Supporting Information

Cooperative NHC and Nickel Catalyzed Asymmetric Reductive Coupling of Nitrobenzyl Bromides and Cyclic Ketimines via SET Process

\author{
Wen-Tian Zeng, ${ }^{\S}$ Xiao Han, ${ }^{\S}$ Gong-Bin Huang, Jiang Weng, Albert S. C. Chan, Gui
 Lu*
 [^0]}

Table of Contents

1. General Information S3
2. Reaction Optimization S3
3. General Procedure for the Synthesis of 3 and 5 S5
4. Synthetic Transformations S6
5. Characterization of Compounds S6
6. Data for X-Ray Crystal Structures of 3d and 5d S21
7. References S23
8. Copies of NMR Spectra S24
9. Copies of HPLC Data S69

1. General Information

All the commercial reagents were used as such without further purification. All solvents were used as commercial anhydrous grade without further purification. The flash column chromatography was carried out over silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance-400 MHz spectrometer or Bruker Avance-500 MHz spectrometer. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million (ppm, δ) downfield from the internal standard $\mathrm{Me}_{4} \mathrm{Si}(\mathrm{TMS}, \delta=0 \mathrm{ppm})$. Chemical shifts in ${ }^{13} \mathrm{C}$ NMR spectra were reported relative to the central line of the chloroform signal ($\delta=77.0 \mathrm{ppm}$). Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. High performance liquid chromatography (HPLC) was conducted on an Agilent 1200 instrument using Daicel Chiralpak column IA, IC or AD-H. Optical rotations were recorded on a Rudolph Autopol I polarimeter. Chemical yields refer to pure isolated substances. Ligands purchased from DAICEL CHIRAL TECHNOLOGIES (CHINA) CO., LTD and used as received. The pyrazolone-derived ketimines, isatin-derived ketimines ${ }^{[1]}$ and nitrobenzyl bromides ${ }^{[2]}$ were prepared according to literature methods.

2. Reaction Optimization

Table S1 Condition optimization for pyrazolone-derived ketamine with nitrobenzyl bromide ${ }^{a, b}$

Entry	Precatalyst (x mol\%)	Cat. ($5 \mathrm{~mol} \%$)	Solvent	Yield (\%)	ee (\%)
$1{ }^{\text {b }}$	C1 (5)	--	MeOH	45	--
$2^{\text {b }}$	C2 (5)	--	MeOH	20	--
$3^{\text {b }}$	C3 (5)	--	MeOH	28	--
$4^{\text {b }}$	C4 (5)	--	MeOH	36	--
$5^{\text {b }}$	C5 (5)	--	MeOH	29	--
$6^{\mathrm{b}, \mathrm{c}}$	C4 (10)	--	MeOH	60	--
$7^{\text {d }}$	C4 (5)	NiCl_{2} - DME	THF	43	7
$8^{\text {d }}$	C4 (5)	NiCl_{2} - DME	PhMe	27	6
$9{ }^{\text {d }}$	C4 (5)	NiCl_{2} - DME	DCM	62	48
$10^{\text {d }}$	C4 (5)	NiCl_{2} - DME	MeCN	43	75

11	C4 (5)	NiCl_{2} - DME	EtOH	33	39
$12^{\text {e }}$	C4 (5)	NiCl_{2} - DME	MeOH	ND	--
$13^{\text {f }}$	C4 (5)	$\mathrm{Ni}(\mathrm{OTf})_{2}$	MeOH	21	78
$14^{\text {f }}$	C4 (5)	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	MeOH	36	86
15^{\dagger}	C4 (5)	NiBr_{2}-DME	MeOH	35	86
$16^{\text {f }}$	C4 (5)	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	MeOH	31	38
$17^{\text {f }}$	C4 (5)	$\mathrm{Ni}(\mathrm{acac})_{2}$	MeOH	46	84
$18^{\text {f }}$	C4 (5)	$\mathrm{Ni}(\mathrm{hfac})_{2}$	MeOH	35	47
$19^{\text {f }}$	C4 (5)	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}{ }_{2}$	MeOH	20	84
$20^{\text {f }}$	C4 (5)	$\mathrm{Ni}(\mathrm{cod})_{2}$	MeOH	34	69
$21^{\text {f }}$	C4 (5)	$\mathrm{Nd}(\mathrm{OTf})_{3}$	MeOH	24	4
$22^{\text {f }}$	C4 (5)	$\mathrm{Bi}(\mathrm{OTf})_{3}$	MeOH	21	0

${ }^{\text {a }}$ Unless otherwise specified, all reactions were carried out with $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}(0.15 \mathrm{mmol})$, precatalyst (x mol \%) , catalyst ($5 \mathrm{~mol} \%$), L2 ($7 \mathrm{~mol} \%$), DIPEA (0.2 mmol), $\mathrm{ArCHO}(0.15 \mathrm{mmol})$ and solvent (2.0 mL) under a nitrogen atmosphere at room temperature for 72 h . ${ }^{\mathrm{b}}$ The reactions was carried out with $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}$ $(0.15 \mathrm{mmol})$, DIPEA (0.2 mmol) and $\operatorname{ArCHO}(0.15 \mathrm{~mol})$ and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature for $24 \mathrm{~h} .{ }^{\mathrm{c}} 60 \mathrm{~h}$. ${ }^{d} 10$ equiv. of MeOH was used additionally. ${ }^{\mathrm{e}} 0^{\circ} \mathrm{C} .{ }^{\mathrm{f}} 50^{\circ} \mathrm{C}$.

Table S2 Condition optimization for isatin-derived ketamine with nitrobenzyl bromide ${ }^{a, b}$

Entry	Cat (5\%)	Ligand (7\%)	Base	Solvent	Yield (\%)	ee (\%)
1	$\mathrm{NiCl}_{2} \cdot$ DME	L1	DIPEA	MeOH	55	5
2	$\mathrm{NiCl}_{2} \cdot$ DME	L2	DIPEA	MeOH	70	82
3	$\mathrm{NiCl}_{2} \cdot$ DME	L3	DIPEA	MeOH	56	70
4	$\mathrm{NiCl}_{2} \cdot$ DME	L4	DIPEA	MeOH	35	41
5	$\mathrm{NiCl}_{2} \cdot$ DME	L5	DIPEA	MeOH	43	4
6	$\mathrm{NiCl}_{2} \cdot$ DPPP	L2	DIPEA	MeOH	54	72
7	NiCl_{2}	L2	DIPEA	MeOH	60	56
8	$\mathrm{Ni}(\text { acac })_{2}$	L2	DIPEA	MeOH	57	0
9	$\mathrm{Ni}(\mathrm{OTf})_{2}$	L2	DIPEA	MeOH	55	54

${ }^{\text {a }}$ Reaction conditions: $\mathbf{4 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}), \mathrm{ArCHO}(0.15 \mathrm{mmol})$, DIPEA (0.2 mmol$), \mathbf{C 1}(0.01 \mathrm{mmol})$, $\mathrm{L} 2(0.007 \mathrm{mmol}), \mathrm{NiCl}_{2} \cdot \mathrm{DME}(0.005 \mathrm{mmol}), \mathrm{MeOH}(2 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature for $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield.

