Copper-Catalyzed Oxidative Selective Cyclization/C-N Cross-Coupling of Two Tryptamines to Access 3a-Tryptamine-Pyrroloindolines

Hai Ren^{*a,b,**}, Ying-Ai Wu^{*a,b*}, Jun-Rong Song^{*a,b*}, Wei Wu^{*a,b*}, Xiaoyan Yang^{*c*}, Jun Shi^{*a,b*}, Wei-Dong Pan^{*a,b*}

^a State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China

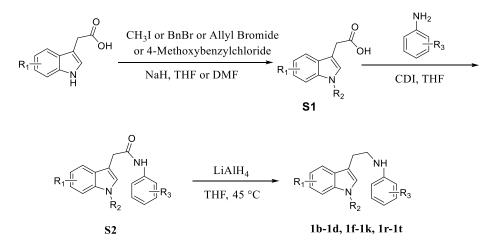
^b The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China

^c Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China

E-mail: renh0206@163.com / renh@gzcnp.cn

Supporting Information

Content

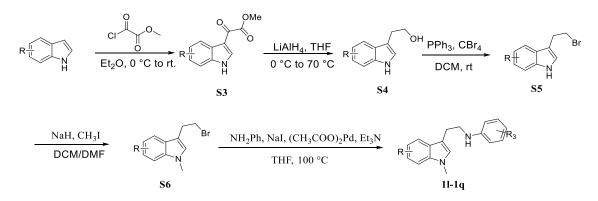

1. General information	S-2
2. Preparations of tryptamine substrates	S-3
3. Optimization of the reaction conditions	S-14
4. Mechanistic studies	S-18
5. General Procedure for 3a-tryptamine-pyrroloindolines and	product
characterizations	S-24
6 Scale-up experiments	S-38
7 References	S-39
8 ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of compounds	S-40

1. General information

Unless stated, otherwise all reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. All the reactions that need to be heated, the oil bath is used as a heating source. All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use. Column chromatography was performed on silica gel (Qingdao, 300 - 400 mesh) using the indicated eluents. NMR spectra were recorded on an Agilent Mercury 600 MHz spectrometer (¹H: 600 MHz and ¹³C: 150 MHz) in chloroform-*d*. ¹H and ¹³C NMR spectra were internally referenced to the proton (¹H) of the internal TMS signal at 0.00 ppm or the solvent residue of DMSO at 2.54 ppm and the residual carbon nuclei (¹³C) of the solvent at 77.0 or 39.5 ppm, respectively. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). High resolution mass spectra were obtained using Bruker ESI-QTOF mass spectrometry.

2. Preparations of tryptamine substrates

Substrates **1a**, **1e** are known compounds, the general procedure for synthesis of these substrates according to the reported method of the literatures $^{[1,2]}$.


General Procedures for 1b-1d, 1f-1k, 1r-1t:

To a solution of indole-3-acetic acid (15.0 mmol, 1.0 equiv.) in THF (90 mL), NaH (3.0 g, 75.0 mmol, 5.0 equiv.) was added portionwise at 0 $^{\circ}$ C under argon atmosphere. The mixture was stirred for 30 minutes and then iodomethane (2.8 mL, 45.0 mmol, 3.0 equiv.) was added dropwise. The reaction was moved to room temperature and after completion as detected by TLC. The reaction mixture was then cooled to 0 $^{\circ}$ C and the excess hydride was destroyed by the dropwise addition of ice-cold water. Then the mixture was acidified with 6 N HCl and extracted with EtOAc. The combined organic phase was dried and concentrated. The crude solid was recrystallised from EtOAc/ Petroleum ether to give the desired compounds **S1**.

Compounds **S1** (1.0 equiv.) and carbonyl dimidazole (CDI) (1.0 equiv.) were dissolved in THF (3 mL/mmol of **S1**) and stirred at room temperature. After 0.5 h, amine (1.2 equiv.) was added and the reaction mixture stirred overnight (monitored by TLC). Then the mixture was poured into water, extracted by ethyl acetate and the combined organic solvent was dried over Na_2SO_4 , filtered and concentrated in vacumn. The crude solid was recrystallised from EtOAc/ Petroleum ether to give the desired compounds **S2**.

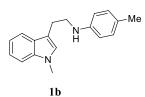
Under argon atmosphere, the THF solution (10 mL/mmol of S2) of S2 (1.0

equiv.) was added to a stirred slurry of LiAlH₄ (3.0 equiv.) in THF at 0 °C. The solution was stirred at 45 °C and after completion as detected by TLC. The solution was quenched carefully by H₂O (1.5 mL), 10% aqueous NaOH (3.0 mL), H₂O (4.5 mL) at 0 °C. After being stirred at room temperature for 12 hours. The solution was then filtered and washed with EtOAc. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give the crude product. The residue was purified by flash column chromatography (Petroleum ether/Ethyl acetate = 20/1) to give the tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**.

General Procedures for 11-1q:

To a solution of indole (10.0 mmol) in dry Et₂O (50 mL) at 0 $^{\circ}$ C was added dropwise methyl oxalyl chloride (2.7 mL, 30.0 mmol) under argon atmosphere. The ice bath was removed and the resultant slurry was stirred at room temperature for 48 h. The crude reaction mixture was filtered and washed with cold Et₂O. The solid **S3** was used directly for the next step without further purification. A solution of **S3** in THF (20 mL) was added dropwise to a suspension of LiAlH₄ (1.52 g, 40.0 mmol) in THF (40 mL) at 0 $^{\circ}$ C. The solution was stirred at 70 $^{\circ}$ C for 3 h and quenched carefully by H₂O (1.5 mL), 10% aqueous NaOH (3.0 mL), H₂O (4.5 mL) at 0 $^{\circ}$ C. After being stirred at room temperature for 12 hours. The solution was then filtered and washed with EtOAc. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give the crude product. The crude product was purified by flash column chromatography (Petroleum ether/Ethyl acetate = 3/1) to give the compounds **S4**.

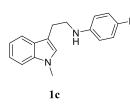
Compounds S4 (1.0 equiv.) and triphenyl phosphine (1.3 equiv.) was dissolved in dry CH_2Cl_2 (2 mL/mmol of S4). In an addition funnel, carbon tetrabromide (1.3 equiv.)


dissolved in dry CH_2Cl_2 was added dropwise under argon atmosphere at 0 °C, until the addition was complete. The reaction was allowed to stir at room temperature and when the reaction was completed as monitored by TLC. Solvent was removed under reduced pressure and the residue was purified by flash column chromatography (Petroleum ether/ Ethyl acetate = 10/1) to give the compounds **S5**.

Compounds **S5** (1.0 equiv.) were dissolved in a mixture of anhydrous DCM/DMF (2/1 v/v, 1.5 mL/mmol of **S5**) under magnetic stirring and the temperature was set to 0 °C. To this solution, 1.5 equivalents of NaH were added portion wise and the mixture was allowed to react for 30 min. Then, 1.5 equivalents of methyl iodide in DCM were added dropwise and the reaction was warmed to room temperature and when the reaction was completed as monitored by TLC. The reaction was then quenched by a 10% aqueous solution of citric acid and washed with brine. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and evaporated in vacuo. Crude products were purified by flash column chromatography (Petroleum ether/Ethyl acetate = 30/1) to give the compounds **S6**.

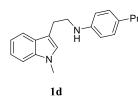
Compounds **S6** (1.0 equiv.) was dissolved in THF (3 mL/mmol of **S6**) and 1.5 equivalents of the proper amine, 1.5 equivalents of TEA, 1.5 equivalents of NaI and 0.3 equivalents of Pd(OAc)₂ were added to this solution under argon atmosphere. Then, the mixture was stirred at 100 $\$ and when the reaction was completed as monitored by TLC. The reaction was cooled to room temperature. The resulting solid was filtered off and adsorbed onto the minimal amount of silica gel using CH₂Cl₂. The solvent was concentrated under reduced pressure, purified by flash column chromatography (Petroleum ether/Ethyl acetate = 60/1-40/1) to give the tryptophan derivative **11-1q**.

The physical data for new compounds were provided below:


4-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)aniline (1b)

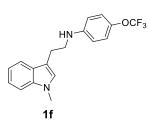
Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.70 g, 4.0 mmol) to afford **1b**. Brown solid, 0.47 g, 44% yield; ¹H NMR (600

MHz, CDCl₃) δ 7.73 – 7.65 (m, 1 H), 7.37 (d, *J* = 7.0 Hz, 1 H), 7.34 – 7.29 (m, 1 H), 7.22 – 7.16 (m, 1 H), 7.10 – 7.04 (m, 2 H), 6.95 (s, 1 H), 6.66 – 6.59 (m, 2 H), 3.80 (s, 3 H), 3.53 – 3.48 (m, 2 H), 3.17 – 3.10 (m, 2 H), 2.32 (d, *J* = 3.0 Hz, 3 H). ¹³**C NMR** (150 MHz, CDCl₃) δ 145.9, 137.1, 129.7, 127.8, 126.8, 126.4, 121.6, 118.9, 118.8, 113.2, 111.8, 109.2, 44.5, 32.5, 25.0, 20.4 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₁₈H₂₁N₂ 265.1699; Found 265.1697.


4-Ethyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)aniline (1c)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.70 g, 4.0 mmol) to afford **1c**. Brown oil, 0.57 g, 51% yield; ¹H NMR (600 MHz,

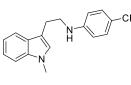
CDCl₃) δ 7.58 (d, J = 7.8 Hz, 1 H), 7.25 (d, J = 8.2 Hz, 1 H), 7.23 – 7.19 (m, 1 H), 7.12 – 7.06 (m, 1 H), 6.99 (d, J = 8.4 Hz, 2 H), 6.82 (s, 1 H), 6.53 (d, J = 8.4 Hz, 2 H), 3.66 (s, 3 H), 3.39 (t, J = 6.8 Hz, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 2.52 (q, J = 7.6 Hz, 2 H), 1.17 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 146.2, 137.0, 133.0, 128.5, 127.8, 126.7, 121.6, 118.8, 118.8, 113.1, 111.8, 109.2, 44.4, 32.4, 27.9, 25.0, 15.9 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₃N₂ 279.1856; Found 279.1853.


N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-4-propylaniline (1d)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.70 g, 4.0 mmol) to afford **1d**. Brown oil, 0.57 g, 49% yield; ¹H NMR (600 MHz, CDCl₃) δ

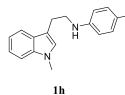
7.58 (d, J = 7.8 Hz, 1 H), 7.26 (d, J = 8.2 Hz, 1 H), 7.21 (t, J = 7.4 Hz, 1 H), 7.09 (t, J = 7.4 Hz, 1 H), 6.97 (d, J = 8.4 Hz, 2 H), 6.84 (s, 1 H), 6.53 (d, J = 8.4 Hz, 2 H), 3.68 (s, 3 H), 3.40 (t, J = 6.8 Hz, 2 H), 3.03 (t, J = 6.8 Hz, 2 H), 2.46 (t, J = 7.6 Hz, 2 H), 1.61 – 1.54 (m, 2 H), 0.91 (t, J = 7.3 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 137.2, 131.7, 129.29, 128.0, 126.9, 121.8, 119.1, 119.0, 113.2, 112.1, 109.4, 44.6, 37.3, 32.7, 25.2, 25.0, 14.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅N₂

N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-4-(trifluoromethoxy)aniline (1f)



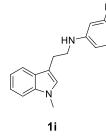
Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.70 g, 4.0 mmol) to afford **1f**. Brown oil, 0.79 g, 59% yield; ¹H NMR (600 MHz, $CDCl_3$) δ 7.58 (d, J = 7.8 Hz, 1 H), 7.30 (d, J = 8.2 Hz, 1 H),

Following the general procedure for preparations of


7.24 (t, J = 8.4 Hz, 1 H), 7.11 (t, J = 7.6 Hz, 1 H), 7.01 (d, J = 8.4 Hz, 2 H), 6.88 (s, 1 H), 6.53 (d, J = 7.2 Hz, 2 H), 3.74 (s, 3 H), 3.42 (t, J = 6.8 Hz, 2 H), 3.06 (t, J = 6.6 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 147.0, 140.3, 137.1, 127.8, 126.8, 122.4, 121.8, 120.7(q, ${}^{1}J_{C-F} = 253.5$ Hz), 118.9, 118.8, 113.1, 111.5, 109.3, 44.3, 32.6, 24.9 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -58.43 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈ON₂F₃ 335.1366; Found 335.1356.

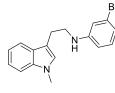
N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-4-(trifluoromethyl)aniline (1g)

tryptophan derivative 1b-1d, 1f-1k, 1r-1t. The procedure was performed on indole-3-acetic acid (0.52 g, 3.0 mmol) to afford **1g**. Light yellow solid, 0.32 g, 34% yield; ¹**H NMR** (600 MHz, 1g $CDCl_3$) δ 7.59 (d, J = 7.8 Hz, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 1 H), 7.27 - 7.22 (m, 1 H), 7.15 - 7.10 (m, 1 H), 6.89 (s, 1H), 6.58 (d, J = 8.6 Hz, 2 H), 4.08 (s, 1 H), 3.76 (s, 3 H), 3.49 - 3.46 (m, 2 H), 3.07 (t, J = 6.7 Hz, 2 H) ppm. ¹³C **NMR** (150 MHz, CDCl₃) δ 150.6, 137.1, 127.7, 126.9, 126.5 (g, ${}^{3}J_{C-F} = 3.0$ Hz), 125.0 (q, ${}^{1}J_{C-F} = 268.6$ Hz), 121.8, 119.0, 118.8, 118.6 (q, ${}^{2}J_{C-F} = 31.6$ Hz), 111.9, 111.3, 109.4, 43.6, 32.6, 24.8 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -60.90 ppm. **HRMS (ESI)** m/z: $[M + H]^+$ Calcd for C₁₈H₁₈N₂F₃ 319.1417; Found 319.1416.


4-Fluoro-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)aniline (1h)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.70 g, 4.0 mmol) to afford **1h**. Brown oil, 0.54 g, 50 % yield; ¹H NMR (600 MHz,

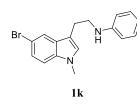
CDCl₃) δ 7.56 (d, J = 7.8 Hz, 1 H), 7.25 (d, J = 8.2 Hz, 1 H), 7.21 (t, J = 7.4 Hz, 1 H), 7.09 (t, J = 7.4 Hz, 1 H), 6.85 – 6.80 (m, 3 H), 6.49 – 6.46 (m, 2 H), 3.65 (s, 3 H), 3.48 (br, 1 H), 3.34 (t, J = 6.8 Hz, 2 H), 3.00 (t, J = 6.8 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 155.7 (d, ¹ $J_{C-F} = 232.6$ Hz), 144.4, 137.0, 127.7, 126.8, 121.6, 118.8, 118.7, 115.6 (d, ² $J_{C-F} = 22.6$ Hz), 113.8 (d, ³ $J_{C-F} = 7.6$ Hz), 111.5, 109.2, 44.8, 32.4, 24.8 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -127.81 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N₂F 269.1448; Found 269.1447.


3-methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)aniline (1i)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (0.35 g, 2.0 mmol) to afford **1i**. Brown oil, 0.28 g, 53 % yield;¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1 H), 7.30 (d, *J* = 8.2 Hz, 1 H), 7.25 – 7.21 (m, 1 H), 7.13 –

7.09 (m, 1 H), 7.08 – 7.03 (m, 1 H), 6.89 (s, 1 H), 6.52 (d, J = 7.6 Hz, 1 H), 6.45 – 6.41 (m, 2 H), 3.74 (s, 3 H), 3.44 (t, J = 6.8 Hz, 2 H), 3.06 (t, J = 6.8 Hz, 2 H), 2.26 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 148.3, 138.9, 137.1, 129.1, 127.8, 126.8, 121.7, 118.9, 118.8, 118.2, 113.8, 111.8, 110.2, 109.2, 44.2, 32.6, 25.0, 21.6 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂ 265.1699; Found 265.1692.

3-Bromo-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)aniline (1j)

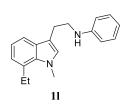


1j

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (1.05 g, 6.0 mmol) to afford **1j**. Brown oil,

1.17 g, 59 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.9 Hz, 1 H), 7.36 (d, *J* = 8.2 Hz, 1 H), 7.30 (t, *J* = 7.6 Hz, 1 H), 7.19 – 7.15 (m, 1 H), 7.03 (t, *J* = 8.0 Hz, 1 H), 6.92 (s, 1 H), 6.85 – 6.82 (m, 1 H), 6.78 – 6.76 (m, 1 H), 6.53 (dd, *J* = 8.4, 2.2 Hz, 1 H), 3.85 (s, 1 H), 3.79 (s, 3 H), 3.45 (t, *J* = 6.8 Hz, 2 H), 3.09 (t, *J* = 6.8 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 149.5, 137.1, 130.4, 127.7, 126.8, 123.2, 121.7, 119.8, 118.9, 118.8, 115.3, 111.6, 111.4, 109.3, 43.8, 32.6, 24.8 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₈N₂Br 329.0648; Found 329.0646.

N-(2-(5-bromo-1-methyl-1*H*-indol-3-yl)ethyl)aniline (1k)

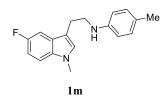


Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on 5-bromo-3-indoleacetic acid (0.76 g, 3.0 mmol) to afford **1k**.

Brown oil, 0.30 g, 29 % yield; ¹H NMR (600 MHz, CDCl₃) δ

7.68 (s, 1 H), 7.28 (d, J = 8.8 Hz, 1 H), 7.16 (t, J = 7.8 Hz, 2 H), 7.12 (d, J = 8.8 Hz, 1 H), 6.86 (s, 1 H), 6.69 (t, J = 7.2 Hz, 1 H), 6.59 (d, J = 8.0 Hz, 2 H), 3.68 (s, 3 H), 3.39 (t, J = 6.8 Hz, 2 H), 2.97 (t, J = 6.8 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 148.0, 135.7, 129.5, 129.2, 127.9, 124.4, 121.4, 117.3, 112.9, 112.2, 111.5, 110.8, 44.0, 32.7, 24.8 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N₂Br 329.0648; Found 329.0647.

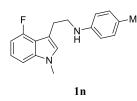
N-(2-(7-ethyl-1-methyl-1*H*-indol-3-yl)ethyl)aniline (11)



Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 7-ethyl tryptophol (1.14 g, 6.0 mmol) to afford **11**. Brown oil, 0.34 g, 20 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 1 H),

7.15 (t, J = 7.6 Hz, 2 H), 7.01 (t, J = 7.5 Hz, 1 H), 6.99 – 6.95 (m, 1 H), 6.73 (s, 1 H), 6.67 (t, J = 7.2 Hz, 1 H), 6.58 (d, J = 7.8 Hz, 2 H), 3.92 (s, 3 H), 3.40 (t, J = 6.8 Hz, 2 H), 3.07 (q, J = 7.6 Hz, 2 H), 3.00 (t, J = 6.8 Hz, 2 H), 1.33 (t, J = 7.4 Hz, 3 H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 148.2, 134.9, 129.3, 129.1, 128.6, 127.9, 122.6, 119.2,

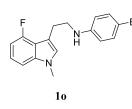
117.1, 116.8, 112.9, 111.5, 43.9, 36.4, 25.4, 24.8, 16.6 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₁₉H₂₃N₂ 279.1856; Found 279.1855.


