SUPPORTING INFORMATION

Synthesis of *5H*-chromeno[3,4-*c*]pyridine derivatives through rutheniumcatalyzed [2+2+2] cycloaddition

William Parisot,^a Steve Huvelle,^a Mansour Haddad,^a Guillaume Lefèvre,^a Phannarath Phansavath,^a Virginie Ratovelomanana-Vidal ^{a*}

^a PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 11 Rue Pierre et Marie Curie, 75005 Paris, France

e-mail : virginie.vidal@chimieparistech.psl.eu

Table of Contents

١.	Ge	General informations			
II.	Cyanamide syntheses				
III.	Ge	eneral procedures	S-3		
	1.	Sonogashira coupling (general procedure A)	S-3		
	2.	Ether formation and alkyne deprotection (general procedure B)	S-4		
	3.	[2+2+2] Cycloaddition method (general procedure C)	S-4		
	4.	[2+2+2] Cycloaddition method (general procedure D)	S-5		
IV.	O	Optimization			
V.	Cł	naracterization	S-7		
	1.	Characterization of 2-((trimethylsilyl)ethynyl)phenol derivatives	S-7		
	2.	Characterization of 1-ethynyl-2-(prop-2-yn-1-yloxy)benzene derivatives	S-15		
	3.	Characterization of 5H-chromeno[3,4-c]pyridines derivatives	S-25		
VI.	NMR spectra		S-49		
VII.	X-	Ray crystallographic data for compound 3aa	S-128		
	1.	X-Ray crystal structure determination	S-128		
	2.	Crystal data for 3aa	S-129		

I. General informations

General Methods: Unless otherwise stated, all reactions were carried out under argon. Thinlayer chromatography was performed on silica gel 60 F254 on aluminum plates (Merck). Visualization was accomplished using UV light (λ = 254 or 365 nm) or by staining in basic KMnO4, p-anisaldehyde or phosphomolybdic acid solution followed by heating. Flash chromatography was performed under positive air pressure using silica gel (40-63 µm) from VWR Chemical.

Instrumentation and Data Acquisition: Proton (¹H), carbon (¹³C) and fluorine (¹⁹F) nuclear magnetic resonance spectra were recorded on Bruker AV400 instrument, using non deuterated chloroform (¹H NMR : δ = 7.26 ppm) as an internal chemical shift reference for Proton (¹H) and (¹³C NMR : δ = 77.16 ppm) relative to the centre line of the triplet as an internal chemical shift reference for Carbon (¹³C). Melting points (M. p.) were determined on a Köfler melting point apparatus. High resolution mass spectrometric (HRMS) analyses were measured on Q-Tof 6545LTQ-Orbitrap (Agilent) by ESI or APCI. Low resolution mass spectrometric (LRMS) analyses were measured on DSQII (ThermoScientific) by DEP.

Data Reporting: The presentation of ¹H NMR spectroscopic data: magnet strength, analysis solvent, chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, sext. = sextuplet sept. = septuplet, m = multiplet, b = broad, app. = apparent), *J*-coupling constants (Hz), and integration. The regioisomeric ratio was determined by integration of ¹H-NMR signals. The response factor of both regioisomers was assumed to be equal in each case. For regioisomeric ratios greater than 90:10 only the major isomer is depicted in the following NMR characterizations. HRMS were given for the mixture of regioisomers of *5H*-chromeno[3,4-*c*]pyridines and *5H*-chromeno[4,3-*c*]pyridines.

Materials: All reagents were purchased in the highest purity grade available from Acros Organics, Sigma-Aldrich, Tokyo Chemical Industry, Alfa Aesar and Fluorochem. They were used without further purification unless otherwise specified. Argon and liquid nitrogen were provided from Air liquid. Anhydrous solvents were freshly distilled before use or obtained from solvent purificator Pure Solv[™]. Petroleum ether, pentane, ethyl acetate, dichloromethane and diethyl ether were used as received. Anhydrous 2-methyltetrahydrofuran was obtained by distillation over sodium in the presence of benzophenone under argon prior to use.

Safety Notice: Cyanamides are volatile and toxic. Propargyl bromide is toxic and carcinogenic. Iodophenols reagents are known to be harmful. All these reagents must be handled under a fume hood and with gloves.

II. Cyanamide syntheses

Dimethylcyanamide **2a**, pyrrolidine carbonitrile **2d**, cyanamide **2f** and 4morpholinecarbonitrile **2e** were purchased from commercial sources. Cyanamides **2b**, **2c** and **2g** were prepared according to reported procedures.^{1,2}

III. General procedures

1. Sonogashira coupling (general procedure A)

In a 100 mL round bottom flask was suspended PdCl₂(PPh₃)₂ (255 mg, 0.36 mmol, 0.02 equiv.) and CuI (139 mg, 0.73 mmol, 0.04 equiv.) in 26 mL of THF/NEt₃ (8:2). Under argon, a solution of 2-iodophenol (4.00 g, 18.2 mmol, 1.0 equiv.) and trimethylsilyl acetylene (5.03 mL, 36.4 mmol, 2.0 equiv.) in 26 mL of THF/NEt₃ (8:2) was added, the solution turns to black. The resulting mixture was stirred overnight at room temperature. A saturated aqueous solution of NH₄Cl (30 mL) was added and the aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were dried over MgSO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column cyclohexane/EtOAc chromatography (SiO₂, ; 100:0 to 95:5) affording 2-((trimethylsilyl)ethynyl)phenol as a yellow oil (3.36 g, 17.6 mmol, 97%).

¹ Auvinet, A-L.; Ez-Zoubir, M.; Vitale, M. R.; Brown, J. A.; Michelet, V.; Ratovelomanana-Vidal, V.; *ChemSusChem*, 2012, **5**, 1888.

² Shirota, F. N.; Nagasawa, H. T.; Kwon, C. H., Demaster E. G.; Drug Metab. Dispos., 1984, 12, 337.

2. Ether formation and alkyne deprotection (general procedure B)

In a 100 mL round bottom flask 2-((trimethylsilyl)ethynyl)phenol (3.36 g, 17.6 mmol, 1.0 equiv.), and K₂CO₃ (4.88 g, 35.3 mmol, 2.0 equiv.) were mixed in 50 mL of anhydrous DMF at room temperature. Under argon, propargyl bromide (80 % in toluene) (2.93 mL, 26.4 mmol, 1.5 equiv.) was added and the brownish mixture was stirred 4 h at room temperature. When the reaction was complete (NMR monitoring), 20 mL of water was added. The resulting solution was extracted with Et₂O (3 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and the filtrate was concentrated under reduced pressure. The residue was dissolved in 50 mL of THF and tetrabutylammonium fluoride (5.52 g, 21.1 mmol, 1.2 equiv.) was added, the solution turns to black. The solution was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure.

3. [2+2+2] Cycloaddition method (general procedure C)

A sealed tube was charged with $[Cp*Ru(MeCN)_3]PF_6$ (6.5 mg, $1.28x10^{-2}$ mmol, 0.02 equiv.) and dimethylcyanamide **2a** (76 µL, 0.96 mmol, 1.5 equiv.) was added. Under argon a solution of diyne **1a** (100 mg, 0.64 mmol, 1.0 equiv.) in 1.8 mL of anhydrous toluene was added. The tube was sealed, and the reaction mixture was stirred vigorously at 100 °C for 24 h. When the reaction was complete, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc ; 80:20), then the excess of cyanamide was distilled off with a Kugelrohr distillation apparatus, affording a mixture of **3aa** and **3aa'** as a pale-brown oil (121 mg, 535 µmol, 84%).

4. [2+2+2] Cycloaddition method (general procedure D)

A sealed tube was charged with $[Cp*Ru(MeCN)_3]PF_6$ (9.7 mg, $1.92x10^{-2}$ mmol, 0.03 equiv.) and 4-morpholinecarbonitrile **2e** (97 µL, 0.96 mmol, 1.5 equiv.) was added. Under argon a solution of diyne **1a** (100 mg, 0.64 mmol, 1.0 equiv.) in 1.8 mL of anhydrous toluene was added. The tube was sealed, and the reaction mixture was stirred vigorously at 100 °C for 48 h. When the reaction was complete, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc ; 80:20 to 70:30), then the excess of cyanamide was distilled off with a Kugelrohr distillation apparatus, affording a mixture of **3ae** and **3ae'** as a pale-brown oil (148 mg, 552 µmol, 86%).

Proposed mechanism³

³ Roglans, A.; Pla-Quintana, A.; Solà, M.; Chem. Rev., 2021, **121**, 1894.

Entry	Catalyst (mol %)	Solvent	т℃	Conv. (%)	Yield (%)	Ratio
1	[Cp*RuCl]₄ (2 mol%)	Toluene	100	100	43	>99/1
2	[Cp*Ru(MeCN)₃]PF₀ (5 mol%)	Toluene	100	100	83	96/4
3	Cp*Ru(cod)Cl (5 mol%)	Toluene	100	92	37	>99/1
4	[Rh(cod)Cl]₂ (5 mol%)	Toluene	100	100	0	ND
5	RuCl₃.nH₂O (5 mol%)	Toluene	100	58	33	92/8
6	[Ir(cod)Cl]₂ (5 mol%)	Toluene	100	100	0	ND
7	ln(OTf)₃ (5 mol%)	Toluene	100	0	0	ND
8	Fe(acac)₃ (5 mol%)	Toluene	100	0	0	ND
9	FeSO₄ (5 mol%)	Toluene	100	0	0	ND
10	CpCo(CO)₂ (5 mol%)	Toluene	100	26	21	76/24
11	[Cp₂Ni] (5 mol%), Xantphos (10 mol%), Cs₂CO₃ (1.00 equiv.)	Toluene	100	0	0	ND
12	[Cp*Ru(MeCN)₃]PF₀ (2 mol%)	Toluene	100	100	84	96/4
13	[Cp*Ru(MeCN)₃]PF₀ (2 mol%)	DCE	80	54	40	97/3
14	[Cp*Ru(MeCN)₃]PF₀ (2 mol%)	DCM	50	43	26	97/3
15	[Cp*Ru(MeCN)₃]PF₅ (2 mol%)	EtOH	80	10	9	92/8
16	[Cp*Ru(MeCN) ₃]PF ₆ (2 mol%)	MeTHF	80	71	61	96/4
17	[Cp*Ru(MeCN)₃]PF ₆ (1 mol%)	Toluene	100	62	61	96/4
18	[Cp*Ru(MeCN)₃]PF ₆ (2 mol%)	Toluene	90	95	77	96/4

Table 1 : Optimization table

V. Characterization

1. Characterization of 2-((trimethylsilyl)ethynyl)phenol derivatives

2-((trimethylsilyl)ethynyl)phenol (A1)

Prepared according to the general procedure **A** using 2-iodophenol (4.00 g, 18.2 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 95:5), the expected product was obtained as a yellow oil (3.36 g, 17.6 mmol, 97%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.27-7.22 (m, 1H), 6.94 (dd, *J* = 8.3, 0.8 Hz, 1H), 6.85 (td, *J* = 7.6, 1.1 Hz, 1H), 5.84 (s, 1H), 0.29 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 157.2, 131.7, 130.8, 120.4, 114.7, 109.6, 102.5, 99.1, 0.1 (3C).

LRMS (EI): Calculated for C₁₁H₁₄OSi [M-CH₃]⁺ : 175 (100) found 175 (100).

4-methyl-2-((trimethylsilyl)ethynyl)phenol (A2)

Prepared according to the general procedure **A** using 2-iodo-4-methylphenol (1.65 g, 7.05 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 95:5), the expected product was obtained as a yellow oil (1.40 g, 6.85 mmol, 97%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (d, J = 2.1 Hz, 1H), 7.02 (dd, J = 8.4, 2.2 Hz, 1H), 6.84 (d, J = 8.4, Hz, 1H), 5.69 (s, 1H), 2.24 (s, 3H), 0.28 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 155.1, 131.8, 131.6, 129.5, 114.4, 109.2, 102.0, 99.4, 20.4, 0.1 (3C).

LRMS (EI): Calculated for C₁₂H₁₆OSi [M-CH₃]⁺ : 189 (100) found 189 (100).