3. General Procedure for the Synthesis of $\mathbf{3}$ and 5

In a dry and nitrogen filled tube, a mixture of $\mathrm{NiCl}_{2} \cdot \mathrm{dppp}(0.005 \mathrm{mmol})$, $\mathbf{L 2}(0.007 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was stirred at room temperature under nitrogen for 30 mins. Pyrazolone-derived ketimine 1 a (0.1 mmol), nitrobenzyl bromide 2a (0.15 mmol), aldehyde $\mathbf{N 1}(0.15 \mathrm{mmol})$, $\mathbf{C 4}(0.003 \mathrm{mmol})$ and DIPEA (0.2 mmol) were added to the above catalyst solution under nitrogen. The reaction mixture was stirred at room temperature for 72 h , then the resulting mixture was concentrated under reduced pressure, and the residue was purified via column chromatography on silica gel to afford product 3a.

In a dry and nitrogen filled tube, a mixture of $\mathrm{NiCl}_{2} \cdot$ DME (0.005 mmol), $\mathbf{L 2}(0.007 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under nitrogen for 30 mins . Isatin-derived ketimine $1 \mathbf{a}(0.1 \mathrm{mmol})$, nitrobenzyl bromide 2a $(0.15 \mathrm{mmol})$, aldehyde $\mathbf{N 1}(0.15 \mathrm{mmol}), \mathbf{C 1}(0.01 \mathrm{mmol})$ and DIPEA $(0.2 \mathrm{mmol})$ were added to the above catalyst solution under nitrogen. The reaction mixture was stirred at room temperature for 16 h . then the resulting mixture was concentrated under reduced pressure, and the residue was purified via column chromatography on silica gel to afford product 5a.

4. Synthetic Transformations

In a dry and nitrogen filled tube, a mixture of $\mathrm{NiCl}_{2} \cdot \operatorname{dppp}(0.05 \mathrm{mmol})$, $\mathrm{L} 2(0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred at room temperature under nitrogen for 30 mins. Pyrazolone-derived ketimine 1a (1 mmol), nitrobenzyl bromide $\mathbf{2 a}(1.5 \mathrm{mmol})$, aldehyde $\mathbf{N 1}(1.5 \mathrm{mmol})$ and $\mathbf{C 4}(0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added sequentially. Finally, DIPEA (2 mmol) were added to the above solution through a syringe, then the reaction mixture was stirred at room temperature for 5 days, the resulting mixture was concentrated under reduced pressure, and the residue was purified via column chromatography on silica gel to afford product $\mathbf{3 a}(320 \mathrm{mg}, 80 \%$ yield, 90% ee).

To a stirred solution of compound $3 \mathbf{a}(0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added Zn powder $(3.4 \mathrm{mmol})$, followed by the addition of HOAc $(1 \mathrm{~mL})$. The resulting mixture was allowed to stir at room temperature after the reaction was completed (determined by TLC analysis). The solvent of the filtrate was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were removed under reduced pressure. The residue was purified via column chromatography on silica gel to afford product $6 \mathbf{a}$ ($26.3 \mathrm{mg}, 71 \%$ yield, 88% ee).

5. Characterization of Compounds

(R)-5-Methyl-4-(2-nitrobenzyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3a)

Yellow solid, $30.8 \mathrm{mg}, 77 \%$ yield, 90% ee, m.p. $144-146^{\circ} \mathrm{C},[\alpha]_{0}^{20}=225.1\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta: 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (dd, $J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{brs}, 1 \mathrm{H}), 3.96$ (d, $J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.4,162.4,150.1,144.2$, 137.5, 133.8, 132.8, 129.6, 129.6, 129.2, 128.9, 128.9, 126.6, 125.5, 125.2, 120.0, 119.0, 119.0, 114.0, 113.9, 69.4, 38.3, 13.6 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 401.1608$, found: 401.1599; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i$-PrOH $=$ $80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm})$: $\mathrm{t}_{\text {major }}=9.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.6 \mathrm{~min}$.
(R)-4-((4-Methoxyphenyl)amino)-5-methyl-4-(2-nitrobenzyl)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3b)

3b
Light yellow oil, $30.1 \mathrm{mg}, 70 \%$ yield, 83% ee, $[\alpha]_{0}^{20}=173.3\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H})$, 6.41-6.37 (m, 2H), 4.27 (brs, 1H), 3.93 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.8,162.3,154.0,150.1,137.8,137.5,133.7,132.8,129.1,128.8,128.8$,
126.9, 125.4, 125.2, 118.9, 118.9, 116.6, 116.6, 114.9, 114.9, $70.1,55.5,38.1,13.7 \mathrm{ppm}$; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 431.1714$, found: 431.1730; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=17.7$ $\min , \mathrm{t}_{\text {minor }}=11.0 \mathrm{~min}$.
(R)-5-Methyl-4-(2-nitrobenzyl)-2-phenyl-4-(p-tolylamino)-2,4-dihydro-3H-pyrazol-3-one (3c)

3c
Light yellow oil, 26.5 mg , 64% yield, 88% ee, $[\alpha]_{0}^{20}=188.0\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{brs}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) ס: 172.2, 162.2, 150.2, 144.2, 135.3, 135.1, 133.8, 132.8, 129.6, 129.6, 129.4, 129.4, 129.2, 126.6, 125.2, 119.9, 119.1, 119.1, 113.9, 113.9, 69.3, 38.2, 21.0, 13.6 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 415.1765$, found: 415.1776 ; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $t_{\text {major }}=12.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.4 \mathrm{~min}$.
(R)-4-((4-Fluorophenyl)amino)-5-methyl-4-(2-nitrobenzyl)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3d)

Yellow solid, $28.0 \mathrm{mg}, 67 \%$ yield, 80% ee, m.p. $143-145^{\circ} \mathrm{C},[\alpha]_{0}^{20}=186.1\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta: 7.94-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.33 (dd, $J=8.9,4.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.51 (brs, 1 H), $3.92(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 172.3,162.1,158.2,156.3,150.2,140.4,137.4,133.8,132.8$, 129.3, 128.9, 128.9, 126.6, 125.6, 125.3, 118.9, 118.9, 116.2, 116.1, 115.7, 69.7, 38.2, 13.6 ppm; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-124.18 \mathrm{ppm}$; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 450.1812$, found: 450.1792; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column $\left(n\right.$-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=7.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.3 \mathrm{~min}$.
(R)-2-(4-Methoxyphenyl)-5-methyl-4-(2-nitrobenzyl)-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3e)

3 e
Yellow solid, $27.1 \mathrm{mg}, 63 \%$ yield, 88% ee, m.p. $104-106{ }^{\circ} \mathrm{C},[a]_{0}^{20}=211.9\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $7.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.55 (brs, 1H), 3.97 (d, J=13.2 Hz, 1H), 3.81 (s, 3H), 3.47 (d, J= 13.2 $\mathrm{Hz}, 1 \mathrm{H}), 2.04$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 172.0, 162.2, 157.4, 150.2, 144.2, 133.8, 132.8, 130.8 129.6, 129.6, 129.2, 126.6, 125.2, 120.9, 120.9, 119.9, 114.0, 114.0, 113.9, 113.9, 69.3, 55.5, 38.2, 13.6 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 431.1714$, found: 431.1712; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=14.3 \mathrm{~min}, \mathrm{t}_{\text {minor }}=9.1 \mathrm{~min}$.
(R)-5-Methyl-4-(2-nitrobenzyl)-4-(phenylamino)-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one (3f)