N-(2-(5-fluoro-1-methyl-1H-indol-3-yl)ethyl)-4-methylaniline (1m)

Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 5-fluoroindole (1.35 g, 10.0 mmol) to afford **1m**. Brown oil, 0.36 g, 13 % yield; ¹H NMR (600 MHz, CDCl₃)

δ 7.21 (dd, J = 9.8, 2.4 Hz, 1 H), 7.16 (dd, J = 8.8, 4.2 Hz, 1 H), 6.98 (d, J = 8.2 Hz, 2 H), 6.94 (dd, J = 9.0, 2.4Hz, 1 H), 6.90 (s, 1 H), 6.53 (d, J = 8.4 Hz, 2 H), 3.69 (s, 3 H), 3.38 (t, J = 6.8 Hz, 2 H), 2.97 (t, J = 6.8 Hz, 2 H), 2.23 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 157.5 (d, ¹ $J_{C-F} = 232.4$ Hz), 145.8, 133.7, 129.7, 128.4, 128.0 (d, ³ $J_{C-F} = 9.0$ Hz), 126.5, 113.2, 111.8 (d, ⁴ $J_{C-F} = 4.5$ Hz), 109.9 (d, ² $J_{C-F} = 27.0$ Hz), 109.8 (d, ³ $J_{C-F} = 10.6$ Hz), 103.8 (d, ² $J_{C-F} = 24.0$ Hz), 44.4, 32.8, 24.9, 20.3 ppm.. ¹⁹F NMR (565 MHz, CDCl₃) δ -125.36 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀N₂F 283.1605; Found 283.1606.

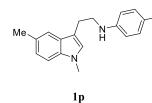
N-(2-(4-fluoro-1-methyl-1*H*-indol-3-yl)ethyl)-4-methylaniline (1n)



Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 4-fluoroindole (1.35 g, 10.0 mmol) to afford **1n**. Brown oil, 0.33 g, 11 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.16 –

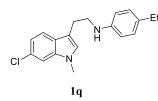
7.12 (m, 1 H), 7.08 (d, J = 8.2 Hz, 1 H), 7.02 (d, J = 8.0 Hz, 2 H), 6.85 (s, 1 H), 6.78 (dd, J = 11.2, 7.8 Hz, 1 H), 6.60 (d, J = 8.2 Hz, 2 H), 3.75 (s, 3 H), 3.47 (t, J = 6.8 Hz, 2 H), 3.16 (t, J = 6.8 Hz, 2 H), 2.27 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 157.2 (d, ${}^{1}J_{C-F} = 244.8$ Hz), 146.0, 140.0 (d, ${}^{3}J_{C-F} = 10.6$ Hz), 129.7, 127.1, 126.4, 122.1 (d, ${}^{3}J_{C-F} = 7.6$ Hz), 116.4 (d, ${}^{2}J_{C-F} = 19.6$ Hz), 113.2, 110.7 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 105.4 (d, ${}^{3}J_{C-F} = 4.6$ Hz), 104.1 (d, ${}^{2}J_{C-F} = 19.6$ Hz), 45.0 (d, ${}^{4}J_{C-F} = 1.6$ Hz), 32.9, 26.2, 20.4 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -123.36 ppm. HRMS (ESI) *m/z*: [M +

 H_{1}^{+} Calcd for C₁₈H₂₀N₂F 283.1605; Found 283.1603.


4-Ethyl-N-(2-(4-fluoro-1-methyl-1*H*-indol-3-yl)ethyl)aniline (10)

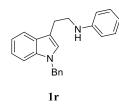
Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 4-fluoroindole (1.35 g, 10.0 mmol) to afford **1o**. yellow oil, 0.17 g, 6 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.14 – 7.09

(m, 1 H), 7.06 (d, J = 8.2 Hz, 1 H), 7.02 (d, J = 7.8 Hz, 2 H), 6.84 (s, 1 H), 6.77 – 6.73 (m, 1 H), 6.59 (d, J = 7.4 Hz, 2 H), 3.74 (s, 3 H), 3.44 (t, J = 6.8 Hz, 2 H), 3.13 (t, J = 6.8 Hz, 2 H), 2.54 (q, J = 7.6 Hz, 2 H), 1.19 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 157.2(d, ¹ $J_{C-F} = 244.6$ Hz), 146.3, 140.0 (d, ³ $J_{C-F} = 10.5$ Hz), 133.1, 128.5, 127.1, 122.1(d, ³ $J_{C-F} = 7.6$ Hz), 116.3(d, ²J = 19.5 Hz), 113.1, 110.8 (d, ⁴ $J_{C-F} = 3.0$ Hz), 105.4 (d, ³ $J_{C-F} = 3.0$ Hz), 104.1(d, ²J = 19.5 Hz), 45.0 (d, ⁴ $J_{C-F} = 3.0$ Hz), 32.9, 27.9, 26.3, 16.0 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -123.39 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₂₂N₂F 297.1762; Found 297.1761.


N-(2-(1,5-dimethyl-1*H*-indol-3-yl)ethyl)-4-ethylaniline (1p)

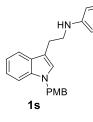
Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 5-methylindole (1.57 g, 12.0 mmol) to afford **1p**. Brown oil, 0.35 g, 10 % yield; ¹H NMR (600 MHz, CDCl₃)

δ 7.36 (s, 1 H), 7.16 (d, J = 8.4 Hz, 1 H), 7.04 (dd, J = 8.4, 1.6 Hz, 1 H), 7.00 (d, J = 8.4 Hz, 2 H), 6.82 (s, 1 H), 6.55 (d, J = 8.4 Hz, 2 H), 3.67 (s, 3 H), 3.40 (t, J = 6.8 Hz, 2 H), 3.01 (t, J = 6.8 Hz, 2 H), 2.53 (q, J = 7.6 Hz, 2 H), 2.45 (s, 3 H), 1.18 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 146.2, 135.5, 133.1, 128.5, 128.0, 128.0, 126.8, 123.2, 118.6, 113.1, 111.2, 108.9, 44.5, 32.5, 27.9, 25.0, 21.4, 16.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅N₂ 293.2012; Found 293.2012.


N-(2-(6-chloro-1-methyl-1*H*-indol-3-yl)ethyl)-4-ethylaniline (1q)

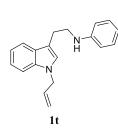
Following the general procedure for preparations of tryptophan derivative **11-1q**. The procedure was performed on 6-chloroindole (1.82 g, 12.0 mmol) to afford **1q**. Brown oil, 0.34 g, 9 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.45

(d, J = 8.4 Hz, 1 H), 7.25 (s, 1 H), 7.05 (d, J = 8.4 Hz, 1 H), 7.00 (d, J = 8.4 Hz, 2 H), 6.84 (s, 1 H), 6.54 (d, J = 8.4 Hz, 2 H), 3.64 (s, 3 H), 3.38 (t, J = 6.8 Hz, 2 H), 2.99 (t, J = 6.8 Hz, 2 H), 2.53 (q, J = 7.6 Hz, 2 H), 1.18 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 146.0, 137.4, 133.2, 128.5, 127.7, 127.4, 126.4, 119.7, 119.4, 113.1, 112.2, 109.2, 44.4, 32.6, 27.9, 24.9, 15.9 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₁₈H₂₂N₂Cl 313.1466; Found 313.1466.


N-(2-(1-benzyl-1*H*-indol-3-yl)ethyl)aniline (1r)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (1.05 g, 6.0 mmol) and benzyl bromide (3.08

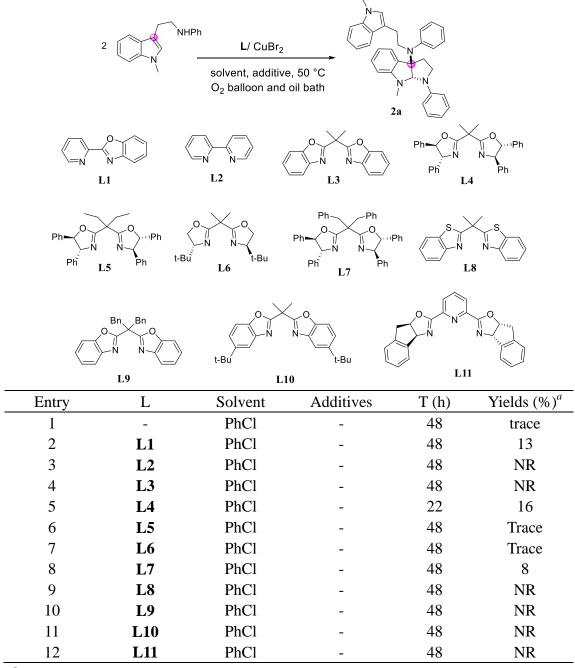
^{1r} g, 18.0 mmol) to afford **1r**. Brown oil, 0.58 g, 29 % yield; ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 1 H), 7.27 – 7.19 (m, 4 H), 7.18 – 7.12 (m, 3 H), 7.10 (t, J = 7.6 Hz, 1 H), 7.06 (d, J = 7.2 Hz, 2 H), 6.90 (s, 1 H), 6.67 (t, J = 7.3 Hz, 1 H), 6.56 (d, J = 7.4 Hz, 2 H), 5.20 (s, 2 H), 3.42 (t, J = 6.8 Hz, 2 H), 3.04 (t, J = 6.8 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 148.1, 137.6, 136.8, 129.2, 128.7, 128.0, 127.5, 126.7, 126.1, 121.9, 119.1, 119.0, 117.2, 113.0, 112.5, 109.7, 49.8, 44.0, 25.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂ 327.1856; Found 327.1857.


N-(2-(1-(4-methoxybenzyl)-1*H*-indol-3-yl)ethyl)aniline (1s)

Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (1.0 g, 5.71 mmol) to afford **1s**. Brown oil, 0.83 g, 41% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8

Hz, 1 H), 7.32 (d, J = 8.4 Hz, 1 H), 7.23 – 7.15 (m, 3 H), 7.13 (t, J = 7.5 Hz, 1 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.95 (s, 1 H), 6.87 – 6.81 (m, 2 H), 6.71 (t, J = 7.3 Hz, 1 H), 6.61 (d, J = 7.7 Hz, 2 H), 5.21 (s, 2 H), 3.78 (s, 3 H), 3.47 (t, J = 6.8 Hz, 2 H), 3.11 – 3.05 (m, 2 H) ppm.¹³C NMR (150 MHz, CDCl₃) δ 159.1, 148.2, 136.7, 129.6, 129.2, 128.2, 128.1, 126.0, 121.8, 119.1, 119.0, 117.3, 114.1, 113.0, 112.4, 109.7, 55.2, 49.4, 44.0, 25.1 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₄H₂₅ON₂ 357.1961; Found 357.1952.

N-(2-(1-allyl-1*H*-indol-3-yl)ethyl)aniline (1t)



Following the general procedure for preparations of tryptophan derivative **1b-1d**, **1f-1k**, **1r-1t**. The procedure was performed on indole-3-acetic acid (1.05 g, 6.0 mmol) and allyl bromide (2.1776 g, 18.0 mmol) to afford **1t**. Brown oil, 0.26 g, 16% yield; ¹H **NMR** (600 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 Hz, 1 H), 7.27 (d, *J* =

8.2 Hz, 1 H), 7.22 – 7.18 (m, 1 H), 7.15 (t, J = 7.9 Hz, 2 H), 7.13 – 7.08 (m, 1 H), 6.89 (s, 1 H), 6.68 (t, J = 7.4 Hz, 1 H), 6.58 (d, J = 8.6 Hz, 2 H), 5.98 – 5.90 (m, 1 H), 5.16 (d, J = 10.2 Hz, 1 H), 5.05 (d, J = 17.0 Hz, 1 H), 4.62 (d, J = 5.4 Hz, 2 H), 3.42 (t, J = 6.8 Hz, 2 H), 3.04 (t, J = 6.8 Hz, 2 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 148.2, 136.5, 133.5, 129.3, 128.0, 125.7, 121.7, 119.0, 118.9, 117.2, 117.1, 112.9, 112.2, 109.6, 48.6, 44.0, 25.0 ppm. **HRMS (ESI**) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₂₁N₂ 277.1699; Found 277.1700.

3. Optimization of the reaction conditions

3.1 Ligands screening ^a

^{*a*} The reactions were carried out under O_2 balloon: Metal salts (0.02 mmol), **L** (0.024 mmol), Solvent (2.0 mL), **1a** (0.20 mmol). Yields were determined by ¹H NMR with TTCE as the internal standard.

3.2 Metal salts screening^{*a*}

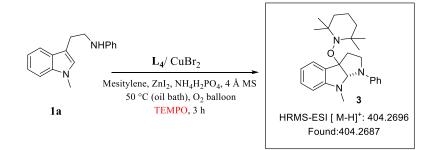
	2	NHPh N	L4/ Metal salts solvent, additive, 50 °C D ₂ balloon and oil bath			
Entry	L	Solvent	Metal salts	Additives	T (h)	Yields
						$(\%)^{a}$
1	L4	PhCl	CuBr ₂	-	22	16
2	L4	PhCl	CuBr	-	48	7
3	L4	PhCl	CuCl	-	47	9
4	L4	PhCl	Cu ₂ O	-	48	Nr
5	L4	PhCl	CuI	-	48	Nr
6	L4	PhCl	Cu(OTf)2	-	48	6
7	L4	PhCl	CuOAc	-	48	Nr
8	L4	PhCl	$Cu(ClO_4)_2$ GH_2O	-	48	11
9	L4	PhCl	CuBr ₂ /Cu(OTf)2	-	6	13

^{*a*} The reactions were carried out under O_2 balloon: Metal salts (0.02 mmol), **L** (0.024 mmol), Solvent (2.0 mL), **1a** (0.20 mmol). Yields were determined by ¹H NMR with TTCE as the internal standard.

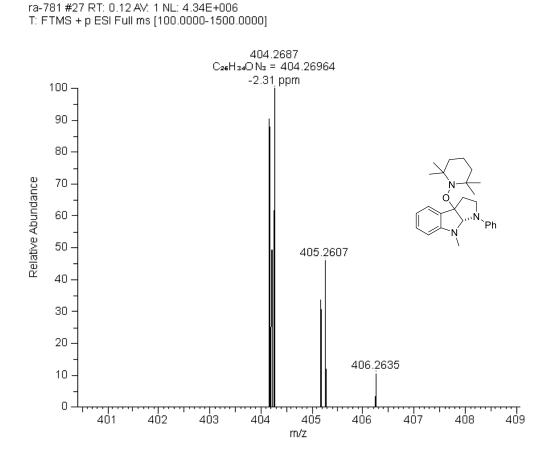
3.3 Solvent screening^{*a*}

	2 N	NHPh L4/ CuBr solvent, additiv O ₂ balloon and	re, 50 °C		
Entry	L	Solvent	Additives	T (h)	Yields $(\%)^a$
1	L4	PhCl	-	22	16
2	L4	PhCF ₃	-	27	27
3	L4	PhMe	-	22	26
4	L4	Mesitylene	-	48	34
5	L4	EA	-	48	22
6	L4	MeOH	-	4	20
7	L4	1,4-dioxane	-	22	21
8	L4	ACN	-	48	15

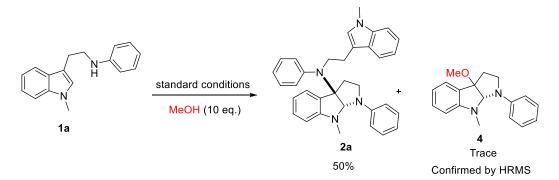
^{*a*} The reactions were carried out under O_2 balloon: Metal salts (0.02 mmol), **L4** (0.024 mmol), Solvent (2.0 mL), **1a** (0.20 mmol). Yields were determined by ¹H NMR with TTCE as the internal standard.


3.4 Additives screening^{*a*}

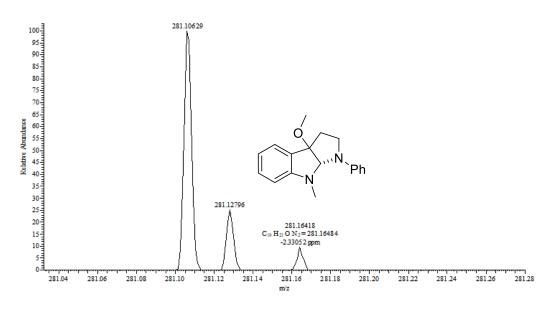
S.+ Additives screening					
	2		L4/ CuBr ₂ rent, additive, 50 °C balloon and oil bath		
Entry	L	Solvent	Additives	<i>t</i> (h)	Yields $(\%)^a$
1	L4	Mesitylene	-	48	34
2	L4	Mesitylene	4 Å MS	48	54
3 ^c	L4	Mesitylene	HClO ₄	49	51
4 ^c	L4	Mesitylene	AcOH	48	49
5 ^c	L4	Mesitylene	H ₃ BO ₃	36	49
6 ^{<i>c</i>}	L4	Mesitylene	t-BuOK	48	46
7 ^c	L4	Mesitylene	Na ₂ CO ₃	48	44
8 ^c	L4	Mesitylene	KH_2PO_4	48	50
9 ^c	L4	Mesitylene	NH ₄ H ₂ PO ₄	47	62
10 ^c	L4	Mesitylene	NaH ₂ PO ₄	47	52 ^b
11 ^c	L4	Mesitylene	$\operatorname{ZnI}_2{}^d$	27	63 ^b
12^c	L4	Mesitylene	NH ₄ H ₂ PO ₄ /ZnI ₂ ^d	16	68^b
13 ^c	L1	PhCl	NH ₄ H ₂ PO ₄ /ZnI ₂ ^d	22	62^b

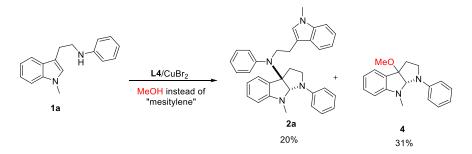

^{*a*} The reactions were carried out under O₂ balloon: Metal salts (0.02 mmol), **L4** (0.024 mmol), Solvent (2.0 mL), **1a** (0.20 mmol). Yields were determined by ¹H NMR with TTCE as the internal standard. ^{*b*} Isolated yield. ^{*c*} 4ÅMSs (200 mg). ^{*d*} ZnI₂(0.03 mmol).

4. Mechanistic studies

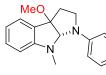

4.1 Radical trapping experiments

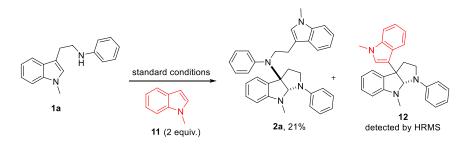
Procedure: A mixture of **1a** (50.1 mg, 0.2 mmol), $CuBr_2$ (4.5 mg, 0.02 mmol), **L4** (11.7 mg, 0.024 mmol), ZnI_2 (9.6mg, 0.03 mmol), $NH_4H_2PO_4$ (2.3 mg, 0.02 mmol) , TEMPO (62.5 mg, 0.4 mmol) and 4 Å MS (200 mg) in Mesitylene (2 mL) was stirred at 50 °C under O₂ balloon. After 3 hours of reaction, send it to HRMS-ESI for monitoring.



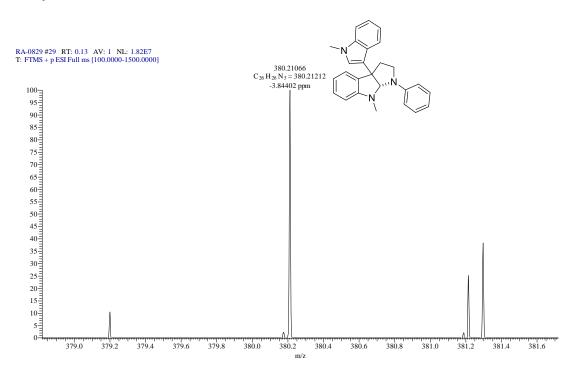

4.2 C3a-cation-pyrroloindoline intermediate investigations

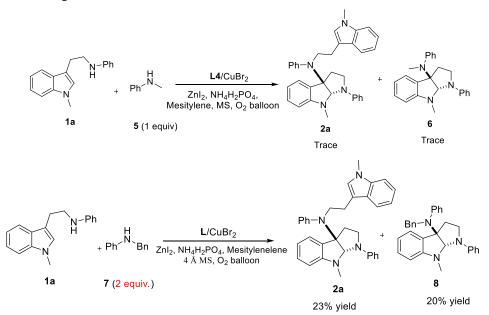
Procedure: A mixture of **1a** (50.1 mg, 0.2 mmol), MeOH (64.1mg, 2 mmol), CuBr₂ (4.5 mg, 0.02 mmol), L4 (11.7 mg, 0.024 mmol), ZnI₂ (9.6mg, 0.03 mmol), NH₄H₂PO₄ (2.3mg, 0.02 mmol) and 4 Å MS (200 mg) in Mesitylene (2 mL) was stirred at 50 °C under O₂ balloon. After 17 hours of reaction, we stopped the reaction. The Yield of **2a** was determined by ¹H NMR with TTCE as the internal standard and compound **4** was confirmed by HRMS analysis.



