$ (100) found 241.1039 (100).

tert-butyldimethyl((6-((trimethylsilyl)ethynyl)benzo[d][1,3]dioxol-5-yl)oxy)silane (A12)

A12
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}_{2}$
Prepared according to the general procedure A using tert-butyl ((6-iodobenzo[d][1,3]dioxol-5-yl)oxy)dimethylsilane ($5.00 \mathrm{~g}, 13.2 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as an orange oil ($3.11 \mathrm{~g}, 8.92 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H})$, 0.22 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}{ }^{3} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.0,148.8,141.6,111.9,107.3,102.7,101.9,101.6,96.2$, 25.9 (3C), 18.4, 0.2 (3C), -4.2 (2C).

LRMS (CI/ NH_{3}): Calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 349 (100) found 349 (100).

2,4-dimethyl-6-((trimethylsilyl)ethynyl)phenol (A13)

A13
Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OSi}$
Prepared according to the general procedure A using 2-iodo-4,6-dimethylphenol (3.00 g , 12.1 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 95:5 to $80: 20$), the expected product was obtained as a yellow oil ($2.58 \mathrm{~g}, 11.8 \mathrm{mmol}, 97 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, 0.33 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,133.0,129.0,128.9,123.6,108.6,101.5,99.9,20.3,15.9$, 0.1 (3C).

LRMS (CI/ NH_{3}): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 219$ (100) found 219 (100).

3-bromo-2,4-dimethyl-6-((trimethylsilyl)ethynyl)phenol (A14)

A14
Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrOSi}$
Prepared according to a modification of the general procedure \mathbf{A} using 3-bromo-6-iodo-2,4-dimethylphenol ($3.00 \mathrm{~g}, 9.17 \mathrm{mmol}, 1.0$ equiv.), ethynyltrimethylsilane ($5.08 \mathrm{~mL}, 36.7 \mathrm{mmol}, 4.0$ equiv.), the reaction was refluxed in $\mathrm{THF}^{2} / \mathrm{Et}_{3} \mathrm{~N}(8 / 2)$ for 6 hours. After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a yellow oil ($2.58 \mathrm{~g}, 8.68 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9,140.5,140.0,117.8,114.1,109.0,106.0,98.1,24.4,22.4$, 0.1 (3C).

LRMS (CI/ NH_{3}): Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrOSi}[\mathrm{M}+\mathrm{H}]^{+}$: 297 (100), 299 (97) found 297 (100), 299 (97).

2-(phenylethynyl)phenol (A15)

A15
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}$
Prepared according to a modification of the general procedure A using 2-iodophenol ($5.00 \mathrm{~g}, 22.7 \mathrm{mmol}, 1.0$ equiv.) and phenylacetylene ($4.99 \mathrm{~mL}, 45.5 \mathrm{mmol}, 2.0$ equiv.). After flash column chromatography (petroleum ether/DCM ; 99.5:0.5 to 98:2), the expected product was obtained as a yellow solid ($1.62 \mathrm{~g}, 8.34 \mathrm{mmol}, 37 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,131.8,131.7$ (2C), 130.6, 128.9, 128.6 (2C), 122.5, 120.6, 114.9, 109.7, 96.5, 83.2.
M.p. : $71-73^{\circ} \mathrm{C}$

LRMS (EI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 195 (100) found 195 (100).

2. Characterization of 1-ethynyl-2-(prop-2-yn-1-yloxy)benzene derivatives

1-ethynyl-2-(prop-2-yn-1-yloxy)benzene (1a)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}$

Prepared according to the general procedure B using A1 (3.36 g, $17.6 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid ($2.31 \mathrm{~g}, 14.8 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (ddd, $J=8.5,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (dd, J = 8.4, 0.7 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), $4.80(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H})$, $2.53(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.7, 134.4, 130.2, 121.6, 112.9, 112.2, 81.6, 79.8, 78.3, 76.2, 56.6.
M.p. $=47-49^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 157.0648$ (100) found 157.0648 (100).

2-ethynyl-4-methyl-1-(prop-2-yn-1-yloxy)benzene (1b)

1b
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}$
Prepared according to the general procedure B using A2 ($1.40 \mathrm{~g}, 6.85 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid ($793 \mathrm{mg}, 4.66 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,134.7,131.0,130.7,113.1,111.9,81.3,80.0,78.5,76.0$, 56.7, 20.4.
M.p. $=60-62{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0804$ (100) found 171.0805 (100).

2-ethynyl-4-isopropyl-1-(prop-2-yn-1-yloxy)benzene (1c)

1c
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}$
Prepared according to the general procedure B using A3 ($2.00 \mathrm{~g}, 8.61 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as white fluffy needles ($1.36 \mathrm{~g}, 6.86 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.30(\mathrm{~s}, 1 \mathrm{H}), 2.84$ (sept., $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.22 (app. $\mathrm{s}, 3 \mathrm{H}$), 1.21 (app. $\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}{ }^{3}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,141.9,132.1,128.1,112.9,111.7,81.1,80.2,78.5,75.9$, 56.6, 33.1, 24.0 (2C).
M.p. $=96-98^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 199.1117$ (100) found 199.1121 (100).

4-(tert-butyl)-2-ethynyl-1-(prop-2-yn-1-yloxy)benzene (1d)

1d
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$

Prepared according to the general procedure B using A4 ($4.10 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid ($2.95 \mathrm{~g}, 13.9 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (dd, $J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{3}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,144.3,131.4,127.1,112.6,111.4,81.0,80.4,78.6,76.0$, 56.6, 34.2, 31.4 (3C).
M.p. $=58-60^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 213.1274$ (100) found 213.1277 (100).

3-ethynyl-4-(prop-2-yn-1-yloxy)-1,1'-biphenyl (1e)

Prepared according to the general procedure B using A5 ($2.00 \mathrm{~g}, 7.51 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a white solid ($1.32 \mathrm{~g}, 5.68 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,139.8,134.8,133.0,128.9$ (2C), 128.8, 127.3, 126.9 (2C), 113.2, 112.5, 81.7, 79.8, 78.3, 76.3, 56.7.
M.p. $=101-103{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 233.0961$ (100) found 233.0964 (100).

2-ethynyl-4-fluoro-1-(prop-2-yn-1-yloxy)benzene (1f)

1f
Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{FO}$

Prepared according to the general procedure B using A6 ($1.50 \mathrm{~g}, 7.20 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-brown solid ($859 \mathrm{mg}, 4.93 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{dd}, \mathrm{J}=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.7$, $154.0(\mathrm{~d}, \mathrm{~J}=237.4 \mathrm{~Hz}$), $120.5(\mathrm{~d}, \mathrm{~J}=24.7 \mathrm{~Hz}), 116.7$ (d , $J=23.2 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 82.7,78.7(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 78.1,76.3$, 57.2.
${ }^{19}$ F NMR (376.5 MHz, CDCl3) $\delta=-122.0$.
M.p. $=51-53^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 175.0554$ (100) found 175.0556 (100).

2-ethynyl-4-chloro-1-(prop-2-yn-1-yloxy)benzene (1g)

Prepared according to the general procedure B using A7 ($3.15 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/DCM ; 80:20), the expected product was obtained as white fluffy needles ($2.18 \mathrm{~g}, 11.4 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27(\mathrm{dd}, \mathrm{J}=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,133.8,130.0,126.4,114.3,113.8,82.8,78.5,77.9,76.6$, 56.9.
M.p. $=80-82^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 191.0258$ (100), 193.0229 (32) found 191.0260 (100), 193.0230 (32).

2-ethynyl-4-bromo-1-(prop-2-yn-1-yloxy)benzene (1h)

1h
Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}$

Prepared according to the general procedure B using A8 ($2.15 \mathrm{~g}, 7.99 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/DCM ; 90:10 to 85:15), the expected product was obtained as a pale-yellow solid ($747 \mathrm{mg}, 3.18 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.8, 136.7, 132.9, 114.6, 114.3, 113.4, 82.9, 78.4, 77.8, 76.6, 56.8.
M.p. $=75-77^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 234.9753$ (100), 236.9733 (97) found 234.9756 (100), 236.9735 (97).