$3 f$
Light yellow oil, $31.5 \mathrm{mg}, 76 \%$ yield, 90% ee, $[\alpha]_{0}^{20}=225.7\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{brs}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, 1 H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 172.6,162.5,150.1,141.8,137.5,133.8$, $132.7,130.0,130.1,129.5,129.2,128.8,128.8,126.7,125.4,125.2,119.0,119.0,114.3,114.3,69.7,38.3$, 20.4, 13.7 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 415.1772$, found: 415.1765; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane/i-PrOH $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=10.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=7.0 \mathrm{~min}$.
(R)-2-(4-Bromophenyl)-5-methyl-4-(2-nitrobenzyl)-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3g)

3g
Light yellow oil, $26.8 \mathrm{mg}, 56 \%$ yield, 86% ee, $[\alpha]_{\mathrm{D}}^{20}=192.2\left(\mathrm{c}=0.41, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.93$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{brs}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101MHz, CDCl_{3}) $\delta: 172.4,162.8,150.1,144.1,136.5,133.7,132.8,131.9,131.9,129.6,129.6,129.4$, 126.4, 125.3, 120.1, 120.1, 120.1, 118.3, 113.9, 113.9, 69.4, 38.4, 13.6 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 479.0713$, found: 479.0713; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=7.8 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=$ 5.9 min .
(R)-2-(3-Chlorophenyl)-5-methyl-4-(2-nitrobenzyl)-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3h)

Light yellow oil, $30.5 \mathrm{mg}, 70 \%$ yield, 86% ee, $[\alpha]_{0}^{20}=210.4\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.94-7.92 (m, 1H), 7.73-7.64 (m, 2H), 7.54-7.37 (m, 3H), 7.29-7.25 (m, 1H), 7.16-7.06 (m, 3H), 6.76 (t, J=7.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{brs}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 172.5,162.9,150.1,144.0,138.5,134.6,133.7,132.8,129.9,129.7,129.7$, 129.3, 126.4, 125.2, 125.3, 120.2, 118.6, 116.5, 113.9, 113.9, 69.5, 38.4, 13.6 ppm ; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{CIN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 435.1218, found: 435.1227; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=8.0$ $\mathrm{min}, \mathrm{t}_{\text {minor }}=5.4 \mathrm{~min}$.
(R)-2-(4-Fluorophenyl)-5-methyl-4-(2-nitrobenzyl)-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3i)

$3 i$
Light yellow oil, $28.0 \mathrm{mg}, 67 \%$ yield, 70% ee, $[\alpha]_{0}^{20}=156.39\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.94-7.91 (m, 1H), 7.64-7.61 (m, 2H), 7.48-7.37 (m, 3H), 7.10-7.01 (m, 4H), 6.76 (t, J=7.3 Hz, 1H), $6.34(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{brs}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,162.6,161.3,158.9,150.1,144.1,133.8,133.6,132.8,129.6,129.6,129.3,126.5$, 125.2, 120.7, 120.1, 115.7, 115.5, 113.9, 113.9, 69.3, 38.3, 13.6 ppm; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-116.52$ ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 419.1506$, found: 419.1514; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=8.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.9 \mathrm{~min}$.
(R)-5-Ethyl-4-(2-nitrobenzyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3j)

Yellow solid, $25.2 \mathrm{mg}, 61 \%$ yield, 86% ee, m.p. $143-145^{\circ} \mathrm{C},[\alpha]_{\mathrm{o}}^{20}=210.7\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: ~ 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{brs}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}$, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.6,166.1$, $150.1,144.3,137.7,133.9,132.8,129.5,129.5,129.2,128.8,128.8,126.7,125.4,125.3,119.8,119.0,119.0$, 113.9, 113.9, 69.3, 38.4, 21.2, 9.0 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 415.1765$, found: 415.1764; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=9.3 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.3 \mathrm{~min}$.
(R)-5-Isopropyl-4-(2-nitrobenzyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3k)

Yellow solid, $28.2 \mathrm{mg}, 66 \%$ yield, 94% ee, m.p. $133-135^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{o}}^{20}=151.4\left(\mathrm{c}=0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 8.01(\mathrm{dd}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=$ $8.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{brs}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{~m} J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.1,169.3$, $150.2,144.6,138.0,133.9,132.9,129.3,129.3,129.2,128.9,128.9,127.0,125.5,125.4,119.6,119.0,119.0$, 114.0, 114.0, 68.8, 38.1, 28.1, 21.4, 20.7 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 429.1921$, found: 429.1911; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=11.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.2 \mathrm{~min}$.
(R)-5-Methyl-4-(4-nitrobenzyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3I)

Yellow solid, $20.0 \mathrm{mg}, 50 \%$ yield, 94% ee, m.p. $163-166^{\circ} \mathrm{C}$, $[\alpha]_{0}^{20}=26.75$ (c $=0.16, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 8.06(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 1 H), 6.43 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.38 (brs, 1 H), 3.39 ($\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.25(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,161.2,147.7,144.2,138.9,137.1,130.8,130.8,129.7,129.7,128.9$, 128.9, 125.8, 123.5, 123.5, 120.3, 119.0, 119.0, 113.9, 113.9, 70.0, 42.6, 14.0 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 401.1599, found: 401.1608; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/$ i-PrOH $=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=26.9$ $\mathrm{min}, \mathrm{t}_{\text {minor }}=10.2 \mathrm{~min}$.
(R)-4-(2-Chloro-4-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3m)

Yellow solid, $17.8 \mathrm{mg}, 41 \%$ yield, 94% ee, m.p. $110-114{ }^{\circ} \mathrm{C}$, $[\alpha]_{0}^{20}=43.56$ ($\mathrm{c}=0.29, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta: 8.27(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.47 (brs, 1H), $3.60(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) ठ: 172.2, 162.2, 147.8, 144.4, 137.4, 137.3, 135.7, 132.9, 129.7, 129.7, 129.0, 129.0, 125.8, 124.9, 121.5, 120.3, 118.8, 118.8, 114.0, 114.0, 69.4, 39.1, 14.5 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 435.1218$, found: 435.1230; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=14.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ 17.9 min .
(R)-4-(2-Fluoro-4-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3n)

3n
Light yellow oil, $28.0 \mathrm{mg}, 67 \%$ yield, 92% ee, $[\alpha]_{0}^{20}=32.26\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92$ (dd, $J=9.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{brs}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.1,162.1,160.8(\mathrm{~d}$, $J=250.6 \mathrm{~Hz}$), 148.5, 144.0, 137.2, 133.1 (d, $J=4.1 \mathrm{~Hz}$), 129.7, 129.7, 129.0, 129.0, 126.7 (d, J=16.0 Hz), 125.8, 120.3, $119.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 118.9,118.9,113.9,113.9,111.3(\mathrm{~d}, J=28.3 \mathrm{~Hz}), 69.6,35.6,13.7 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : - 110.94 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 419.1514$, found: 419.1514; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column $\left(n\right.$-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=17.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=21.0 \mathrm{~min}$.
(R)-5-Methyl-4-(3-nitrobenzyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3o)

Light yellow oil, $11.2 \mathrm{mg}, 28 \%$ yield, 0% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=20.8$, $7.8 \mathrm{~Hz}, 3 \mathrm{H}$), 7.33 (dt, $J=16.1,8.1 \mathrm{~Hz}, 3 \mathrm{H}$), $7.14(\mathrm{dt}, J=15.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.39 (brs, 1 H), $3.40(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,161.2,147.9,144.2,137.1,135.9,133.5,129.7,129.7,129.4,128.9,128.9,125.7$, 124.6, 123.2, 120.2, 118.9, 118.9, 113.9, 113.9, 70.0, 42.6, 14.1 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 401.1608$, found: 401.1624; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=7.0 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.8$ min.
(R)-4-(3-Methoxy-2-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3p)