4-isopropyl-2-((trimethylsilyl)ethynyl)phenol (A3)

Prepared according to the general procedure **A** using 2-iodo-4-isopropylphenol (5.80 g, 22.1 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 98:2), the expected product was obtained as a yellow oil (3.72 g, 16.0 mmol, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 2.3 Hz, 1H), 7.08 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 5.81 (s, 1H), 2.80 (sept., *J* = 6.9 Hz, 1H), 1.28 (app. s, 3H), 1.27 (app. s, 3H), 0.29 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 155.3, 140.6, 129.2, 129.1, 114.6, 109.2, 101.6, 99.7, 33.3, 24.1 (2C), 0.1 (3C).

LRMS (EI): Calculated for C₁₄H₂₀OSi [M-CH₃]⁺ : 217 (100) found 217 (100).

4-(tert-butyl)-2-((trimethylsilyl)ethynyl)phenol (A4)

A4 Chemical Formula: C₁₅H₂₂OSi

Prepared according to the general procedure **A** using 4-(*tert*-butyl)-2-iodophenol (2.90 g, 10.5 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 98:2 to 95:5), the expected product was obtained a white solid (2.15 g, 8.72 mmol, 83%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 2.4 Hz, 1H), 7.27 (dd, J = 8.6, 2.5 Hz, 1H), 6.87 (d, J = 8.6 Hz, 1H), 5.68 (s, 1H), 1.27 (s, 9H), 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.0, 143.1, 128.3, 128.1, 114.2, 108.8, 101.8, 99.7, 34.2, 31.5 (3C), 0.2 (3C).

M.p. : 71-73 °C

LRMS (EI): Calculated for C₁₅H₂₂OSi [M-CH₃]⁺ : 231 (100) found 231 (100).

3-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-4-ol (A5)

Chemical Formula: C₁₇H₁₈OSi

Prepared according to the general procedure **A** using 3-iodo-[1,1'-biphenyl]-4-ol (7.50 g, 25.3 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as yellow solid (3.40 g, 12.8 mmol, 51%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 2.3 Hz, 1H), 7.58-7.55 (m, 2H), 7.52 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.46-7.43 (m, 2H), 7.38-7.33 (m, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 5.97 (s, 1H), 0.37 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.6, 140.1, 133.7, 130.2, 129.6, 128.9 (2C), 127.1, 126.7 (2C), 115.1, 110.0, 102.6, 99.1, 0.1 (3C).

M.p. : 98-100 °C

LRMS (EI): Calculated for C₁₇H₁₈OSi [M-CH₃]⁺ : 251 (100) found 251 (100).

4-fluoro-2-((trimethylsilyl)ethynyl)phenol (A6)

Prepared according to the general procedure **A** using 2-iodo-4-fluorophenol (4.20 g, 17.6 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 100:0 to 98:2), the expected product was obtained as a yellow oil (3.21 g, 15.4 mmol, 87%).

¹H NMR (400 MHz, CDCl₃) δ 7.04 (dd, J = 8.5, 3.0 Hz, 1H), 6.97-6.92 (m, 1H), 6.89-6.86 (m, 1H), 5.76 (s, 1H), 0.29 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.1 (d, J = 232.3 Hz), 153.5, 117.7 (d, J = 31.3 Hz), 117.5 (d, J = 33.3 Hz), 115.7 (d, J = 9.1 Hz), 110.2 (d, J = 9.1 Hz), 103.3, 9.1 (d, J = 2.0 Hz), 0.1 (3C).

¹⁹**F NMR** (376.5 MHz, CDCl3) δ = -123.8.

LRMS (EI): Calculated for C₁₁H₁₃FOSi [M-CH₃]⁺ : 193 (100) found 193 (100).

Prepared according to the general procedure **A** using 2-iodo-4-chlorophenol (3.98 g, 15.6 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 90:10), the expected product was obtained as a yellow oil (3.14 g, 13.9 mmol, 89%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, J = 2.6 Hz, 1H), 7.19 (dd, J = 8.8, 2.6 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 5.78 (s, 1H), 0.28 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.8, 131.0, 130.8, 125.0, 116.0, 111.1, 103.9, 97.7, 0.1 (3C).

LRMS (EI): Calculated for $C_{11}H_{13}ClOSi [M-CH_3]^+$: 209 (100), 211 (32) found 209 (100), 211 (48).

4-bromo-2-((trimethylsilyl)ethynyl)phenol (A8)

Prepared according to the general procedure **A** using 2-iodo-4-bromophenol (4.90 g, 16.4 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 96:4 to 95:5), the expected product was obtained as a yellow oil (4.12 g, 15.3 mmol, 93%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 2.4 Hz, 1H), 7.32 (dd, J = 8.8, 2.4 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 5.83 (s, 1H), 0.28 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.3, 133.9, 133.6, 116.5, 111.9, 111.7, 104.0, 97.5, 0.0 (3C).

LRMS (EI): Calculated for $C_{11}H_{13}BrOSi [M-CH_3]^+$: 253 (100), 255 (97) found 253 (100), 255 (97).

4-hydroxy-3-((trimethylsilyl)ethynyl)benzonitrile (A9)

Prepared according to the general procedure **A** using 4-hydroxy-3-iodobenzonitrile (3.50 g, 14.3 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 70:30 to 60:40), the expected product was obtained as a white solid (2.02 g, 9.38 mmol, 66%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, J = 1.9 Hz, 1H), 7.49 (dd, J = 8.6, 2.0 Hz, 1H), 7.00 (d, J = 8.6 Hz, 1H), 6.50 (s, 1H), 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 136.1, 134.2, 118.3, 116.0, 111.4, 105.0, 104.1, 96.4, 0.2 (3C).

LRMS (EI): Calculated for C₁₂H₁₃NOSi [M-CH₃]⁺ : 200 (100) found 200 (100).

5-methoxy-2-((trimethylsilyl)ethynyl)phenol (A10)

Prepared according to the general procedure **A** using 2-iodo-5-methoxyphenol (3.20 g, 12.8 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as a yellow oil (2.38 g, 10.8 mmol, 84%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.6 Hz, 1H), 6.50 (d, *J* = 2.4 Hz, 1H), 6.43 (dd, *J* = 8.6, 2.5 Hz, 1H), 5.91 (s, 1H), 3.78 (s, 3H), 0.28 (s, 9H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl_3) δ 161.8, 158.7, 132.5, 107.3, 102.0, 101.0, 100.0, 99.3, 55.4, 0.2 (3C).

LRMS (EI): Calculated for C₁₂H₁₆O₂Si [M-CH₃]⁺ : 205 (100) found 205 (100).

1-((trimethylsilyl)ethynyl)naphthalen-2-ol (A11)

Prepared according to the general procedure **A** using 1-iodonaphthalen-2-ol (4.00 g, 14.8 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 80:20), the expected product was obtained as a yellow oil (562 mg, 2.34 mmol, 16%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 8.3 Hz, 1H), 7.78-7.74 (m, 2H), 7.58-7.54 (m, 1H), 7.40-7.36 (m, 1H), 7.21 (d, J = 9.0 Hz, 1H), 6.24 (s, 1H), 0.39 (s, 9H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 156.9, 133.7, 131.0, 128.5, 128.4, 127.6, 125.0, 124.2, 116.3, 107.5, 102.9, 97.6, 0.3 (3C).

HRMS (ESI): Calculated for C₁₅H₁₆OSi [M+H]⁺ : 241.1043 (100) found 241.1039 (100).

tert-butyldimethyl((6-((trimethylsilyl)ethynyl)benzo[d][1,3]dioxol-5-yl)oxy)silane (A12)

A12 Chemical Formula: C₁₈H₂₈O₃Si₂

Prepared according to the general procedure **A** using *tert*-butyl ((6-iodobenzo[d][1,3]dioxol-5-yl)oxy)dimethylsilane (5.00 g, 13.2 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as an orange oil (3.11 g, 8.92 mmol, 68%).

¹H NMR (400 MHz, CDCl₃) δ 6.81 (s, 1H), 6.34 (s, 1H), 5.90 (s, 2H), 1.03 (s, 9H), 0.23 (s, 6H), 0.22 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.0, 148.8, 141.6, 111.9, 107.3, 102.7, 101.9, 101.6, 96.2, 25.9 (3C), 18.4, 0.2 (3C), -4.2 (2C).

LRMS (Cl/NH₃): Calculated for C₁₈H₂₈O₃Si₂ [M+H]⁺ : 349 (100) found 349 (100).

2,4-dimethyl-6-((trimethylsilyl)ethynyl)phenol (A13)

Prepared according to the general procedure **A** using 2-iodo-4,6-dimethylphenol (3.00 g, 12.1 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 95:5 to 80:20), the expected product was obtained as a yellow oil (2.58 g, 11.8 mmol, 97%).

 ^{1}H NMR (400 MHz, CDCl_3) δ 7.04 (s, 1H), 6.94 (s, 1H), 5.84 (s, 1H), 2.27 (s, 3H), 2.24 (s, 3H), 0.33 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 153.3, 133.0, 129.0, 128.9, 123.6, 108.6, 101.5, 99.9, 20.3, 15.9, 0.1 (3C).

LRMS (Cl/NH₃): Calculated for C₁₃H₁₈OSi [M+H]⁺ : 219 (100) found 219 (100).

3-bromo-2,4-dimethyl-6-((trimethylsilyl)ethynyl)phenol (A14)

Prepared according to a modification of the general procedure **A** using 3-bromo-6-iodo-2,4-dimethylphenol (3.00 g, 9.17 mmol, 1.0 equiv.), ethynyltrimethylsilane (5.08 mL, 36.7 mmol, 4.0 equiv.), the reaction was refluxed in THF/Et₃N (8/2) for 6 hours. After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a yellow oil (2.58 g, 8.68 mmol, 95%).

¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, 1H), 5.83 (s, 1H), 2.52 (s, 3H), 2.36 (s, 3H), 0.32 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 155.9, 140.5, 140.0, 117.8, 114.1, 109.0, 106.0, 98.1, 24.4, 22.4, 0.1 (3C).

LRMS (Cl/NH₃): Calculated for $C_{13}H_{17}BrOSi [M+H]^+$: 297 (100), 299 (97) found 297 (100), 299 (97).

Chemical Formula: C₁₄H₁₀O

Prepared according to a modification of the general procedure **A** using 2-iodophenol (5.00 g, 22.7 mmol, 1.0 equiv.) and phenylacetylene (4.99 mL, 45.5 mmol, 2.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 99.5:0.5 to 98:2), the expected product was obtained as a yellow solid (1.62 g, 8.34 mmol, 37%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.45 (dd, J = 7.7, 1.6 Hz, 1H), 7.40-7.37 (m, 3H), 7.31-7.27 (m, 1H), 7.01 (dd, J = 8.3, 0.8 Hz, 1H), 6.93 (dt, J = 7.6, 1.1 Hz, 1H), 5.90 (s, 1H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 156.6, 131.8, 131.7 (2C), 130.6, 128.9, 128.6 (2C), 122.5, 120.6, 114.9, 109.7, 96.5, 83.2.

M.p. : 71-73 °C

LRMS (EI): Calculated for C₁₄H₁₀O [M+H]⁺ : 195 (100) found 195 (100).

2. Characterization of 1-ethynyl-2-(prop-2-yn-1-yloxy)benzene derivatives

1-ethynyl-2-(prop-2-yn-1-yloxy)benzene (1a)

Chemical Formula: C₁₁H₈O

Prepared according to the general procedure **B** using **A1** (3.36 g, 17.6 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid (2.31 g, 14.8 mmol, 84%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.34 (ddd, J = 8.5, 7.5, 1.7 Hz, 1H), 7.06 (dd, J = 8.4, 0.7 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 4.80 (d, J = 2.4 Hz, 2H), 3.31 (s, 1H), 2.53 (t, J = 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 134.4, 130.2, 121.6, 112.9, 112.2, 81.6, 79.8, 78.3, 76.2, 56.6.

M.p. = 47-49 °C

HRMS (ESI): Calculated for $C_{11}H_8O [M+H]^+$: 157.0648 (100) found 157.0648 (100).