3-ethynyl-4-(prop-2-yn-1-yloxy)benzonitrile (1i)

$1 i$
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}$
Prepared according to the general procedure B using A9 ($1.91 \mathrm{~g}, 8.87 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5), the expected product was obtained as white fluffy needles ($1.36 \mathrm{~g}, 7.51 \mathrm{mmol}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,137.7,133.9,117.9,113.4,112.9,105.0,83.6,77.2,76.8$, 76.7, 56.5.
M.p. $=123-125^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 182.0600$ (100) found 182.0602 (100).

1-ethynyl-4-methoxy-2-(prop-2-yn-1-yloxy)benzene (1j)

1j
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$
Prepared according to the general procedure B using A10 ($2.30 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as a yellow oil ($1.17 \mathrm{~g}, 6.28 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (dd, $J=8.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}) 2.54(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}{ }^{3}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,159.8,135.0,106.1,104.4,100.3,80.1,79.9,78.1,76.3$, 56.5, 55.5.
M.p. $=88-90^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 187.0754$ (100) found 187.0756 (100).

1-ethynyl-2-(prop-2-yn-1-yloxy)naphthalene (1k)

1k
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}$
Prepared according to the general procedure B using A11 ($828 \mathrm{mg}, 3.44 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 99:1), the expected product was obtained as a pale-yellow solid ($428 \mathrm{mg}, 2.07 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, CDCl_{3}) $\delta 158.0,134.8,130.5,129.1,128.2,127.7,125.4,124.9,114.7$, 106.8, 87.1, 78.6, 78.0, 76.3, 57.4.
M.p. $=70-72^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 207.0804$ (100) found 207.0808 (100).

5-ethynyl-6-(prop-2-yn-1-yloxy)benzo[d][1,3]dioxole (11)

11
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3}$
In a 50 mL round bottom flask $\mathbf{A 1 2}$ (710 mg , $2.04 \mathrm{mmol}, 1.0$ equiv.), was dissolved in 10 mL of methanol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($844 \mathrm{mg}, 6.11 \mathrm{mmol}, 3.0$ equiv.) was added, the mixture turns to brown. The suspension was stirred 6 h at room temperature, then filtrated. The resulting solution was concentrated under reduced pressure. The residue was dissolved in 13 mL of anhydrous DMF and stirred 5 minutes with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($564 \mathrm{mg}, 4.08 \mathrm{mmol}, 2.0$ equiv.). Under argon, propargyl bromide ($80 \mathrm{~mol} \%$ in toluene) ($328 \mu \mathrm{~L}, 3.06 \mathrm{mmol}, 1.5$ equiv.) was added and the solution was stirred overnight at room temperature, then water (20 mL) was added. The resulting solution was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/EtOAc ; 98:2 to 95:5) affording 11 as an orange solid ($310 \mathrm{mg}, 1.55 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.22(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 155.3, 149.0, 142.0, 112.4, 104.4, 101.9, 97.6, 80.4, 79.9, 78.4, 76.3, 57.8 .

```
M.p. \(=117-119^{\circ} \mathrm{C}\)
```

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 201.0546$ (100) found 201.0545 (100).

1-ethynyl-3,5-dimethyl-2-(prop-2-yn-1-yloxy)benzene (1m)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}$
Prepared according to the general procedure B using A13 ($2.50 \mathrm{~g}, 11.4 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as pale-yellow solid ($1.48 \mathrm{~g}, 8.03 \mathrm{mmol}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H})$, $2.48(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 155.8, 133.5, 132.8, 132.1, 131.8, 115.3, 81.7, 80.2, 79.4, 75.1, 60.3, 20.4, 16.5.
M.p. $=106-108^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 185.0961$ (100) found 185.0963 (100).

2-bromo-5-ethynyl-1,3-dimethyl-4-(prop-2-yn-1-yloxy)benzene (1n)

1n
Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}$
Prepared according to the general procedure B using A14 ($800 \mathrm{mg}, 2.69 \mathrm{mmol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as pale-yellow solid ($471 \mathrm{mg}, 1.79 \mathrm{mmol}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$, $2.53(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 157.7, 142.5, 139.9, 119.7, 112.6, 111.3, 85.8, 78.5, 78.2, 76.3, 56.7, 25.0, 22.4.
M.p. $=109-111^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$: 263.0066 (100), 265.0046 (97) found 263.0068 (100), 265.0048 (97).

1-(but-2-yn-1-yloxy)-2-ethynylbenzene (10)

10
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}$
Prepared according to a modification of the general procedure B using A1 (2.00 g, $10.5 \mathrm{mmol}, 1.00$ equiv.) and 1-bromo-2-butyne ($1.38 \mathrm{~mL}, 15.8 \mathrm{mmol}, 1.50$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to $95: 5$), the expected product was obtained as yellow oil ($1.42 \mathrm{~g}, 8.34 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, J = 7.6, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32-7.28 (m, 1H), 7.02 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92($ app. $\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.9, 134.2, 130.0, 121.0, 112.6, 111.8, 84.2, 81.4, 79.9, 73.8, 57.0, 3.7.

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0804$ (100) found 171.0806 (100).

(3-(2-ethynylphenoxy)prop-1-yn-1-yl)trimethylsilane (1p)

In a 100 mL round bottom flask 2-((trimethylsilyl)ethynyl)phenol ($1.00 \mathrm{~g}, 5.25 \mathrm{mmol}$, 1.0 equiv.), was dissolved in 13 mL of THF and tetrabutylammonium fluoride monohydrate ($1.81 \mathrm{~g}, 6.31 \mathrm{mmol}, 1.2$ equiv.) was added, the solution turns to black. The solution was stirred 1 h at room temperature, then water (20 mL) was added. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in 13 mL of anhydrous DMF and stirred 5 minutes with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.50 \mathrm{~g}, 10.5 \mathrm{mmol}, 2.0$ equiv.). Under argon, 3-(trimethylsilyl)propargyl bromide ($1.12 \mathrm{~mL}, 7.88 \mathrm{mmol}, 1.5$ equiv.) was added and the solution was stirred 2 h at room temperature. Water (20 mL) was added, and the resulting solution was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/DCM ; $95: 5$ to $90: 10$) affording 1 p as a yellow oil ($830 \mathrm{mg}, 3.63 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (dd, $\mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33-7.28$ ($\mathrm{m}, 1 \mathrm{H}$), 7.06 (dd, $J=8.3$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, \mathrm{J}=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 158.9, 134.3, 130.0, 121.4, 113.3, 112.1, 99.9, 93.4, 81.5, 79.9, 57.5, 0.3 (3C).

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$: 229.1043 (100) found 229.1046 (100).

Trimethyl((2-(prop-2-yn-1-yloxy)phenyl)ethynyl)silane (1q)

Prepared according to a modification the general procedure B using A1 ($700 \mathrm{mg}, 3.68 \mathrm{mmol}$, 1.0 equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as white crystal ($577 \mathrm{mg}, 2.53$ mmol, 69\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.3$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 0.28 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}{ }^{13}$ NMR (101 MHz, CDCl_{3}) $\delta 158.5,134.2,129.8,121.5,113.4$ (2C), 101.0, 99.0, 78.5, 76.0, 56.7, 0.1 (3C).
M.p. $=48-50^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$: 229.1043 (100) found 229.1045 (100).

1-(phenylethynyl)-2-(prop-2-yn-1-yloxy)benzene (1r)

Prepared according to a modification the general procedure B using A15 (750 mg, $3.86 \mathrm{mmol}, 1.0$ equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as a yellow oil ($801 \mathrm{mg}, 3.45 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}$, $4 \mathrm{H}), 7.08(\mathrm{dd}, J=8.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,133.7,131.7$ (2C), 129.6, 128.4 (2C), 128.3, 123.6, 121.7, 113.5, 113.3, 93.9, 85.6, 78.5, 76.0, 56.7.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 233.0961$ (100) found 233.0966 (100).