Yellow solid, $20.2 \mathrm{mg}, 47 \%$ yield, 72% ee, m.p. $161-163^{\circ} \mathrm{C},[\alpha]_{0}^{20}=1.80\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{dd}, J=12.8,7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{brs}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J$ $=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.9,162.8,158.6$, $151.2,144.6,138.3,129.5,129.5,129.3,128.9,128.9,125.1,119.1,118.8,118.8,117.8,117.3,115.1,113.4$, 113.4, 68.7, 56.5, 31.4, 13.8 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$: 431.1714, found: 431.1701; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column $(n$-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm})$: $\mathrm{t}_{\text {maior }}=17.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.0 \mathrm{~min}$.
(R)-5-Methyl-4-((6-nitrobenzo[d][1,3]dioxol-5-yl)methyl)-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-on e(3q)

$3 q$
Light yellow oil, $39.9 \mathrm{mg}, 83 \%$ yield, 90% ee, $[\alpha]_{0}^{20}=110.48\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б: 7.77 (d, J=7.7 Hz, 2H), $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}$, $1 \mathrm{H}), 6.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{brs}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.5$, 162.6, 151.4, 147.9, 144.4, 144.1, 137.7, 129.6, 129.6, 128.9, 128.9, 125.4, 123.2, 119.9, 118.8, 118.8, 113.9, 113.9, 112.2, 106.1, 103.1, 69.3, 38.5, 13.6 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 445.1506$, found: 445.1520; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=12.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=9.4 \mathrm{~min}$.
(R)-4-(5-Chloro-2-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3r)

Yellow solid, $37.1 \mathrm{mg}, 91 \%$ yield, 86% ee, m.p. $138-140^{\circ} \mathrm{C}$, $[\alpha]_{{ }^{20}}^{20}=138.99$ (c $=0.55, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 7.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{brs}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,162.1,148.3,144.0,139.3,137.4$, 133.6, 129.6, 129.6, 129.3, 128.9, 128.9, 128.7, 126.7, 125.6, 120.2, 118.8, 118.8, 114.1, 114.1, 69.2, 38.1 , 13.6 ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{CIN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+: 435.1218$, found: 435.1212; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\operatorname{PrOH}=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm})$: $\mathrm{t}_{\text {major }}=7.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.7 \mathrm{~min}$.
(R)-4-(4-Bromo-2-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3s)

Light yellow oil, $39.8 \mathrm{mg}, 83 \%$ yield, 90% ee, $[\alpha]_{0}^{20}=151.75\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{\delta}: 8.08$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.52 (brs, 1 H), $3.86(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,162.2,150.4,144.0,137.4,135.8,135.1,129.6,129.6,128.9,128.9,128.1,125.7,125.5,122.6$, 120.2, 118.9, 118.9, 114.0, 114.0, 69.1, 37.8, 13.6 ppm ; HRMS (ESI-TOF) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 431.1714, found: 431.1701; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/$ - $-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) $: \mathrm{t}_{\text {major }}=7.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.8 \mathrm{~min}$.
(R)-4-(5-Fluoro-2-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3t)

Light yellow oil, $28.8 \mathrm{mg}, 69 \%$ yield, $84 \% \mathrm{ee},[\alpha]_{0}^{20}=174.41\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.01$ (dd, $J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 3 \mathrm{H})$, $6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{brs}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, 1 H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.2,164.0(\mathrm{~d}, \mathrm{~J}=258.4 \mathrm{~Hz}$), 162.2, 146.2, 144.0, 137.4, 130.3 (d, $J=9.1 \mathrm{~Hz}$), 129.6, 129.6, 129.9, 128.9, $128.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 125.6,120.7(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 120.2$, 118.8, 118.8, 116.2(d, J=22.9 Hz), 114.1, 114.1, 69.1, 38.2, $13.6 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-103.01$ ppm; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 419.1514$, found: 419.1510; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane/i-PrOH $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=7.0 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.5 \mathrm{~min}$.
(R)-4-(2-Fluoro-6-nitrobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (3u)

$3 u$
Light yellow oil, $25.9 \mathrm{mg}, 62 \%$ yield, 82% ee, $[\alpha]_{0}^{20}=11.84\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.89$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.73(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{brs}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=14.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $14.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.5,162.3,161.7(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 150.5$ (d, $J=4,3 \mathrm{~Hz}$), 144.2, 137.8, $129.8(\mathrm{~d}, J=10.0 \mathrm{~Hz}$), 129.5, 129.5, 128.9, 128.9, 125.4, $121.7(\mathrm{~d}, J=3.1 \mathrm{~Hz}$), 120.7 ($\mathrm{d}, J=25.0 \mathrm{~Hz}$), 119.9, 119.0, 119.0, 116.5 ($\mathrm{d}, J=19.1 \mathrm{~Hz}$), 114.0, 114.0, 68.2, 30.9, $13.6 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-108.08 \mathrm{ppm}$; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 419.1514$, found: 419.1508; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column $\left(n\right.$-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=16.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.9 \mathrm{~min}$.
(R)-4-((3-Methyl-5-oxo-1-phenyl-4-(phenylamino)-4,5-dihydro-1H-pyrazol-4-yl)methyl)-3-nitrobenzonitrile (3w)

3v
Yellow solid, $19.1 \mathrm{mg}, 45 \%$ yield, 76% ee, m.p. $118-120^{\circ} \mathrm{C}$, $[\alpha]_{0_{0}^{20}}^{20}=144.07\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) $\delta: 8.21(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=19.5,8.4,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=$ $8.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2 H), $4.49(\mathrm{brs}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta: 171.8,162.0,150.1,143.7,137.2,135.3,135.1,131.8,129.7,129.7,129.0,129.0,128.6,125.9$, 120.5, 118.7, 118.7, 116.0, 114.2, 114.2, 113.6, 69.3, 38.1, 13.6 ppm ; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 426.1561 , found: 426.1562 ; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=22.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=11.1$ min.
(R)-1-Benzyl-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5a)

5a
Yellow oil, $31.5 \mathrm{mg}, 70 \%$ yield, $82 \% \mathrm{ee},\left[{ }^{2}\right]_{\mathrm{o}}^{20}=222.7\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.73(\mathrm{dd}, \mathrm{J}$ $=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.90(\mathrm{~m}, 5 \mathrm{H})$, 6.71-6.68(m, 1 H), $6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.96-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{brs}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 177.2, 150.2, $144.9,141.9,135.3,134.0,132.3,129.4,129.0,129.0,128.7,128.7,128.6,128.4,127.6,127.6,127.5,127.5$, 124.9, 124.8, 123.4, 120.0, 116.6, 116.6, 109.5, 66.2, 44.0, 41.0 ppm; HRMS (ESI-TOF) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 450.1812$, found: 450.1792; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=33.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=40.8$ min.
(R)-1-Benzyl-3-(2-nitrobenzyl)-3-(p-tolylamino)indolin-2-one (5b).