2-ethynyl-4-methyl-1-(prop-2-yn-1-yloxy)benzene (1b)

Chemical Formula: C₁₂H₁₀O

Prepared according to the general procedure **B** using **A2** (1.40 g, 6.85 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid (793 mg, 4.66 mmol, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 8.4, 2.2 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 4.77 (d, J = 2.4 Hz, 2H), 3.28 (s, 1H), 2.51 (t, J = 2.4 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.6, 134.7, 131.0, 130.7, 113.1, 111.9, 81.3, 80.0, 78.5, 76.0, 56.7, 20.4.

M.p. = 60-62 °C

HRMS (ESI): Calculated for C₁₂H₁₀O [M+H]⁺: 171.0804 (100) found 171.0805 (100).

Prepared according to the general procedure **B** using **A3** (2.00 g, 8.61 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as white fluffy needles (1.36 g, 6.86 mmol, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 2.4 Hz, 1H), 7.17 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.97 (d, *J* = 8.6 Hz, 1H), 4.76 (d, *J* = 2.4 Hz, 2H), 3.30 (s, 1H), 2.84 (sept., *J* = 6.9 Hz, 1H), 2.52 (t, *J* = 2.4 Hz, 1H), 1.22 (app. s, 3H), 1.21 (app. s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.7, 141.9, 132.1, 128.1, 112.9, 111.7, 81.1, 80.2, 78.5, 75.9, 56.6, 33.1, 24.0 (2C).

M.p. = 96-98 °C

HRMS (ESI): Calculated for C₁₄H₁₄O [M+H]⁺: 199.1117 (100) found 199.1121 (100).

4-(tert-butyl)-2-ethynyl-1-(prop-2-yn-1-yloxy)benzene (1d)

Chemical Formula: C₁₅H₁₆O

Prepared according to the general procedure **B** using **A4** (4.10 g, 16.6 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-yellow solid (2.95 g, 13.9 mmol, 84%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, J = 2.5 Hz, 1H), 7.34 (dd, J = 8.8, 2.6 Hz, 1H), 6.98 (d, J = 8.8 Hz, 1H), 4.77 (d, J = 2.4 Hz, 2H), 3.29 (s, 1H), 2.52 (t, J = 2.4 Hz, 1H), 1.29 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.5, 144.3, 131.4, 127.1, 112.6, 111.4, 81.0, 80.4, 78.6, 76.0, 56.6, 34.2, 31.4 (3C).

M.p. = 58-60 °C

HRMS (ESI): Calculated for C₁₅H₁₆O [M+H]⁺: 213.1274 (100) found 213.1277 (100).

Chemical Formula: C₁₇H₁₂O

Prepared according to the general procedure **B** using **A5** (2.00 g, 7.51 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a white solid (1.32 g, 5.68 mmol, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 2.4 Hz, 1H), 7.57-7.53 (m, 3H), 7.45-7.41 (m, 2H), 7.36-7.32 (m, 1H), 7.13 (d, J = 8.6 Hz, 1H), 4.85 (d, J = 2.4 Hz, 2H), 3.35 (s, 1H), 2.56 (t, J = 2.4 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 158.1, 139.8, 134.8, 133.0, 128.9 (2C), 128.8, 127.3, 126.9 (2C), 113.2, 112.5, 81.7, 79.8, 78.3, 76.3, 56.7.

M.p. = 101-103 °C

HRMS (ESI): Calculated for C₁₇H₁₂O [M+H]⁺: 233.0961 (100) found 233.0964 (100).

2-ethynyl-4-fluoro-1-(prop-2-yn-1-yloxy)benzene (1f)

Chemical Formula: C₁₁H₇FO

Prepared according to the general procedure **B** using **A6** (1.50 g, 7.20 mmol, 1.0 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 95:5), the expected product was obtained as a pale-brown solid (859 mg, 4.93 mmol, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 (dd, J = 8.4, 2.9 Hz, 1H), 7.03-6.95 (m, 2H), 4.74 (d, J = 2.4 Hz, 2H), 3.33 (s, 1H), 2.53 (t, J = 2.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.7, 154.0 (d, *J* = 237.4 Hz), 120.5 (d, *J* = 24.7 Hz), 116.7 (d, *J* = 23.2 Hz), 114.6 (d, *J* = 8.6 Hz), 113.5 (d, *J* = 9.6 Hz), 82.7, 78.7 (d, *J* = 2.2 Hz), 78.1, 76.3, 57.2.

 ^{19}F NMR (376.5 MHz, CDCl3) δ = -122.0.

M.p. = 51-53 °C

HRMS (ESI): Calculated for C₁₁H₇FO [M+H]⁺ : 175.0554 (100) found 175.0556 (100).

Chemical Formula: C₁₁H₇CIO

Prepared according to the general procedure **B** using **A7** (3.15 g, 14.0 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 80:20), the expected product was obtained as white fluffy needles (2.18 g, 11.4 mmol, 81%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, J = 2.6 Hz, 1H), 7.27 (dd, J = 8.9, 2.6 Hz, 1H), 6.97 (d, J = 8.9 Hz, 1H), 4.77 (d, J = 2.4 Hz, 2H), 3.33 (s, 1H), 2.53 (t, J = 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.3, 133.8, 130.0, 126.4, 114.3, 113.8, 82.8, 78.5, 77.9, 76.6, 56.9.

M.p. = 80-82 °C

HRMS (ESI): Calculated for C₁₁H₇ClO [M+H]⁺ : 191.0258 (100), 193.0229 (32) found 191.0260 (100), 193.0230 (32).

2-ethynyl-4-bromo-1-(prop-2-yn-1-yloxy)benzene (1h)

Chemical Formula: C₁₁H₇BrO

Prepared according to the general procedure **B** using **A8** (2.15 g, 7.99 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/DCM ; 90:10 to 85:15), the expected product was obtained as a pale-yellow solid (747 mg, 3.18 mmol, 40%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.9, 2.5 Hz, 1H), 6.92 (d, J = 8.9 Hz, 1H), 4.77 (d, J = 2.4 Hz, 2H), 3.33 (s, 1H), 2.54 (t, J = 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.8, 136.7, 132.9, 114.6, 114.3, 113.4, 82.9, 78.4, 77.8, 76.6, 56.8.

M.p. = 75-77 °C

HRMS (ESI): Calculated for C₁₁H₇BrO [M+H]⁺ : 234.9753 (100), 236.9733 (97) found 234.9756 (100), 236.9735 (97).

Chemical Formula: C₁₂H₇NO

Prepared according to the general procedure **B** using **A9** (1.91 g, 8.87 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5), the expected product was obtained as white fluffy needles (1.36 g, 7.51 mmol, 85%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 2.1 Hz, 1H), 7.59 (dd, J = 8.7, 2.1 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 4.83 (d, J = 2.4 Hz, 2H), 3.37 (s, 1H), 2.58 (t, J = 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.3, 137.7, 133.9, 117.9, 113.4, 112.9, 105.0, 83.6, 77.2, 76.8, 76.7, 56.5.

M.p. = 123-125 °C

HRMS (ESI): Calculated for C₁₂H₇NO [M+H]⁺ : 182.0600 (100) found 182.0602 (100).

1-ethynyl-4-methoxy-2-(prop-2-yn-1-yloxy)benzene (1j)

Chemical Formula: C₁₂H₁₀O₂

Prepared according to the general procedure **B** using **A10** (2.30 g, 10.4 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as a yellow oil (1.17 g, 6.28 mmol, 60%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 6.46 (dd, J = 8.5, 2.4 Hz, 1H), 4.75 (d, J = 2.4 Hz, 2H), 3.78 (s, 3H), 3.22 (s, 1H) 2.54 (t, J = 2.4 Hz, 1H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 161.2, 159.8, 135.0, 106.1, 104.4, 100.3, 80.1, 79.9, 78.1, 76.3, 56.5, 55.5.

M.p. = 88-90 °C

HRMS (ESI): Calculated for $C_{12}H_{10}O_2$ [M+H]⁺: 187.0754 (100) found 187.0756 (100).

1-ethynyl-2-(prop-2-yn-1-yloxy)naphthalene (1k)

Prepared according to the general procedure **B** using **A11** (828 mg, 3.44 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 99:1), the expected product was obtained as a pale-yellow solid (428 mg, 2.07 mmol, 60%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (dd, *J* = 8.5, 0.8 Hz, 1H), 7.84 (d, *J* = 9.1 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.59-7.55 (m, 1H), 7.44-7.40 (m, 1H), 7.37 (d, *J* = 9.1 Hz, 1H), 4.94 (d, *J* = 2.4 Hz, 2H), 3.77 (s, 1H), 2.55 (t, *J* = 2.4 Hz, 1H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 158.0, 134.8, 130.5, 129.1, 128.2, 127.7, 125.4, 124.9, 114.7, 106.8, 87.1, 78.6, 78.0, 76.3, 57.4.

M.p. = 70-72 °C

HRMS (ESI): Calculated for C₁₅H₁₀O [M+H]⁺: 207.0804 (100) found 207.0808 (100).

5-ethynyl-6-(prop-2-yn-1-yloxy)benzo[d][1,3]dioxole (11)

1I Chemical Formula: C₁₂H₈O₃

In a 50 mL round bottom flask **A12** (710 mg, 2.04 mmol, 1.0 equiv.), was dissolved in 10 mL of methanol and K_2CO_3 (844 mg, 6.11 mmol, 3.0 equiv.) was added, the mixture turns to brown. The suspension was stirred 6 h at room temperature, then filtrated. The resulting solution was concentrated under reduced pressure. The residue was dissolved in 13 mL of anhydrous DMF and stirred 5 minutes with K_2CO_3 (564 mg, 4.08 mmol, 2.0 equiv.). Under argon, propargyl bromide (80 mol% in toluene) (328 µL, 3.06 mmol, 1.5 equiv.) was added and the solution was stirred overnight at room temperature, then water (20 mL) was added. The resulting solution was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc ; 98:2 to 95:5) affording **1I** as an orange solid (310 mg, 1.55 mmol, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 6.86 (s, 1H), 6.65 (s, 1H), 5.94 (s, 2H), 4.71 (d, J = 2.4 Hz, 2H), 3.22 (s, 1H), 2.53 (t, J = 2.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.3, 149.0, 142.0, 112.4, 104.4, 101.9, 97.6, 80.4, 79.9, 78.4, 76.3, 57.8.

M.p. = 117-119 °C

HRMS (ESI): Calculated for C₁₂H₈O₃ [M+H]⁺ : 201.0546 (100) found 201.0545 (100).

1-ethynyl-3,5-dimethyl-2-(prop-2-yn-1-yloxy)benzene (1m)

Chemical Formula: C₁₃H₁₂O

Prepared according to the general procedure **B** using **A13** (2.50 g, 11.4 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as pale-yellow solid (1.48 g, 8.03 mmol, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (s, 1H), 6.99 (s, 1H), 4.82 (d, *J* = 2.4 Hz, 2H), 3.30 (s, 1H), 2.48 (t, *J* = 2.4 Hz, 1H), 2.31 (s, 3H), 2.25 (s, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 155.8, 133.5, 132.8, 132.1, 131.8, 115.3, 81.7, 80.2, 79.4, 75.1, 60.3, 20.4, 16.5.

M.p. = 106-108 °C

HRMS (ESI): Calculated for C₁₃H₁₂O [M+H]⁺ : 185.0961 (100) found 185.0963 (100).

2-bromo-5-ethynyl-1,3-dimethyl-4-(prop-2-yn-1-yloxy)benzene (1n)

Chemical Formula: C₁₃H₁₁BrO

Prepared according to the general procedure **B** using **A14** (800 mg, 2.69 mmol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as pale-yellow solid (471 mg, 1.79 mmol, 66%).

¹**H NMR** (400 MHz, CDCl₃) δ 6.81 (s, 1H), 4.76 (d, *J* = 2.4 Hz, 2H), 3.52 (s, 1H), 2.58 (s, 3H), 2.53 (t, *J* = 2.4 Hz, 1H), 2.44 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 157.7, 142.5, 139.9, 119.7, 112.6, 111.3, 85.8, 78.5, 78.2, 76.3, 56.7, 25.0, 22.4.