1-(but-2-yn-1-yloxy)-2-(phenylethynyl)benzene (1s)

1s
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}$
Prepared according to a modification of the general procedure B using A15 (750 mg , $3.86 \mathrm{mmol}, 1.0$ equiv.) and 1-bromo-2-butyne ($507 \mu \mathrm{~L}, 5.79 \mathrm{mmol}, 1.5$ equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to $95: 5$), the expected product was obtained as white solid ($850 \mathrm{mg}, 3.45 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,133.6,131.7$ (2C), 129.5, 128.3 (2C), 128.1, 123.7, 121.2, 113.3, 113.1, 93.6, 85.7, 84.1, 74.1, 57.2, 3.8.
M.p. $=68-70^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 247.1117$ (100) found 247.1120 (100).

3. Characterization of 5 H -chromeno $[3,4-c]$ pyridines derivatives

N, N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3aa) and N, N-dimethyl-5H-

 chromeno[4,3-c]pyridin-3-amine (3aa')

Prepared according to the general procedure C using 1a ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($76 \mu \mathrm{~L}, 960 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 80:20), the expected product was obtained as a pale-brown oil (121 mg, $535 \mu \mathrm{~mol}, 84 \%$). Regioisomeric ratio (3aa/3aa') : (96:4).
${ }^{1} \mathrm{H}$ NMR (3aa) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.75$ (dd, J=7.8, 1.5 Hz, 1H), 7.33-7.28 (m, $1 \mathrm{H}), 7.06(\mathrm{dt}, \mathrm{J}=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H})$, 3.15 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (3aa) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,155.6,143.3,138.2,130.6,123.5,121.6,121.3$, 117.5, 114.3, 97.2, 65.8, 38.0 (2C).
${ }^{1} \mathrm{H}$ NMR (3aa') ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (dd, $\left.J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17-7.13$ (m, $1 \mathrm{H}), 7.03(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, 3.13 ($s, 6 \mathrm{H}$).

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 191.0258$ (100) found 191.0260 (100).
$\mathrm{N}, \mathrm{N}-9-$ trimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ba) and N, N-9-trimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3ba')

3ba

3ba'

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$

Prepared according to the general procedure C using 1b ($100 \mathrm{mg}, 587 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($69 \mu \mathrm{~L}, 881 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 90:10 to 80:20), the expected product was obtained as a yellow solid ($123 \mathrm{mg}, 512 \mu \mathrm{~mol}, 87 \%$). Regioisomeric ratio (3ba/3ba') : (96:4).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (3ba) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=8.2,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ba) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,153.9,143.6,139.0,131.9,131.4,124.1,121.4$, 117.7, 115.0, 97.7, 66.3, 38.6 (2C), 21.0.
M.p. $=117-119^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 241.1335$ (100) found 241.1338 (100).

9-isopropyl-N,N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ca) and 9-isopropyl-N,N-dimethyl-5H-chromeno[4,3-c] pyridin-3-amine (3ca')

Prepared according to the general procedure C using 1c ($100 \mathrm{mg}, 504 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($61 \mu \mathrm{~L}, 757 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (cyclohexane/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow oil (110 mg, $410 \mu \mathrm{~mol}, 81 \%)$. Regioisomeric ratio (3ca/3ca') : (95:5).
${ }^{1} \mathrm{H}$ NMR (3ca) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H}), 2.94$ (sept., $J=6.9 \mathrm{HZ}, 1 \mathrm{H}$), 1.30 (app. s, 3H), 1.28 (app. s, 3H).
${ }^{13} \mathrm{C}$ NMR (3ca) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,154.1,143.7,142.5,139.0,129.0,121.6,121.3$, $117.7,115.0,97.6,66.3,38.5$ (2C), 33.8, 24.3 (2C).

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 269.1648$ (100) found 269.1651 (100).

9-(tert-butyl)-N,N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3da) and 9-(tert-butyl)N, N-dimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3da')

Prepared according to the general procedure C using 1d ($100 \mathrm{mg}, 471 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2 a ($56 \mu \mathrm{~L}, 707 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10), the expected product was obtained as a yellow solid (118 mg , $418 \mu \mathrm{~mol}, 89 \%$) ; NMR yield using mesitylene as an internal standard : 93\%. Regioisomeric ratio (3da/3da') : (96:4).
${ }^{1} \mathrm{H}$ NMR (3da) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99$ (d, J = $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (3da) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 153.8, 144.7, 143.7, 139.1, 128.4, 120.9, 120.1, 117.4, 115.0, 97.5, 66.3, 38.5 (2C), 34.5, 31.6 (3C).
M.p. $=135-137^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 283.1805 (100) found 283.1807 (100).
N, N-dimethyl-9-phenyl-5H-chromeno[3,4-c]pyridin-2-amine (3ea) and N, N-dimethyl-9-phenyl-5H-chromeno[4,3-c]pyridin-3-amine (3ea')

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$

Prepared according to the general procedure D using $1 \mathbf{1 e}(100 \mathrm{mg}, 430 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2 a ($51 \mu \mathrm{~L}, 646 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid (114 $\mathrm{mg}, 377 \mu \mathrm{~mol}, 88 \%)$. Regioisomeric ratio (3ea/3ea') : (94:6).
${ }^{1} \mathrm{H}$ NMR (3ea) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.60$ (m, 2H), 7.52 (dd, J = 8.4, 2.2 Hz, 1H), 7.49-7.45 (m, 2H), 7.39-7.35 (m, 1H), 7.08 (d, J = 8.4 Hz, 1H), $6.79(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (3ea) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,155.5,143.8,140.8,138.6,135.4,129.9,128.9$ (2C), $127.2,127.0(2 \mathrm{C}), 122.5,121.9,118.3,114.7,97.6,66.4,38.5$ (2C).
M.p. $=145-147^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 303.1492$ (100) found 303.1494 (100).

9-fluoro- N, N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3fa) and 9-fluoro- N, N -dimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3fa')

Prepared according to the general procedure C using 1 f ($100 \mathrm{mg}, 574 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($70 \mu \mathrm{~L}, 861 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow solid ($107 \mathrm{mg}, 438 \mu \mathrm{~mol}, 76 \%$). Regioisomeric ratio (3fa/3fa') : (91:9).
${ }^{1} \mathrm{H}$ NMR (3fa) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00-6.91 (m, 2H), $6.61(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (3fa) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,158.0$ ($\mathrm{d}, \mathrm{J}=240.4 \mathrm{~Hz}$), 152.0, 143.9, 138.0, 122.8 (d, $J=8.1 \mathrm{~Hz}$), $119.0(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 114.5,109.9(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 97.7$, 66.3, 38.4 (2C).
${ }^{19}$ F NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=-121.0$.
M.p. $=105-107^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 245.1085$ (100) found 245.1090 (100).

9-chloro-N,N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ga) and 9-chloro-N,N-dimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3ga')

3ga

3ga'

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{CIN}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{C} using $\mathbf{1 g}$ ($100 \mathrm{mg}, 525 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide $\mathbf{2 a}$ ($62 \mu \mathrm{~L}, 787 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid (95 $\mathrm{mg}, 364 \mu \mathrm{~mol}, 69 \%)$. Regioisomeric ratio (3ga/3ga') : (91:9).
${ }^{1} \mathrm{H}$ NMR (3ga) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ga) (101 MHz, CDCl_{3}) δ 159.9, 154.5, 143.9, 137.5, 130.6, 127.0, 123.6, 123.0, 119.3, 114.1, 97.5, 66.3, 38.4 (2C).
M.p. $=151-153^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 261.0789 (100), 263.0760 (32) found 261.0792 (100), 263.0764 (32).

9-bromo-N,N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ha) and 9-bromo-N,N-dimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3ha')

3ha'
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{C} using $\mathbf{1 h}$ ($100 \mathrm{mg}, 425 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($50 \mu \mathrm{~L}, 638 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid ($101 \mathrm{mg}, 331 \mu \mathrm{~mol}, 78 \%$). Regioisomeric ratio (3ha/3ha') : (94:6).