5b
Yellow solid, $29.6 \mathrm{mg}, 64 \%$ yield, 74% ee, m.p. $143-149^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}=205.6\left(\mathrm{c}=0.27, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס: $7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), $6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 ($\mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.3,150.2,142.3$, $142.1,135.2,133.9,132.2,129.8$, 129.4, 129.4, 129.3, 128.8, 128.6, 128.6, 128.3, 127.7, 127.5, 127.4, 127.4, 124.9, 124.8, 123.3, 117.8, 117.8, 109.4, 66.7, 43.9, 40.8, 20.5 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 464.1969$, found: 464.1964; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=36.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=24.6$ min.
(R)-1-Benzyl-3-((4-bromophenyl)amino)-3-(2-nitrobenzyl)indolin-2-one (5c)

5c
Yellow oil, $39.6 \mathrm{mg}, 75 \%$ yield, 86% ee, $[\alpha]_{D}^{20}=280.9\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.74$ (dd, J $=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}$, $5 \mathrm{H}), 6.55(\mathrm{dd}, \mathrm{J}=20.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.07(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{brs}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 176.9$, $150.2,143.9,141.9,135.1,134.0,132.3,131.8,131.8,129.6,128.7,128.7,128.5,128.4,127.8,127.6,127.6$, 127.1, 124.9, 124.8, 123.5, 118.4, 118.4, 112.3, 109.6, 66.2, 44.1, 40.8 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 528.0917 , found: 528.0914; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=87.4 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=$ 32.3 min .
(R)-1-Benzyl-5-methoxy-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5d)

5d
Yellow solid, $41.7 \mathrm{mg}, 87 \%$ yield, 92% ee, m.p. $200-203^{\circ} \mathrm{C}$, $[\mathrm{d}]_{\mathrm{o}}^{20}=201.9\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz} \text {, }}$ $\left.\mathrm{CDCl}_{3}\right)$ ס: $7.71(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, 2H), 6.73-6.66 (m, 3H), $6.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (brs, 1 H), 4.34 (dd, $J=28.5,14.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $176.9,156.5,150.2,144.9,135.3,135.1,133.9,132.2,129.0,129.0,128.6,128.6,128.6,128.4,128.4,127.6$, $127.5,127.5,124.8,120.0,116.4,116.4,115.1,110.8,110.2,66.6,55.7,44.1,41.0 \mathrm{ppm}$; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 480.1918$, found: 480.1925; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=57.3$ $\min , \mathrm{t}_{\text {minor }}=63.9 \mathrm{~min}$.
(R)-1-Benzyl-5-methyl-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5e)

5e
Yellow oil, $32.4 \mathrm{mg}, 70 \%$ yield, 72% ee, $[\alpha]_{0}^{20}=184.2\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.69(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 4 \mathrm{H})$, $6.71-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (brs, 1H), $4.38(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.0,150.3,145.0,139.3,135.4,133.9,133.3,132.1,129.6,129.0,129.0,128.6,128.6$, 128.5, 128.3, 127.6, 127.6, 127.6, 127.4, 125.4, 124.7, 119.8, 116.3, 116.3, 109.2, 66.2, 44.0, 41.0, 21.0 ppm ; HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 464.1969, found: 464.1963; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=90 / 10,0.8$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm})$: $\mathrm{t}_{\text {major }}=38.7 \mathrm{~min}, \mathrm{t}_{\text {minor }}=43.3 \mathrm{~min}$.
(R)-1-Benzyl-5-bromo-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5f)

$5 f$
Yellow solid, $39.6 \mathrm{mg}, 75 \%$ yield, 83% ee, m.p. $175-177^{\circ} \mathrm{C}$, $[\alpha]_{0}^{20}=200.9\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) ס: 7.81-7.79 (m, 1H), 7.46-7.37 (m, 2H), 7.29-7.21 (m, 5H), $7.15(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H})$, 6.97-6.92 (m, 2H), 6.75-6.71 (m, 1H), $6.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.21(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{~ : ~ 1 7 6 . 7 , ~ 1 5 0 . 2 , ~ 1 4 4 . 5 , ~ 1 4 0 . 8 , ~ 1 3 4 . 8 , ~ 1 3 3 . 9 , ~ 1 3 2 . 4 , ~ 1 3 2 . 3 , ~ 1 3 0 . 0 , ~ 1 2 9 . 1 , ~ 1 2 9 . 1 , ~ 1 2 8 . 8 , ~ 1 2 8 . 8 , ~}$ 128.7, 128.2, 127.9, 127.9, 127.6, 127.6, 125.1, 120.3, 116.6, 116.6, 116.3, 111.0, 66.0, 44.1, $41.1 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 528.0917$, found: 528.0897; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane/i-PrOH $=85 / 15,0.8$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm})$: $\mathrm{t}_{\text {major }}=49.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=44.7 \mathrm{~min}$.
(R)-1-Benzyl-5-chloro-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5g)

5 g
Yellow solid, $29.0 \mathrm{mg}, 60 \%$ yield, 92% ee, m.p. $160-163{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{o}}^{20}=210.9$ (c = 0.51, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta: 7.79(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03-7.00 (m, 3H), 6.97-6.92 (m, 2H), 6.75-6.71 (m, 1H), $6.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.21(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} C_{\text {NMR (}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 176.8,150.2,144.5,140.3,134.8,133.9,132.4,129.6,129.4,129.1,129.1$, 129.0, 128.8, 128.8, 128.7, 128.2, 127.9, 127.6, 127.6, 125.2, 125.0, 120.3, 116.6, 116.6, 110.5, 66.1, 44.2, 41.1 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 484.1422$, found: 484.1405 ; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\operatorname{PrOH}=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm})$: $\mathrm{t}_{\text {major }}=31.7 \mathrm{~min}, \mathrm{t}_{\text {minor }}=25.9 \mathrm{~min}$.
(R)-1-Benzyl-5-fluoro-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5h)

5h
Yellow oil, $42.5 \mathrm{mg}, 91 \%$ yield, 92% ee, $[\alpha]_{0}^{20}=212.7\left(\mathrm{c}=0.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.77(\mathrm{dd}, \mathrm{J}$ $=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H})$, 4.97 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{brs}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 177.0, $159.6(\mathrm{~d}, \mathrm{~J}=243.3 \mathrm{~Hz}$), 150.3, 144.6, 137.8, 135.0, 133.9, 132.4, 129.6 ($\mathrm{d}, J=7.7 \mathrm{~Hz}$), 129.0, 129.0, 128.8, 128.8, 128.7, 128.2, 127.8, 127.5, 127.5, 125.0, 120.3, 116.6, 116.6, $115.8(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 110.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 66.3,44.2,41.0 \mathrm{ppm} ;{ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ : -118.99 (td, $J=8.3,4.0 \mathrm{~Hz}$) ppm; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 468.1718$, found: 468.1701; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=33.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=27.6 \mathrm{~min}$.
(R)-1-(4-Methoxyphenyl)-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5i)

$5 i$
Yellow solid, $31.6 \mathrm{mg}, 68 \%$ yield, 83% ee, m.p. $115-118^{\circ} \mathrm{C},[\alpha]_{0}^{20}=96.8(\mathrm{c}=0.56, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) ס: 7.73-7.71 (m, 1H), 7.46-7.35 (m, 3H), 7.24-7.15 (m, 2H), 7.06-6.92 (m, 5H), 6.85-6.83 (m, 2H), 6.70 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{brs}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), 3.51 ($\mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 176.6,159.3,150.1,145.0,143.1,134.1$, 132.4, 129.4, 129.0, 129.0, 128.5, 128.4, 127.5, 127.5, 126.9, 126.5, 124.9, 124.8, 124.0, 119.7, 115.7, 115.7, 114.9, 114.9, 109.4, 66.3, 55.5, 41.1 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+: 466.1761$, found: 466.1751; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=32.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=18.4 \mathrm{~min}$.
(R)-1-Methyl-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one ($5 \mathbf{j}$)