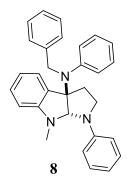

Procedure: A mixture of 1a (50.1 mg, 0.2 mmol), CuBr₂ (4.5 mg, 0.02 mmol), L4 (11.7 mg, 0.024 mmol), ZnI₂ (9.6mg, 0.03 mmol), NH₄H₂PO₄ (2.3mg, 0.02 mmol) and 4 Å MS (200 mg) in MeOH (2 mL) was stirred at 50 °C under O₂ balloon. After 4 h, the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (Petroleum ether/Ethyl acetate = 60/1) to afford the product **2a** and **4**.

3a-Methoxy-8-methyl-1-phenyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (4)


Light oil, 4 h, 17.2 mg, 31% yield; ¹H NMR (600 MHz, CDCl₃)


δ 7.29 – 7.24 (m, 2 H), 7.22 – 7.17 (m, 2 H), 6.90 (d, *J* = 7.6 Hz, 2 H), 6.81 – 6.74 (m, 2 H), 6.46 (d, J = 7.8 Hz, 1 H), 5.58 (s, 1 4 H), 3.52 (ddd, J = 9.4, 7.6, 4.8 Hz, 1 H), 3.34 (dt, J = 9.4, 7.2Hz, 1 H), 3.17 (s, 3H), 2.90 (s, 3H), 2.44 – 2.38 (m, 1H), 2.37 – 2.32 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 152.0, 147.5, 129.9, 129.1, 126.7, 123.6, 117.8, 117.8, 113.8, 107.3, 93.5, 85.7, 52.9, 47.7, 38.2, 35.2 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₁₈H₂₁ON₂ 281.1648; Found 281.1642.

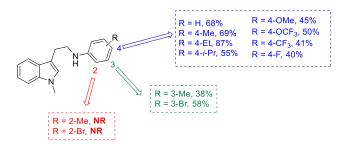
Procedure: A mixture of **1a** (50.1 mg, 0.2 mmol), **11** (52.5 mg, 0.4 mmol), CuBr₂ (4.5 mg, 0.02 mmol), **L4** (11.7 mg, 0.024 mmol), ZnI₂ (9.6 mg, 0.03 mmol), NH₄H₂PO₄ (2.3 mg, 0.02 mmol) and 4ÅMS (200 mg) in Mesitylene (2 mL) was stirred at 50 °C under O₂ balloon. After 48 hours of reaction, we stopped the reaction, The Yield of **2a** was isolated yield and compound **12** was confirmed by HRMS analysis.



4.3 Control experiments

A mixture of CuBr_2 (4.5 mg, 0.02 mmol), **L4** (11.7 mg, 0.024 mmol), **1a** (50.1 mg, 0.2 mmol), **7** (73.2 mg, 0.4 mmol), ZnI_2 (9.6 mg, 0.03 mmol), $\text{NH}_4\text{H}_2\text{PO}_4$ (2.3 mg, 0.02 mmol) and 4Å MS (200 mg) in Mesitylene (2 mL) was stirred at 50 °C under O₂ balloon. After 13 h, the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (Petroleum ether/Ethyl acetate = 60/1) to afford the product **2a** and **8**.

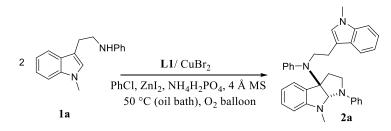
N-Benzyl-8-methyl-N,1-diphenyl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)amine (8)


Light yellow oil, 13 h, 17.5 mg, 20% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, J = 7.2 Hz, 1 H), 7.23 – 7.15 (m, 7 H), 7.13 – 7.10 (m, 1 H), 7.08 – 7.03 (m, 2 H), 6.97 – 6.90 (m, 3 H), 6.71 – 6.78 (m, 4 H), 6.40 (d, J = 7.8 Hz, 1 H), 5.84 (s, 1 H), 4.41 (d, J = 15.2 Hz, 1 H), 4.28 (d, J = 15.2 Hz, 1 H), 3.15 (q, J = 7.6 Hz, 1 H), 3.10 – 3.04 (m, 1 H), 2.76 (s, 3 H), 2.68 (dt, J = 12.6, 7.7 Hz, 1H), 2.32 – 2.25 (m, 1 H) ppm. ¹³C NMR (150MHz.

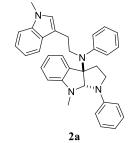
CDCl₃) § 151.6, 148.2, 147.2, 140.1, 130.9, 129.2, 129.1, 128.3, 128.0, 127.8, 126.5,

126.1, 123.6, 123.5, 117.6, 117.4, 113.7, 106.9, 86.4, 78.6, 56.1, 47.2, 37.6, 35.0 ppm. **HRMS (ESI)** m/z: $[M + H]^+$ Calcd for C₃₀H₃₀N₃ 432.2434; Found 432.2439.

4.4 The influence of substitutents of substrates

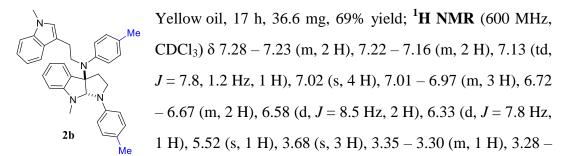

As showed below, substrates bearing side-chain moieties with *para*-substituted phenzyl group, regardless of electron-donating, electron-withdrawing or highly steric groups, were well tolerated under this catalytic system. It was noted that the *meta*-substituted phenzyl substrates were also found to be compatible, providing the desired products smoothly. However, when the *ortho*- (vicinal position) substituted subtrates were employed in the conditions, the reaction did not take place. These results suggested that except the electronic property, the steric effect of the vicinal position on the aniline group also has great influence for the reaction.

Furthermore, the influence of indole moiety of substrate was further studied. As showed below, the *N*-benzyl-, *N*-PMB- and *N*-allyl-substituted tryptamines were also found to be compatible, providing the desired products smoothly. However, when the indole *N*-free tryptamine was exposed to the optimal conditions, none of the desired product was detected. We speculate that the *N*-H moiety combined with the large aromatic indole system is unstable under the current oxidative conditions. It should be noted that when the electron-withdrawing group Ts or Boc substituted substrates were conducted in the standard conditions, the reaction did not happen. These results indicated that the electron property of indole moiety has great influence for the reaction.

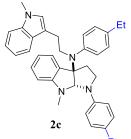

R = Me, 68%; R = Bn, 52%; R = PMB, 60%; R = Allyl, 33%; R = H, 0% (decomposed) R = Ts or Boc. **NR**

5. General Procedure for 3a-tryptamine-pyrroloindolines and product characterizations

General Procedure for 3a-tryptamine-pyrroloindolines: A mixture of CuBr₂ (4.5 mg, 0.02 mmol), L1 (4.7 mg, 0.024 mmol), 1a (50.1 mg, 0.2 mmol) , ZnI₂(9.6 mg, 0.03 mmol), NH₄H₂PO₄ (2.3 mg, 0.02 mmol) and 4Å MS (200 mg) in PhCl (2 mL) was stirred at 50 °C under O₂ balloon. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (Petroleum ether/Ethyl acetate = 60/1) to afford the product **2a**.


8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-diphenyl-2,3,8,8a-tetrahydrop yrrolo[2,3-b]indol-3a(1*H*)-amine (2a)

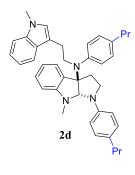
Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1a** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2a**. White foam, 16 h, 33.9 mg, 68% yield; ¹H NMR


(600 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2 H), 7.23 – 7.16 (m, 6 H), 7.15 – 7.12 (m, 4 H), 7.01 (t, J = 7.4 Hz, 1 H), 6.73 – 6.69 (m, 3 H), 6.65 (d, J = 8.2 Hz, 2 H), 6.36 (d, J = 7.8 Hz, 1 H), 5.58 (s, 1 H), 3.68 (s, 3 H), 3.40 – 3.35 (m, 1 H), 3.34 – 3.28 (m, 1 H), 3.11–3.06 (m, 1 H), 2.94 – 2.88 (m, 1 H), 2.74 – 2.69 (m, 1H), 2.66 (s, 3 H), 2.64– 2.59 (m, 1 H), 2.47 (dt, J = 12.4, 7.6 Hz, 1H), 2.17 (ddd, J = 12.0, 6.8, 4.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.6, 147.8, 147.3, 136.9, 131.0, 129.0, 129.0, 128.5, 127.8, 126.6, 125.2, 123.6, 121.3, 119.0, 118.5, 117.4, 117.0, 113.3, 112.7, 109.0, 107.1, 86.5, 78.7, 52.4, 47.6, 37.1, 35.0, 32.5, 25.2 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₃₄H₃₅N₄ 499.2856; Found 499.2854.

8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-di-p-tolyl-2,3,8,8a-tetrahydrop yrrolo[2,3-b]indol-3a(1*H*)-amine (2b)

3.23 (m, 1 H), 3.08 – 3.03 (m, 1 H), 2.95 – 2.91 (m, 1 H), 2.72 – 2.66 (m, 1 H), 2.64 (s, 3 H), 2.62 – 2.57 (m, 1 H), 2.42 (dt, J = 12.4, 7.8 Hz, 1 H), 2.32 (s, 3 H), 2.26 (s, 3 H), 2.14 – 2.09 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.9, 145.2, 145.1, 136.9, 134.9, 131.2, 129.5, 129.1, 129.1 128.9, 127.9, 126.6, 126.1, 123.7, 121.3, 119.0, 118.5, 117.2, 113.5, 112.9, 109.0, 107.0, 86.8, 78.8, 52.5, 47.7, 37.2, 35.2, 32.5, 25.2, 21.0, 20.3 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₉N₄ 527.3169; Found 527.3168.

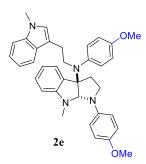
N,1-bis(4-ethylphenyl)-8-methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-2,3,8,8a-tetr ahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2c)



Light yellow oil, 9 h, 48.5 mg, 87% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2 H), 7.22 – 7.16 (m, 2 H), 7.14 (td, J = 7.8, 1.2 Hz, 1 H), 7.04 – 6.99 (m, 7 H), 6.72 – 6.67 (m, 2 H), 6.59 (d, J = 8.6 Hz, 2 H), 6.34 (d, J = 7.8 Hz, 1 H), 5.53 (s, 1 H), 3.67 (s, 3 H), 3.36 – 3.31 (m, 1 H), 3.29 – 3.23 (m, 1 H),

3.08 - 3.02 (m, 1 H), 2.95 - 2.91 (m, 1 H), 2.72 - 2.67 (m, 1 H), 2.64 (s, 3 H), 2.63 - 2.59 (m, 3 H), 2.56 (q, J = 7.6 Hz, 2 H), 2.43 (dt, J = 12.4, 7.8 Hz, 1 H), 2.13 (ddd, J = 12.2, 6.6, 4.2 Hz, 1 H), 1.22 (dt, J = 10.8, 7.6 Hz, 6 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.9, 145.4, 145.3, 141.2, 136.9, 132.7, 131.2, 128.9, 128.9, 128.3, 127.9,

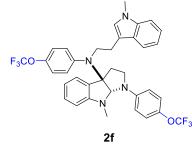
127.8, 126.6, 123.7, 121.3, 119.0, 118.5, 117.2, 113.5, 112.9, 109.0, 107.0, 86.8, 78.8, 52.4, 47.6, 37.2, 35.2, 32.5, 28.3, 27.8, 25.2, 15.9, 15.6 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₃₈H₄₃N₄ 555.3482; Found 555.3483.


8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-bis(4-propylphenyl)-2,3,8,8a-t etrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2d)

Light brown oil, 22 h, 32.2 mg, 55% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2 H), 7.21 – 7.16 (m, 2 H), 7.15 – 7.12 (m, 1 H), 7.03 – 6.97 (m, 7 H), 6.71 – 6.68 (m, 2 H), 6.58 (d, *J* = 8.4 Hz, 2 H), 6.34 (d, *J* = 7.8 Hz, 1H), 5.53 (s, 1H), 3.67 (s, 3H), 3.37 – 3.31 (m, 1 H), 3.29 – 3.23 (m, 1 H), 3.05 (q, *J* = 7.6 Hz, 1 H), 2.90 – 2.85 (m, 1 H), 2.72 – 2.67 (m, 1 H), 2.64 (s, 3H), 2.62

- 2.58 (m, 1 H), 2.57 – 2.52 (m, 2 H), 2.51 – 2.47 (m, 2 H), 2.43 (dt, J = 12.4, 7.6 Hz, 1 H), 2.14 (ddd, J = 11.8, 6.6, 4.4 Hz, 1 H), 1.65 – 1.57 (m, 4 H), 0.93 (td, J = 7.4, 2.8 Hz, 6 H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 151.8, 145.4, 145.3, 139.7, 136.8, 131.2, 131.1, 128.9, 128.9, 128.4, 127.9, 126.6, 123.6, 121.3, 119.0, 118.5, 117.3, 113.3, 112.9, 109.0, 107.1, 86.8, 78.8, 52.5, 47.7, 37.5, 37.2, 37.1, 35.2, 32.5, 25.2, 24.8, 24.5, 13.8, 13.8 ppm. **HRMS (ESI)** m/z: [M + H]⁺ Calcd for C₄₀H₄₇N₄ 583.3795; Found 583.3793.

N,1-bis(4-methoxyphenyl)-8-methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-2,3,8,8atetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2e)



Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1e** (0.2 mmol), CuBr₂ (0.03 mmol), **L1** (0.024 mmol), PhCl (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2e**. Yellow oil, 48 h, 25.5 mg, 45% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2 H), 7.21 – 7.16 (m, 2 H), 7.15 – 7.11

(m, 1 H), 7.06 - 7.00 (m, 3 H), 6.80 - 6.74 (m, 4 H), 6.72 - 6.67 (m, 2 H), 6.62 (d, J =

9.0 Hz, 2 H), 6.33 (d, J = 7.8 Hz, 1 H), 5.43 (s, 1 H), 3.79 (s, 3 H), 3.76 (s, 3 H), 3.69 (s, 3H), 3.34 – 3.28 (m, 1 H), 3.23 – 3.18 (m, 1 H), 3.04 (q, J = 8.4 Hz, 1 H), 2.89 – 2.83 (m, 1 H), 2.72 – 2.66 (m, 1 H), 2.63 – 2.56 (m, 4 H), 2.40 (dt, J = 12.2, 7.8 Hz, 1 H), 2.16 – 2.11 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 157.4, 152.0, 151.8, 141.7, 140.7, 136.9, 131.2, 130.7, 128.8, 127.9, 126.6, 123.6, 121.3, 119.0, 118.5, 117.2, 115.0, 114.6, 113.5, 112.9, 109.0, 107.0, 87.7, 79.0, 55.7, 55.4, 52.8, 47.9, 37.5, 35.4, 32.5, 25.2 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₃₆H₃₉O₂N₄ 559.3068; Found 559.3068.

8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-bis(4-(trifluoromethoxy)pheny l)-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2f)

Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1f** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2f**. Light oil, 17 h, 33.6

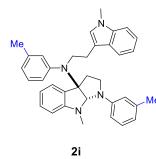
mg, 50% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2 H), 7.22 – 7.15 (m, 3 H), 7.10 – 7.02 (m, 7 H), 6.73 (t, J = 7.4 Hz, 1 H), 6.70 (s, 1 H), 6.54 (d, J = 9.2 Hz, 2 H), 6.37 (d, J = 7.8 Hz, 1H), 5.40 (s, 1 H), 3.68 (s, 3 H), 3.44 – 3.36 (m, 1 H), 3.31 – 3.24 (m, 1 H), 3.07 (q, J = 7.5 Hz, 1 H), 2.91 – 2.84 (m, 1 H), 2.75 – 2.66 (m, 1 H), 2.66 – 2.56 (m, 4 H), 2.44 (dt, J = 12.4, 7.7 Hz, 1 H), 2.20 (ddd, J = 12.0, 6.8, 4.4 Hz, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.5, 146.5, 146.4, 145.8, 140.3, 136.9, 130.1, 130.0, 129.3, 127.7, 126.7, 123.6, 122.2, 121.5, 121.0, 120.7(q, ¹ $_{J_{C-F}} = 254.0$ Hz), 120.4(q, ¹ $_{J_{C-F}} = 255.2$ Hz), 118.8, 118.6, 117.7, 113.5, 112.3, 109.2, 107.4, 86.9, 78.8, 52.3, 47.9, 36.9, 35.1, 32.5, 25.1 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -57.93, -58.39 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₃O₂N₄F₆ 667.2502; Found 667.2485.

8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-bis(4-(trifluoromethyl)phenyl) -2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2g)

Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on 1g (0.2 mmol), CuBr₂ (0.02 mmol), L1 (0.024 mmol), PhCl (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford 2g. Brown oil, 48 h, 26.3 mg, 41% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2 H), 7.42 (d, J = 8.4 Hz, 2 H), 7.29 – 7.24

(m, 2 H), 7.23 – 7.18 (m, 2 H), 7.17 – 7.11 (m, 3 H), 7.05 (t, J = 7.2 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1 H), 6.67 – 6.63 (m, 3 H), 6.42 (d, J = 7.8 Hz, 1 H), 5.57 (s, 1 H), 3.69 (s, 3 H), 3.56 – 3.49 (m, 1 H), 3.49 – 3.43 (m, 1 H), 3.22 – 3.13 (m, 2 H), 2.80 – 2.74 (m, 1 H), 2.70 (s, 3 H), 2.68 – 2.60 (m, 2 H), 2.22 (ddd, J = 12.6, 6.6, 4.2 Hz, 1 H) ppm. ¹³C **NMR** (150 MHz, CDCl₃) δ 151.2, 150.8, 149.4, 136.9, 129.8, 129.6, 129.2, 127.6, 126.7, 126.5, 125.7, 123.9, 121.6, 118.9, 118.8, 117.9, 113.0, 112.5, 111.9, 109.2, 107.3, 85.9, 78.3, 51.5, 47.5, 36.6, 34.7, 32.5, 25.0 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.05, -61.88 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₃₆H₃₃N₄F₆ 635.2604; Found 635.2597

N,1-bis(4-fluorophenyl)-8-methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-2,3,8,8a-te trahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2h)

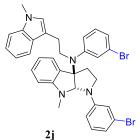


Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1h** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2h**. Brown oil, 17 h, 21.2 mg, 40% yield; ¹**H** NMR (600 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2 H), 7.21 – 7.12 (m, 3 H), 7.08 – 7.00 (m, 3 H), 6.94 – 6.87 (m, 4 H), 6.74 –

6.67 (m, 2 H), 6.57 – 6.52 (m, 2 H), 6.34 (d, *J* = 7.8 Hz, 1 H), 5.39 (s, 1 H), 3.69 (s, 3 H), 3.39 – 3.32 (m, 1 H), 3.26 – 3.20 (m, 1 H), 3.05 (q, *J* = 8.2 Hz, 1 H), 2.85 (td, *J* =

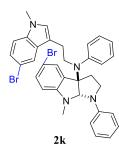
8.8, 8.2, 4.4 Hz, 1 H), 2.72 – 2.66 (m, 1 H), 2.62 – 2.54 (m, 4 H), 2.40 (dt, J = 12.4, 7.8 Hz, 1 H), 2.21 – 2.13 (m, 1 H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 160.6 (d, ¹ $J_{C-F} = 243.0$ Hz), 155.7 (d, ¹ $J_{C-F} = 235.6$ Hz), 151.8, 143.8(d, ⁴ $J_{C-F} = 3.0$ Hz), 143.6 (d, ⁴ $J_{C-F} = 1.6$ Hz), 136.9, 131.0 (d, ³ $J_{C-F} = 9.0$ Hz), 130.6, 129.1, 127.8, 126.6, 123.6, 121.4, 118.9, 118.6, 117.5, 115.4 (d, ² $J_{C-F} = 22.5$ Hz), 115.1 (d, ² $J_{C-F} = 22.5$ Hz), 114.4 (d, ³ $J_{C-F} = 6.0$ Hz), 112.5, 109.1, 107.3, 87.4, 79.0, 52.7, 48.0, 37.2, 35.3, 32.5, 25.1 ppm. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -116.53, -128.01 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₃₄H₃₃N₄F₂ 535.2668; Found 535.2666.