[^2]${ }^{13} \mathrm{C}$ NMR (3ha) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,155.0,143.9,137.4,133.6,126.5,123.6,119.7$, 114.3, 114.1, 97.6, 66.3, 38.4 (2C).
M.p. $=143-145^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 305.0284$ (100), 307.0264 (97) found 305.0288 (100), 307.0268 (97).

2-(dimethylamino)-5H-chromeno[3,4-c]pyridine-9-carbonitrile (3ia) and 3-(dimethylamino)-5H-chromeno[4,3-c]pyridine-9-carbonitrile (3ia')

3ia

$3 i a^{\prime}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$
Prepared according to the general procedure D using 1 i ($100 \mathrm{mg}, 552 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($65 \mu \mathrm{~L}, 828 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/DCM/EtOAc ; 60:25:15), the expected product was obtained as a white solid ($108 \mathrm{mg}, 430 \mu \mathrm{~mol}, 78 \%$). Regioisomeric ratio (3ia/3ia') : (91:9).
${ }^{1} \mathrm{H}$ NMR (3ia) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, $\left.J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.01(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=$ $8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ia) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 159.4, 144.3, 136.5, 134.4, 128.4, 122.6, 119.2, 119.0, 113.3, 105.5, 97.5, 66.7, 38.5 (2C).
M.p. $=185-187^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 252.1131$ (100) found 252.1134 (100).

8-methoxy- N, N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ja) and 8-methoxy-N,N-dimethyl-5H-chromeno[4,3-c] pyridin-3-amine (3ja')

Prepared according to the general procedure C using $\mathbf{1 j}$ ($100 \mathrm{mg}, 537 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide $\mathbf{2 a}$ ($65 \mu \mathrm{~L}, 805 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 70:30), the expected product was obtained as a yellow solid ($79 \mathrm{mg}, 308 \mu \mathrm{~mol}, 57 \%$). Regioisomeric ratio (3ja/3ja') : (97:3).
${ }^{1} \mathrm{H}$ NMR (3ja) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.51$ (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.00(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (3ja) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,160.0,157.3,143.4,138.8,124.8,114.5,113.8$, 109.1, 102.3, 96.8, 66.5, 55.4, 38.4 (2C).
M.p. $=133-135^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.1285$ (100) found 257.1288 (100).

N, N-dimethyl-5H-benzo[5,6]chromeno[3,4-c]pyridin-2-amine (3ka) and N, N-dimethyl-5H-benzo[5,6]chromeno[4,3-c] pyridin-3-amine (3ka')

3ka

3ka'

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{D} using $\mathbf{1 k}$ ($100 \mathrm{mg}, 485 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($57 \mu \mathrm{~L}, 727 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/DCM/EtOAc ; 70:20:10), the expected product was obtained as a yellow solid ($90 \mathrm{mg}, 326 \mu \mathrm{~mol}, 67 \%$). Regioisomeric ratio (3ka/3ka') : (89:11).
${ }^{1} \mathrm{H}$ NMR (3ka) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59$ (d, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.14 (d, $\mathrm{J}=0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (dd, $J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ka) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,155.8,144.0,138.6,131.6,130.7,130.6,129.2$, 127.3, 124.4, 124.1, 118.7, 116.4, 116.2, 102.4, 66.9, 38.5 (2C).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (3ka') $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, J=0.6 Hz, 1H), $4.96(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (3ka') ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,152.8,145.6,143.5,130.9,129.9,128.9,128.4$, $126.8,125.0,124.1,118.2,116.5,115.1,101.5,68.8,38.3$ (2C).
M.p. $=134-136{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 277.1335$ (100) found 277.1338 (100).
N, N-dimethyl-5H-[1,3]dioxolo[4',5':6,7]chromeno[3,4-c]pyridin-2-amine (3la) and N, N -dimethyl-5H-[1,3]dioxolo[4',5':6,7]chromeno[4,3-c]pyridin-3-amine (3la')

3la

3la'

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
Prepared according to the general procedure C using $1 \mathbf{1}$ ($100 \mathrm{mg}, 499 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($61 \mu \mathrm{~L}, 749 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 60:40), the expected product was obtained as a yellow solid (100 mg, $370 \mu \mathrm{~mol}, 74 \%$). Regioisomeric ratio (3la/3la') : (98:2).
${ }^{1} \mathrm{H}$ NMR (3la) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.95$ ($\mathrm{s}, 2 \mathrm{H}$), 4.95 ($\mathrm{s}, 2 \mathrm{H}$), $3.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (3la) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 152.1, 149.8, 143.4, 143.1, 139.1, 114.4, 113.9, 102.6, 101.6, 99.6, 96.9, 66.6, 38.5 (2C).
M.p. $=166-168^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 271.1077$ (100) found 271.1078 (100).
$\mathrm{N}, \mathrm{N}, 7,9$-tetramethyl-5H-chromeno[3,4-c]pyridin-2-amine (3ma) and N,N,7,9-tetramethyl-5H-chromeno[4,3-c]pyridin-3-amine (3ma')

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$

Prepared according to the general procedure C using $1 \mathrm{~m}(100 \mathrm{mg}, 543 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($64 \mu \mathrm{~L}, 814 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10), the expected product was obtained as a yellow solid (113 mg, $444 \mu \mathrm{~mol}, 82 \%)$. Regioisomeric ratio (3ma/3ma') : (96:4).
${ }^{1} \mathrm{H}$ NMR (3ma) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, 1H), 6.70 (s, 1H), 4.99 (s, 2H), 3.13 (s, 6H), 3.33 (s, 3H), $2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ma) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,152.0,143.4,139.2,133.2,130.4,126.8,121.5$, $120.8,115.0,97.8,66.1,38.4$ (2C), 20.8, 15.9.
M.p. $=143-145^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 255.1492$ (100) found 255.1496 (100).

8-bromo-N,N,7,9-tetramethyl-5H-chromeno[3,4-c]pyridin-2-amine (3na) and 8-bromo-N,N,7,9-tetramethyl-5H-chromeno[4,3-c]pyridin-3-amine (3na')

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}$
Prepared according to a modification of the general procedure C using $\mathbf{1 n}(100 \mathrm{mg}, 380 \mu \mathrm{~mol}, 1.0$ equiv.), dimethylcyanamide 2a ($46 \mu \mathrm{~L}, 570 \mu \mathrm{~mol}, 1.5$ equiv.), [Cp*Ru(MeCN) $)_{3}$]PF6 (9.6 mg , $19 \mu \mathrm{~mol}, 0.05$ equiv.), the reaction was heated to $100^{\circ} \mathrm{C}$ in toluene for 64 hours. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 90:10), the expected product was obtained as a white solid ($37 \mathrm{mg}, 111 \mu \mathrm{~mol}, 29 \%$). Regioisomeric ratio (3na/3na') : (59:41).
${ }^{1} \mathrm{H}$ NMR (3na) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, \mathrm{~J}=0.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $4.83(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (3na) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7$, 156.1, 143.8, 140.7, 139.1, 136.0, 122.5, 122.0, 117.4, 116.5, 103.0, 66.7, 38.5 (2C), 24.6, 23.6.
${ }^{1} \mathrm{H}$ NMR (3na’) (400 MHz, CDCl ${ }_{3}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz} 1 \mathrm{H})$, $4.82(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 6 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3na') ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7$, 153.9, 146.1, 143.6, 137.5, 133.9, 122.6, 121.4, 116.8, 115.3, 101.1, 68.8, 38.3 (2C), 24.4, 23.8.
M.p. $=162-164{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 333.0597$ (100), 335.0577 (97) found 333.0600 (100), 335.0580 (97).
$\mathrm{N}, \mathrm{N}, 4$-trimethyl-5H-chromeno[3,4-c]pyridin-2-amine (30a) and $\mathrm{N}, \mathrm{N}, 4$-trimethyl-5H-chromeno[4,3-c]pyridin-3-amine (3oa')

30a

30a'

