Supporting Information

Additive Free, N-Heterocyclic Nitrenium Catalyzed Photoreduction of

Cycloketone Oxime Esters

Xiao-Di Su,^b Zhu-Sheng Yang,^a Wei Gong,^{a,*} Zhi-Xiang Wang,^{b,c,*} and Xiang-Yu Chen^{b,c,*} ^aSchool of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China. E-mail: gongw@gznu.edu.cn

^bSchool of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Email: zxwang@ucas.ac.cn; Email: chenxiangyu20@ucas.ac.cn

^cBinzhou Institute of Tech-nology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.

Contents

1. General Experimental Details	S3
2. Detailed Optimization of Reaction Conditions.	S5
3. General Procedure and Spectral Data of Products	S8
4. The Mechanism Studies	S10
5. Compound Characterization Data	S13
6. NMR Spectra	S23
7. Reference	S60

- 1. General Experimental Details.
- Chemicals were purchased from Heowns, Innochem and Bidepharm. They were used without further purification unless otherwise noted. The starting materials were readily prepared according to the related literatures.¹⁻⁶ Solvents were purified using a solventpurification system (VSPS-8, Vigor) that contained activated alumina and molecular sieves.
- Chromatographic purification of the products was performed on Mietek 200-300 mesh silica gel.
- IR spectra were taken on a Vertex 70 spectrophotometer and reported as wave numbers (cm⁻¹).
- UV-vis absorption spectra were acquired on UV-2900 spectrophotometer (Shimadzu, Japan).
- The SGW X-4 was used to measure the melting point of solids.
- ¹H, ¹⁹F and ¹³C- NMR spectra were recorded at ambient temperature on a JEOL JNM-LA400 Spectrometer and JEOL JNM-ECZ500R Spectrometer. The chemical shifts are reported in ppm downfield of tetramethylsilane (TMS) and referenced to residual solvent peaks resonance as the internal standard. The order of citation in parentheses is a) multiplicity (s = singlet, d = doublet, t = triplet, dd= doublet of doublet, td = triplet of doublet, m = multiplet), b) coupling constants, c) number of protons. Coupling constants (J) are reported in Hertz (Hz).
- Photochemical experiments were performed magnetically stirred in 10 mL glass tubes, sealed with a rubber septum. The tubes were irradiated with blue light (450 nm,) using a LED lamp with a power output of 100 W. The distance from the light source to the irradiation vessel is 2 cm, and a fan was used to keep the reaction temperature at 45±5 °C. (The purchase link for LED lamp is https://item.jd.com/52714507033.html)

Fig. S1 The spectrum of blue LEDs employed in the reaction

• HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. The mass analysis mode of the HRMS was orbitrap.

2. Detailed Optimization of Reaction Conditions.

Scheme S1 Optimization of the reaction conditions.

	Ph Ph + N-	0 CF3 -	addition (20 mol%) solvent (0.1 M) hv, 45±5 °C, 12 h	Ph Ph
	1	2		3
	×	N A1, R = <i>i</i> Pr ∣ [−] A2, R = Me	$ \begin{pmatrix} N & B1, X = I \\ N & N^{T} & B2, X = BF_{4} \end{pmatrix} $	
Entry ^a	addition	1a:2a	Solvent	Yield/% ^b
1	NHN A1	1:1.5	Acetone	73
2	NHN A2	1:1.5	Acetone	63
3	NHN B1	1:1.5	Acetone	24
4	NHN B2	1:1.5	Acetone	NR
5	NHN A1	1:1.5	DMA	46
6	NHN A1	1:1.5	DMSO	55
7	NHN A1	1:1.5	THF	40
8	NHN A1	1:1.5	MeCN	27
9	NHN A1	1:1.5	DMF	70
10	NHN A1	1:1.5	Toluene	19
11	NHN A1	1:1.0	Acetone	43
12	NHN A1	1:1.2	Acetone	57
13	NHN A1	1:1.5	Acetone	73
14	NHN A1	1:2.0	Acetone	67
15	/	1:1.5	Acetone	NR
16 ^c	NHN A1	1:1.5	Acetone	NR
17	NaI	1:1.5	Acetone	NR
18	TBAI	1:1.5	Acetone	trace

^{*a*}**1** (27 mg, 0.15 mmol), **2** (58 mg, 0.225 mmol) and addition (20 mol%) in solvent (1.5 mL) under irradiation with blue LED (100W); ^{*b*}Yield of isolated products after chromatography; ^{*c*}No light, reaction temperature is 60 °C.

Scheme S2 The screen of the solvent.

Bn N Ac	+CF3 -	NHN A1 (20 mol%) solvent (0.1 M) hv, 45±5 °C, 12 h	Ac. N CN Bn
Entry ^a	Solvent	Yield/% ^b	E/Z^d
1	DMF	65	4:1
2	DMA	30	4:1
3	DMSO	88	4:1
4	THF	72	4:1
5	MeCN	trace	/
6	Acetone	80	4:1
7	Toluene	77	5:1
8 ^c	Toluene	NR	/

^{*a*}Enamide (38 mg, 0.15 mmol), **2** (58 mg, 0.225 mmol) and NHN **A1** (9 mg, 20 mol%) in solvent (1.5 mL) under irradiation with blue LED (100W); ^{*b*}Yield of isolated products after chromatography; ^{*c*}No light, reaction temperature is 60 °C; ^{*d*}E/Z ratios were determined by ¹H NMR analysis.