8-Methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-N,1-di-m-tolyl-2,3,8,8a-tetrahydro pyrrolo[2,3-b]indol-3a(1*H*)-amine (2i)



Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1i** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2i**. Light yellow oil, 27 h, 20.1 mg, 38% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 – 7.21 (m, 3 H),

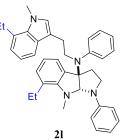
7.19 – 7.06 (m, 4 H), 7.02 – 6.96 (m, 2 H), 6.94 (d, J = 7.6 Hz, 1 H), 6.86 (s, 1 H), 6.72 (t, J = 7.2 Hz, 1 H), 6.69 (s, 1 H), 6.55 (d, J = 7.4 Hz, 1 H), 6.49 (d, J = 8.6 Hz, 1H), 6.46 (s, 1 H), 6.36 (d, J = 7.8 Hz, 1 H), 5.63 (s, 1 H), 3.67 (s, 3 H), 3.37 – 3.29 (m, 1H), 3.29 – 3.19 (m, 1 H), 3.07 (q, J = 7.2 Hz, 1 H), 2.75 – 2.66 (m, 5 H), 2.65 – 2.58 (m, 1 H), 2.47 – 2.40 (m, 1 H), 2.29 (s, 3 H), 2.20 – 2.13 (m, 1 H), 2.09 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.1, 147.6, 147.4, 138.7, 138.2, 136.8, 131.5, 129.5, 128.9, 128.8, 128.0, 127.8, 126.5, 126.5, 126.1, 123.3, 121.3, 119.0, 118.5, 117.8, 117.4, 113.7, 112.8, 110.2, 109.0, 106.9, 86.4, 78.7, 52.7, 47.9, 37.0, 34.7, 32.5, 25.2, 21.8, 21.1 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₉N₄ 527.3169; Found 527.3156.


N,1-bis(3-bromophenyl)-8-methyl-N-(2-(1-methyl-1H-indol-3-yl)ethyl)-2,3,8,8a-te trahydropyrrolo[2,3-b]indol-3a(1H)-amine (2j)

Following the general procedure for 3a-tryptamine-pyrroloindolines.

The procedure was performed on **1**j (0.2 mmol), CuBr₂ (0.02 mmol), L4 (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2j**. Light yellow oil, 39 h, 38.4 mg, 58% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 3 H), 7.25 -7.17 (m, 4 H), 7.13 (t, J = 7.8 Hz, 1 H), 7.06 (t, J = 7.8 Hz, 3 H), 6.87 (d, J = 8.0 Hz, 1 H), 6.81 (s, 1 H), 6.76 (t, J = 7.4 Hz, 1 H), 6.72 (s, 1 H), 6.59 (d, J = 8.2 Hz, 1 H), 6.41 (d, J = 7.8 Hz, 1 H), 5.49 (s, 1 H), 3.73 (s, 3 H), 3.44 – 3.37 (m, 1 H), 3.34 – 3.28 (m, 1 H), 3.10 (q, J = 7.8 Hz, 1 H), 2.95 – 2.90 (m, 1 H), 2.78 – 2.63 (m, 5 H), 2.52 – 2.46 (m, 1 H), 2.25 – 2.18 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 151.3, 149.3, 148.3, 136.9, 131.5, 130.3, 130.2, 129.7, 129.3, 128.1, 127.7, 127.1, 126.7, 123.5, 123.4, 122.1, 121.5, 120.1, 118.8, 118.7, 117.8, 116.1, 112.2, 111.9, 109.2, 107.3, 86.4,78.7, 52.2, 47.7, 36.7, 35.0, 32.5, 25.1 ppm. **HRMS (ESI)** m/z: $[M + H]^+$ Calcd for C₃₄H₃₃N₄Br₂ 655.1066; Found 655.1079.

5-Bromo-N-(2-(5-bromo-1-methyl-1*H*-indol-3-yl)ethyl)-8-methyl-N,1-diphenyl-2, **3,8,8a-tetrahydropyrrolo**[**2,3-b**]indol-**3a**(**1***H*)-amine (**2**k)



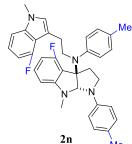
Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on 1k (0.2 mmol), CuBr₂ (0.03 mmol), L1 (0.024 mmol), PhCl (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2k**. Light yellow oil, 17 h, 40.8 mg, 62% yield; ¹H **NMR** (600 MHz, CDCl₃) δ 7.38 (d, J = 1.9 Hz, 1 H), 7.28 – 7.16 (m,

8 H), 7.15 – 7.09 (m, 3 H), 6.73 (t, *J* = 7.4 Hz, 1 H), 6.71 (s, 1 H), 6.63 (d, *J* = 8.0 Hz, 2 H), 6.24 (d, *J* = 8.2 Hz, 1 H), 5.58 (s, 1 H), 3.68 (s, 3 H), 3.28 (t, *J* = 7.4 Hz, 2 H), 3.10 - 3.02 (m, 1 H), 2.90 - 2.84 (m, 1 H), 2.67 (s, 3 H), 2.66 - 2.59 (m, 1 H), 2.59 -2.52 (m, 1 H), 2.38 (dt, *J* = 12.6, 7.6 Hz, 1 H), 2.06 (ddd, *J* = 11.4, 6.4, 4.4 Hz, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 150.4, 147.1, 147.0, 135.5, 133.2, 131.8, 129.2,

129.1, 128.6, 127.9, 126.9, 126.4, 125.7, 124.2, 121.4, 117.3, 113.2, 112.3, 112.1, 110.7, 108.8, 108.3, 86.3, 78.5, 52.1, 47.5, 37.0, 34.6, 32.7, 24.7 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₃₄H₃₃N₄Br₂ 655.1066; Found 655.1070.

7-Ethyl-N-(2-(7-ethyl-1-methyl-1*H*-indol-3-yl)ethyl)-8-methyl-N,1-diphenyl-2,3,8, 8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2l)

Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1l** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2l**. Light yellow oil, 19 h, 24.7 mg, 44% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2 H), 7.22


- 7.17 (m, 2 H), 7.15 – 7.11 (m, 2 H), 7.06 – 7.02 (m, 3 H), 6.99 (d, J = 7.6 Hz, 1 H), 6.94 (d, J = 4.8 Hz, 2 H), 6.82 (t, J = 7.6 Hz, 1 H), 6.70 (t, J = 7.4 Hz, 1 H), 6.64 (s, 1 H), 6.61 (d, J = 8.0 Hz, 2 H), 5.20 (s, 1 H), 3.93 (s, 3 H), 3.49 – 3.42 (m, 1 H), 3.40 – 3.30 (m, 1 H), 3.29 (t, J = 8.4 Hz, 1 H), 3.07 (q, J = 7.4 Hz, 2 H), 2.90 (td, J = 10.0, 9.4, 5.8 Hz, 1 H), 2.72 – 2.65 (m, 1 H), 2.61 – 2.53 (m, 2 H), 2.50 – 2.44 (m, 4 H), 2.44 – 2.36 (m, 1 H), 2.33 (dd, J = 12.0, 4.8 Hz, 1 H), 1.33 (t, J = 7.4 Hz, 3 H), 1.01 (t, J = 7.4 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 152.1, 148.5, 146.6, 134.9, 132.6, 129.6, 129.4, 129.2, 128.8, 128.7, 128.6, 128.5, 127.7, 125.4, 122.3, 121.9, 120.4, 119.0, 116.9, 116.6, 114.0, 112.6, 89.7, 78.7, 52.0, 46.4, 40.9, 36.4, 35.8, 25.4, 25.1, 24.7, 16.7, 13.8 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₈H₄₃N₄ 555.3482; Found 555.3482.

5-Fluoro-N-(2-(5-fluoro-1-methyl-1*H*-indol-3-yl)ethyl)-8-methyl-N,1-di-p-tolyl-2, 3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2m)

Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1m** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2m**. Light yellow oil, 24 h, 31.6 mg, 56% yield; ¹**H** NMR (600 MHz, CDCl₃) δ 7.15 (dd, J = 8.7, 4.2 Hz, 1 H), 7.07 – 6.97 (m, 6 H), 6.95 – 6.88 (m, 2 H), 6.87 (dd, J = 8.4, 2.8 Hz, 1 H), 6.82 (td, J = 8.8, 2.8 Hz, 1 H), 6.74 (s, 1 H), 6.57 (d, J = 8.4 Hz, 2 H), 6.24 (dd, J = 8.5, 4.1 Hz, 1 H), 5.53 (s, 1 H), 3.68 (s, 3 H), 3.24 (t, J = 7.4 Hz, 2 H), 3.03 (q, J = 7.4 Hz, 1 H), 2.92 – 2.85 (m, 1 H), 2.65 – 2.58 (m, 4 H), 2.58 – 2.51 (m, 1 H), 2.39 – 2.31 (m, 4 H), 2.26 (s, 3 H), 2.11 – 2.03 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 157.4 (d, ¹ $J_{C-F} = 232.4$ Hz), 156.3 (d, ¹ $J_{C-F} = 234.0$ Hz), 148.0, 144.9, 144.6, 135.4, 133.5, 132.7 (d, ³ $J_{C-F} = 6.0$ Hz), 129.6, 129.2, 129.2, 128.3, 128.0 (d, ³ $J_{C-F} = 10.5$ Hz), 126.3, 115.4 (d, ² $J_{C-F} = 24.0$ Hz), 113.5, 112.7 (d, ⁴ $J_{C-F} = 4.6$ Hz), 110.8 (d, ² $J_{C-F} = 22.6$ Hz), 109.7 (d, ⁴ $J_{C-F} = 3.0$ Hz), 109.6 (d, ² $J_{C-F} = 15.0$ Hz), 107.5 (d, ³ $J_{C-F} = 7.4$ Hz), 103.7 (d, ² $J_{C-F} = 22.6$ Hz), 87.3,78.6, 52.3, 47.6, 37.0, 35.9, 32.8, 25.0, 21.0, 20.3 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -125.91, -127.38. ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₇N₄F₂ 563.2981; Found 563.2977.

4-Fluoro-N-(2-(4-fluoro-1-methyl-1*H*-indol-3-yl)ethyl)-8-methyl-N,1-di-p-tolyl-2, 3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2n)

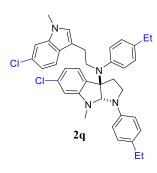
Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1n** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2n**. Light yellow oil, 22 h, 34.1 mg, 60% yield; **¹H NMR** (600 MHz, CDCl₃) δ 7.09 – 7.04 (m, 1 H), 7.04 – 6.96 (m, 8

H), 6.71 - 6.63 (m, 2 H), 6.58 (d, J = 8.2 Hz, 2 H), 6.30 (t, J = 8.8 Hz, 1 H), 6.01 (d, J = 7.8 Hz, 1 H), 5.42 (s, 1 H), 3.66 (s, 3 H), 3.55 - 3.48 (m, 1 H), 3.40 - 3.33 (m, 1 H), 3.28 - 3.22 (m, 1 H), 3.14 - 3.07 (m, 1 H), 2.79 - 2.72 (m, 1 H), 2.72 - 2.65 (m, 1 H), 2.52 (s, 3 H), 2.47 - 2.39 (m, 2 H), 2.29 (s, 3 H), 2.24 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 159.4 (d, ${}^{1}J_{C-F} = 224.6$ Hz), 157.2 (d, ${}^{1}J_{C-F} = 246.0$ Hz), 154.9 (d, ${}^{3}J_{C-F} = 9$ Hz), 145.1, 144.8, 139.8 (d, ${}^{2}J_{C-F} = 12.0$ Hz), 134.6, 130.6, 130.5 (d, ${}^{3}J_{C-F} = 9$ Hz), 129.0, 128.6, 127.1, 126.4, 121.6 (d, ${}^{3}J_{C-F} = 6$ Hz), 116.4 (d, ${}^{2}J_{C-F} = 19.6$ Hz), 115.4 (d, ${}^{2}J_{C-F} = 18.0$ Hz), 114.0, 111.7 (d, ${}^{3}J_{C-F} = 7.5$ Hz), 105.2 (d, ${}^{4}J_{C-F} = 4.6$ Hz),

104.6 (d, ${}^{3}J_{C-F} = 7.6 \text{ Hz}$), 103.8 (d, ${}^{2}J_{C-F} = 19.5 \text{ Hz}$), 103.0 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$), 87.3, 78.8, 52.6, 47.8, 35.4, 32.8, 26.3, 20.9, 20.3 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -116.38, -123.25 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₃₆H₃₇N₄F₂ 563.2981; Found 563.2985.

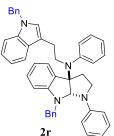
N,1-bis(4-ethylphenyl)-4-fluoro-N-(2-(4-fluoro-1-methyl-1*H*-indol-3-yl)ethyl)-8-m ethyl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (20)

Following the general procedure for 3a-tryptamine-pyrroloindolines. Ft The procedure was performed on **1o** (0.2 mmol), CuBr₂ (0.03 mmol), L1 (0.024 mmol), PhCl (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **20**. Light yellow oil, 48 h, 17.5 mg, 30 % yield; ¹H 20 **NMR** (600 MHz, CDCl₃) δ 7.12 – 6.97 (m, 9 H), 6.73 – 6.67 (m, 2 H), 6.62 (d, J = 8.0 Hz, 2 H), 6.33 (t, J = 8.8 Hz, 1 H), 6.04 (d, J = 7.8 Hz, 1 H), 5.44 (s, 1 H), 3.69 (s, 3 H), 3.59 – 3.49 (m, 1 H), 3.43 – 3.35 (m, 1 H), 3.32 – 3.24 (m, 1 H), 3.13 (q, J = 8.2 Hz, 1 H), 2.82 – 2.74 (m, 1 H), 2.75 – 2.68 (m, 1 H), 2.61 (q, J = 7.6 Hz, 2 H), 2.57 (q, J = 7.8 Hz, 2 H), 2.53 (s, 3 H), 2.49 – 2.43 (m, 2 H), 1.26 – 1.18 (m, 6 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 159.4 (d, ¹J_{C-F} = 244.6 Hz), 157.2 (d, ¹J_{C-F}) = 244.6 Hz), 155.0, 145.3, 145.0, 140.9, 139.8 (d, ${}^{2}J_{C-F}$ = 12.0 Hz), 133.0, 130.5 (d, ${}^{3}J_{C-F} = 9.0 \text{ Hz}$, 128.5, 128.3, 127.7, 127.1, 121.6 (d, ${}^{3}J_{C-F} = 7.6 \text{ Hz}$), 116.5 (d, ${}^{2}J_{C-F} = 7.6 \text{ Hz}$) 21 Hz), 115.5 (d, ${}^{2}J_{C-F} = 18.0$ Hz), 113.8, 111.7, 105.2 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 104.6 (d, ${}^{2}J_{C-F} = 22.6$ Hz), 103.8 (d, ${}^{2}J_{C-F} = 19.5$ Hz), 103.0, 87.2, 78.9, 52.6, 47.8, 35.4, 35.3, 32.8, 28.3, 27.8, 26.3, 15.9, 15.5, ¹⁹F NMR (565 MHz, CDCl₃) δ -116.47, -123.28 ppm. **HRMS (ESI)** m/z: $[M + H]^+$ Calcd for C₃₈H₄₁N₄F₂ 591.3294; Found 591.3298.


N-(2-(1,5-dimethyl-1*H*-indol-3-yl)ethyl)-N,1-bis(4-ethylphenyl)-5,8-dimethyl-2,3, 8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2p)

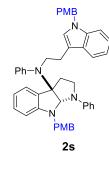
Followingthegeneralprocedurefor3a-tryptamine-pyrroloindolines. The procedure was performed on $1p(0.2 \text{ mmol}), \text{CuBr}_2$ (0.02 mmol), L4 (0.024 mmol), Mesitylene

(2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2p**. Brown oil, 26 h, 36.0 mg, 62% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.12 (d, *J* = 8.8 Hz, 1 H), 7.06 – 6.98 (m, 9 H), 6.96 (d, *J* = 7.8 Hz, 1 H), 6.65 (s, 1 H), 6.59 (d, *J* = 8.6 Hz, 2 H), 6.28 (d, *J* = 7.8 Hz, 1 H), 5.53 (s, 1 H), 3.64 (s, 3 H), 3.38 – 3.30 (m, 1 H), 3.25 – 3.18 (m, 1 H), 3.08 – 3.01 (m, 1 H), 2.88 – 2.82 (m, 1 H), 2.72 – 2.63 (m, 4 H), 2.63 – 2.57 (m, 3 H), 2.57 – 2.53 (m, 2 H), 2.47 – 2.40 (m, 1 H), 2.39 (s, 3 H), 2.29 (s, 3 H), 2.15 – 2.09 (m, 1 H), 1.22 (dt, *J* = 12.8, 7.6 Hz, 6 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 149.8, 145.4, 145.4, 141.1, 135.3, 132.6, 131.7, 129.3, 129.0, 128.3, 128.1, 127.8, 127.6, 126.7, 126.6, 124.3, 122.9, 118.7, 113.4, 112.2, 108.7, 107.2, 87.2, 78.9, 52.6, 47.6, 37.0, 35.8, 32.5, 28.3, 27.8, 25.4, 21.3, 20.9, 15.9, 15.6 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₄₀H₄₇N₄ 583.3795; Found 583.3790.


6-Chloro-N-(2-(6-chloro-1-methyl-1*H*-indol-3-yl)ethyl)-N,1-bis(4-ethylphenyl)-8methyl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1*H*)-amine (2q)

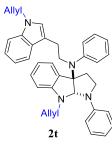
Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1q** (0.2 mmol), CuBr₂ (0.03 mmol), **L1** (0.024 mmol), PhCl (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2q**. Light yellow oil, 5 h, 22.6 mg, 36% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 – 7.24 (m, 1 H), 7.14 (d,

J = 8.4 Hz, 1 H), 7.07 – 6.98 (m, 8 H), 6.68 (s, 1 H), 6.61 (dd, J = 7.8, 1.8 Hz, 1 H), 6.56 (d, J = 8.6 Hz, 2 H), 6.28 (d, J = 1.8 Hz, 1 H), 5.52 (s, 1 H), 3.64 (s, 3 H), 3.27 – 3.19 (m, 2 H), 3.05 – 2.99 (m, 1 H), 2.95 – 2.90 (m, 1 H), 2.66 – 2.59 (m, 6 H), 2.56 (q, J = 7.4 Hz, 3 H), 2.36 (dt, J = 12.4, 7.8 Hz, 1 H), 2.05 – 1.99 (m, 1 H), 1.22 (dt, J = 13.4, 7.6 Hz, 6 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 152.8, 145.0, 144.9, 141.6, 137.3, 134.6, 133.2, 129.6, 129.0, 128.4, 127.9, 127.5, 127.3, 126.4, 124.4, 119.8, 119.2, 116.7, 113.5, 113.1, 109.1, 106.7, 86.6, 78.4, 52.1, 47.6 37.2, 34.4, 32.6, 28.3, 27.8, 24.9, 15.9, 15.6 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₈H₄₁N₄Cl₂ 623.2703; Found 623.2697.