5j
Yellow solid, $18.7 \mathrm{mg}, 50 \%$ yield, 76% ee, m.p. $138-142{ }^{\circ} \mathrm{C}$, $[\alpha]_{0}^{20}=149.1$ ($\mathrm{c}=0.11, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta: 7.70(\mathrm{dd}, \mathrm{J}=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.67-6.63(\mathrm{~m}$, 2 H), 6.18 (dd, $J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.60 (brs, 1 H), $4.25(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.1,150.1,144.9,142.5,133.8,132.0,129.5,129.0,129.0,128.5$, 128.4, 127.4, 124.8, 124.5, 123.5, 119.5, 115.4, 115.4, 108.2, 66.0, 41.2, 26.1 ppm; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 374.1499$, found: 374.1491; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (n-hexane $/ i-\mathrm{PrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=$ $67.3 \mathrm{~min}, \mathrm{t}_{\text {minor }}=88.2 \mathrm{~min}$.
(R)-1-Allyl-3-(2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5k)

5k
Yellow oil, $13.2 \mathrm{mg}, 33 \%$ yield, 97% ee, $[\alpha]_{o}^{20}=133.9\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.71(\mathrm{dd}, \mathrm{J}$ $=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 1 \mathrm{H})$, 7.02-6.99 (m, 1H), 6.95-6.92 (m, 2H), 6.68-6.65 (m, 2H), $6.22(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J$ $=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{brs}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 176.8,150.2,144.8,142.0,134.0,132.3,131.0,129.4$, 128.9, 128.9, 128.5, 128.4, 127.4, 124.8, 124.7, 123.4, 119.8, 118.0, 116.1, 116.1, 109.3, 66.1, 42.5, 41.0 ppm ; HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 400.1656$, found: 400.1655; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane/i-PrOH $=90 / 10,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=38.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=42.0 \mathrm{~min}$.
(R)-1-Benzyl-3-(3-nitrobenzyl)-3-(phenylamino)indolin-2-one (5I)

51
Yellow oil, $21.6 \mathrm{mg}, 48 \%$ yield, $78 \% \mathrm{ee},[\alpha]_{0}^{20}=78.6\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.00-7.97$ (m, 1H), 7.59-7.58 (m, 1H), $7.43(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.31(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (brs, $1 \mathrm{H}), 4.34(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 176.6,147.6,144.8,142.2$, 136.5, 135.3, 135.0, 129.7, 129.1, 129.1, 128.6, 128.6, 128.6, 128.1, 127.7, 127.4, 127.4, 125.0, 124.3, 123.3 , 122.3, 120.2, 116.6, 116.6, 109.7, 66.2, 45.6, 43.9 ppm ; HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 450.1812, found: 450.1822; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$) $: \mathrm{t}_{\text {major }}=25.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.1 \mathrm{~min}$.
(R)-1-Benzyl-3-(4-nitrobenzyl)-3-(phenylamino)indolin-2-one (5m)

$5 m$
Yellow oil, $30.1 \mathrm{mg}, 67 \%$ yield, $70 \% \mathrm{ee},[\alpha]_{0}^{20}=16.1\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б: $7.86-7.84$ $(\mathrm{m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.30(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 176.6,147.1,144.8,142.3,140.9,135.0,131.1,131.1,129.7,129.1,129.1$, 128.6, 128.6, 128.2, 127.8, 127.5, 127.5, 124.2, 123.2, 122.8, 122.8, 120.2, 116.6, 116.6, 109.7, 66.2, 45.8, 43.9 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 450.1812$, found: 450.1807 ; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\operatorname{PrOH}=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=17.4 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.6 \mathrm{~min}$.
(R)-1-Benzyl-3-(2-methoxy-4-nitrobenzyl)-3-(phenylamino)indolin-2-one (5n)

5n
Yellow solid, 25.8 mg , 54% yield, 60% ee, m.p. $158-162{ }^{\circ} \mathrm{C}$, $[\alpha]_{0}^{20}=64.6$ (c $=0.22, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) ס: 7.64-7.62 (m, 2H), 7.27-7.25 (m, 3H), 7.19-7.15 (m, 3H), 6.99-6.90 (m, 5H), 6.71-6.64 (m, 2H), 6.15 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.09 (brs, 1 H), $5.00(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.6,158.2,148.2,145.0,141.8$, $135.5,132.8,130.6,129.2,129.2,129.0,128.7,128.7,128.3,127.8,127.7,127.7,125.2,122.3,119.3,115.5$, $115.5,115.2,109.5,105.4,65.9,55.86,44.1,39.2 \mathrm{ppm}$; HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 480.1918, found: 480.1909; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=19.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.6 \mathrm{~min}$.
(R)-1-Benzyl-3-(4,5-dimethoxy-2-nitrobenzyl)-3-(phenylamino)indolin-2-one (50)

50
Yellow oil, $21.9 \mathrm{mg}, 43 \%$ yield, 76% ee, $[\alpha]_{o}^{20}=97.9\left(\mathrm{c}=0.29, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.37(\mathrm{~s}, 1 \mathrm{H})$, 7.26-7.15 (m, 5H), 7.00-6.99 (m, 3H), $6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.24$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{brs}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 177.4, 151.9, 147.9, $144.9,142.6,142.1,135.3,129.4,129.0,129.0,128.7,128.7,128.7,128.0,127.3,127.3,125.0,123.2,123.0$, 119.9, 116.6, 116.6, 115.1, 109.5, 108.2, 66.5, 56.3, 56.2, 44.0, 40.9 ppm; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 510.2023$, found: 510.2016 ; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=86.0 \mathrm{~min}, \mathrm{t}_{\text {minor }}=20.0$ min.
(R)-1-Benzyl-3-((6-nitrobenzo[d][1,3]dioxol-5-yl)methyl)-3-(phenylamino)indolin-2-one (5p)

5p
Yellow oil, $10.8 \mathrm{mg}, 22 \%$ yield, $72 \% \mathrm{ee},[\alpha]_{0}^{20}=101.8\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}: 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.90(\mathrm{~m}, 5 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, 1 H), $3.41(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 177.3, 150.9, 147.2, 144.8, 144.3, 142.1, $135.4,129.4,129.0,129.0,128.7,128.7,127.8,127.6,127.5,127.5,125.1,124.8,123.4,120.0,116.7,116.7$, 112.3, 109.6, 105.9, 102.9, 66.2, 44.1, 41.2 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 494.1710, found: 494.1684; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=40.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=62.5 \mathrm{~min}$.
(R)-1-Benzyl-3-(3-methyl-2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5q)