M.p. = 109-111 °C

HRMS (ESI): Calculated for $C_{13}H_{11}BrO$ [M+H]⁺ : 263.0066 (100), 265.0046 (97) found 263.0068 (100), 265.0048 (97).

Prepared according to a modification of the general procedure **B** using **A1** (2.00 g, 10.5 mmol, 1.00 equiv.) and 1-bromo-2-butyne (1.38 mL, 15.8 mmol, 1.50 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as yellow oil (1.42 g, 8.34 mmol, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.32-7.28 (m, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.92 (app. t, *J* = 7.5 Hz, 1H), 4.74 (q, *J* = 2.2 Hz, 2H), 3.30 (s, 1H), 1.82 (t, *J* = 2.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 134.2, 130.0, 121.0, 112.6, 111.8, 84.2, 81.4, 79.9, 73.8, 57.0, 3.7.

HRMS (ESI): Calculated for C₁₂H₁₀O [M+H]⁺ : 171.0804 (100) found 171.0806 (100).

In a 100 mL round bottom flask 2-((trimethylsilyl)ethynyl)phenol (1.00 g, 5.25 mmol, 1.0 equiv.), was dissolved in 13 mL of THF and tetrabutylammonium fluoride monohydrate (1.81 g, 6.31 mmol, 1.2 equiv.) was added, the solution turns to black. The solution was stirred 1 h at room temperature, then water (20 mL) was added. The resulting solution was extracted with Et₂O (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in 13 mL of anhydrous DMF and stirred 5 minutes with K_2CO_3 (1.50 g, 10.5 mmol, 2.0 equiv.). Under argon, 3-(trimethylsilyl)propargyl bromide (1.12 mL, 7.88 mmol, 1.5 equiv.) was added and the solution was stirred 2 h at room temperature. Water (20 mL) was added, and the resulting solution was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was added, and the resulting solution was extracted with DCM (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/DCM ; 95:5 to 90:10) affording **1p** as a yellow oil (830 mg, 3.63 mmol, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.33-7.28 (m, 1H), 7.06 (dd, *J* = 8.3, 0.5 Hz, 1H), 6.94 (td, *J* = 7.6, 0.9 Hz, 1H), 4.78 (s, 2H), 3.30 (s, 1H), 0.16 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.9, 134.3, 130.0, 121.4, 113.3, 112.1, 99.9, 93.4, 81.5, 79.9, 57.5, 0.3 (3C).

HRMS (ESI): Calculated for C₁₄H₁₆OSi [M+H]⁺ : 229.1043 (100) found 229.1046 (100).

Trimethyl((2-(prop-2-yn-1-yloxy)phenyl)ethynyl)silane (1q)

Prepared according to a modification the general procedure **B** using **A1** (700 mg, 3.68 mmol, 1.0 equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2), the expected product was obtained as white crystal (577 mg, 2.53 mmol, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.30-7.26 (m, 1H), 7.00 (dd, *J* = 8.3, 0.7 Hz, 1H), 6.93 (dt, *J* = 7.5, 1.0 Hz, 1H), 4.76 (d, *J* = 2.4 Hz, 2H), 2.54 (t, *J* = 2.4 Hz, 1H), 0.28 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.5, 134.2, 129.8, 121.5, 113.4 (2C), 101.0, 99.0, 78.5, 76.0, 56.7, 0.1 (3C).

M.p. = 48-50 °C

HRMS (ESI): Calculated for C₁₄H₁₆OSi [M+H]⁺ : 229.1043 (100) found 229.1045 (100).

1-(phenylethynyl)-2-(prop-2-yn-1-yloxy)benzene (1r)

Chemical Formula: C₁₇H₁₂O

Prepared according to a modification the general procedure **B** using **A15** (750 mg, 3.86 mmol, 1.0 equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as a yellow oil (801 mg, 3.45 mmol, 89%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.56 (dd, J = 7.6, 1.6 Hz, 1H), 7.39-7.31 (m, 4H), 7.08 (dd, J = 8.2, 0.4 Hz, 1H), 7.02 (dt, J = 7.5, 0.9 Hz, 1H), 4.83 (d, J = 2.4 Hz, 2H), 2.56 (t, J = 2.4 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 158.1, 133.7, 131.7 (2C), 129.6, 128.4 (2C), 128.3, 123.6, 121.7, 113.5, 113.3, 93.9, 85.6, 78.5, 76.0, 56.7.

HRMS (ESI): Calculated for C₁₇H₁₂O [M+H]⁺: 233.0961 (100) found 233.0966 (100).

1-(but-2-yn-1-yloxy)-2-(phenylethynyl)benzene (1s)

Prepared according to a modification of the general procedure **B** using **A15** (750 mg, 3.86 mmol, 1.0 equiv.) and 1-bromo-2-butyne (507 μ L, 5.79 mmol, 1.5 equiv.), without the deprotection step. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 95:5), the expected product was obtained as white solid (850 mg, 3.45 mmol, 89%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.52 (dd, J = 7.6, 1.7 Hz, 1H), 7.38-7.30 (m, 4H), 7.08 (dd, J = 8.4, 0.7 Hz, 1H), 6.99 (dt, J = 7.5, 1.0 Hz, 1H), 4.79 (q, J = 2.3 Hz, 2H), 1.87 (t, J = 2.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.3, 133.6, 131.7 (2C), 129.5, 128.3 (2C), 128.1, 123.7, 121.2, 113.3, 113.1, 93.6, 85.7, 84.1, 74.1, 57.2, 3.8.

M.p. = 68-70 °C

HRMS (ESI): Calculated for C₁₈H₁₄O [M+H]⁺: 247.1117 (100) found 247.1120 (100).

3. Characterization of 5H-chromeno[3,4-c]pyridines derivatives

N,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine *N*,*N*-dimethyl-5*H*-(3aa) and chromeno[4,3-c]pyridin-3-amine (3aa')

Chemical Formula: C14H14N2O

Prepared according to the general procedure C using 1a (100 mg, 640 µmol, 1.0 equiv.) and dimethylcyanamide **2a** (76 µL, 960 µmol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 80:20), the expected product was obtained as a pale-brown oil (121 mg, 535 µmol, 84%). Regioisomeric ratio (3aa/3aa') : (96:4).

¹H NMR (3aa) (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.75 (dd, J = 7.8, 1.5 Hz, 1H), 7.33-7.28 (m, 1H), 7.06 (dt, J = 7.6, 1.1 Hz, 1H), 7.00 (dd, J = 8.2, 1.0 Hz, 1H), 6.75 (s, 1H), 5.04 (s, 2H), 3.15 (s, 6H).

¹³C NMR (3aa) (101 MHz, CDCl₃) δ 159.6, 155.6, 143.3, 138.2, 130.6, 123.5, 121.6, 121.3, 117.5, 114.3, 97.2, 65.8, 38.0 (2C).

¹H NMR (3aa') (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.67 (dd, J = 7.7, 1.6 Hz, 1H), 7.17-7.13 (m, 1H), 7.03 (dt, J = 7.6, 1.2 Hz, 1H), 6.95 (dd, J = 8.0, 1.1 Hz, 1H), 6.27 (s, 1H), 5.02 (s, 2H), 3.13 (s, 6H).

HRMS (ESI): Calculated for C₁₄H₁₄N₂O [M+H]⁺ : 191.0258 (100) found 191.0260 (100).

N,*N*-9-trimethyl-5*H*-chromeno[3,4-*c*]pyridin-2-amine (3ba) and N,N-9-trimethyl-5Hchromeno[4,3-c]pyridin-3-amine (3ba')

Chemical Formula: C15H16N2O

Prepared according to the general procedure **C** using **1b** (100 mg, 587 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (69 μ L, 881 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 90:10 to 80:20), the expected product was obtained as a yellow solid (123 mg, 512 μ mol, 87%). Regioisomeric ratio (**3ba/3ba'**) : (96:4).

¹**H NMR (3ba)** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.53 (d, *J* = 1.4 Hz, 1H), 7.11 (dd, *J* = 8.2, 1.9 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.74 (s, 1H), 5.00 (s, 2H), 3.16 (s, 6H), 2.37 (s, 3H).

¹³C NMR (3ba) (101 MHz, CDCl₃) δ 160.1, 153.9, 143.6, 139.0, 131.9, 131.4, 124.1, 121.4, 117.7, 115.0, 97.7, 66.3, 38.6 (2C), 21.0.

M.p. = 117-119 °C

HRMS (ESI): Calculated for C₁₅H₁₆N₂O [M+H]⁺ : 241.1335 (100) found 241.1338 (100).

9-isopropyl-*N*,*N*-dimethyl-5*H*-chromeno[3,4-*c*]pyridin-2-amine (3ca) and 9-isopropyl-*N*,*N*-dimethyl-5*H*-chromeno[4,3-*c*]pyridin-3-amine (3ca')

Chemical Formula: C₁₇H₂₀N₂O

Prepared according to the general procedure **C** using **1c** (100 mg, 504 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (61 μ L, 757 μ mol, 1.5 equiv.). After flash column chromatography (cyclohexane/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow oil (110 mg, 410 μ mol, 81%). Regioisomeric ratio (**3ca/3ca'**) : (95:5).

¹**H NMR (3ca)** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 0.7 Hz, 1H), 7.56 (d, *J* = 2.2 Hz, 1H), 7.18 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.74 (s, 1H), 5.00 (s, 2H), 3.15 (s, 6H), 2.94 (sept., *J* = 6.9 HZ, 1H), 1.30 (app. s, 3H), 1.28 (app. s, 3H).

¹³C NMR (3ca) (101 MHz, CDCl₃) δ 160.1, 154.1, 143.7, 142.5, 139.0, 129.0, 121.6, 121.3, 117.7, 115.0, 97.6, 66.3, 38.5 (2C), 33.8, 24.3 (2C).

HRMS (ESI): Calculated for C₁₇H₂₀N₂O [M+H]⁺ : 269.1648 (100) found 269.1651 (100).

9-(*tert*-butyl)-*N*,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3da) and 9-(*tert*-butyl)-*N*,*N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3da')

Chemical Formula: C₁₈H₂₂N₂O

Prepared according to the general procedure **C** using **1d** (100 mg, 471 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (56 μ L, 707 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10), the expected product was obtained as a yellow solid (118 mg, 418 μ mol, 89%) ; NMR yield using mesitylene as an internal standard : 93%. Regioisomeric ratio (**3da/3da'**) : (96:4).

¹H NMR (3da) (400 MHz, CDCl₃) δ 7.99 (d, J = 0.6 Hz, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.35 (dd, J = 8.6, 2.4 Hz, 1H), 6.95 (d, J = 8.6 Hz, 1H), 6.75 (s, 1H), 5.01 (s, 2H), 3.16 (s, 6H), 1.38 (s, 9H).

¹³C NMR (3da) (101 MHz, CDCl₃) δ 160.1, 153.8, 144.7, 143.7, 139.1, 128.4, 120.9, 120.1, 117.4, 115.0, 97.5, 66.3, 38.5 (2C), 34.5, 31.6 (3C).

M.p. = 135-137 °C

HRMS (ESI): Calculated for C₁₈H₂₂N₂O [M+H]⁺: 283.1805 (100) found 283.1807 (100).

N,*N*-dimethyl-9-phenyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ea) and *N*,*N*-dimethyl-9-phenyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ea')

Chemical Formula: C₂₀H₁₈N₂O

Prepared according to the general procedure **D** using **1e** (100 mg, 430 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (51 μ L, 646 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid (114 mg, 377 μ mol, 88%). Regioisomeric ratio (**3ea/3ea'**) : (94:6).

¹**H NMR (3ea)** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 0.6 Hz, 1H), 7.92 (d, *J* = 2.2 Hz, 1H), 7.63-7.60 (m, 2H), 7.52 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.49-7.45 (m, 2H), 7.39-7.35 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 6.79 (s, 1H), 5.07 (s, 2H), 3.16 (s, 6H).