8-Benzyl-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N,1-diphenyl-2,3,8,8a-tetrahydropy rrolo[2,3-b]indol-3a(1H)-amine (2r)

Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on 1r (0.2 mmol), CuBr₂ (0.02 mmol), L4 (0.024 mmol), Mesitylene (2.0 mL), ZnI_2 (0.03 mmol), $NH_4H_2PO_4$ (0.02 mmol) to afford 2r. Yellow oil, 70 h, 34.1 mg, 52% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.22 (m, 5 H), 7.22 – 7.17 (m, 3 H), 7.17 – 7.12 (m, 2 H), 7.12 – 7.08 (m, 2 H), 7.06 (s, 5 H), 7.04 – 6.97 (m, 4 H), 6.91 (d, J = 7.6 Hz, 2 H), 6.75 (s, 1 H), 6.69 (t, J = 7.6 Hz, 1 H), 6.64 (t, J = 7.4 Hz, 1 H), 6.54 (d, J = 8.0 Hz, 2 H), 6.23 (d, J = 7.8Hz, 1 H), 5.88 (s, 1 H), 5.20 (s, 2 H), 4.37 (d, J = 17.0 Hz, 1 H), 4.11 (d, J = 16.8 Hz, 1 H), 3.51 – 3.43 (m, 1 H), 3.37 – 3.28 (m, 1 H), 3.16 (q, J = 7.8 Hz, 1 H, 3.06 – 2.99

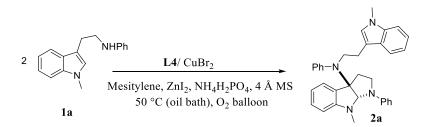
(m, 1H), 2.78 – 2.69 (m, 1 H), 2.68 – 2.58 (m, 1 H), 2.51 – 2.42 (m, 1 H), 2.26 – 2.18 (m, 1 H) ppm. 13 C NMR (150 MHz, CDCl₃) δ 151.2, 147.9, 147.4, 138.8, 137.8, 136.6, 130.7, 129.2, 129.0, 129.0, 128.7, 128.6, 128.2, 128.1, 127.5, 126.8, 126.7, 126.5, 125.9, 125.4, 123.9, 121.5, 119.1, 118.8, 117.2, 117.2, 113.4, 113.3, 109.5, 106.5, 84.4, 79.2, 52.5, 50.0, 49.8, 47.5, 38.0, 25.4 ppm. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₄₆H₄₃N₄ 651.3482; Found 651.3475


8-(4-Methoxybenzyl)-N-(2-(1-(4-methoxybenzyl)-1H-indol-3-yl)ethyl)-N,1-diphen yl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1H)-amine (2s)

Following the procedure general for 3a-tryptamine-pyrroloindolines. The procedure was performed on 1s (0.2 mmol), CuBr₂ (0.02 mmol), L4 (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2s**. Brown oil, 24 h, 42.6 mg, 60% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, J = 7.4 Hz, 1 H), 7.24 –7.17(m, 4 H),

7.16 – 7.12 (m, 2 H), 7.12 – 7.04 (m, 5 H), 7.02 – 6.94 (m, 3 H), 6.83 (d, J = 8.2 Hz, 2 H), 6.78 (d, J = 8.6 Hz, 2 H), 6.73 (s, 1H), 6.69 (t, J = 7.2 Hz, 1 H), 6.66 (t, J = 7.4 Hz, 1 H), 6.55 (t, J = 7.6 Hz, 4 H), 6.26 (d, J = 7.8 Hz, 1 H), 5.87 (s, 1 H), 5.13 (s, 2 H), 4.34 (d, J = 16.6 Hz, 1 H), 4.04 (d, J = 16.6 Hz, 1 H), 3.73 (s, 3 H), 3.66 (s, 3 H), 3.52 – 3.39 (m, 1 H), 3.33 – 3.22 (m, 1 H), 3.15 (q, J = 8.1 Hz, 1 H), 3.04 – 2.95 (m, 1 H), 2.77 – 2.66 (m, 1 H), 2.65 – 2.54 (m, 1 H), 2.51 – 2.41 (m, 1 H), 2.24 – 2.14 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 158.2, 151.2, 147.9, 147.4, 136.5, 130.8, 130.7, 129.7, 129.2, 129.0, 129.0, 128.6, 128.1, 127.8, 125.8, 125.3, 123.8, 121.4, 119.1, 118.8, 117.2, 117.1, 114.0, 113.6, 113.4, 113.2, 109.5, 106.5, 84.2, 79.2, 55.2, 55.1, 52.6, 49.3, 49.2, 47.4, 38.0, 25.4 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₄₈H₄₇O₂N₄ 711.3694; Found 711.3672.

8-Allyl-N-(2-(1-allyl-1*H*-indol-3-yl)ethyl)-N,1-diphenyl-2,3,8,8a-tetrahydropyrrol o[2,3-b]indol-3a(1*H*)-amine (2t)



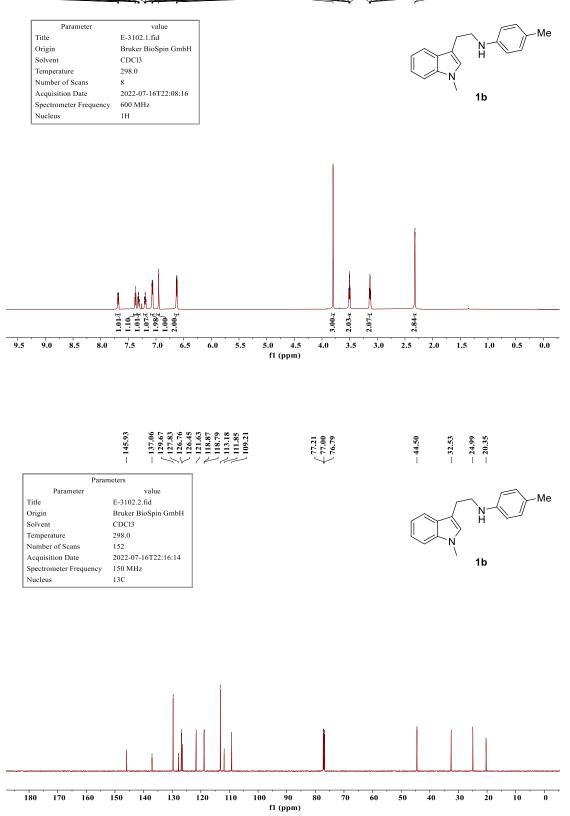
Following the general procedure for 3a-tryptamine-pyrroloindolines. The procedure was performed on **1t** (0.2 mmol), CuBr₂ (0.02 mmol), **L4** (0.024 mmol), Mesitylene (2.0 mL), ZnI₂ (0.03 mmol), NH₄H₂PO₄ (0.02 mmol) to afford **2t**. Light yellow oil, 75 h, 18.5 mg, 33% yield; ¹H

NMR (600 MHz, CDCl₃) δ 7.28 – 7.09 (m, 12 H), 7.01 (t, J = 7.6 Hz, 1 H), 6.78 – 6.61 (m, 5 H), 6.34 (d, J = 7.8 Hz, 1 H), 5.97 – 5.90 (m, 1 H), 5.84 (s, 1 H), 5.53 – 5.45 (m, 1 H), 5.17 – 5.13 (m, 1 H), 5.08 – 4.94 (m, 3 H), 4.61 (d, J = 5.4 Hz, 2 H), 3.80 – 3.74 (m, 1 H), 3.55 (dd, J = 17.2, 6.4 Hz, 1 H), 3.46 – 3.39 (m, 1 H), 3.37 – 3.30 (m, 1 H), 3.14 – 3.08 (m, 1 H), 2.94 – 2.88 (m, 1 H), 2.77 – 2.70 (m, 1 H), 2.66 – 2.60 (m, 1 H), 2.48 (dt, J = 12.6, 7.6 Hz, 1H), 2.23 – 2.16 (m, 1 H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 150.4, 147.9, 147.4, 136.3, 134.1, 133.7, 131.0, 129.1, 129.0, 128.9, 128.5, 128.1, 125.5, 125.3, 123.7, 121.4, 119.0, 118.7, 117.3, 117.1, 117.1, 116.2, 113.5, 113.1, 109.4, 106.7, 84.5, 79.0, 52.5, 49.1, 48.6, 47.4, 37.8, 25.3 ppm.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₈H₃₉N₄ 551.3169; Found 551.3166.

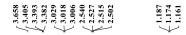
6 Scale-up experiments

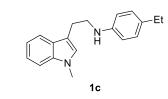
Procedure: A mixture of **1a** (250.3 mg, 1.0 mmol), $CuBr_2$ (22.3 mg, 0.1 mmol), **L4** (58.4 mg, 0.12 mmol), ZnI_2 (47.9 mg, 0.15 mmol), $NH_4H_2PO_4$ (11.5 mg, 0.1 mmol) and 4ÅMS (1.0 g) in Mesitylene (10 mL) was stirred at 50 °C under O₂ balloon. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (Petroleum ether/Ethyl acetate = 60/1) to afford the product **2a** (14 h, 161.9 mg, 65%).

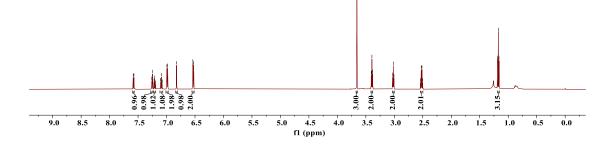

7 References

- [1] W.-D. Li, J. Chen, D.-Y. Zhu and J.-B. Xia, Chin. J. Chem, 2020, 39, 614-620.
- [2] L. Serusi, M. Bonnans, A. Luridiana, F. Secci, P. Caboni, T. Boddaert, D.-J.

Aitken and A. Frongia, Adv. Synth. Catal, 2019, 361, 1908-1912.

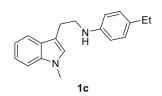

8 ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of compounds

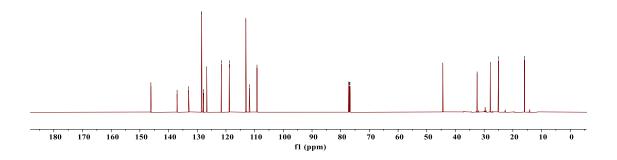

7,694 7,7589 7,6576 7,757 7,757 7,751 7,75



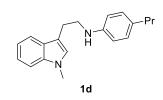
S-40

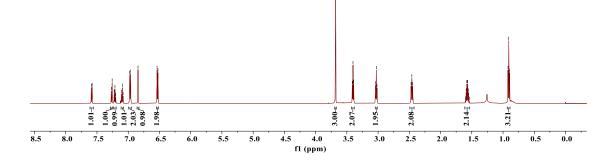
Parameters	
Parameter	value
Title	E-3188.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-07-13T22:37:14
Spectrometer Frequency	600 MHz
Nucleus	1H




146.16	137.03 133.03 128.46 127.82 126.71 121.60 118.84 118.77 113.07 111.84 119.18
Ι	$\langle \langle \rangle \rangle $

Parameters		
Parameter value		
Title	E-3188.2.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDCl3	
Temperature	298.0	
Number of Scans	204	
Acquisition Date	2022-07-13T22:47:40	
Spectrometer Frequency	150 MHz	
Nucleus	13C	

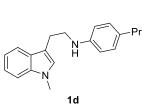


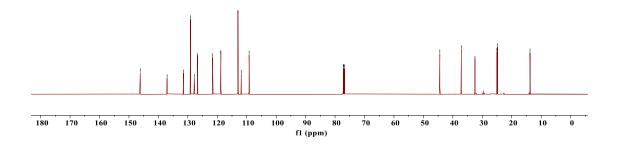


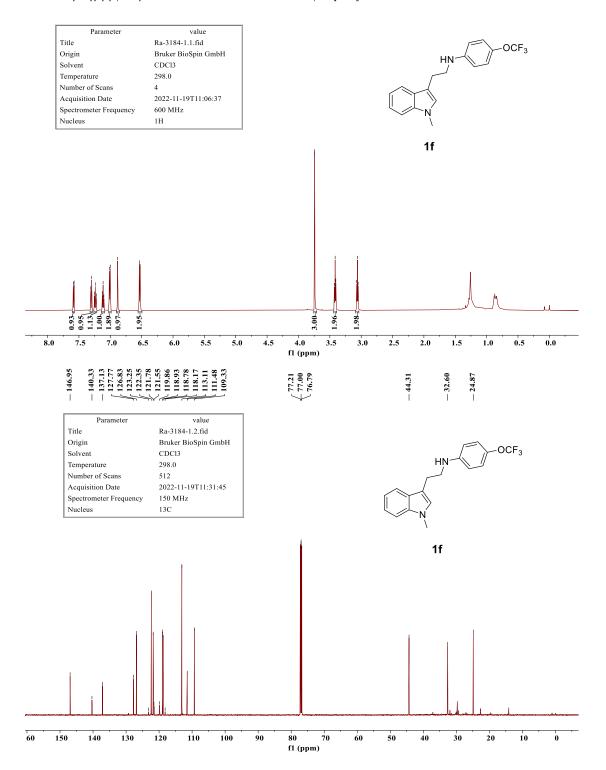
$\langle 7.591 \\ 7.577 \\ 7.577 \\ 7.577 \\ 7.271 \\ 7.257 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.225 \\ 7.204 \\ 7.204 \\ 7.204 \\ 7.204 \\ 7.204 \\ 7.204 \\ 7.204 \\ 7.205 \\ 7.204 \\ 7.204 \\ 7.205 \\ 7.204 \\ 7.205 \\ 7.$

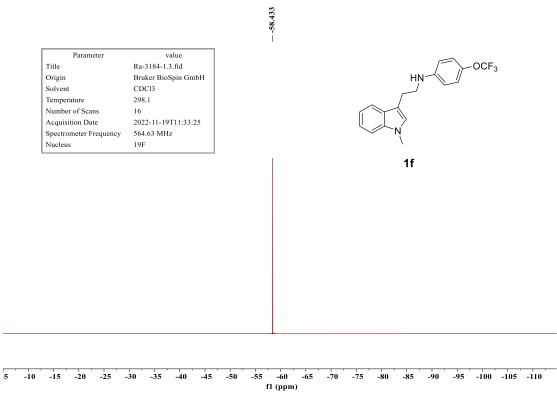
Parameters	
Parameter	value
Title	E-3185.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCl3
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-07-14T10:01:02
Spectrometer Frequency	600 MHz
Nucleus	1H

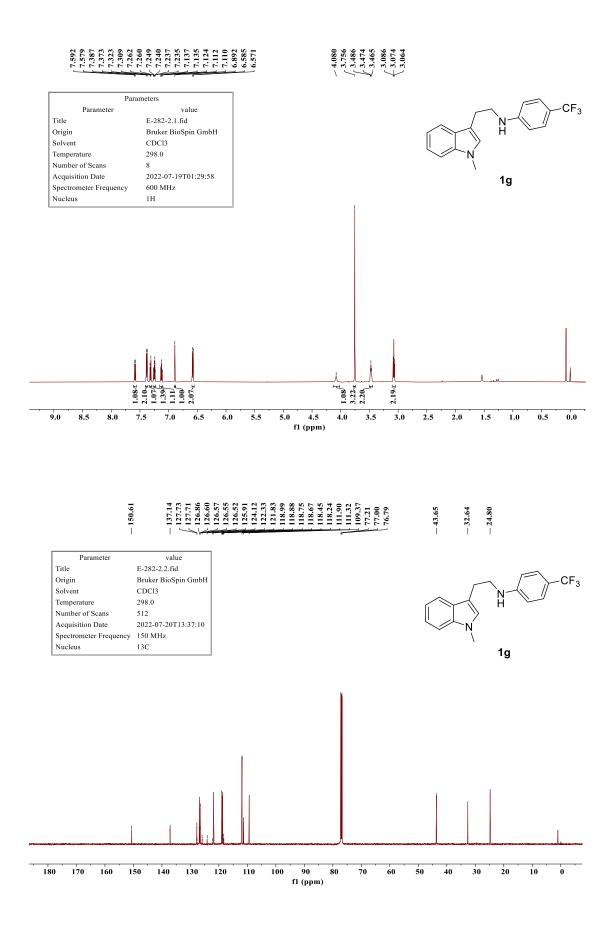
$\begin{array}{c} 3.680\\ 3.3413\\ 3.3403\\ 3.3402\\ 3.3020\\ 3.3020\\ 3.3020\\ 3.3020\\ 3.3020\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.578\\ 1.568\\ 1.569\\ 1.568\\ 0.920\\ 0.920\\ 0.986\end{array}$

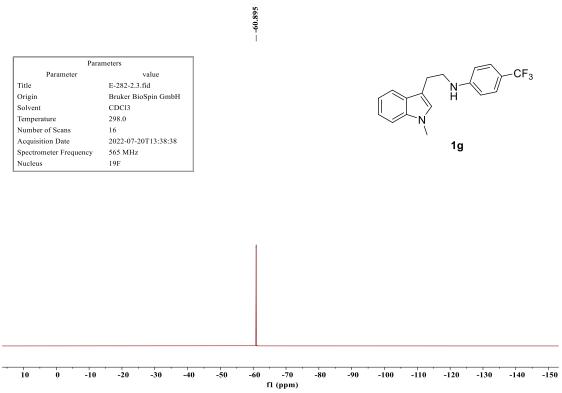



146.16	137.04 131.47 129.09 127.83 126.72 121.61 118.86 118.86 118.78 111.86 111.86
1	ノーチシニ ノイ てて

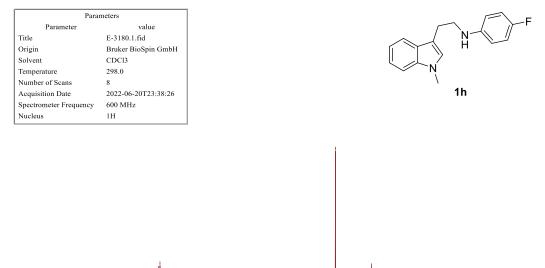


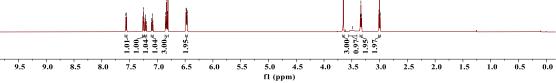

Parameters	
Parameter value	
Title	E-3185.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	364
Acquisition Date	2022-07-14T10:19:16
Spectrometer Frequency	150 MHz
Nucleus	13C

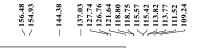


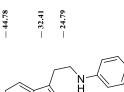


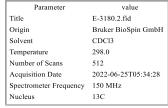
3.741 3.427 3.415 3.404 3.071 3.071 3.049