5q
Yellow oil, 31.4 mg , 68% yield, $88 \% \mathrm{ee},[\alpha]_{\mathrm{o}}^{20}=129.1\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.24-7.17 $(\mathrm{m}, 6 \mathrm{H}), 7.11-6.97(\mathrm{~m}, 5 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69-4.65(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.4,152.3,144.8,142.0,135.4,130.7,130.4,130.1,129.6,129.4,128.9,128.9,128.7$, 128.7, 128.1, 127.6, 127.5, 127.5, 126.1, 125.0, 123.2, 119.9, 116.5, 116.5, 109.6, 65.5, 44.1, 40.6, 18.1 ppm ; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 464.1969$, found: 464.1975; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i$-PrOH $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 245 \mathrm{~nm}): \mathrm{t}_{\text {major }}=61.4 \mathrm{~min}, \mathrm{t}_{\text {minor }}=21.8 \mathrm{~min}$.
(R)-1-Benzyl-3-(5-chloro-2-nitrobenzyl)-3-(phenylamino)indolin-2-one (5r)

$5 r$
Yellow oil, $10.1 \mathrm{mg}, 21 \%$ yield, 68% ee, $[\alpha]_{0}^{20}=57.5$ (c $\left.=0.16, \mathrm{MeOH}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.72(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{brs}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.0,148.4$, 144.6, 141.9, 138.6, 135.2, 133.7, 130.8, 129.6, 129.0, 129.0, 128.7, 128.7, 128.5, 127.7, 127.4, 127.4, 127.3, 126.3, 124.7, 123.4, 120.4, 117.1, 117.1, 109.7, 66.2, 44.0, 40.7 ppm ; HRMS (ESI-TOF) m/z calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 484.1422$, found: 484.1399; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$): $\mathrm{t}_{\text {major }}=16.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ 21.4 min .
(R)-4-(2-Aminobenzyl)-5-methyl-2-phenyl-4-(phenylamino)-2,4-dihydro-3H-pyrazol-3-one (6a)

Yellow oil, $26.3 \mathrm{mg}, 71 \%$ yield, $88 \% \mathrm{ee},[\alpha]_{0}^{20}=160.9\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}: 7.69(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.22$ (brs, 1H), 3.95 (brs, 2 H), $3.20(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 174.2,163.3,145.6,144.7,137.7,132.0$, 129.6, 129.6, 129.2, 128.9, 128.9, 125.6, 119.6, 119.6, 119.3, 119.3, 118.0, 117.7, 113.4, 113.4, 70.2, 38.8, 14.5 ppm; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 371.1866$, found: 317.1868; HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IC column (n-hexane/i-PrOH $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}): \mathrm{t}_{\text {major }}=7.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.8 \mathrm{~min}$.

2,2,6,6-Tetramethyl-1-((2-nitrobenzyl)oxy)piperidine (8a) ${ }^{[3]}$

 8a

Red oil, $19.9 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.05$ (dd, $J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.9,135.2,133.5,128.4,127.4,124.5,75.0,60.1,39.7,39.7,39.7,32.9$, 32.9, 20.5, 20.5, 17.1 ppm; HRMS (ESI-TOF) m / z calcd. For $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 293.1860, found: 293.1865.

6. Data for X-Ray Crystal Structures of 3d and 5d

Table 1 Crystal data and structure refinement of 3d

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{3}$
Formula weight	418.42
Temperature/K	$100.00(10)$
Crystal system	monoclinic
Space group	P_{2}
a / \AA	$11.22990(10)$
b / \AA	$7.59620(10)$
c / \AA	$11.50980(10)$
$\alpha /^{\circ}$	90
$\beta /^{\circ}$	$91.8060(10)$
$\gamma \rho^{\circ}$	90
Volume/ \AA^{3}	$981.351(18)$
Z	2
$\rho_{\text {calcmg }} / \mathrm{mm}{ }^{3}$	1.416
μ / mm^{-1}	0.852
$\mathrm{~F}(000)$	436.0
2Θ range for data collection ${ }^{\circ}$	7.684 to 156.392°
Index ranges	$-14 \leq \mathrm{h} \leq 13,-9 \leq \mathrm{k} \leq 8,-14 \leq 1 \leq 14$
Reflections collected	19231
Independent reflections	$3917[\mathrm{R}(\mathrm{int})=0.0467]$
Data/restraints/parameters	$3917 / 1 / 282$
Goodness-of-fit on F^{2}	1.045
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0311, \mathrm{wR}_{2}=0.0812$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0316, \mathrm{wR}_{2}=0.0817$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.17 /-0.15$

Table 2 Crystal data and structure refinement of $5 \mathbf{d}$

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$
Formula weight	479.52
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$
a / \AA	10.0511(4)
b / \AA	19.4219(8)
c / \AA	12.2312(4)
$\alpha{ }^{\circ}$	90
$\beta{ }^{\circ}$	100.502(3)
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	2347.68(15)
Z	4
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.357
μ / mm^{-1}	0.743
F(000)	1008.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.05 \times 0.05$
2Θ range for data collection $/{ }^{\circ}$	8.648 to 152.398
Index ranges	$-12 \leq \mathrm{h} \leq 12,-22 \leq \mathrm{k} \leq 24,-14 \leq 1 \leq 15$
Reflections collected	17966
Independent reflections	$4692[\mathrm{R}(\mathrm{int})=0.1039]$
Data/restraints/parameters	4692/0/327
Goodness-of-fit on F^{2}	1.067
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0731, \mathrm{wR}_{2}=0.1841$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0885, \mathrm{wR}_{2}=0.1957$
Largest diff. peak/hole / e \AA^{-3}	0.53/-0.67

7. References

[1] (a) Y.-H. Shi, Z. Wang, Y. Shi, W.-P. Deng, Tetrahedron 2012, 68, 3649-3653; (b) S. Mahajan, P. Chauhan, U. Kaya, K. Deckers, K. Rissanen, D. Enders, Chem. Commun. 2017, 53, 6633-6636.
[2] (a) B.-S. Li, Y. Wang, R. S. J. Proctor, Y. Zhang, R. D. Webster, S. Yang, B. Song, Y. R. Chi, Nat. Commun. 2016, 7, 12933-12940; (b) Y. Wang, Y. Du, X. Huang, X. Wu, Y. Zhang, S. Yang, Y. R Chi, Org. Lett. 2017, 19, 632-635.
[3] R. Ding, B. Yu, Asian Journal of Organic Chemistry, 2018, 7, 2427-2430.

8. Copies of NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 a (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 b (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 b}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 c (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 c (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 d (in CDCl_{3})

(
${ }^{13} \mathrm{C}$ NMR spectrum of compound 3d (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3 d (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 e (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 e (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 f (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 f (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 g (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 h (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 h (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 i (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 i$ (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3 i (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 j (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 j (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 k (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 k (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 31 (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 31 (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 m (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 m (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 n (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 n$ (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $3 n$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 30 (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 30 (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 p (in CDCl_{3})

$\stackrel{n}{i}$
${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 p$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 q$ (in CDCl_{3})

$\stackrel{\infty}{\dot{+}} \stackrel{\infty}{\infty} \underset{\sim}{\infty}$
气
-24000
-23000

$3 q$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 q (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 r (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 r (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3s (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 s (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 t (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 t (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3 t (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 u (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 u (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3 u (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 v (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 v (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 a (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $5 a$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 b (in CDCl_{3})
(
${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 b (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 c (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 c (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 d (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 d (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 e (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 e (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 f (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 f (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 g (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 g (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 h (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 h (in CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 5 h (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 i}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 i (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 j (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $5 \mathbf{j}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 k (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 k (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 i (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 51 (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 m (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 m (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 n (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 n (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 50 (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 50 (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 p (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 p (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5 \mathbf{q}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 q (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5 \mathbf{r}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $5 \mathbf{r}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 a}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 a (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of compound 8 a (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 a (in CDCl_{3})