¹³**C NMR (3ea)** (101 MHz, CDCl₃) δ 160.1, 155.5, 143.8, 140.8, 138.6, 135.4, 129.9, 128.9 (2C), 127.2, 127.0 (2C), 122.5, 121.9, 118.3, 114.7, 97.6, 66.4, 38.5 (2C).

M.p. = 145-147 °C

HRMS (ESI): Calculated for C₂₀H₁₈N₂O [M+H]⁺ : 303.1492 (100) found 303.1494 (100).

9-fluoro-*N*,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3fa) and 9-fluoro-*N*,*N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3fa')

Chemical Formula: C₁₄H₁₃FN₂O

Prepared according to the general procedure **C** using **1f** (100 mg, 574 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (70 μ L, 861 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow solid (107 mg, 438 μ mol, 76%). Regioisomeric ratio (**3fa/3fa'**) : (91:9).

¹**H NMR (3fa)** (400 MHz, CDCl₃) δ 7.98 (d, J = 0.6 Hz, 1H), 7.38 (dd, J = 9.0, 2.9 Hz, 1H), 7.00-6.91 (m, 2H), 6.61 (s, 1H), 4.98 (s, 2H), 3.12 (s, 6H).

¹³**C NMR (3fa)** (101 MHz, CDCl₃) δ 160.0, 158.0 (d, *J* = 240.4 Hz), 152.0, 143.9, 138.0, 122.8 (d, *J* = 8.1 Hz), 119.0 (d, *J* = 7.1 Hz), 117.6 (d, *J* = 23.2 Hz), 114.5, 109.9 (d, *J* = 24.2 Hz), 97.7, 66.3, 38.4 (2C).

¹⁹**F NMR** (376.5 MHz, CDCl3) δ = -121.0.

M.p. = 105-107 °C

HRMS (ESI): Calculated for C₁₄H₁₃FN₂O [M+H]⁺ : 245.1085 (100) found 245.1090 (100).

9-chloro-*N*,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ga) and 9-chloro-*N*,*N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ga')

Chemical Formula: C14H13CIN2O

Prepared according to the general procedure **C** using **1g** (100 mg, 525 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (62 μ L, 787 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid (95 mg, 364 μ mol, 69%). Regioisomeric ratio (**3ga/3ga'**) : (91:9).

¹H NMR (3ga) (400 MHz, CDCl₃) δ 7.96 (d, J = 0.6 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.19 (dd, J = 8.7, 2.5 Hz, 1H), 6.89 (d, J = 8.7 Hz, 1H), 6.60 (s, 1H), 4.98 (s, 2H), 3.11 (s, 6H).

¹³C NMR (3ga) (101 MHz, CDCl₃) δ 159.9, 154.5, 143.9, 137.5, 130.6, 127.0, 123.6, 123.0, 119.3, 114.1, 97.5, 66.3, 38.4 (2C).

M.p. = 151-153 °C

HRMS (ESI): Calculated for $C_{14}H_{13}CIN_2O$ [M+H]⁺ : 261.0789 (100), 263.0760 (32) found 261.0792 (100), 263.0764 (32).

9-bromo-*N*,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ha) and 9-bromo-*N*,*N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ha')

Prepared according to the general procedure **C** using **1h** (100 mg, 425 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (50 μ L, 638 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 85:15), the expected product was obtained as a pale-yellow solid (101 mg, 331 μ mol, 78%). Regioisomeric ratio (**3ha/3ha'**) : (94:6).

¹**H NMR (3ha)** (400 MHz, CDCl₃) δ 7.96 (d, J = 0.5 Hz, 1H), 7.78 (d, J = 2.4 Hz, 1H), 7.34 (dd, J = 8.7, 2.4 Hz, 1H), 6.85 (d, J = 8.7 Hz, 1H), 6.61 (s, 1H), 4.99 (s, 2H), 3.12 (s, 6H).

¹³**C NMR (3ha)** (101 MHz, CDCl₃) δ 159.9, 155.0, 143.9, 137.4, 133.6, 126.5, 123.6, 119.7, 114.3, 114.1, 97.6, 66.3, 38.4 (2C).

M.p. = 143-145 °C

HRMS (ESI): Calculated for $C_{14}H_{13}BrN_2O$ [M+H]⁺ : 305.0284 (100), 307.0264 (97) found 305.0288 (100), 307.0268 (97).

2-(dimethylamino)-*5H*-chromeno[3,4-*c*]pyridine-9-carbonitrile (3ia) and 3-(dimethylamino)-*5H*-chromeno[4,3-*c*]pyridine-9-carbonitrile (3ia')

Chemical Formula: C₁₅H₁₃N₃O

Prepared according to the general procedure **D** using **1i** (100 mg, 552 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (65 μ L, 828 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/DCM/EtOAc ; 60:25:15), the expected product was obtained as a white solid (108 mg, 430 μ mol, 78%). Regioisomeric ratio (**3ia/3ia'**) : (91:9).

¹H NMR (3ia) (400 MHz, CDCl₃) δ 8.03 (d, J = 2.0 Hz, 1H), 8.01 (d, J = 0.7 Hz, 1H), 7.54 (dd, J = 8.5, 2.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.66 (s, 1H), 5.11 (s, 2H), 3.16 (s, 6H).

¹³C NMR (3ia) (101 MHz, CDCl₃) δ 160.1, 159.4, 144.3, 136.5, 134.4, 128.4, 122.6, 119.2, 119.0, 113.3, 105.5, 97.5, 66.7, 38.5 (2C).

M.p. = 185-187 °C

HRMS (ESI): Calculated for C₁₅H₁₃N₃O [M+H]⁺ : 252.1131 (100) found 252.1134 (100).

8-methoxy-*N*,*N*-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ja) and 8-methoxy-*N*,*N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ja')

Chemical Formula: C₁₅H₁₆N₂O₂

Prepared according to the general procedure **C** using **1j** (100 mg, 537 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (65 μ L, 805 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 70:30), the expected product was obtained as a yellow solid (79 mg, 308 μ mol, 57%). Regioisomeric ratio (**3ja/3ja'**) : (97:3).

¹**H NMR (3ja)** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.61 (d, *J* = 8.6 Hz, 1H), 6.61-6.58 (m, 2H), 6.51 (d, *J* = 2.5 Hz, 1H), 5.00 (s, 2H), 3.78 (s, 3H), 3.10 (s, 6H).

¹³**C NMR (3ja)** (101 MHz, CDCl₃) δ 162.1, 160.0, 157.3, 143.4, 138.8, 124.8, 114.5, 113.8, 109.1, 102.3, 96.8, 66.5, 55.4, 38.4 (2C).

M.p. = 133-135 °C

HRMS (ESI): Calculated for C₁₅H₁₆N₂O₂ [M+H]⁺ : 257.1285 (100) found 257.1288 (100).

N,*N*-dimethyl-*5H*-benzo[5,6]chromeno[3,4-*c*]pyridin-2-amine (3ka) and *N*,*N*-dimethyl-*5H*-benzo[5,6]chromeno[4,3-*c*]pyridin-3-amine (3ka')

Chemical Formula: C18H16N2O

Prepared according to the general procedure **D** using **1k** (100 mg, 485 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (57 μ L, 727 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/DCM/EtOAc ; 70:20:10), the expected product was obtained as a yellow solid (90 mg, 326 μ mol, 67%). Regioisomeric ratio (**3ka/3ka'**) : (89:11).

¹H NMR (3ka) (400 MHz, CDCl₃) δ 8.59 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 0.4 Hz, 1H), 7.85 (dd, J = 8.0, 0.4 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.59-7.54 (m, 1H), 7.45-7.41 (m, 1H), 7.22 (d, J = 8.8 Hz, 1H), 7.12 (s, 1H), 4.98 (s, 2H), 3.15 (s, 6H).

¹³**C NMR (3ka)** (101 MHz, CDCl₃) δ 159.9, 155.8, 144.0, 138.6, 131.6, 130.7, 130.6, 129.2, 127.3, 124.4, 124.1, 118.7, 116.4, 116.2, 102.4, 66.9, 38.5 (2C).

¹H NMR (3ka') (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.51 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.52-7.48 (m, 1H), 7.42-7.38 (m, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 6.44 (d, *J* = 0.6 Hz, 1H), 4.96 (s, 2H), 3.18 (s, 6H).

¹³**C NMR (3ka')** (101 MHz, CDCl₃) δ 158.2, 152.8, 145.6, 143.5, 130.9, 129.9, 128.9, 128.4, 126.8, 125.0, 124.1, 118.2, 116.5, 115.1, 101.5, 68.8, 38.3 (2C).

M.p. = 134-136 °C

HRMS (ESI): Calculated for C₁₈H₁₆N₂O [M+H]⁺: 277.1335 (100) found 277.1338 (100).

N,*N*-dimethyl-*5H*-[1,3]dioxolo[4',5':6,7]chromeno[3,4-*c*]pyridin-2-amine (3la) and *N*,*N*-dimethyl-*5H*-[1,3]dioxolo[4',5':6,7]chromeno[4,3-*c*]pyridin-3-amine (3la')

Chemical Formula: C₁₅H₁₄N₂O₃

Prepared according to the general procedure **C** using **1**I (100 mg, 499 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (61 μ L, 749 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 60:40), the expected product was obtained as a yellow solid (100 mg, 370 μ mol, 74%). Regioisomeric ratio (**3**Ia/**3**Ia') : (98:2).

¹H NMR (3la) (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.13 (s, 1H), 6.52 (s, 1H), 6.52 (s, 1H), 5.95 (s, 2H), 4.95 (s, 2H), 3.11 (s, 6H).

¹³C NMR (3la) (101 MHz, CDCl₃) δ 160.1, 152.1, 149.8, 143.4, 143.1, 139.1, 114.4, 113.9, 102.6, 101.6, 99.6, 96.9, 66.6, 38.5 (2C).

M.p. = 166-168 °C

HRMS (ESI): Calculated for $C_{15}H_{14}N_2O_3$ [M+H]⁺: 271.1077 (100) found 271.1078 (100).

N,*N*,7,9-tetramethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ma) and *N*,*N*,7,9-tetramethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ma')

Chemical Formula: C₁₆H₁₈N₂O

Prepared according to the general procedure **C** using **1m** (100 mg, 543 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (64 μ L, 814 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10), the expected product was obtained as a yellow solid (113 mg, 444 μ mol, 82%). Regioisomeric ratio (**3ma/3ma'**) : (96:4).

¹**H NMR (3ma)** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 0.5 Hz, 1H), 7.37 (d, *J* = 1.2 Hz, 1H), 6.98 (s, 1H), 6.70 (s, 1H), 4.99 (s, 2H), 3.13 (s, 6H), 3.33 (s, 3H), 2.24 (s, 3H).

¹³C NMR (3ma) (101 MHz, CDCl₃) δ 160.0, 152.0, 143.4, 139.2, 133.2, 130.4, 126.8, 121.5, 120.8, 115.0, 97.8, 66.1, 38.4 (2C), 20.8, 15.9.

M.p. = 143-145 °C

HRMS (ESI): Calculated for C₁₆H₁₈N₂O [M+H]⁺ : 255.1492 (100) found 255.1496 (100).

8-bromo-*N*,*N*,7,9-tetramethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3na) and 8-bromo-*N*,*N*,7,9-tetramethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3na')

Chemical Formula: C₁₆H₁₇BrN₂O

Prepared according to a modification of the general procedure **C** using **1n** (100 mg, 380 μ mol, 1.0 equiv.), dimethylcyanamide **2a** (46 μ L, 570 μ mol, 1.5 equiv.), [Cp*Ru(MeCN)₃]PF₆ (9.6 mg, 19 μ mol, 0.05 equiv.), the reaction was heated to 100°C in toluene for 64 hours. After flash column chromatography (petroleum ether/EtOAc ; 98:2 to 90:10), the expected product was obtained as a white solid (37 mg, 111 μ mol, 29%). Regioisomeric ratio (**3na/3na'**) : (59:41).

¹**H NMR (3na)** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 0.3 Hz, 1H), 6.85 (s, 1H), 6.72 (s, 1H), 4.83 (s, 2H), 3.12 (s, 6H), 2.79 (s, 3H), 2.42 (s, 3H).