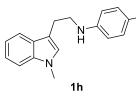


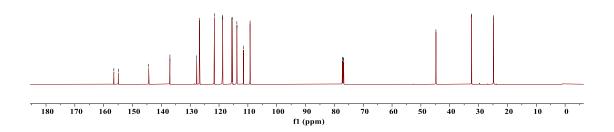


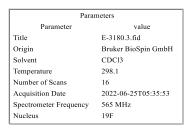


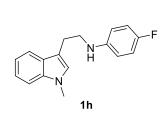

3.651 3.484 3.3484 3.348 3.336 3.336 3.336 3.011 3.000 2.988

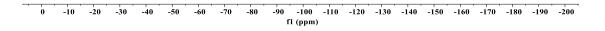


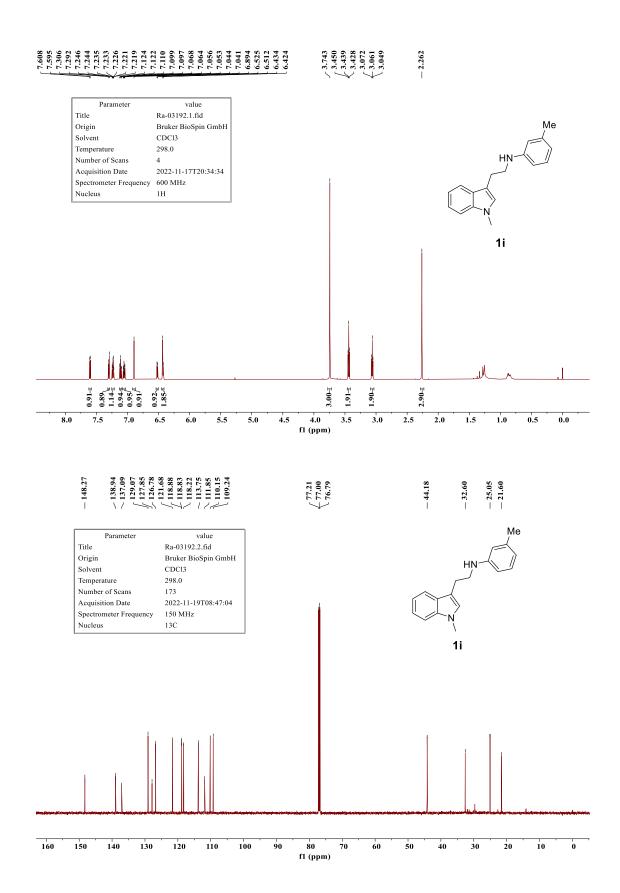


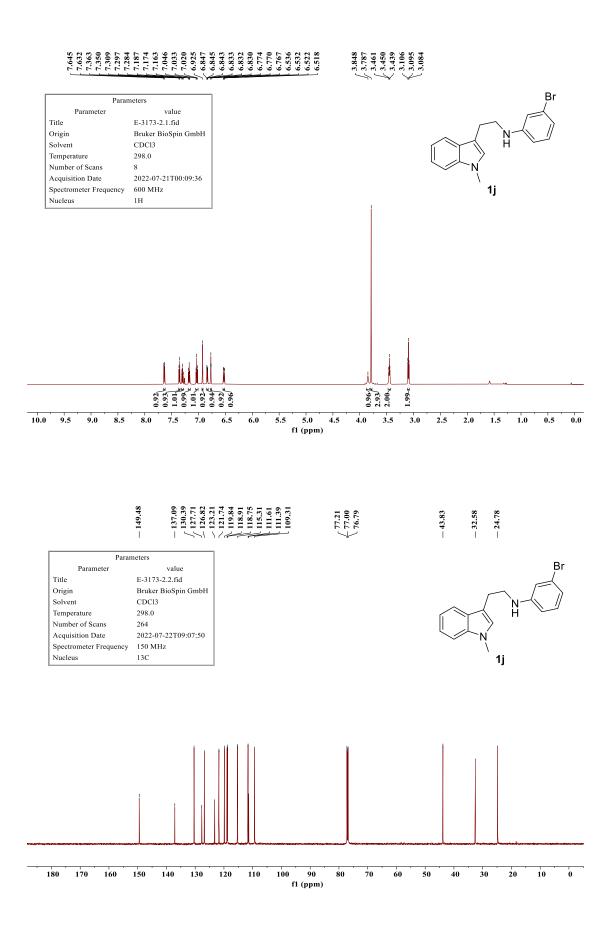


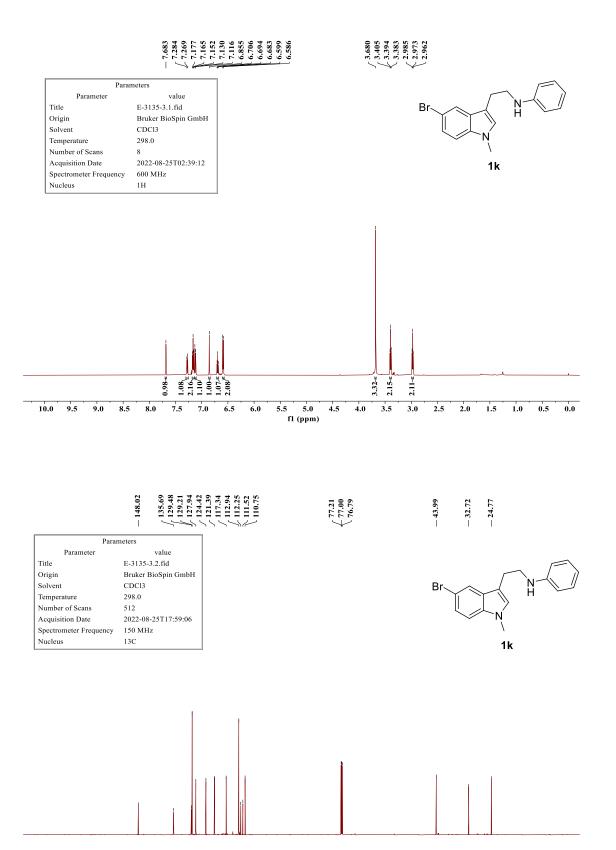


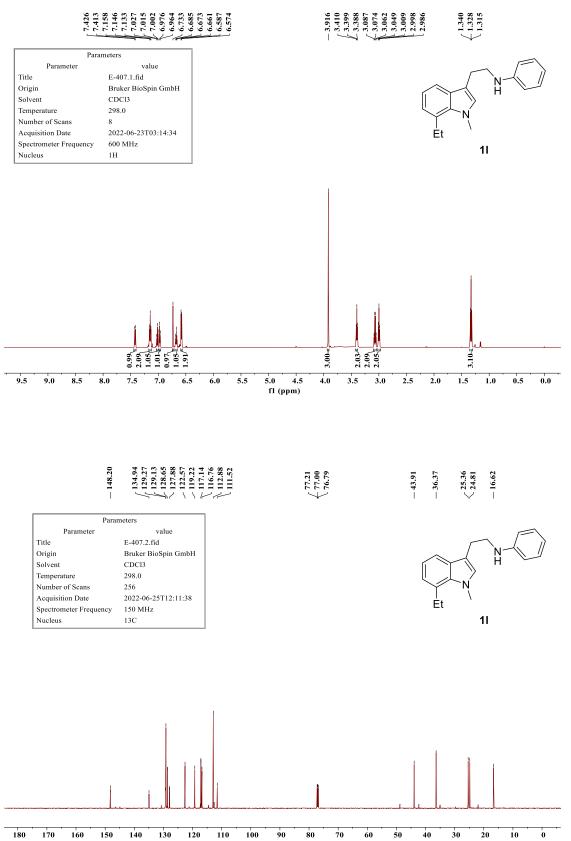




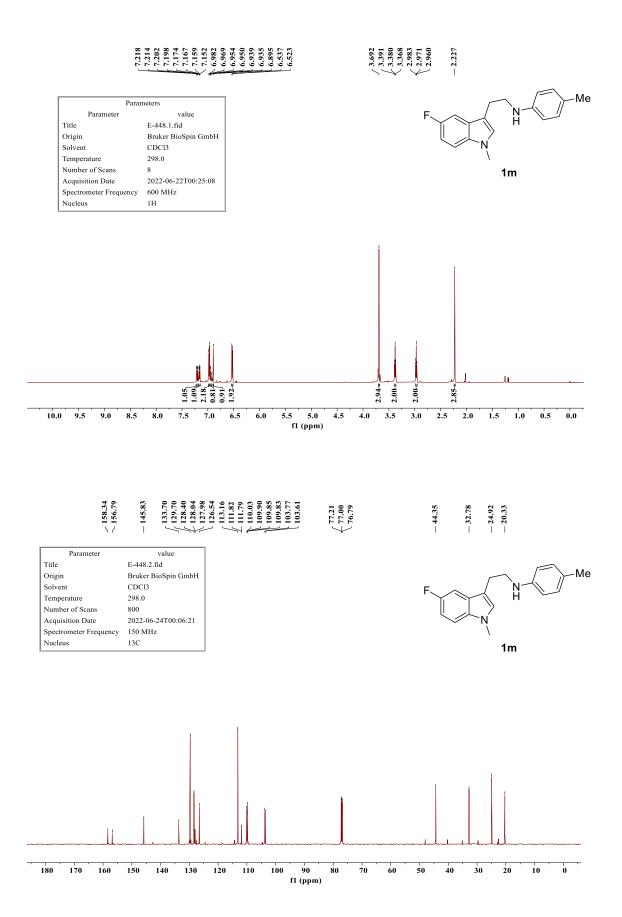




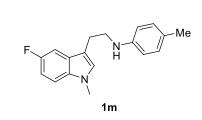


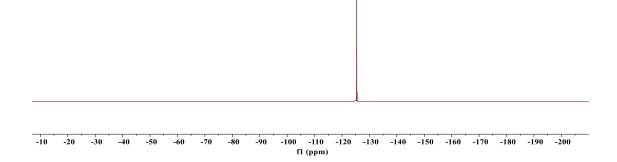


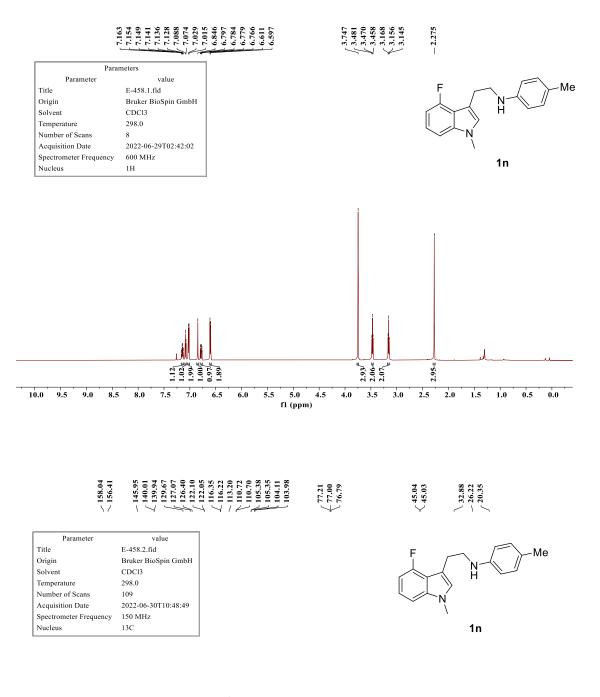
S-49

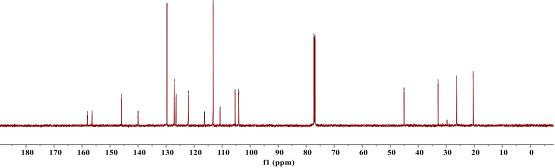


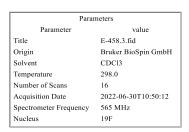
f1 (ppm)



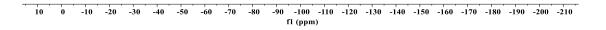

f1 (ppm)

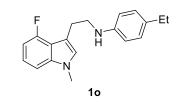


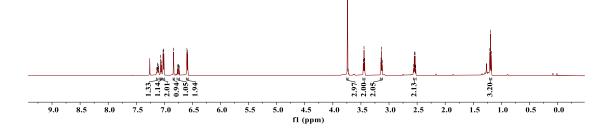


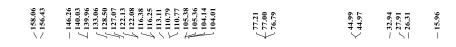

Parameters	
Parameter	value
Title	E-448.3.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	16
Acquisition Date	2022-06-24T00:07:49
Spectrometer Frequency	565 MHz
Nucleus	19F

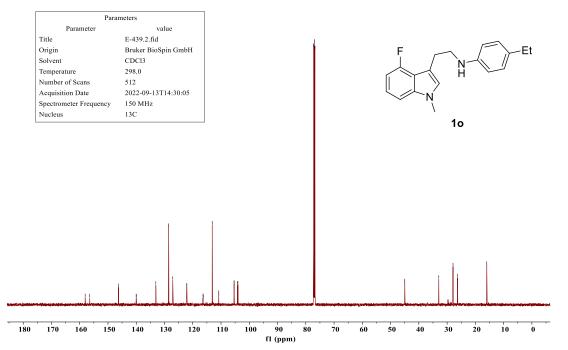


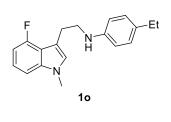


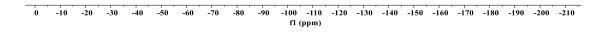




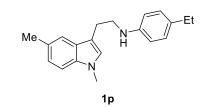

-123.360

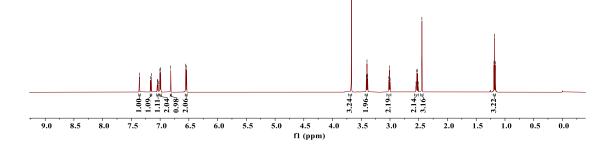

Parameters	
Parameter	value
Title	E-439.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-09-09T12:03:18
Spectrometer Frequency	600 MHz
Nucleus	1H

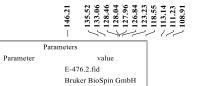




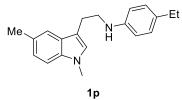
Parameters	
Parameter	value
Title	E-439.3.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.1
Number of Scans	16
Acquisition Date	2022-09-13T14:31:44
Spectrometer Frequency	565 MHz
Nucleus	19F

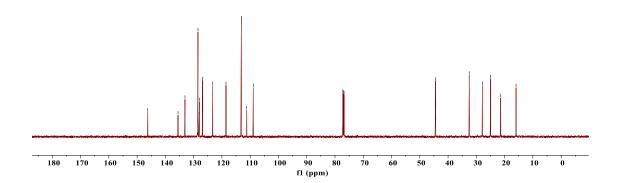


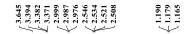


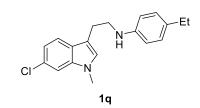

7.360 7.154 7.154 7.047 7.047 7.035 7.035 7.033 6.990 6.554

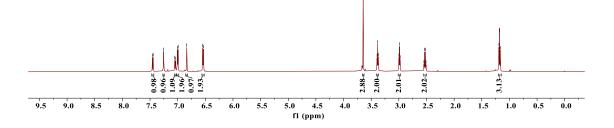
Parameters	
Parameter	value
Title	E-476.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-06-23T02:53:08
Spectrometer Frequency	600 MHz
Nucleus	1H


Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	48
Acquisition Date	2022-06-25T02:29:36
Spectrometer Frequency	150 MHz
Nucleus	13C


Title

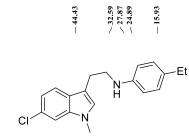

— 44.47



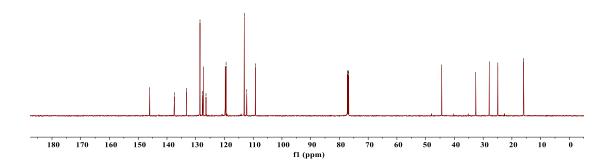


7.457 7.457 7.254 7.052 7.052 7.005 6.991 6.836 6.534

Parameters	
Parameter	value
Title	E-435.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-06-26T16:25:56
Spectrometer Frequency	600 MHz
Nucleus	1H

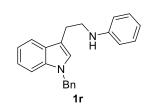


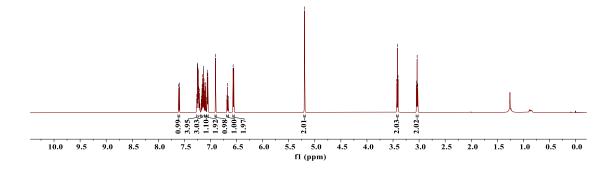
 $\underbrace{\underbrace{}_{76.79}^{77.21}}_{76.79}$

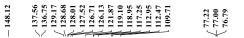

	$ \begin{array}{c} -146.00 \\ 137.41 \\ 137.21 \\ 128.57 \\ 127.57 \\ 127.57 \\ 119.74 \\ < 119.74 \\ < 119.74 \\ < 119.74 \\ < 112.21 \\ < 112.21 \\ < 109.24 \\ < 109.24 \end{array} $
	Parameters
Parameter	value
	E-435.2.fid
	Bruker BioSpin GmbH

Origin	Bruker BioSpin GmbH
Solvent	CDCl3
Temperature	298.0
Number of Scans	164
Acquisition Date	2022-06-26T16:34:33
Spectrometer Frequency	150 MHz
Nucleus	13C

Title

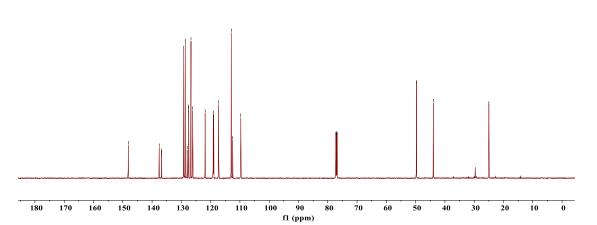




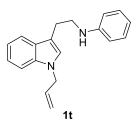

7.509 7.596 7.596 7.596 7.250 7.237 7.237 7.237 7.237 7.233 7.716 7.213 7.716 7.7150 7.7150 7.7136 7.7136 7.7136 7.7136 7.7136 7.71126 7.71120

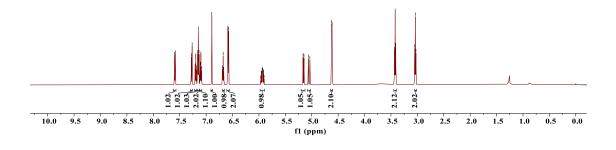
3.427 3.415 3.404 3.049 3.038 3.026

Parameters			
Parameter	value		
Title	E-3073.1.fid		
Origin	Bruker BioSpin GmbH		
Solvent	CDCl3		
Temperature	298.0		
Number of Scans	8		
Acquisition Date	2022-06-29T02:24:01		
Spectrometer Frequency	600 MHz		
Nucleus	1H		

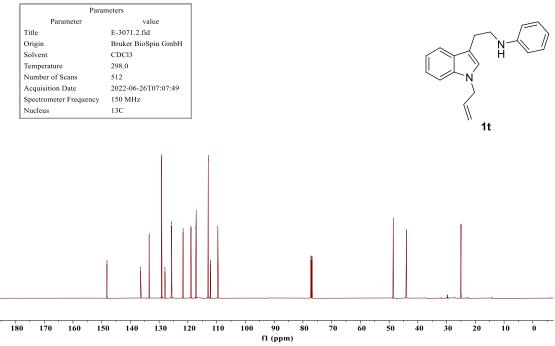


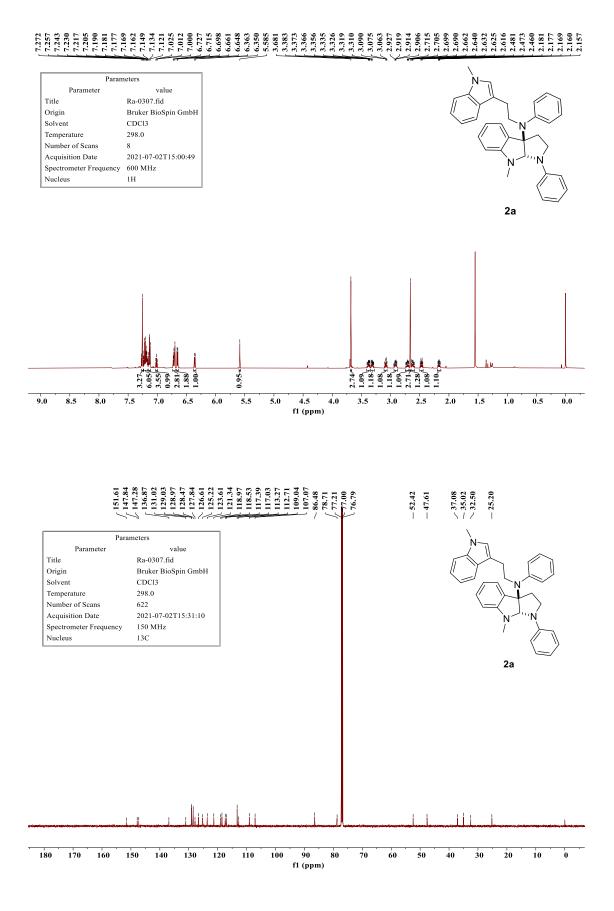
Parameters			
Parameter	value		
Title	E-3073.2.fid		
Origin	Bruker BioSpin GmbH		
Solvent	CDC13		
Temperature	298.0		
Number of Scans	512		
Acquisition Date	2022-07-01T04:37:30		
Spectrometer Frequency	150 MHz		
Nucleus	13C		