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to a modification of the general procedure C using $\mathbf{1 0}$ ($100 \mathrm{mg}, 587 \mu \mathrm{~mol}, 1.0$ equiv.) and dimethylcyanamide 2a ($71 \mu \mathrm{~L}, 881 \mu \mathrm{~mol}, 1.5$ equiv.), the reaction was heated to $100^{\circ} \mathrm{C}$ for five days. After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 80:20), the expected product was obtained as a yellow solid ($73 \mathrm{mg}, 304 \mu \mathrm{~mol}, 52 \%$). Regioisomeric ratio (3oa/3oa') : (>99:1).
${ }^{1} \mathrm{H}$ NMR (3oa) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dt}$, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}), 2.38$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (3oa) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,155.7,151.4,138.6,130.7,124.0,122.0,121.9$, 117.6, 112.6, 95.5, 65.4, 38.2 (2C), 21.6.
M.p. $=85-87^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 241.1335$ (100) found 241.1338 (100). chromeno[4,3-c]pyridine (3ad')

Prepared according to the general procedure C using 1a ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($97 \mu \mathrm{~L}, 960 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 60:40), the expected product was obtained as a yellow oil ($127 \mathrm{mg}, 503 \mu \mathrm{~mol}, 79 \%$). Regioisomeric ratio (3ad/3ad') : (96:4).
${ }^{1} \mathrm{H}$ NMR (3ad) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (s, 1H), 7.71 (dd, J = 7.8, 1.5 Hz, 1H), 7.29-7.25 (m, $1 \mathrm{H}), 7.02(\mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.47$ $(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ad) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,156.0,143.9,138.4,130.9,123.8,121.9,121.6$, $117.8,114.3,98.2,66.2,46.9$ (2C), 25.6 (2C).

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 253.1335$ (100), found 253.1336 (100).

9-methyl-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c] pyridine (3bd) and 9-methyl-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3bd')

Prepared according to the general procedure C using 1b ($100 \mathrm{mg}, 587 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($89 \mu \mathrm{~L}, 881 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 70:30), the expected product was obtained as brown oil ($134 \mathrm{mg}, 503 \mu \mathrm{~mol}, 86 \%$). Regioisomeric ratio (3bd/3bd') : (96:4).
${ }^{1} \mathrm{H}$ NMR (3bd) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=8.2,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.03 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (3bd) (101 MHz, CDCl_{3}) δ 158.0, 153.9, 144.0, 138.7, 131.8, 131.3, 124.1, 121.4, 117.7, 114.6, 98.2, 66.4, 47.0 (2C), 25.7 (2C), 21.0.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 267.1492 (100) found 267.1494 (100).

9-(tert-butyl)-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3dd) and 9-(tert-butyl)-2-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3dd')

3dd

3dd'

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure C using 1d ($100 \mathrm{mg}, 471 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($72 \mu \mathrm{~L}, 707 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 75:15), the expected product was obtained as a yellow solid (112 mg, $363 \mu \mathrm{~mol}, 77 \%$). Regioisomeric ratio (3dd/3dd') : (94:6).
${ }^{1} \mathrm{H}$ NMR (3dd) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 4 \mathrm{H})$, 2.04-2.01 (m, 4H), $1.37(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (3dd) (101 MHz, CDCl_{3}) δ 158.0, 153.8, 144.7, 143.9, 138.9, 128.3, 120.9, 120.1, $117.4,114.6,98.0,66.3,47.0$ (2C) , 34.5, 31.6 (3C), 25.6 (2C).
M.p. $=162-164{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 309.1961$ (100) found 309.1964 (100). (pyrrolidine-1-yl)-5H-chromeno[4,3-c]pyridine (3ed')

3ed

3ed'

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure D using $1 \mathbf{e}(100 \mathrm{mg}, 431 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($65 \mu \mathrm{~L}, 646 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a brown solid (100 mg, $304 \mu \mathrm{~mol}, 71 \%$). Regioisomeric ratio (3ed/3ed') : (92:8).

[^3]${ }^{13}$ C NMR (3ed) (101 MHz, CDCl 3) $\delta 158.0,155.6,144.0,140.8,138.4,135.3,129.8,128.9$ (2C), $127.1,127.0$ (2C), 122.5, 121.8, 118.2, 114.3, 98.2, 66.5, 47.0 (2C), 25.6 (2C).
M.p. $=137-139^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 329.1648 (100) found 329.1651 (100).

9-fluoro-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3fd) and 9-fluoro-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3fd')

Prepared according to the general procedure C using 1 f ($100 \mathrm{mg}, 574 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($87 \mu \mathrm{~L}, 861 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 75:25), the expected product was obtained as a brown solid (129 mg, $477 \mu \mathrm{~mol}, 83 \%$). Regioisomeric ratio (3fd/3fd') : (94:6).
${ }^{1} \mathrm{H}$ NMR (3fd) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ ($\mathrm{s}, 1 \mathrm{H}$), 7.35 (dd, $\mathrm{J}=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98-6.89 (m, 2 H), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3fd) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0$ ($\mathrm{d}, \mathrm{J}=240.4 \mathrm{~Hz}$), 157.9, 152.0, 144.1, 137.7, 122.7 (d, J = 8.9 Hz), $119.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 117.5(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 114.1,109.9(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 98.3$, 66.4, 46.9 (2C), 25.6 (2C).
${ }^{19}$ F NMR (376.5 MHz, CDCl3) $\delta=-121.4$.
M.p. $=99-101^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 245.1085$ (100) found 245.1090 (100).

2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine-9-carbonitrile (3id) and 3-(pyrrolidin-1-yl)5 H -chromeno[4,3-c]pyridine-9-carbonitrile (3id')

Prepared according to the general procedure D using 1 i ($100 \mathrm{mg}, 552 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2 d ($84 \mu \mathrm{~L}, 828 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 80:20), the expected product was obtained as a yellow solid ($118 \mathrm{mg}, 425 \mu \mathrm{~mol}, 77 \%$). Regioisomeric ratio (3id/3id') : (93:7).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (3id) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.01$ (m, 4H).
${ }^{13} \mathrm{C}$ NMR (3id) (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,157.9,144.5,136.2,134.3,128.4,122.4,119.1$, 119.0, 112.9, 105.3, 98.1, 66.7, 47.0 (2C), 25.6 (2C).
M.p. $=160-162{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 278.1288$ (100) found 278.1294 (100).

N -benzyl-N-methyl-5H-chromeno[3,4-c]pyridin-2-amine (3ab) and N -benzyl-N-methyl-5H-chromeno[4,3-c]pyridin-3-amine (3ab')

Prepared according to the general procedure C using 1a ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.) and N-benzyl- N-methylcyanamide 2b ($140 \mathrm{mg}, 960 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 95:5 to 90:10), the expected product was obtained as a yellow solid ($165 \mathrm{mg}, 546 \mu \mathrm{~mol}, 85 \%$). Regioisomeric ratio (3ab/3ab') : (96:4).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (3ba) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}$, 6 H), 7.02-6.97 (m, 2H), 6.73 (s, 1H), 5.01 (s, 2H), $4.84(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (3ba') ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.6, 156.0, 143.9, 138.9, 138.8, 131.1, 128.7 (2C), $127.1(2 C), 127.0,123.9,122.0,121.6,117.9,115.1,97.5,66.2,53.5,36.5$.
M.p. : $104-106^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 303.1492$ (100) found 303.1495 (100).

N -benzyl-9-isopropyl-N-methyl-5H-chromeno[3,4-c]pyridin-2-amine (3cb) and N -benzyl-9-isopropyl- N -methyl- 5 H -chromeno[4,3-c]pyridin-3-amine (3cb')

3cb

3cb'

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{D} using $\mathbf{1 c}(100 \mathrm{mg}, 504 \mu \mathrm{~mol}, 1.0$ equiv.) and N -benzyl- N-methylcyanamide 2b ($111 \mathrm{mg}, 757 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a yellow solid ($75 \mathrm{mg}, 218 \mu \mathrm{~mol}, 43 \%$). Regioisomeric ratio (3cb/3cb') : (92:8).
${ }^{1} \mathrm{H}$ NMR (3cb) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23$ ($\mathrm{m}, 5 \mathrm{H}$), 7.18 (dd, J = 8.4, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.89$ (s, 2H) 3.15 (s, 3H), 2.93 (sept., J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.29 (app. s, 3H), 1.27 (app. s, 3H).
${ }^{13} \mathrm{C}$ NMR (3cb) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,154.1,143.8,142.5,139.2,138.9,129.1,128.7$ (2C), 127.2 (2C), 127.0, 121.5, 121.3, 117.7, 115.4, 97.5, 66.3, 53.5, 36.6, 33.7, 24.3 (2C).
M.p. $=110-112{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 345.1961$ (100) found 345.1962 (100).