9. Copies of HPLC Data

HPLC spectra of 3a
racemate

| Peak | RetTime Type | Width | Area | | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] | [min] mAU | *s | [mAU |] | $\%$ |

chiral compound

Peak \#	```RetTime Type [min]```		Width [min]	Area		Height		Area \%	
			mAU	* S	[mAU]			
1	6.596	MM R		0.1592	234	19368	24.51	1466	5.1027
2	9.066	BB	0.2376	4355	39600	282.9	2685	94.8973	

HPLC spectra of 3b
racemate

chiral compound

HPLC spectra of 3c
racemate

chiral compound

HPLC spectra of 3d

racemate

chiral compound

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	\%
1	5.293	MM R	0.1385	973	18060	11	4494	9.8194
2	7.479	BB	0.1991	8937	. 6525	699	39496	90.1806

HPLC spectra of 3e
racemate

chiral compound

HPLC spectra of $3 f$

racemate

Peak	RetTime Type [min]		Width [min]	Area		Height		Area	
\#			mAU	*S	[mAU]	\%		
1	6.977	VB		0.1874	1.17	e 4	966	8989	50.0512
2	10.616	BB	0.3454	1.1	e 4	52	77979	49.9488	

chiral compound

Peak \#	RetTime [min]	Type	Width [min]	Area		Height		$\begin{gathered} \text { Area } \\ \% \end{gathered}$
				mAU	*s	[mAU	1	
1	7.000	MM R	0.1900	1129	20422		. 04319	5.1693
2	10.607	BB	0.3498	2.07	52 e 4	916	. 18219	94.8307

HPLC spectra of 3 g
racemate

chiral compound

HPLC spectra of 3 h
racemate

chiral compound

HPLC spectra of $3 i$
racemate

chiral compound

HPLC spectra of $\mathbf{3 j}$
racemate

chiral compound

HPLC spectra of $3 \mathbf{k}$
racemate

chiral compound

HPLC spectra of 31
racemate

chiral compound

HPLC spectra of 3 m
racemate

chiral compound

Peak	etTime	Type	Width	Area	Height	Area
1	14.648	BB	0.4635	1.09584 e 4	361.66602	97.1376
2	17.855	MM R	0.5400	322.91187	9.96678	2.8624

HPLC spectra of $3 n$
racemate

chiral compound

HPLC spectra of 30
racemate

chiral compound

HPLC spectra of 3p
racemate

chiral compound

HPLC spectra of $3 q$
racemate

chiral compound

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	*s	[mAU	1	\%
1	9.420	BB	0.2665	463	33389		68783	9.8617
2	12.466	BB	0.3595	4234	98291	181	96730	90.1383

HPLC spectra of 3 r
racemate

chiral compound

Peak \#	```RetTime [min]```	Type	Width [min]	Area		Height		Area
				mAU	*s	[mAU	1	
1	5.671	VB	0.1697	479	75815		. 15161	7.3902
2	7.078	BB	0.1902	6012	01563	486	. 44424	92.6098

HPLC spectra of 3 s
racemate

chiral compound

HPLC spectra of $3 t$
racemate

chiral compound

HPLC spectra of $3 u$
racemate

chiral compound

HPLC spectra of 3 v
racemate

chiral compound

HPLC spectra of 5 a
racemate

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	*s	[mAU]	$\%$
1	33.179	MM R	0.8435	6555	992	129.	688	50.8957
2	40.762	MM R	1.0836	6325	6260	97.	8752	49.1043

chiral compound

HPLC spectra of 5 b
racemate

chiral compound

HPLC spectra of 5 c
racemate

chiral compound

Peak\#	RetTime [min]	Type	Width [min]	Area		Height		Area \%
				mAU	*s	[mAU]	
	32.319		0.8644	1944	72217	33.	4425	7.0662
2	87.412	BB	2.0861	2.55	68 e 4	181.	1820	92.9338

HPLC spectra of 5d
racemate

chiral compound

HPLC spectra of 5 e
racemate

chiral compound

Peak	RetTime Type	Width	Area		Height		Area
\#	[min]	[min]	mAU	*s	[mAU	1	$\%$
1	38.661 BB	1.0714	2.38	70 e 4	345	88895	86.0537
2	43.311 BB	1.1290		63794		59584	13.9463

HPLC spectra of $5 f$
racemate

chiral compound

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$		Width [min]	Area		Height		Area	
			mAU	*s	[mAU	1	\%		
1	44.718			1.1875	3062	51782		85547	8.4836
2	49.169	BB	1.5619	3.30	67e4	323	91385	91.5164	

HPLC spectra of 5 g
racemate

chiral compound

Peak\#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	*s	[mAU]	\%
1	25.901		0.6131	1003	6798		74120	4.1070
2	31.701	BB	0.8388	2.34	3 e 4	418	70901	95.8930

HPLC spectra of 5 h

racemate

chiral compound

Peak	RetTime Type		Width	Area		Height		Area
\#	[min]		[min]	mAU	*S	[mAU]	$\%$
1	27.567		0.6623	3255	92480		4738	4.2500
2	233.880	BB	0.9112	7.33	43 e 4	1133	27600	95.7500

HPLC spectra of $5 \mathbf{i}$
racemate

chiral compound

HPLC spectra of 5 j
racemate

chiral compound

HPLC spectra of $\mathbf{5 k}$

racemate

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mAU	*s	[mAU	1	$\%$
1	39.040	BB	0.7737	164	82556		41783	49.6752
2	41.838	BB	0.7844	166	29626		18859	50.3248

chiral compound

HPLC spectra of 51

racemate

chiral compound

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	* ${ }^{\text {S }}$	[mAU	1	\%
1	10.080	BB	0.2776	6051	52148	336	78287	10.7588
2	25.505	BB	0.8803	5.01	54 e 4	838	58313	89.2412

HPLC spectra of 5 m
racemate

chiral compound

Peak \#	```RetTime Type [min]```	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	Area		Height		Area
			mAU	* S	[mAU	1	$\%$
1	10.610 BB	0.3189	3770	53589	182	259	15.2881
2	17.369 BB	0.6932	2.08	6 e 4	460	8722	84.7119

HPLC spectra of 5 n

racemate

chiral compound

HPLC spectra of 50
racemate

Peak	RetTime	Type	Width	Area		Height		Area
$\#$	[min]		[min]	mAU	*s	(mAU	1	
1	20.187	MM R	0.8144	1.7	83e4		. 69794	49.6941
2	88.286		4.0493		39e4		. 65785	50.3059

chiral compound

HPLC spectra of 5 p

racemate

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	$m A U$	*S	(mAU	1	\%
1	40.729	BB	1.1037	3.307	e4	462.	5052	50.3640
2	61.046	BB	1.8543	3.259	3 e 4	242.	50082	49.6360

chiral compound

HPLC spectra of $5 \mathbf{q}$

racemate

chiral compound

HPLC spectra of $5 r$
racemate

chiral compound

HPLC spectra of 6a
racemate

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area \%
				mAU	* 3	(mAU]	
1	7.992	MM R	0.2417	2285	2598	157	8295	50.0956
2	8.828	MM R	0.2629	2276	0747	144	9836	49.9044

chiral compound

[^0]: Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
 *E-mail: lugui@mail.sysu.edu.cn