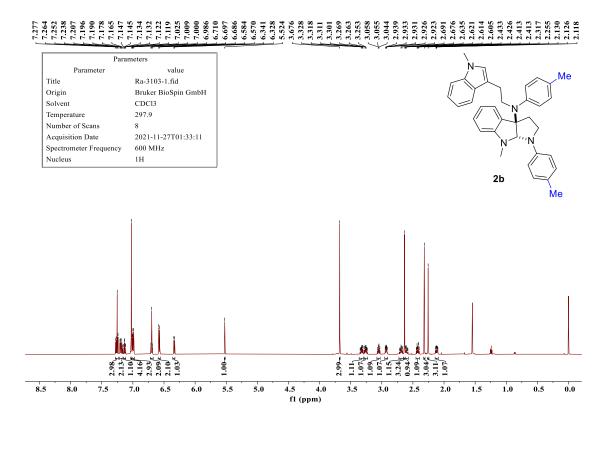


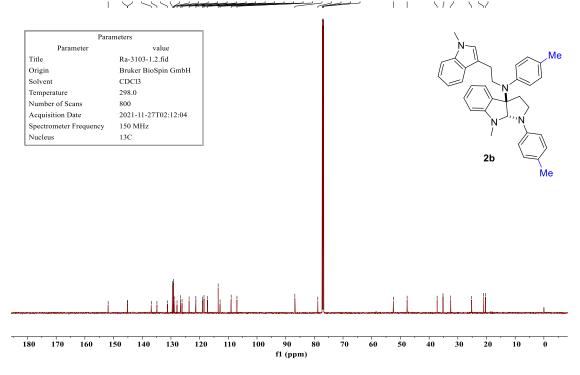


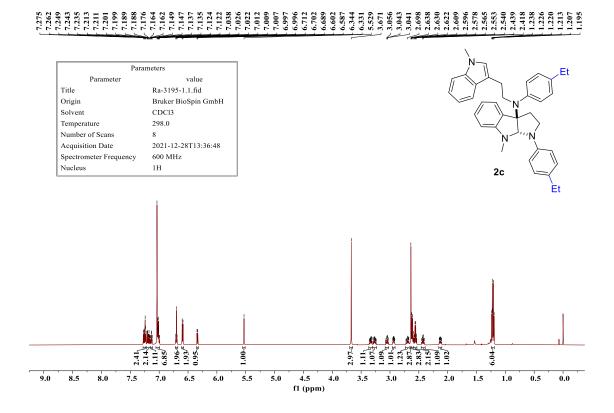
$\begin{array}{c} 7.597\\ 7.597\\ 7.195\\ 7.196\\ 7.197\\ 7.197\\ 7.198\\ 7.1121$

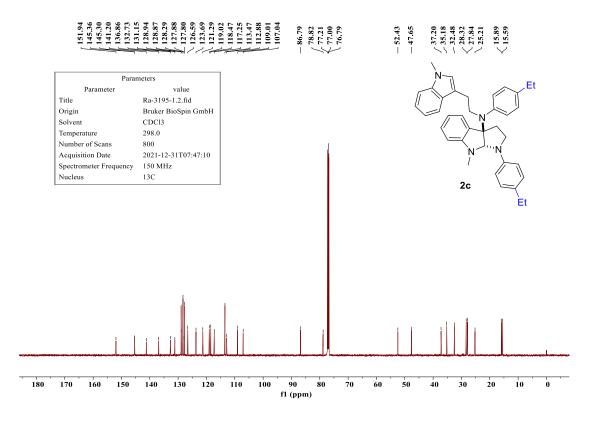

Parameters		
Parameter	value	
Title	E-3071.1.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDC13	
Temperature	298.0	
Number of Scans	8	
Acquisition Date	2022-06-26T06:42:41	
Spectrometer Frequency	600 MHz	
Nucleus	1H	

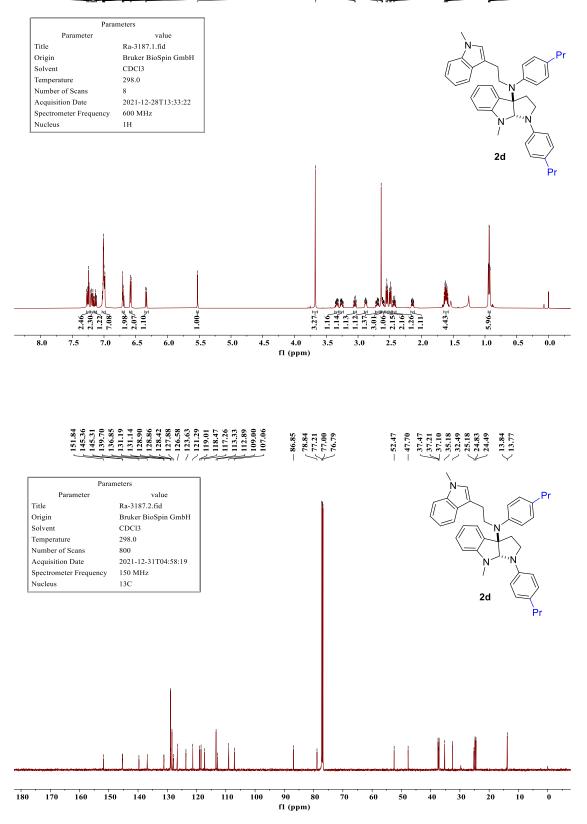


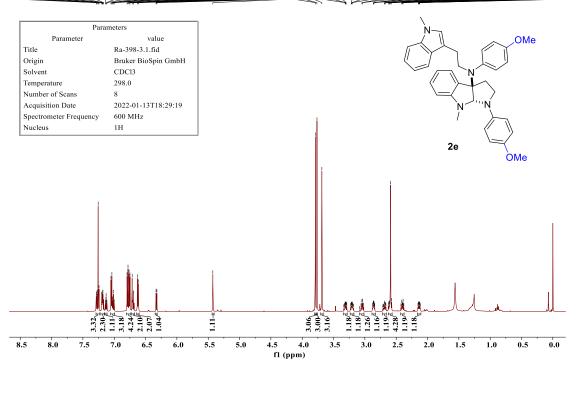

-- 48.56 -- 44.02 -25.00

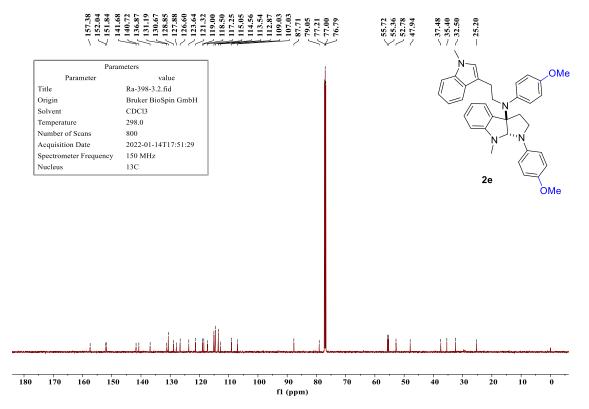


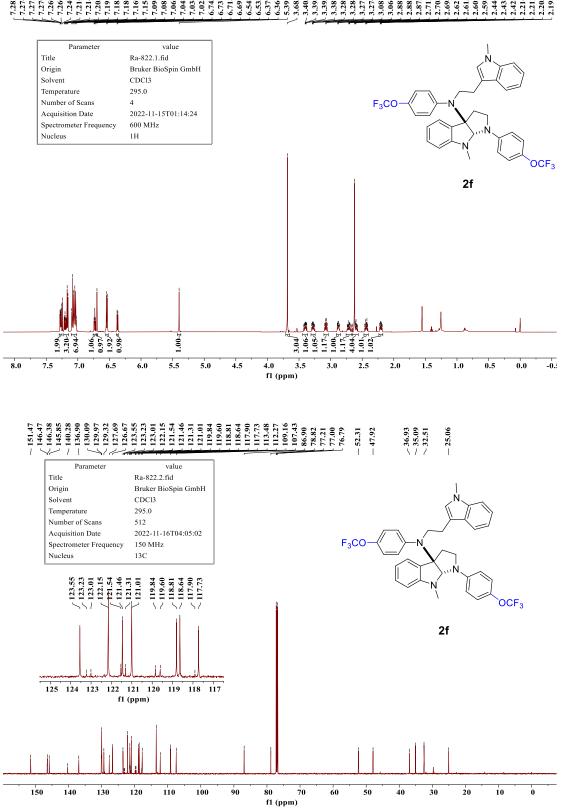



S-64

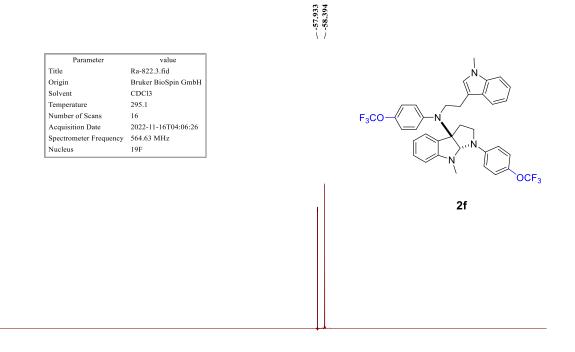

= 151.89 = 136.19 = 13.65.12 = 13.65.12 = 13.65.60 = 13.8.82 = 13.2.83 = 13.2.83 = 13.2.83 = 12.2.60 = 12.8.87 = 12.6.60 = 113.5.4 = 12.6.60 = 113.5.4 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 117.2.5 = 177.0.0

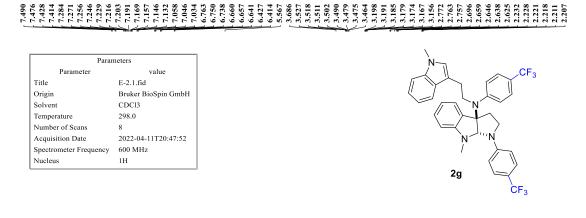


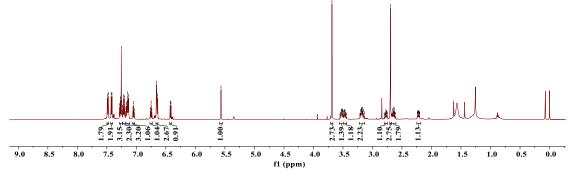




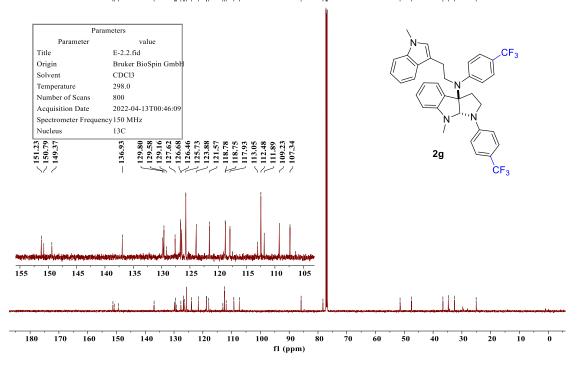
$\begin{array}{c} 7,7,7,7\\7,7,195\\7,7,195\\7,7,195\\7,7,195\\7,7,195\\7,7,119\\7,119\\7,119\\7,2$

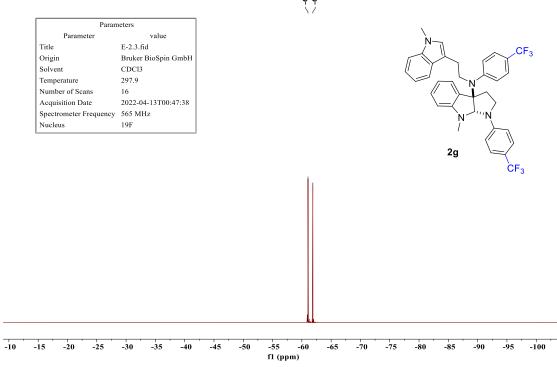


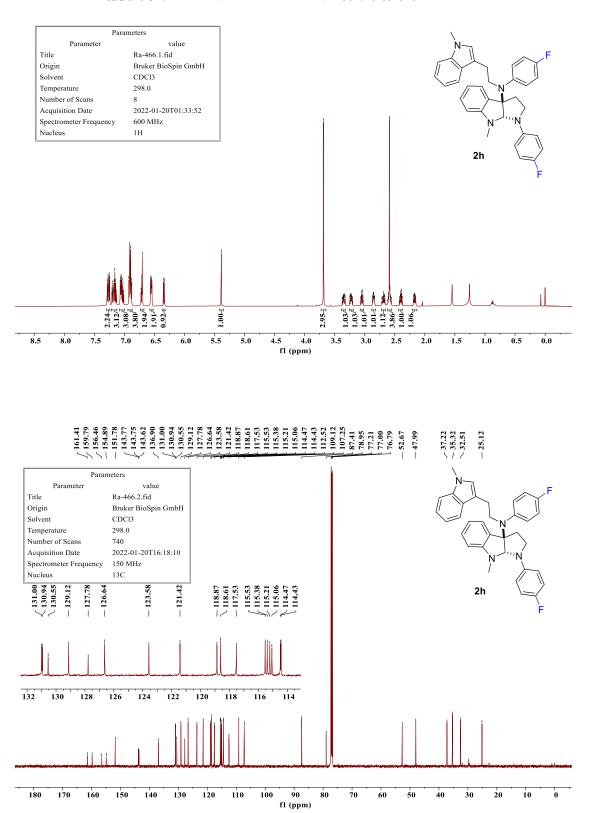


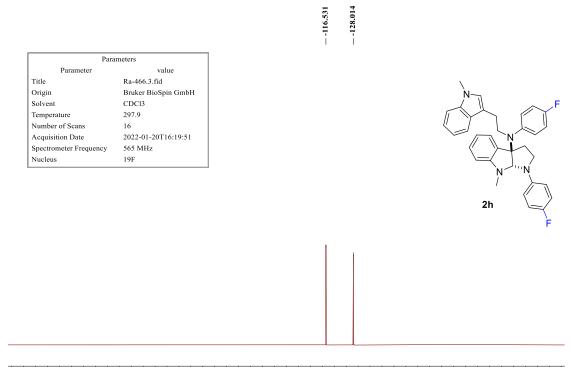


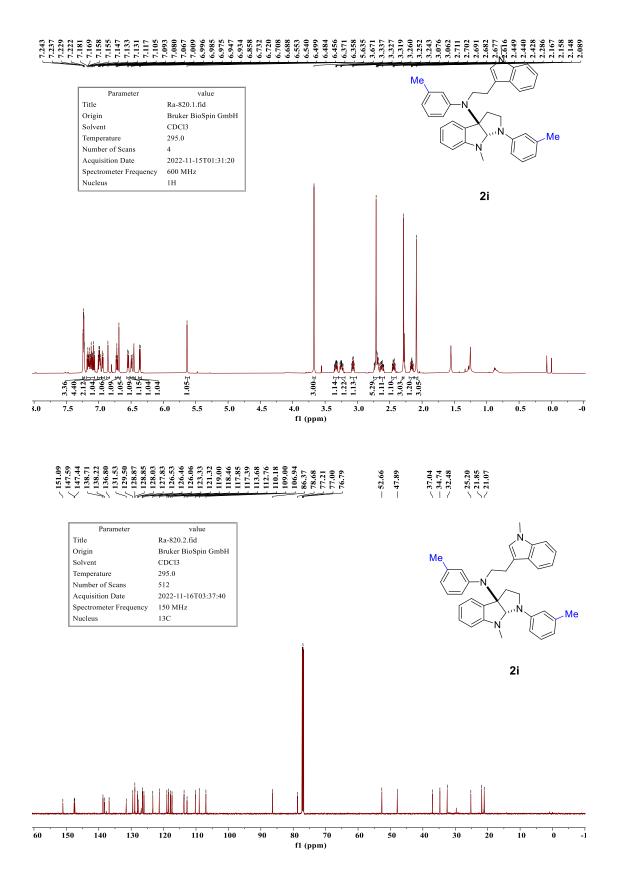
7,7282 7,7274 7,7274 7,7274 7,7274 7,729 7



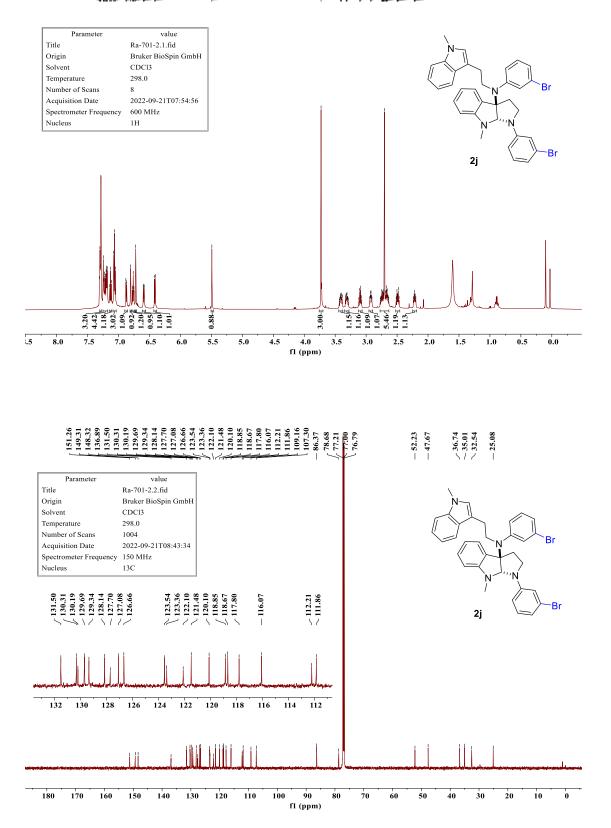

37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 fl (ppm)


 $\begin{array}{c} 151.23\\ 151.23\\ 150.79\\ 149.37\\ 129.80\\ 129.46\\ 129.46\\ 129.46\\ 129.46\\ 129.46\\ 129.46\\ 120.46\\ 123.83\\ 123.83\\ 123.83\\ 112.33\\ 123.83\\ 112.33\\ 123.83\\ 112.33\\ 123.83\\ 112.33\\ 123.83\\ 112.46\\ 112.33\\ 123.83\\ 112.46\\ 112.36\\ 109.23\\ 123.83\\ 123.83\\ 123.83\\ 123.66\\ 109.23\\ 123.66\\ 109.23\\ 123.66\\ 109.23\\ 123.66\\ 109.23\\ 123.66\\ 109.23\\ 123.66\\$

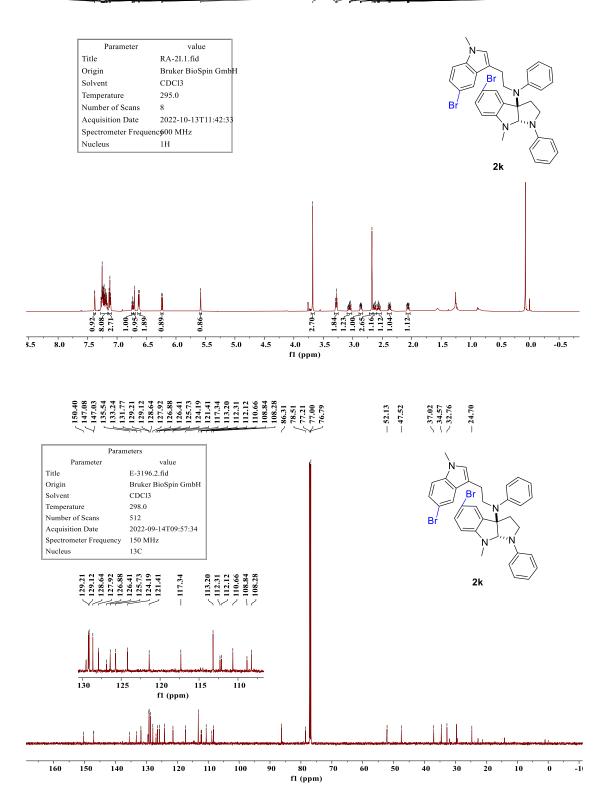



∠ -61.048 \\ -61.876

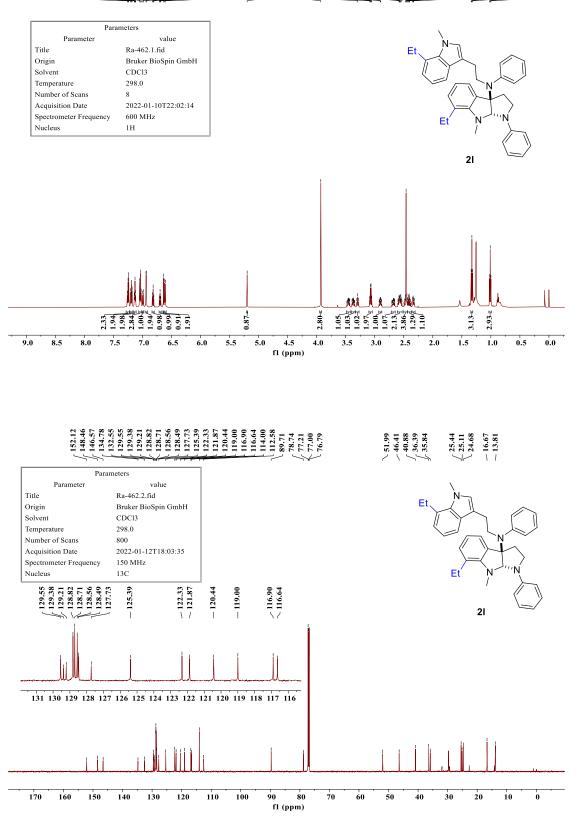
$\begin{array}{c} 7.283\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2192\\ 7.2133\\ 7.2071\\ 7.2071\\ 7.2055\\$