N -benzyl-9-chloro- N -methyl-5H-chromeno[3,4-c]pyridin-2-amine (3gb) and N -benzyl-9-chloro-N-methyl-5H-chromeno[4,3-c]pyridin-3-amine (3gb')

Prepared according to the general procedure \mathbf{C} using $\mathbf{1 g}$ ($100 \mathrm{mg}, 525 \mu \mathrm{~mol}, 1.0$ equiv.) and N -benzyl- N-methylcyanamide 2b ($115 \mathrm{mg}, 787 \mu \mathrm{~mol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5), the expected product was obtained as a white solid ($131 \mathrm{mg}, 389 \mu \mathrm{~mol}, 74 \%$). Regioisomeric ratio (3gb/3gb') : (93:7).
${ }^{1} \mathrm{H}$ NMR (3gb) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.16$ (m, 6H), 6.87 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.63(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3gb) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,154.5,144.1,138.6,137.8,130.7,128.7$ (2C), 127.2 (2C), 127.1, 127.0, 123.6, 123.0, 119.3, 114.6, 97.4, 66.3, 53.3, 36.4.
M.p. $=142-144{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 337.1102$ (100), 339.1073 (32) found 337.1106 (100), 339.1081 (32).

N -benzyl-9-bromo-N-methyl-5H-chromeno[3,4-c]pyridin-2-amine (3hb) and N -benzyl-9-bromo-N-methyl-5H-chromeno[4,3-c]pyridin-3-amine (3hb')

3hb

3hb'

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}$
Prepared according to the general procedure C using $\mathbf{1 h}$ ($100 \mathrm{mg}, 425 \mu \mathrm{~mol}, 1.0$ equiv.) and N -benzyl- N-methylcyanamide $\mathbf{2 b}$ ($93 \mathrm{mg}, 638 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 97:3 to 95:5), the expected product was obtained as a pale-yellow solid ($131 \mathrm{mg}, 344 \mu \mathrm{~mol}, 81 \%$). Regioisomeric ratio (3hb/3hb') : (94:6).
${ }^{1} \mathrm{H}$ NMR (3hb) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (s, 1H), 7.70 (d, J = $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.18$ (m, 6H), 6.81 ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.61(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (3hb) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,155.0,144.1,138.6,137.6,133.6,128.6$ (2C), 127.2, 127.1 (2C), 126.5, 123.5, 119.7, 114.5, 114.3, 97.3, 66.3, 53.3, 36.4.
M.p. $=148-150^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 381.0597$ (100), 381.0577 (97) found 381.0599 (100), 381.0579 (97).

N -butyl-N-methyl-5H-chromeno[3,4-c]pyridin-2-amine (3ac) and N -butyl-N-methyl-5H-chromeno[4,3-c]pyridin-3-amine (3ac')

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$

Prepared according to the general procedure D using 1a ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.) and N-butyl- N-methylcyanamide 2c (108 mg, $960 \mu \mathrm{~mol}, 1.0$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 98:2 to 95:5), the expected product was obtained as a pale-brown oil ($111 \mathrm{mg}, 414 \mu \mathrm{~mol}, 65 \%$). Regioisomeric ratio (3ac/3ac') : (95:5).
${ }^{1} \mathrm{H}$ NMR (3ac) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (dd, J=7.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.27 (m, $1 \mathrm{H}), 7.04(\mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.56$ (t, J = 7.4 Hz, 2H), 3.09 (s, 3H), 1.65-1.57 (m, 2H), 1.37 ($, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 3 H).
${ }^{13}$ C NMR (3ac) (101 MHz, CDCl_{3}) $\delta 159.2,156.0,143.7,138.5,130.9,123.7$, 121.9, 121.7, 117.8, 114.3, 97.3, 66.2, 50.1, 36.5, 29.5, 20.3, 14.1.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1492 (100), found 303.1493 (100).

2-morpholino-5H-chromeno[3,4-c]pyridine (3ae) and 3-morpholino-5H-chromeno[4,3c]pyridine (3ae')

Prepared according to the general procedure D using 1a ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.) and 4morpholinecarbonitrile $\mathbf{2 e}(97 \mu \mathrm{~L}, 960 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 70:30), the expected product was obtained as a brown solid (148 mg, $552 \mu \mathrm{~mol}, 86 \%$). Regioisomeric ratio (3ae/3ae') : (93:7).
${ }^{1} \mathrm{H}$ NMR (3ae) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{dt}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.04$ ($\mathrm{s}, 2 \mathrm{H}$), $3.84(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3ae) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,155.9,143.8,139.2,131.3,123.8,122.1,121.4$, 118.0, 117.0, 99.0, 66.8 (2C), 66.0, 46.0 (2C).
M.p. $=104-106^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 269.1285$ (100) found 269.1288 (100).

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$

Prepared according to the general procedure D using 1 j ($100 \mathrm{mg}, 537 \mu \mathrm{~mol}, 1.0$ equiv.) and morpholine carbonitrile $\mathbf{2 d}(82 \mu \mathrm{~L}, 805 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 50:50), the expected product was obtained as a brown solid ($104 \mathrm{mg}, 368 \mu \mathrm{~mol}, 68 \%$). Regioisomeric ratio (3jd/3jd') : (97:3).
${ }^{1} \mathrm{H}$ NMR (3 jd) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}$, $J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}$, $4 \mathrm{H}), 1.99$ ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (3jd) ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,157.9,157.4,143.7,138.6,124.9,114.5,113.5$, 109.1, 102.3, 97.3, 66.6, 55.5, 46.9 (2C), 25.6 (2C).
M.p. $=142-144^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 283.1441$ (100) found 283.1447 (100).

2-(pyrrolidin-1-yl)-5H-benzo[5,6]chromeno[3,4-c]pyridine (3kd) and 3-(pyrrolidin-1-yl)-5H-benzo[5,6]chromeno[4,3-c]pyridine (3kd')

3kd

3kd'

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{D} using $\mathbf{1 k}$ ($100 \mathrm{mg}, 485 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($74 \mu \mathrm{~L}, 728 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow solid ($79 \mathrm{mg}, 261 \mu \mathrm{~mol}, 54 \%$). Regioisomeric ratio (3kd/3kd') : (89:11).
${ }^{1} \mathrm{H}$ NMR (3kd) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 4 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3kd) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,155.8,144.2,138.3,131.5,130.7,130.5,129.1$, $127.3,124.4,124.1,118.7,116.3,115.8,103.0,67.0,47.0(2 C), 25.6$ (2C).
${ }^{1} \mathrm{H}$ NMR (3 kd ') $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (s, 1H), $4.95(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (3kd') ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,152.6,145.9,143.3,130.9,129.9,128.9,128.3$, $126.7,125.0,124.1,118.2,116.6,114.8,102.2,68.7,47.0$ (2C), 25.7 (2C).
M.p. $=118-120^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 303.1492$ (100) found 303.1494 (100).

N-benzyl-N-methyl-5H-[1,3]dioxolo[4',5':6,7]chromeno[3,4-c]pyridin-2-amine (31b) and 3-(benzyl(methyl)amino)-5H-[1,3]dioxolo[4',5':6,7]chromeno[4,3-c]pyridin-9-ylium (31b')

31b

31b'

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
Prepared according to the general procedure \mathbf{D} using $\mathbf{1 I}$ ($100 \mathrm{mg}, 499 \mu \mathrm{~mol}, 1.0$ equiv.) and N-benzyl- N-methylcyanamide $\mathbf{2 b}$ ($110 \mathrm{mg}, 749 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a yellow solid ($142 \mathrm{mg}, 410 \mu \mathrm{~mol}, 82 \%$). Regioisomeric ratio (3lb/3lb') : (97:3).
${ }^{1} \mathrm{H}$ NMR (3lb) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $6.52(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (31b) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,152.0,149.8,143.6,143.1,139.3,138.8,128.6$ (2C), 127.1 (2C), 127.0, 114.3, 114.2, 102.6, 101.6, 99.6, 96.7, 66.6, 53.4, 36.5.
M.p. $=172-174{ }^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 347.1390$ (100) found 347.1395 (100).