¹³**C NMR (3na)** (101 MHz, CDCl₃) δ 159.7, 156.1, 143.8, 140.7, 139.1, 136.0, 122.5, 122.0, 117.4, 116.5, 103.0, 66.7, 38.5 (2C), 24.6, 23.6.

¹**H NMR (3na')** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 6.81 (s, 1H), 6.35 (d, *J* = 0.5 Hz 1H), 4.82 (s, 2H), 3.14 (s, 6H), 2.73 (s, 3H), 2.40 (s, 3H).

¹³**C NMR (3na')** (101 MHz, CDCl₃) δ 159.7, 153.9, 146.1, 143.6, 137.5, 133.9, 122.6, 121.4, 116.8, 115.3, 101.1, 68.8, 38.3 (2C), 24.4, 23.8.

M.p. = 162-164 °C

HRMS (ESI): Calculated for $C_{16}H_{17}BrN_2O$ [M+H]⁺ : 333.0597 (100), 335.0577 (97) found 333.0600 (100), 335.0580 (97).

N,*N*,4-trimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3oa) and *N*,*N*,4-trimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3oa')

Chemical Formula: C₁₅H₁₆N₂O

Prepared according to a modification of the general procedure **C** using **1o** (100 mg, 587 μ mol, 1.0 equiv.) and dimethylcyanamide **2a** (71 μ L, 881 μ mol, 1.5 equiv.), the reaction was heated to 100 °C for five days. After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 80:20), the expected product was obtained as a yellow solid (73 mg, 304 μ mol, 52%). Regioisomeric ratio (**3oa/3oa'**) : (>99:1).

¹**H NMR (30a)** (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.30-7.25 (m, 1H), 7.02 (dt, *J* = 7.5, 1.1 Hz, 1H), 6.98 (dd, *J* = 8.1, 1.1 Hz, 1H), 6.61 (s, 1H), 5.08 (s, 2H), 3.12 (s, 6H), 2.38 (s, 3H).

¹³C NMR (3oa) (101 MHz, CDCl₃) δ 159.0, 155.7, 151.4, 138.6, 130.7, 124.0, 122.0, 121.9, 117.6, 112.6, 95.5, 65.4, 38.2 (2C), 21.6.

M.p. = 85-87 °C

HRMS (ESI): Calculated for C₁₅H₁₆N₂O [M+H]⁺ : 241.1335 (100) found 241.1338 (100).

chromeno[4,3-c]pyridine (3ad')

Chemical Formula: C₁₆H₁₆N₂O

Prepared according to the general procedure **C** using **1a** (100 mg, 640 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (97 μ L, 960 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 60:40), the expected product was obtained as a yellow oil (127 mg, 503 μ mol, 79%). Regioisomeric ratio (**3ad/3ad'**) : (96:4).

¹**H NMR (3ad)** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.71 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.29-7.25 (m, 1H), 7.02 (dt, *J* = 7.6, 1.1 Hz, 1H), 6.97 (dd, *J* = 8.1, 1.0 Hz, 1H), 6.53 (s, 1H), 5.00 (s, 2H), 3.47 (t, *J* = 6.6 Hz, 4H), 1.99 (m, 4H).

¹³**C NMR (3ad)** (101 MHz, CDCl₃) δ 157.9, 156.0, 143.9, 138.4, 130.9, 123.8, 121.9, 121.6, 117.8, 114.3, 98.2, 66.2, 46.9 (2C), 25.6 (2C).

HRMS (ESI): Calculated for $C_{16}H_{16}N_2O [M+H]^+$: 253.1335 (100), found 253.1336 (100).

9-methyl-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3bd) and 9-methyl-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3bd')

Chemical Formula: C₁₇H₁₈N₂O

Prepared according to the general procedure **C** using **1b** (100 mg, 587 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (89 μ L, 881 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 70:30), the expected product was obtained as brown oil (134 mg, 503 μ mol, 86%). Regioisomeric ratio (**3bd/3bd'**) : (96:4).

¹**H NMR (3bd)** (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.52 (d, *J* = 1.6 Hz, 1H), 7.10 (dd, *J* = 8.2, 1.8 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.56 (s, 1H), 4.99 (s, 2H), 3.52 (t, *J* = 6.6 Hz, 4H), 2.36 (s, 3H), 2.03 (m, 4H).

¹³**C NMR (3bd)** (101 MHz, CDCl₃) δ 158.0, 153.9, 144.0, 138.7, 131.8, 131.3, 124.1, 121.4, 117.7, 114.6, 98.2, 66.4, 47.0 (2C), 25.7 (2C), 21.0.

HRMS (ESI): Calculated for C₁₇H₁₈N₂O [M+H]⁺ : 267.1492 (100) found 267.1494 (100).

9-(*tert*-butyl)-2-(pyrrolidin-1-yl)-5*H*-chromeno[3,4-*c*]pyridine (3dd) and 9-(*tert*-butyl)-2-(pyrrolidin-1-yl)-5*H*-chromeno[4,3-*c*]pyridine (3dd')

Prepared according to the general procedure **C** using **1d** (100 mg, 471 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (72 μ L, 707 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 75:15), the expected product was obtained as a yellow solid (112 mg, 363 μ mol, 77%). Regioisomeric ratio (**3dd/3dd'**) : (94:6).

¹**H NMR (3dd)** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 0.6 Hz, 1H), 7.71 (d, *J* = 2.4 Hz, 1H), 7.34 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 6.58 (s, 1H), 5.00 (s, 2H), 3.55-3.52 (m, 4H), 2.04-2.01 (m, 4H), 1.37 (s, 9H).

¹³**C NMR (3dd)** (101 MHz, CDCl₃) δ 158.0, 153.8, 144.7, 143.9, 138.9, 128.3, 120.9, 120.1, 117.4, 114.6, 98.0, 66.3, 47.0 (2C) , 34.5, 31.6 (3C), 25.6 (2C).

M.p. = 162-164 °C

HRMS (ESI): Calculated for C₂₀H₂₄N₂O [M+H]⁺: 309.1961 (100) found 309.1964 (100).
9-phenyl-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3ed) and 9-phenyl-3-(pyrrolidine-1-yl)-5H-chromeno[4,3-c]pyridine (3ed')

Prepared according to the general procedure **D** using **1e** (100 mg, 431 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (65 μ L, 646 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a brown solid (100 mg, 304 μ mol, 71%). Regioisomeric ratio (**3ed/3ed'**) : (92:8).

¹**H NMR (3ed)** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92 (d, *J* = 2.2 Hz, 1H), 7.62-7.60 (m, 2H), 7.51 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.48-7.44 (m, 2H), 7.38-7.34 (m, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.62 (s, 1H), 5.06 (s, 2H), 3.53 (m, 4H), 2.05-2.01 (m, 4H).

¹³**C NMR (3ed)** (101 MHz, CDCl₃) δ 158.0, 155.6, 144.0, 140.8, 138.4, 135.3, 129.8, 128.9 (2C), 127.1, 127.0 (2C), 122.5, 121.8, 118.2, 114.3, 98.2, 66.5, 47.0 (2C), 25.6 (2C).

M.p. = 137-139 °C

HRMS (ESI): Calculated for C₂₂H₂₀N₂O [M+H]⁺ : 329.1648 (100) found 329.1651 (100).

9-fluoro-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3fd) and 9-fluoro-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3fd')

Prepared according to the general procedure **C** using **1f** (100 mg, 574 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (87 μ L, 861 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 75:25), the expected product was obtained as a brown solid (129 mg, 477 μ mol, 83%). Regioisomeric ratio (**3fd/3fd'**) : (94:6).

¹**H NMR (3fd)** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.35 (dd, *J* = 9.0, 2.9 Hz, 1H), 6.98-6.89 (m, 2H), 6.42 (s, 1H), 4.96 (s, 2H), 3.47 (m, 4H), 2.00 (m, 4H).

¹³**C NMR (3fd)** (101 MHz, CDCl₃) δ 158.0 (d, *J* = 240.4 Hz), 157.9, 152.0, 144.1, 137.7, 122.7 (d, *J* = 8.9 Hz), 119.0 (d, *J* = 8.1 Hz), 117.5 (d, *J* = 24.2 Hz), 114.1, 109.9 (d, *J* = 24.2 Hz), 98.3, 66.4, 46.9 (2C), 25.6 (2C).

¹⁹**F NMR** (376.5 MHz, CDCl3) δ = -121.4.

M.p. = 99-101 °C

HRMS (ESI): Calculated for C₁₆H₁₅FN₂O [M+H]⁺ : 245.1085 (100) found 245.1090 (100).

2-(pyrrolidin-1-yl)-*5H*-chromeno[3,4-*c*]pyridine-9-carbonitrile (3id) and 3-(pyrrolidin-1-yl)-*5H*-chromeno[4,3-*c*]pyridine-9-carbonitrile (3id')

Chemical Formula: C₁₇H₁₅N₃O

Prepared according to the general procedure **D** using **1i** (100 mg, 552 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (84 μ L, 828 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 80:20), the expected product was obtained as a yellow solid (118 mg, 425 μ mol, 77%). Regioisomeric ratio (**3id/3id'**) : (93:7).

¹H NMR (3id) (400 MHz, CDCl₃) δ 7.99 (d, *J* = 2.0 Hz, 1H), 7.95 (d, *J* = 0.6 Hz, 1H), 7.51 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.47 (s, 1H), 5.08 (s, 2H), 3.50 (m, 4H), 2.05-2.01 (m, 4H).

¹³**C NMR (3id)** (101 MHz, CDCl₃) δ 159.3, 157.9, 144.5, 136.2, 134.3, 128.4, 122.4, 119.1, 119.0, 112.9, 105.3, 98.1, 66.7, 47.0 (2C), 25.6 (2C).

M.p. = 160-162 °C

HRMS (ESI): Calculated for C₁₇H₁₅N₃O [M+H]⁺ : 278.1288 (100) found 278.1294 (100).

N-benzyl-*N*-methyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ab) and *N*-benzyl-*N*-methyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ab')

Chemical Formula: C₂₀H₁₈N₂O

Prepared according to the general procedure **C** using **1a** (100 mg, 640 μ mol, 1.0 equiv.) and *N*-benzyl-*N*-methylcyanamide **2b** (140 mg, 960 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 95:5 to 90:10), the expected product was obtained as a yellow solid (165 mg, 546 μ mol, 85%). Regioisomeric ratio (**3ab/3ab'**) : (96:4).

¹H NMR (3ba) (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.64 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.31-7.20 (m, 6H), 7.02-6.97 (m, 2H), 6.73 (s, 1H), 5.01 (s, 2H), 4.84 (s, 2H), 3.10 (s, 3H).

¹³**C NMR (3ba')** (101 MHz, CDCl₃) δ 159.6, 156.0, 143.9, 138.9, 138.8, 131.1, 128.7 (2C), 127.1 (2C), 127.0, 123.9, 122.0, 121.6, 117.9, 115.1, 97.5, 66.2, 53.5, 36.5.

M.p. : 104-106 °C

HRMS (ESI): Calculated for $C_{20}H_{18}N_2O [M+H]^+$: 303.1492 (100) found 303.1495 (100).

N-benzyl-9-isopropyl-*N*-methyl-5*H*-chromeno[3,4-*c*]pyridin-2-amine (3cb) and *N*-benzyl-9-isopropyl-*N*-methyl-5*H*-chromeno[4,3-*c*]pyridin-3-amine (3cb')

Chemical Formula: $C_{23}H_{24}N_2O$

Prepared according to the general procedure **D** using **1c** (100 mg, 504 μ mol, 1.0 equiv.) and *N*-benzyl-*N*-methylcyanamide **2b** (111 mg, 757 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a yellow solid (75 mg, 218 μ mol, 43%). Regioisomeric ratio (**3cb/3cb'**) : (92:8).