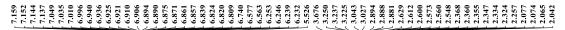


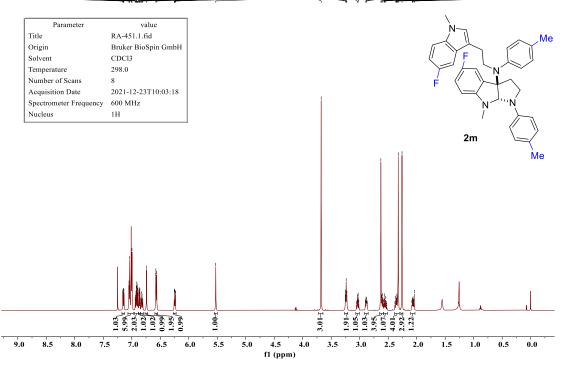
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

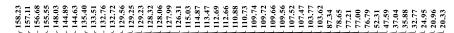


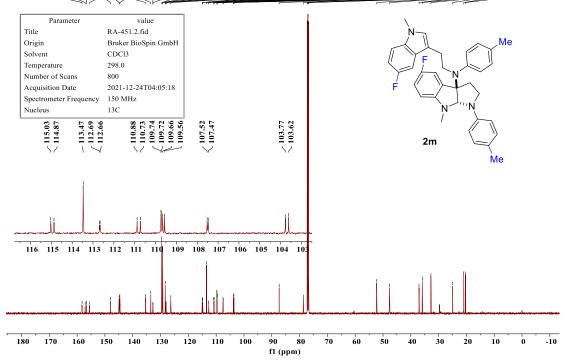
S-75

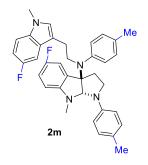

$\begin{array}{c} 7,300\\ 7,7236\\ 7,7236\\ 7,7236\\ 7,7236\\ 7,7236\\ 7,7212\\ 7,7212\\ 7,7212\\ 7,7212\\ 7,7212\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7114\\ 7,7191\\ 7,7114\\ 7,7191\\ 7,7114\\ 7,7191\\ 7,7114\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7191\\ 7,7192\\ 7,7192\\ 6,775\\$

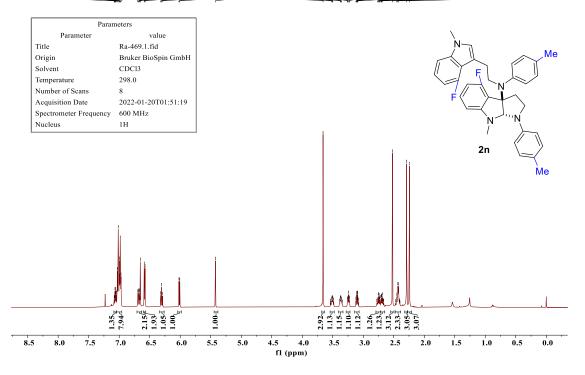


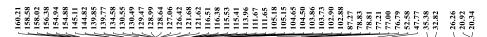

$\begin{array}{c} 7,331\\ 7,377\\ 7,257\\ 7,257\\ 7,257\\ 7,257\\ 7,257\\ 7,257\\ 7,257\\ 7,257\\ 7,210\\ 7,1210\\ 7,1210\\ 7,1211\\ 7,1211\\ 7,1211\\ 7,1104\\ 7,1222\\ 7,2222\\ 7,12222\\ 7,12222\\$

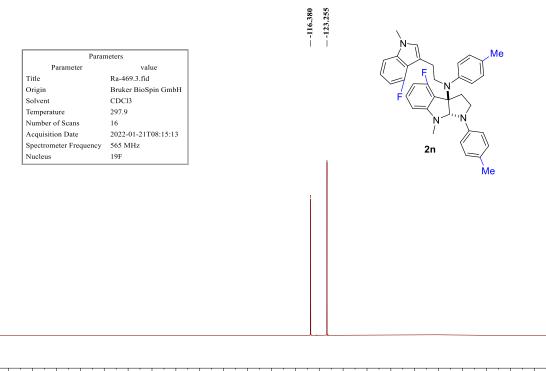



$\begin{array}{c} & 7.261 \\ & 7.235 \\ & 7.1172 \\ & 7.1172 \\ & 7.1173 \\ & 7.1172 \\ & 7.1172 \\ & 7.1172 \\ & 7.1212 \\ & 7.1212 \\ & 7.1048 \\ & 7.1048 \\ & 7.1048 \\ & 7.1048 \\ & 7.1023 \\ & 6.998 \\ & 6.99$



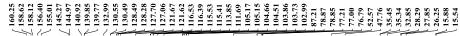


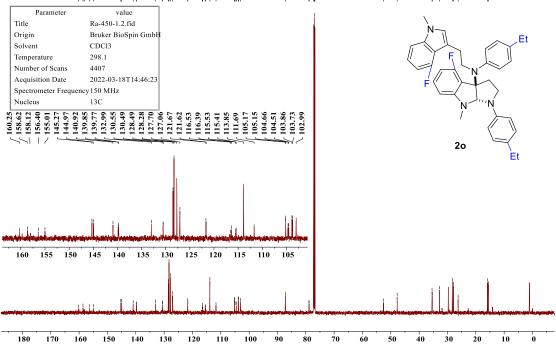

Parameter	value
Title	RA-451.3.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	297.9
Number of Scans	16
Acquisition Date	2021-12-24T04:06:55
Spectrometer Frequency	565 MHz
Nucleus	19F


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

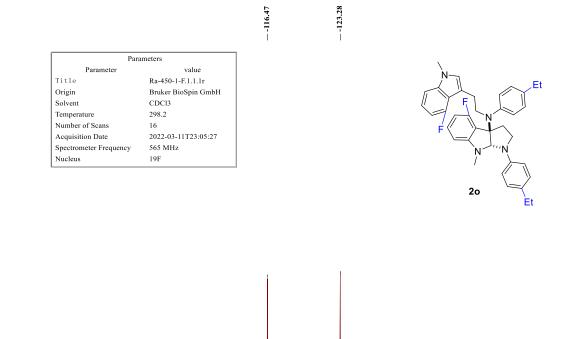
$\begin{array}{c} 7.082\\ 7.014\\ 7.016\\ 7.047\\ 7.047\\ 7.047\\ 7.047\\ 7.016\\ 7.047\\ 7.016\\ 7.016\\ 7.016\\ 7.091\\ 6.02$

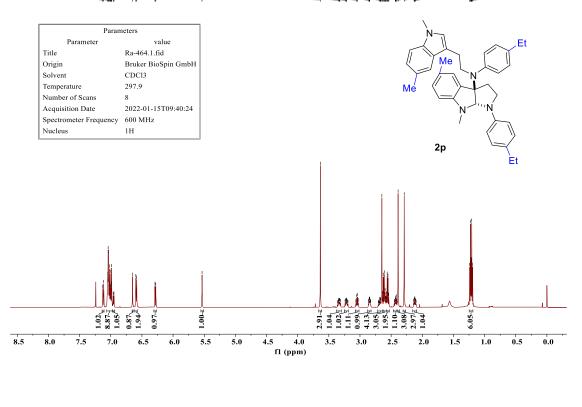


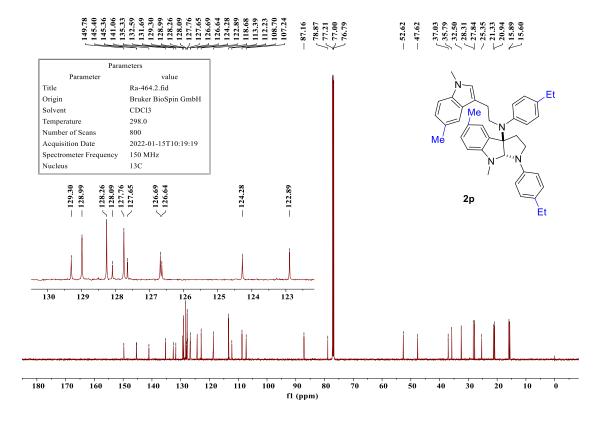

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

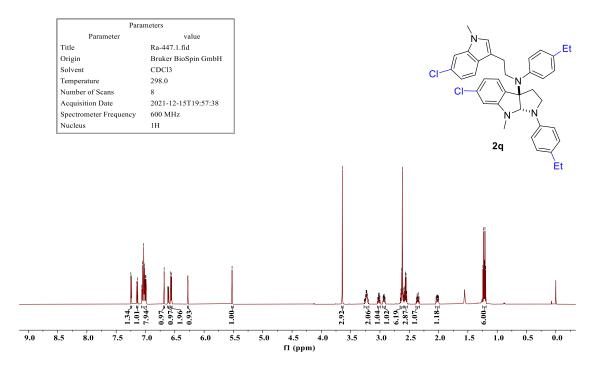

7.105 7.007 7.007 7.007 7.007 7.007 7.008

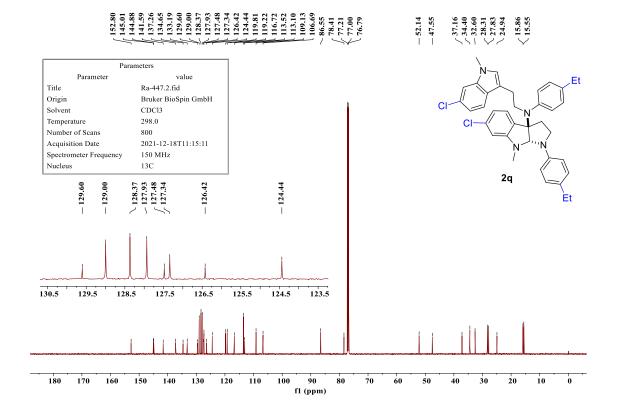
Parameter	value
Title	RA-2M.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCl3
Temperature	295.0
Number of Scans	8
Acquisition Date	2022-10-13T11:45:55
Spectrometer Frequ	encø00 MHz
Nucleus	1H

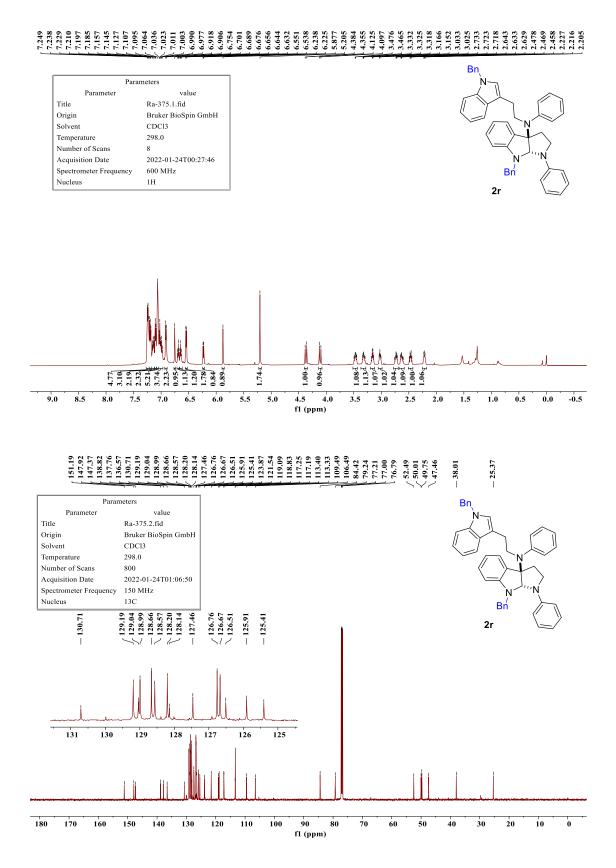




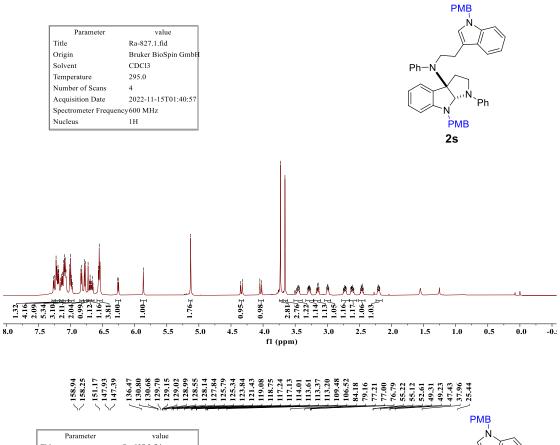


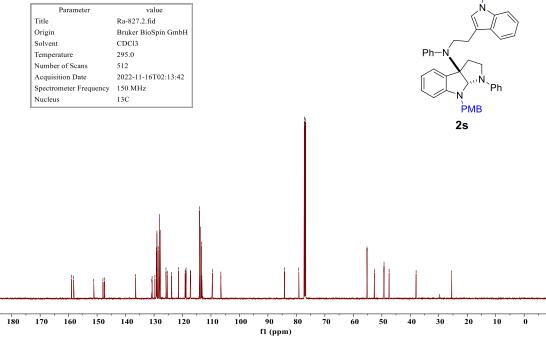

-94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -14 f1 (ppm)


 $\begin{array}{c} & 7.128 \\ & 7.1023 \\ & 7.023 \\ & 7.023 \\ & 7.023 \\ & 7.023 \\ & 7.023 \\ & 7.023 \\ & 6.986 \\ & 6.986 \\ & 6.986 \\ & 6.980 \\ & 6.533$



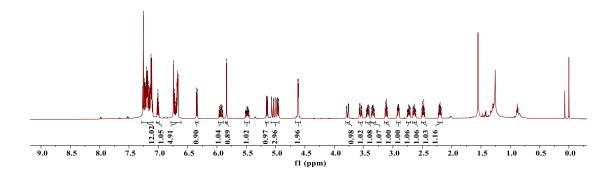
$\begin{array}{c} & 7.2280 \\ & 7.2144 \\ & 7.1148 \\ & 7.7062 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 7.7019 \\ & 6.999 \\ & 6$



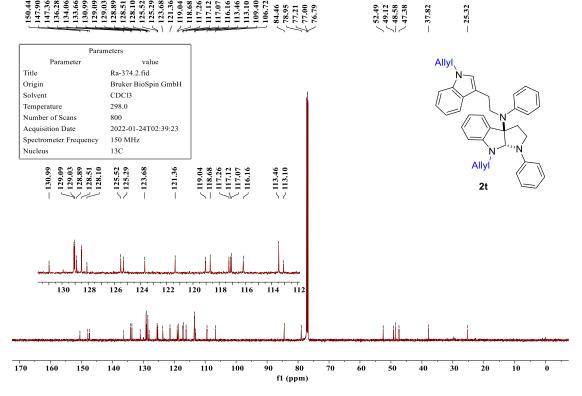


S-87

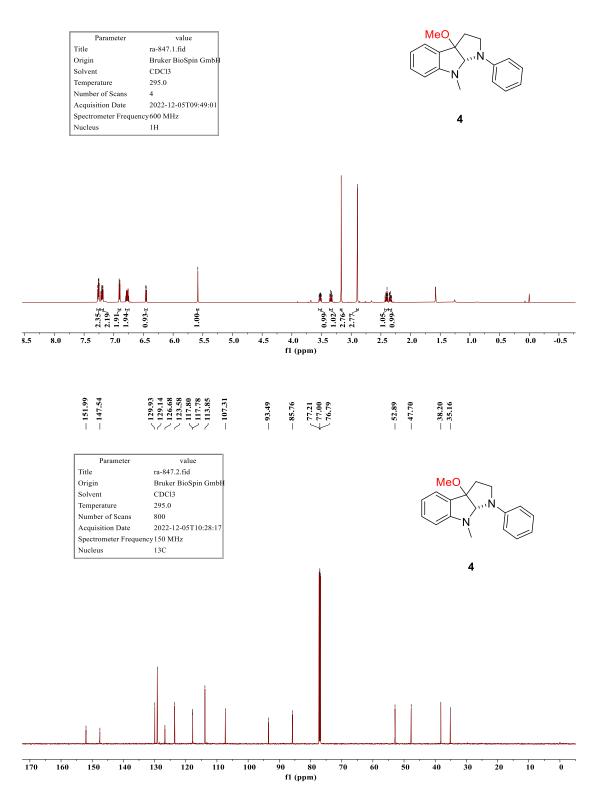
$\begin{array}{c} 7,226\\ 7,7213\\ 7,7213\\ 7,7213\\ 7,7213\\ 7,7213\\ 7,7213\\ 7,7194\\ 7,7138\\ 7,7194\\$

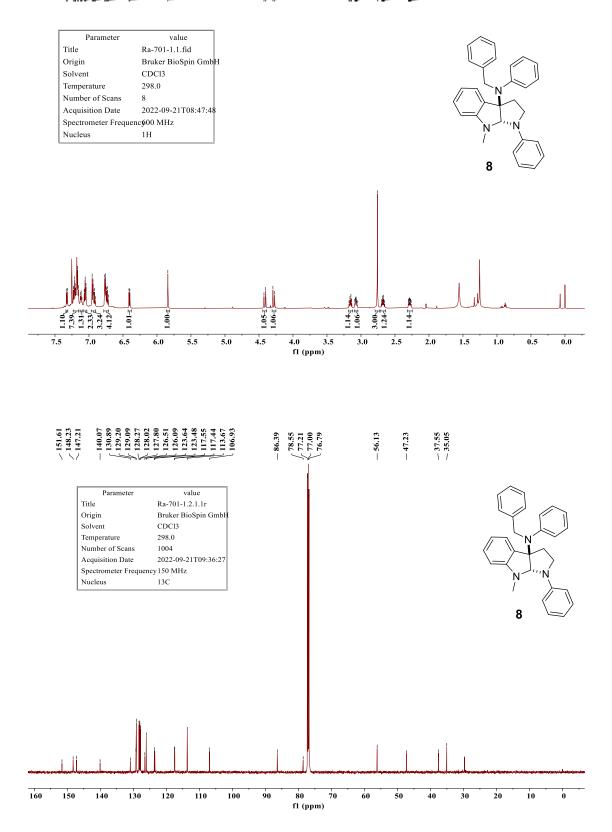


$\begin{array}{c} 7.265\\ 5.255\\ 5.255\\ 5.255\\ 5.212\\ 5.212\\ 5.255\\ 5.212\\ 5.$


Allyl

Ally 2t


Parameters	
Parameter	value
Title	Ra-374.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDC13
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-01-24T02:00:28
Spectrometer Frequency	600 MHz
Nucleus	1H


150.44 147.90 147.36 136.28 134.06 133.66 133.66 129.09 129.09 129.09 125.51 125.52 125.52 125.52 125.52 125.52 125.52 125.52 125.52 115.67 117.10 11 -52.49 -49.12 -48.58 -47.38 -37.82

$\begin{array}{c} & -2.326 \\ & -7.726 \\ & -7.726 \\ & -7.726 \\ & -7.726 \\ & -7.7204 \\ & -7.7204 \\ & -7.7204 \\ & -7.2204 \\ & -5.84 \\ & -5.$

7,330 7,216 7,193 7,1156 7,1156 7,1126 6,716 6,7216 7,11267,1126