7,9-dimethyl-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3md) and 7,9-dimethyl-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3md')

$+$

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to the general procedure \mathbf{C} using 1 m ($100 \mathrm{mg}, 543 \mu \mathrm{~mol}, 1.0$ equiv.) and pyrrolidine carbonitrile 2d ($83 \mu \mathrm{~L}, 814 \mu \mathrm{~mol}, 1.5$ equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a brown solid ($118 \mathrm{mg}, 421 \mu \mathrm{~mol}, 78 \%$). Regioisomeric ratio ($3 \mathrm{md} / 3 \mathrm{md} \mathrm{J}^{\prime}$) : (96:4).
${ }^{1} \mathrm{H} \operatorname{NMR}(3 \mathrm{md})\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (3md) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,152.0,143.6,138.9,133.0,130.3,126.7,121.5$, 120.7, 114.6, 98.3, 66.1, 46.8 (2C), 25.5 (2C), 20.7, 15.9.

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 281.1648$ (100) found 281.1653 (100).

5H-chromeno[3,4-c]pyridin-2-amine (af) and 5H-chromeno[4,3-c]pyridin-3-amine (af')

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Prepared according to a modification of the general procedure C using $\mathbf{1 a}$ ($100 \mathrm{mg}, 640 \mu \mathrm{~mol}, 1.0$ equiv.), cyanamide $\mathbf{2 f}(40 \mathrm{mg}, 960 \mu \mathrm{~mol}, 1.5 \text { equiv.), [Cp*Ru(MeCN) })_{3}$]PF6] ($16.1 \mathrm{mg}, 32 \mu \mathrm{~mol}, 0.05$ equiv.), the reaction was refluxed in anhydrous MeTHF for 5 days. After flash column chromatography ($\mathrm{Al}_{2} \mathrm{O}_{3}$, petroleum ether/ $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N} ; 49: 49: 2$ to 29:69:2), the expected product was obtained as a brown solid ($43 \mathrm{mg}, 217 \mu \mathrm{~mol}, 34 \%$). Regioisomeric ratio (3af/3af') : (88:12).

[^4]${ }^{13} \mathrm{C}$ NMR (3af) (101 MHz, CDCl_{3}) $\delta 158.9,156.0,143.8,139.7,131.6,124.0,122.3,121.0$, 118.0, 117.4, 100.6, 66.2.

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: 199.0866$ (100) found 199.0868 (100).

9-(4-methoxyphenyl)-N,N-dimethyl-5H-chromeno[3,4-c]pyridin-2-amine (4) and 9-(4-methoxyphenyl)-N,N-dimethyl-5H-chromeno[4,3-c]pyridin-3-amine (4')

Compound 3ha ($100 \mathrm{mg}, 330 \mu \mathrm{~mol}, 1.0$ equiv.), 4-methoxyphenyl boronic acid (74.8 mg , $490 \mu \mathrm{~mol}, 1.5$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($90.7 \mathrm{mg}, 660 \mu \mathrm{~mol}, 2.0$ equiv.), palladium acetate (3.7 mg , $16.4 \mu \mathrm{~mol}, 0.05$ equiv.) and CataCXium A ($12.9 \mathrm{mg}, 36.1 \mu \mathrm{~mol}, 0.11$ equiv.) were mixed in 3.3 mL of anhydrous DMF, the solution turns to brown. The resulting mixture was stirred overnight at $100^{\circ} \mathrm{C}$ under argon. The mixture was diluted with DCM and washed successively with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL). The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/EtOAc ; 80:20 to $60: 40$) to afford the product as a white solid ($97 \mathrm{mg}, 292 \mu \mathrm{~mol}, 89 \%$). Regioisomeric ratio (4/4') : (94:6).
${ }^{1}{ }^{H}$ NMR (4) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (dd, J = 8.4, 2.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 7.00-6.98 (m, 2H), 6.78 (s, 1H), 5.06 (s, 2H), 3.85 (s, 3H), 3.15 (s, 6H).
${ }^{13}$ C NMR (4) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,159.1,155.1,143.8,138.7,135.0,133.4,129.5,128.0$ (2C), 122.0, 121.8, 118.2, 114.7, 114.3 (2C), 97.6, 66.4, 55.4, 38.5 (2C).
M.p. $=106-108^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 333.1598$ (100) found 333.1602 (100).

Tert-butyl (E)-3-(2-(dimethylamino)-5H-chromeno[3,4-c]pyridin-9-yl)acrylate (5) and tertbutyl (E)-3-(3-(dimethylamino)-5H-chromeno[4,3-c]pyridin-9-yl)acrylate (5')

Compound 3ha ($100 \mathrm{mg}, 330 \mu \mathrm{~mol}, 1.0$ equiv.), tri(o-tolyl)phosphine ($7.98 \mathrm{mg}, 26.2 \mu \mathrm{~mol}$, 0.08 equiv.), palladium(II) acetate ($1.47 \mathrm{mg}, 6.55 \mu \mathrm{~mol}, 0.02$ equiv.), were mixed in 3.3 mL of an anhydrous mixture of $\mathrm{DMF}^{2} \mathrm{Et}_{3} \mathrm{~N}(10 / 1)$. Under argon, t-butyl-acrylate ($238 \mu \mathrm{~L}, 1.64 \mathrm{mmol}$, 5.0 equiv.) was added, the solution turns to brown. The resulting mixture was stirred overnight at $100^{\circ} \mathrm{C}$ under argon. The mixture was diluted with DCM and washed successively with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, water (10 mL) and brine (10 mL). The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, petroleum ether/EtOAc ; 80:20 to 70:30) to afford the product as a pale-yellow solid ($107 \mathrm{mg}, 304 \mu \mathrm{~mol}, 92 \%$). Regioisomeric ratio (5/5') : (94:6).
${ }^{1} \mathrm{H}$ NMR (5) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (5) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,160.2,157.6,144.0,143.1,138.0,130.6,128.8,123.8$, $121.9,118.9,118.6,114.2,97.6,80.6,66.5,38.6$ (2C), 28.4 (3C).
M.p. $=157-159^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 353.1860$ (100), 297.1234 (82) found 353.1863 (100), 297.1236 (82).

N -(8-methoxy-5H-chromeno[3,4-c]pyridin-2-yl)acetamide (6) and N -(8-methoxy-5H-chromeno[4,3-c]pyridin-3-yl)acetamide (6^{\prime})

Prepared according to a modification of the general procedure C using $\mathbf{1 j}$ ($950 \mathrm{mg}, 5.09 \mathrm{mmol}$, 1.0 equiv.) and N-cyanoacetamide ($428 \mathrm{mg}, 7.64 \mathrm{mmol}, 1.5$ equiv.), the reaction was heated to $80^{\circ} \mathrm{C}$ in MeTHF for 24 hours. After flash column chromatography (DCM/EtOAc ; 100:0 to 70:30), the expected product was obtained as a yellow solid ($1.13 \mathrm{~g}, 4.18 \mathrm{mmol}, 82 \%$). Regioisomeric ratio ($6 / 6^{\prime}$) : ($80: 20$). 6 was isolated after a second flash column chromatography (DCM/EtOAc ; 100:0 to 70:30), the expected product was obtained as a yellow solid ($797 \mathrm{mg}, 2.95 \mathrm{mmol}, 58 \%$)
${ }^{1} \mathrm{H}$ NMR (6) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.65 (dd, J = 8.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.52 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 ($\mathrm{s}, 2 \mathrm{H}$), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (6) ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,163.0,157.2,152.2,143.2,140.5,126.0,121.3,113.7$, 109.5, 105.6, 102.4, 66.2, 55.6, 24.9.
${ }^{1} \mathrm{H}$ NMR (6^{\prime}) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.64 (dd, J = 8.6, 2.6 Hz, 1H), $6.54(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.1(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (6’) (101 MHz, CDCl_{3}) $\delta 168.7,161.4,155.7,150.0,141.0,140.7,123.4,122.9$, 113.1, 109.4, 109.3, 102.7, 67.9, 55.6, 24.9.
M.p. $=220-222^{\circ} \mathrm{C}$

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 271.1077$ (100) found 271.1082 (100).