¹H NMR (3cb) (400 MHz, CDCl₃) δ 8.02 (d, J = 0.5 Hz, 1H), 7.50 (d, J = 2.2 Hz, 1H), 7.34-7.23 (m, 5H), 7.18 (dd, J = 8.4, 2.1 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.78 (s, 1H), 5.02 (s, 2H), 4.89 (s, 2H) 3.15 (s, 3H), 2.93 (sept., J = 6.9 Hz, 1H), 1.29 (app. s, 3H), 1.27 (app. s, 3H).

¹³**C NMR (3cb)** (101 MHz, CDCl₃) δ 159.6, 154.1, 143.8, 142.5, 139.2, 138.9, 129.1, 128.7 (2C), 127.2 (2C), 127.0, 121.5, 121.3, 117.7, 115.4, 97.5, 66.3, 53.5, 36.6, 33.7, 24.3 (2C).

M.p. = 110-112 °C

HRMS (ESI): Calculated for C₂₃H₂₄N₂O [M+H]⁺ : 345.1961 (100) found 345.1962 (100).

N-benzyl-9-chloro-*N*-methyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3gb) and *N*-benzyl-9-chloro-*N*-methyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3gb')

Chemical Formula: C₂₀H₁₇CIN₂O

Prepared according to the general procedure **C** using **1g** (100 mg, 525 μ mol, 1.0 equiv.) and *N*-benzyl-*N*-methylcyanamide **2b** (115 mg, 787 μ mol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5), the expected product was obtained as a white solid (131 mg, 389 μ mol, 74%). Regioisomeric ratio (**3gb/3gb'**) : (93:7).

¹**H NMR (3gb)** (400 MHz, CDCl₃) δ 7.97 (d, J = 0.5 Hz, 1H), 7.57 (d, J = 2.5 Hz, 1H), 7.28-7.16 (m, 6H), 6.87 (d, J = 8.7 Hz, 1H), 6.63 (s, 1H), 4.97 (s, 2H), 4.83 (s, 2H), 3.07 (s, 3H).

¹³**C NMR (3gb)** (101 MHz, CDCl₃) δ 159.6, 154.5, 144.1, 138.6, 137.8, 130.7, 128.7 (2C), 127.2 (2C), 127.1, 127.0, 123.6, 123.0, 119.3, 114.6, 97.4, 66.3, 53.3, 36.4.

M.p. = 142-144 °C

HRMS (ESI): Calculated for $C_{20}H_{17}CIN_2O$ [M+H]⁺ : 337.1102 (100), 339.1073 (32) found 337.1106 (100), 339.1081 (32).

N-benzyl-9-bromo-*N*-methyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3hb) and *N*-benzyl-9-bromo-*N*-methyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3hb')

Chemical Formula: C₂₀H₁₇BrN₂O

Prepared according to the general procedure **C** using **1h** (100 mg, 425 μ mol, 1.0 equiv.) and *N*-benzyl-*N*-methylcyanamide **2b** (93 mg, 638 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 97:3 to 95:5), the expected product was obtained as a pale-yellow solid (131 mg, 344 μ mol, 81%). Regioisomeric ratio (**3hb/3hb'**) : (94:6).

¹H NMR (3hb) (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.70 (d, *J* = 2.4 Hz, 1H), 7.30-7.18 (m, 6H), 6.81 (d, *J* = 8.7 Hz, 1H), 6.61 (s, 1H), 4.96 (s, 2H), 4.82 (s, 2H), 3.05 (s, 3H).

¹³**C NMR (3hb)** (101 MHz, CDCl₃) δ 159.5, 155.0, 144.1, 138.6, 137.6, 133.6, 128.6 (2C), 127.2, 127.1 (2C), 126.5, 123.5, 119.7, 114.5, 114.3, 97.3, 66.3, 53.3, 36.4.

M.p. = 148-150 °C

HRMS (ESI): Calculated for $C_{20}H_{17}BrN_2O$ [M+H]⁺ : 381.0597 (100), 381.0577 (97) found 381.0599 (100), 381.0579 (97).

N-butyl-*N*-methyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (3ac) and *N*-butyl-*N*-methyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (3ac')

Prepared according to the general procedure **D** using **1a** (100 mg, 640 μ mol, 1.0 equiv.) and *N*-butyl-*N*-methylcyanamide **2c** (108 mg, 960 μ mol, 1.0 equiv.). After flash column chromatography (petroleum ether/EtOAc : 98:2 to 95:5), the expected product was obtained as a pale-brown oil (111 mg, 414 μ mol, 65%). Regioisomeric ratio (**3ac/3ac'**) : (95:5).

¹**H NMR (3ac)** (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.72 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.31-7.27 (m, 1H), 7.04 (dt, *J* = 7.6, 1.1 Hz, 1H), 7.00 (dd, *J* = 8.1, 1.0 Hz, 1H), 6.70 (s, 1H), 5.02 (s, 2H), 3.56 (t, *J* = 7.4 Hz, 2H), 3.09 (s, 3H), 1.65-1.57 (m, 2H), 1.37 (s, *J* = 7.7 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (3ac) (101 MHz, CDCl₃) δ 159.2, 156.0, 143.7, 138.5, 130.9, 123.7, 121.9, 121.7, 117.8, 114.3, 97.3, 66.2, 50.1, 36.5, 29.5, 20.3, 14.1.

HRMS (ESI): Calculated for C₁₇H₂₀N₂O [M+H]⁺ : 303.1492 (100), found 303.1493 (100).

2-morpholino-*5H*-chromeno[3,4-*c*]pyridine (3ae) and 3-morpholino-*5H*-chromeno[4,3*c*]pyridine (3ae')

Chemical Formula: C₁₆H₁₆N₂O₂

Prepared according to the general procedure **D** using **1a** (100 mg, 640 μ mol, 1.0 equiv.) and 4morpholinecarbonitrile **2e** (97 μ L, 960 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 70:30), the expected product was obtained as a brown solid (148 mg, 552 μ mol, 86%). Regioisomeric ratio (**3ae/3ae'**) : (93:7).

¹**H NMR (3ae)** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 0.6 Hz, 1H), 7.71 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.32-7.28 (m, 1H), 7.05 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.00 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.86 (s, 1H), 5.04 (s, 2H), 3.84 (m, 4H), 3.55 (m, 4H).

¹³C NMR (3ae) (101 MHz, CDCl₃) δ 160.4, 155.9, 143.8, 139.2, 131.3, 123.8, 122.1, 121.4, 118.0, 117.0, 99.0, 66.8 (2C), 66.0, 46.0 (2C).

M.p. = 104-106 °C

HRMS (ESI): Calculated for C₁₆H₁₆N₂O₂ [M+H]⁺ : 269.1285 (100) found 269.1288 (100).

8-methoxy-2-(pyrrolidin-1-yl)-5H-chromeno[3,4-c]pyridine (3jd) and 8-methoxy-3-(pyrrolidin-1-yl)-5H-chromeno[4,3-c]pyridine (3jd')

Chemical Formula: C₁₇H₁₈N₂O₂

Prepared according to the general procedure **D** using **1j** (100 mg, 537 μ mol, 1.0 equiv.) and morpholine carbonitrile **2d** (82 μ L, 805 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc : 80:20 to 50:50), the expected product was obtained as a brown solid (104 mg, 368 μ mol, 68%). Regioisomeric ratio (**3jd/3jd'**) : (97:3).

¹**H NMR (3jd)** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 0.6 Hz, 1H), 7.61 (d, *J* = 8.6 Hz, 1H), 6.59 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.51 (d, *J* = 2.5 Hz, 1H), 6.45 (s, 1H), 4.99 (s, 2H), 3.79 (s, 3H), 3.47 (m, 4H), 1.99 (m, 4H).

¹³C NMR (3jd) (101 MHz, CDCl₃) δ 162.1, 157.9, 157.4, 143.7, 138.6, 124.9, 114.5, 113.5, 109.1, 102.3, 97.3, 66.6, 55.5, 46.9 (2C), 25.6 (2C).

M.p. = 142-144 °C

HRMS (ESI): Calculated for $C_{17}H_{18}N_2O_2$ [M+H]⁺: 283.1441 (100) found 283.1447 (100).

2-(pyrrolidin-1-yl)-*5H*-benzo[5,6]chromeno[3,4-*c*]pyridine (3kd) and 3-(pyrrolidin-1-yl)-*5H*-benzo[5,6]chromeno[4,3-*c*]pyridine (3kd')

Chemical Formula: C₂₀H₁₈N₂O

Prepared according to the general procedure **D** using **1k** (100 mg, 485 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (74 μ L, 728 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a yellow solid (79 mg, 261 μ mol, 54%). Regioisomeric ratio (**3kd/3kd'**) : (89:11).

¹**H NMR (3kd)** (400 MHz, CDCl₃) δ 8.61 (d, *J* = 8.5 Hz, 1H), 8.11 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.58-7.54 (m, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 6.96 (s, 1H), 4.97 (s, 2H), 3.53 (m, 4H), 2.06-2.02 (m, 4H).

¹³**C NMR (3kd)** (101 MHz, CDCl₃) δ 157.8, 155.8, 144.2, 138.3, 131.5, 130.7, 130.5, 129.1, 127.3, 124.4, 124.1, 118.7, 116.3, 115.8, 103.0, 67.0, 47.0 (2C), 25.6 (2C).

¹H NMR (3kd') (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.51 (d, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.52-7.47 (m, 1H), 7.41-7.37 (m, 1H), 7.20 (d, *J* = 8.8 Hz, 1H), 6.29 (s, 1H), 4.95 (s, 2H), 3.55 (m, 4H), 2.08-2.04 (m, 4H).

¹³**C NMR (3kd')** (101 MHz, CDCl₃) δ 156.2, 152.6, 145.9, 143.3, 130.9, 129.9, 128.9, 128.3, 126.7, 125.0, 124.1, 118.2, 116.6, 114.8, 102.2, 68.7, 47.0 (2C), 25.7 (2C).

M.p. = 118-120 °C

HRMS (ESI): Calculated for C₂₀H₁₈N₂O [M+H]⁺: 303.1492 (100) found 303.1494 (100).

N-benzyl-*N*-methyl-*5H*-[1,3]dioxolo[4',5':6,7]chromeno[3,4-*c*]pyridin-2-amine (3lb) and 3-(benzyl(methyl)amino)-*5H*-[1,3]dioxolo[4',5':6,7]chromeno[4,3-*c*]pyridin-9-ylium (3lb')

Chemical Formula: C₂₁H₁₈N₂O₃

Prepared according to the general procedure **D** using **1** (100 mg, 499 μ mol, 1.0 equiv.) and *N*-benzyl-*N*-methylcyanamide **2b** (110 mg, 749 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 95:5 to 90:10), the expected product was obtained as a yellow solid (142 mg, 410 μ mol, 82%). Regioisomeric ratio (**3**Ib/**3**Ib') : (97:3).

¹**H NMR (3lb)** (400 MHz, CDCl₃) δ 7.94 (d, J = 0.5 Hz, 1H), 7.32-7.20 (m, 5H), 7.03 (s, 1H), 6.52 (s, 1H), 6.49 (s, 1H), 5.90 (s, 2H), 4.93 (s, 2H), 4.82 (s, 2H), 3.07 (s, 3H).

¹³**C NMR (3lb)** (101 MHz, CDCl₃) δ 159.6, 152.0, 149.8, 143.6, 143.1, 139.3, 138.8, 128.6 (2C), 127.1 (2C), 127.0, 114.3, 114.2, 102.6, 101.6, 99.6, 96.7, 66.6, 53.4, 36.5.

M.p. = 172-174 °C

HRMS (ESI): Calculated for $C_{21}H_{18}N_2O_3$ [M+H]⁺: 347.1390 (100) found 347.1395 (100).

7,9-dimethyl-2-(pyrrolidin-1-yl)-5*H*-chromeno[3,4-*c*]pyridine (3md) and 7,9-dimethyl-3- (pyrrolidin-1-yl)-5*H*-chromeno[4,3-*c*]pyridine (3md')

Chemical Formula: C18H20N2O

Prepared according to the general procedure **C** using **1m** (100 mg, 543 μ mol, 1.0 equiv.) and pyrrolidine carbonitrile **2d** (83 μ L, 814 μ mol, 1.5 equiv.). After flash column chromatography (petroleum ether/EtOAc ; 90:10 to 80:20), the expected product was obtained as a brown solid (118 mg, 421 μ mol, 78%). Regioisomeric ratio (**3md/3md'**) : (96:4).