VI. NMR spectra

160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{ff}(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	0
${ }^{13} \mathrm{C}$ NMR of $\mathbf{A 1}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)																

${ }^{1} \mathrm{H}$ NMR of $\mathbf{A 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

T	1	1	T	1	1	1	1	1		1	1	1	1	1	1	1	T
170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0
	${ }^{13} \mathrm{C}$ NMR of $\mathbf{A 3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$																

	1	1	,	1	1	1	1	1	1	1	1	1	1	1	,	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR of $\mathbf{A 5}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{A 6}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

${ }^{1} \mathrm{H}$ NMR of $\mathbf{A 8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(1)

|

${ }^{13}$ C NMR of $\mathbf{A 1 1}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

苞
$\stackrel{\overbrace{}}{\stackrel{n}{i}}$

$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{0}}$

${ }^{1} \mathrm{H}$ NMR of $\mathrm{A} 13\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{gathered} \text { in } \\ \stackrel{e n}{1} \end{gathered}$		$\stackrel{\circ}{\text { ¢ }}$	－	＋

$\stackrel{\stackrel{m}{n}}{\stackrel{n}{n}} \stackrel{n}{n}$

|

$\stackrel{*}{4}$	$\stackrel{\square}{\square}$		
	i		

$\overbrace{\mathrm{m}}^{\infty}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

以人

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
N

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

			-								¢		\$					
			T				,								,			1
9.	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\stackrel{4.5}{\mathrm{f} 1(\mathrm{ppm})}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1} \mathrm{h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$																		

$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & { }^{90}(\mathrm{flm}) & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No

\qquad le

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

©
$\stackrel{n}{\substack{i \\ 1}}$
ic

1 ! !

$\stackrel{\stackrel{\circ}{0}}{1}$
$\underbrace{\mathscr{m} \sim}$

							1									
170	160	150	140	130	120	110	100	${ }^{90} \mathrm{fl}(\mathrm{ppm})_{80}^{80}$	70	60	50	40	30	20	10	0
	${ }^{13} \mathrm{C}$ NMR of $10\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)															

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

[^5]

$\stackrel{\circ}{\infty} \stackrel{\circ}{\infty}$

$\stackrel{\rightharpoonup}{i}$
$\stackrel{n}{1}$
t-Bu

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 f a}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\circ}{+}$

${ }^{13} \mathrm{C}$ NMR of 3 ha ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j a}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 ${ }^{13} \mathrm{C}$ NMR of 3ka (101 MHz, CDCl_{3})

$\stackrel{8}{i}$

 ~~~

${ }^{13} \mathrm{C}$ NMR of 3 ma ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR of 3 na ' $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


| , | 1 | 1 |  |  | , |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $80$ pm) | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{13} \mathrm{C}$ NMR of 3 na' $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )





솟ㅅNㅅN№ngongon



$\underbrace{\text { ºricoma }}$

|
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\substack{\infty \\ i}}$





[^6]







| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | ${ }^{90} \mathrm{fl}(\mathrm{ppm})^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{13} \mathrm{C}$ NMR of 3ed (101 MHz, CDCl ${ }_{3}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |


${ }^{19} \mathrm{~F}$ NMR of $3 \mathrm{fd}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






|  |  |  |  |  | 1 | 1 | 1 |  |  |  |  | , | , |  | , | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | $\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a b}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


















${ }^{13} \mathrm{C}$ NMR of 3ae (101 MHz, CDCl 3 )




|  | 1 |  |  |  |  |  |  |  | 1 |  |  |  |  | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | ${ }_{\text {f1 (ppm) }}{ }^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  | ${ }^{13} \mathrm{C}$ NMR of 3kd (101 MHz, $\mathrm{CDCl}_{3}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }^{13} \mathrm{C}$ NMR of 3kd' $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |  |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |













## VII. X-Ray crystallographic data for compound 3aa

A saturated solution of 10 mg of compound 3 aa in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was introduced into a 1 mL vial. This vial was then placed in a 10 mL vial already containing 2 mL of hexane and the system was closed. The vapour diffusion was let to happen at room temperature for 2 weeks, leading to long-needle crystals.

## 1. X-Ray crystal structure determination

For 3aa a single crystal was selected, mounted, and transferred into a cold nitrogen gas stream. Intensity data was collected with a Bruker Kappa-APEX2 system using micro-source $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. Unit-cell parameters determination, data collection strategy, integration and absorption correction were carried out with the Bruker APEX2 suite of programs. The structure was solved with SHELXT and refined anisotropically by full-matrix least-squares methods with SHELXL using WinGX. Absolute structure couldn't be reliably determined by anomalous scattering effects analysis. The structure was deposited at the Cambridge Crystallographic Data Centre with number CCDC 2192543 and can be obtained free of charge via www.ccdc.cam.ac.uk.


Figure 1 : Crystal structure representation of 3aa.
Ellipsoids are drawn with $30 \%$ probability. All hydrogen atoms are omitted for the sake of clarity.

## 2. Crystal data for 3aa

Orthorhombic Pn a 21, $a=18.0753(4) \AA, b=6.5874(1) A ̊, c=9.4903(2) A ̊, \alpha=\beta=\gamma=90^{\circ}, V=$ 1130.00 (4) Å3, $Z=4$, pale yellow plate $0.4 \times 0.2 \times 0.02 \mathrm{~mm} 3, \mu=0.679 \mathrm{~mm}-1, \mathrm{~min} / \mathrm{max}$ transmission $=0.55 / 0.75, \mathrm{~T}=200(1) \mathrm{K}, \lambda=1.54178 \AA, \theta$ range $=4.90^{\circ}$ to $66.58^{\circ}, 7941$ reflections measured, 1985 independent, Rint $=0.0258$, completeness $=1.000,156$ parameters, 1 restraints, Flack $x=0.3(2)$, final $R$ indices $R 1[1>2 \sigma(1)]=0.0297$ and wR2 (all data) $=0.0831$, GOF on F2 $=1.068$, largest difference peak $/$ hole $=0.15 /-0.12 \mathrm{e} \cdot \AA \AA-3$.


[^0]:    ${ }^{1}$ Auvinet, A-L.; Ez-Zoubir, M.; Vitale, M. R.; Brown, J. A.; Michelet, V.; Ratovelomanana-Vidal, V.; ChemSusChem, 2012, 5, 1888.
    ${ }^{2}$ Shirota, F. N.; Nagasawa, H. T.; Kwon, C. H., Demaster E. G.; Drug Metab. Dispos., 1984, 12, 337.

[^1]:    ${ }^{3}$ Roglans, A.; Pla-Quintana, A.; Solà, M. ; Chem. Rev., 2021, 121, 1894.

[^2]:    ${ }^{1} \mathrm{H}$ NMR (3ha) ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.96$ (d, $\mathrm{J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.78 (d, $\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.34 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H})$.

[^3]:    ${ }^{1} \mathrm{H}$ NMR (3ed) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.51$ (dd, J = 8.4, 2.2 Hz, 1H), 7.48-7.44 (m, 2H), 7.38-7.34 (m, 1H), $7.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ $(\mathrm{s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 4 \mathrm{H})$.

[^4]:    ${ }^{1} \mathrm{H}$ NMR (3af) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H})$, 7.06 (dt, J = 7.6, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H})$, 4.52 (bs, 2H).

[^5]:    
    ${ }^{13} \mathrm{C}$ NMR of 3aa ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[^6]:    