¹H NMR (3md) (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.35 (s, 1H), 6.96 (s, 1H), 6.52 (s, 1H), 4.97 (s, 2H), 3.49 (m, 4H), 2.31 (s, 3H), 2.22 (s, 3H), 2.01-1.98 (m, 4H).

¹³**C NMR (3md)** (101 MHz, CDCl₃) δ 157.9, 152.0, 143.6, 138.9, 133.0, 130.3, 126.7, 121.5, 120.7, 114.6, 98.3, 66.1, 46.8 (2C), 25.5 (2C), 20.7, 15.9.

HRMS (ESI): [M+H]⁺ Calculated for C₁₈H₂₀N₂O: 281.1648 (100) found 281.1653 (100).

5H-chromeno[3,4-c]pyridin-2-amine (af) and 5H-chromeno[4,3-c]pyridin-3-amine (af')

Chemical Formula: C₁₂H₁₀N₂O

Prepared according to a modification of the general procedure **C** using **1a** (100 mg, 640 μ mol, 1.0 equiv.), cyanamide **2f** (40 mg, 960 μ mol, 1.5 equiv.), [Cp*Ru(MeCN)₃]PF₆] (16.1 mg, 32 μ mol, 0.05 equiv.), the reaction was refluxed in anhydrous MeTHF for 5 days. After flash column chromatography (Al₂O₃, petroleum ether/EtOAc/Et₃N ; 49:49:2 to 29:69:2), the expected product was obtained as a brown solid (43 mg, 217 μ mol, 34%). Regioisomeric ratio (**3af/3af'**) : (88:12).

¹H NMR (3af) (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.67 (dd, J = 7.8, 1.5 Hz, 1H), 7.34 (m, 1H), 7.06 (dt, J = 7.6, 1.2 Hz, 1H), 7.00 (dd, J = 8.2, 1.0 Hz, 1H), 6.76 (s, 1H), 5.04 (s, 2H), 4.52 (bs, 2H).

 ^{13}C NMR (3af) (101 MHz, CDCl₃) δ 158.9, 156.0, 143.8, 139.7, 131.6, 124.0, 122.3, 121.0, 118.0, 117.4, 100.6, 66.2.

HRMS (ESI): [M+H]⁺ Calculated for C₁₂H₁₀N₂O: 199.0866 (100) found 199.0868 (100).

9-(4-methoxyphenyl)-N,N-dimethyl-*5H*-chromeno[3,4-*c*]pyridin-2-amine (4) and 9-(4-methoxyphenyl)-*N,N*-dimethyl-*5H*-chromeno[4,3-*c*]pyridin-3-amine (4')

Chemical Formula: C21H20N2O2

Compound **3ha** (100 mg, 330 µmol, 1.0 equiv.), 4-methoxyphenyl boronic acid (74.8 mg, 490 µmol, 1.5 equiv.), K_2CO_3 (90.7 mg, 660 µmol, 2.0 equiv.), palladium acetate (3.7 mg, 16.4 µmol, 0.05 equiv.) and CataCXium A (12.9 mg, 36.1 µmol, 0.11 equiv.) were mixed in 3.3 mL of anhydrous DMF, the solution turns to brown. The resulting mixture was stirred overnight at 100 °C under argon. The mixture was diluted with DCM and washed successively with a saturated aqueous solution of NaHCO₃ (10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc ; 80:20 to 60:40) to afford the product as a white solid (97 mg, 292 µmol, 89%). Regioisomeric ratio (4/4') : (94:6).

¹**H NMR (4)** (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.86 (d, *J* = 2.2 Hz, 1H), 7.54-7.52 (m, 2H), 7.46 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 7.00-6.98 (m, 2H), 6.78 (s, 1H), 5.06 (s, 2H), 3.85 (s, 3H), 3.15 (s, 6H).

¹³**C NMR (4)** (101 MHz, CDCl₃) δ 160.1, 159.1, 155.1, 143.8, 138.7, 135.0, 133.4, 129.5, 128.0 (2C), 122.0, 121.8, 118.2, 114.7, 114.3 (2C), 97.6, 66.4, 55.4, 38.5 (2C).

M.p. = 106-108 °C

HRMS (ESI): Calculated for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598 (100) found 333.1602 (100).

Tert-butyl (E)-3-(2-(dimethylamino)-*5H*-chromeno[3,4-*c*]pyridin-9-yl)acrylate (5) and *tert*-butyl (E)-3-(3-(dimethylamino)-*5H*-chromeno[4,3-*c*]pyridin-9-yl)acrylate (5')

Chemical Formula: C₂₁H₂₄N₂O₃

Compound **3ha** (100 mg, 330 µmol, 1.0 equiv.), tri(o-tolyl)phosphine (7.98 mg, 26.2 µmol, 0.08 equiv.), palladium(II) acetate (1.47 mg, 6.55 µmol, 0.02 equiv.), were mixed in 3.3 mL of an anhydrous mixture of DMF/Et₃N (10/1). Under argon, *t*-butyl-acrylate (238 µL, 1.64 mmol, 5.0 equiv.) was added, the solution turns to brown. The resulting mixture was stirred overnight at 100 °C under argon. The mixture was diluted with DCM and washed successively with a saturated aqueous solution of NH₄Cl (10 mL), water (10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc ; 80:20 to 70:30) to afford the product as a pale-yellow solid (107 mg, 304 µmol, 92%). Regioisomeric ratio (**5**/**5**') : (94:6).

¹**H** NMR (5) (400 MHz, CDCl₃) δ 8.00 (d, *J* = 0.6 Hz, 1H), 7.86 (d, *J* = 2.1 Hz, 1H), 7.60 (d, *J* = 16.0 Hz, 1H), 7.46 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.73 (s, 1H), 6.33 (d, *J* = 16.0 Hz, 1H), 5.07 (s, 2H), 3.17 (s, 6H), 1.55 (s, 9H).

¹³**C NMR (5)** (101 MHz, CDCl₃) δ 166.6, 160.2, 157.6, 144.0, 143.1, 138.0, 130.6, 128.8, 123.8, 121.9, 118.9, 118.6, 114.2, 97.6, 80.6, 66.5, 38.6 (2C), 28.4 (3C).

M.p. = 157-159 °C

HRMS (ESI): Calculated for $C_{21}H_{24}N_2O_3$ [M+H]⁺ : 353.1860 (100), 297.1234 (82) found 353.1863 (100), 297.1236 (82).

N-(8-methoxy-*5H*-chromeno[3,4-*c*]pyridin-2-yl)acetamide (6) and *N*-(8-methoxy-*5H*-chromeno[4,3-*c*]pyridin-3-yl)acetamide (6')

Chemical Formula: C₁₅H₁₄N₂O₃

Prepared according to a modification of the general procedure **C** using **1j** (950 mg, 5.09 mmol, 1.0 equiv.) and *N*-cyanoacetamide (428 mg, 7.64 mmol, 1.5 equiv.), the reaction was heated to 80°C in MeTHF for 24 hours. After flash column chromatography (DCM/EtOAc ; 100:0 to 70:30), the expected product was obtained as a yellow solid (1.13 g, 4.18 mmol, 82%). Regioisomeric ratio (**6**/**6**') : (80:20). **6** was isolated after a second flash column chromatography (DCM/EtOAc ; 100:0 to 70:30), the expected product was obtained as a yellow solid (797 mg, 2.95 mmol, 58%)

¹**H NMR (6)** (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.43 (s, 1H), 8.01 (s, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 6.65 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.52 (d, *J* = 2.5 Hz, 1H), 5.08 (s, 2H), 3.82 (s, 3H), 2.22 (s, 3H).

¹³**C NMR (6)** (101 MHz, CDCl₃) δ 169.0, 163.0, 157.2, 152.2, 143.2, 140.5, 126.0, 121.3, 113.7, 109.5, 105.6, 102.4, 66.2, 55.6, 24.9.

¹**H NMR (6')** (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.16 (s, 1H), 8.02 (s, 1H), 7.61 (d, *J* = 8.6 Hz, 1H), 6.64 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.54 (d, *J* = 2.5 Hz, 1H), 5.1 (s, 2H), 3.82 (s, 3H), 2.22 (s, 3H).

¹³C NMR (6') (101 MHz, CDCl₃) δ 168.7, 161.4, 155.7, 150.0, 141.0, 140.7, 123.4, 122.9, 113.1, 109.4, 109.3, 102.7, 67.9, 55.6, 24.9.

M.p. = 220-222 °C

HRMS (ESI): Calculated for C₁₅H₁₄N₂O₃ [M+H]⁺: 271.1077 (100) found 271.1082 (100).

VI. NMR spectra

¹³C NMR of **A1** (101 MHz, CDCl₃)

¹³C NMR of **A2** (101 MHz, CDCl₃)

¹³C NMR of A3 (101 MHz, CDCl₃)

S-52

S-56

¹³C NMR of A11 (101 MHz, CDCl₃)

 ^{13}C NMR of **1b** (101 MHz, CDCl₃)

¹³C NMR of **1c** (101 MHz, CDCl₃)

¹³C NMR of **1f** (101 MHz, CDCl₃)

¹⁹F NMR of **1f** (376.5 MHz, CDCl₃)

¹³C NMR of **1h** (101 MHz, CDCl₃)

S-79

S-83

S-84

¹³C NMR of **3ca** (101 MHz, CDCl₃)

S-91

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 ¹⁹F NMR of **3fa** (376.5 MHz, CDCl₃) 0 -10 -20 -30

S-96

¹³C NMR of **3ka** (101 MHz, CDCl₃)

S-106

¹³C NMR of **3fd** (101 MHz, CDCl₃)

¹³C NMR of **3ab** (101 MHz, CDCl₃)

S-113

S-114

 $^{\rm 13}C$ NMR of **3ac** (101 MHz, CDCl₃)

S-118

¹³C NMR of **3lb** (101 MHz, CDCl₃)

S-125

¹³C NMR of **6'** (101 MHz, CDCl₃)

VII. X-Ray crystallographic data for compound 3aa

A saturated solution of 10 mg of compound **3aa** in CH_2Cl_2 was introduced into a 1 mL vial. This vial was then placed in a 10 mL vial already containing 2 mL of hexane and the system was closed. The vapour diffusion was let to happen at room temperature for 2 weeks, leading to long-needle crystals.

1. X-Ray crystal structure determination

For **3aa** a single crystal was selected, mounted, and transferred into a cold nitrogen gas stream. Intensity data was collected with a Bruker Kappa-APEX2 system using micro-source Cu-Kα radiation. Unit-cell parameters determination, data collection strategy, integration and absorption correction were carried out with the Bruker APEX2 suite of programs. The structure was solved with SHELXT and refined anisotropically by full-matrix least-squares methods with SHELXL using WinGX. Absolute structure couldn't be reliably determined by anomalous scattering effects analysis. The structure was deposited at the Cambridge Crystallographic Data Centre with number CCDC 2192543 and can be obtained free of charge via <u>www.ccdc.cam.ac.uk</u>.

Figure 1 : Crystal structure representation of **3aa**.

Ellipsoids are drawn with 30% probability. All hydrogen atoms are omitted for the sake of clarity.

2. Crystal data for 3aa

Orthorhombic P n a 21, a = 18.0753(4) Å, b = 6.5874(1) Å, c = 9.4903(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 1130.00(4) Å3, Z = 4, pale yellow plate 0.4 × 0.2 × 0.02 mm3, $\mu = 0.679$ mm-1, min / max transmission = 0.55 / 0.75, T= 200(1) K, $\lambda = 1.54178$ Å, θ range = 4.90° to 66.58°, 7941 reflections measured, 1985 independent, Rint = 0.0258, completeness = 1.000, 156 parameters, 1 restraints, Flack x = 0.3(2), final R indices R1 [I>2 σ (I)] = 0.0297 and wR2 (all data) = 0.0831, GOF on F2 = 1.068, largest difference peak / hole = 0.15 / -0.12 e·Å-3.