Scheme S3 The screen of the solvent.

	N 0 NHN A1 (20 solvent (0) hv, 45±5 °C	0, 12 h
Entry ^a	Solvent	Yield/% ^b
1	DMF	24
2	DMA	28
3	DMSO	77
4	THF	38
5	MeCN	trace
6	Acetone	50
7	Toluene	31
8 ^c	DMSO	NR

^{*a*}Coumarin (22 mg, 0.15 mmol), **2** (58 mg, 0.225 mmol) and NHN **A1** (9 mg, 20 mol%) in solvent (1.5 mL) under irradiation with blue LED (100 W); ^{*b*}Yield of isolated products after chromatography; ^{*c*}No light, reaction temperature is 60 °C.

Scheme S4 The screen of the solvent.

Ph		CF ₃ NHN A1 (20 mol%) solvent (0.1 M) hv, 45±5 °C, 12 h	
-	Entry ^a	Solvent	Yield/% ^b
-	1	DMF	30
	2	DMA	8
	3	DMSO	29
	4	THF	57
	5	MeCN	trace
	6	Acetone	81
	7	Toluene	25
	8	DCE	22
	9c	Acetone	NR

aN-alkyl-*N*-methacryloylbenzamide (30.5 mg, 0.15 mmol), **2** (58 mg, 0.225 mmol) and NHN **A1** (9 mg, 20 mol%) in solvent (1.5 mL) under irradiation with blue LED (100 W); *b*Yield of isolated products after chromatography; *c*No light, reaction temperature is 60 °C.

Scheme S5 The screen of the solvent.

Entrya	Solvent	Yield/% ^b
1	DMF	53
2	DMA	58
3	DMSO	20
4	THF	68
5	Acetone	40
6	Toluene	30
7 ^c	THF	NR

^{*a*}2-methyl-1-(2-phenyl-1*H*-indol-1-yl)prop-2-en-1-one (39.3 mg, 0.15 mmol), **2** (58 mg, 0.225 mmol) and NHN **A1** (9 mg, 20 mol%) in solvent (1.5 mL) under irradiation with blue LED (100 W); ^{*b*}Yield of isolated products after chromatography; ^{*c*}No light, reaction temperature is 60 °C.

Scheme S6 Optimization of the reaction conditions.

\bigcirc			NHN A1 (20 mol%) solvent (0.1 M) base (20 mol%) <i>hv</i> , 45±5 °C, 12 h	
Entry ^a	Base	Solvent	<i>dr</i> ^b	Yield/% ^c
1	/	DMF	1:1	56
2	/	DMA	1:1	40
3	/	DMSO	1:1	66
4	/	THF	1:1	47
5	/	Acetone	1:1	58
6	/	Toluene	1:1	56
7	/	MeCN	1:1	NR
8	DMAP	DMSO	1:1	66
9	TMEDA	DMSO	1:1	50
10	Et ₃ N	DMSO	1:1	70
11	DIPEA	DMSO	1:1	56
12	DBU	DMSO	1:1	trace
13	DABCO	DMSO	1:1	77
14	pyridine	DMSO	1:1	62
15	quinoline	DMSO	1:1	47
16	PMDTA	DMSO	1:1	36
17 ^d	DABCO	DMSO	1:1	70
18 ^e	DABCO	DMSO	/	NR

^{*a*}*N*-methyl-*N*-phenylmethacrylamide (35 mg, 0.2mmol), **2** (100 mg, 0.3 mmol), base (20 mol%) and NHN **A1** (12 mg, 20 mol%) in solvent (2.0 mL) under irradiation with blue LED (100 W); ^{*b*}Detected by ¹H NMR; ^{*c*}Yield of isolated products after chromatography; ^{*d*}Used 2.0 eq. base; ^{*e*}No light, reaction temperature is 60 °C.

3. General Procedures and Spectral Data of Products.

3.1 General Procedure A for the Synthesis of **3-9**.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with ethene-1,1-diyldibenzene¹ (0.20 mmol), 2^2 (0.30 mmol), NHN A1 (0.04 mmol) and acetone (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **3-9**.

3.2 General Procedure B for the Synthesis of **10-15**.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with enamide³ (0.20 mmol), **2** (0.30 mmol), NHN **A1** (0.04 mmol) and toluene (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **10-15**.

3.3 General Procedure C for the Synthesis of 16-21.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with coumarin (0.20 mmol), **2** (0.30 mmol), NHN **A1** (0.04 mmol) and DMSO (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45 ± 5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **16-21**.

3.4 General Procedure D for the Synthesis of 22-25.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged

sequentially with *N*-alkyl-*N*-methacryloylbenzamides⁴ (0.20 mmol), **2** (0.30 mmol), NHN **A1** (0.04 mmol) and acetone (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **22-25**.

3.5 General Procedure E for the Synthesis of **26-31**.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with 2-methyl-1-(2-phenyl-1*H*-indol-1-yl)prop-2-en-1-one⁵ (0.20 mmol), **2** (0.30 mmol), NHN **A1** (0.04 mmol) and THF (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **26-31**.

3.6 General Procedure F for the Synthesis of **32-39**.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with *N*-methyl-*N*-phenylmethacrylamide⁶ (0.20 mmol), cycloketone ester² (0.30 mmol), NHN **A1** (0.04 mmol) and DMSO (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired products **32-39**.

4. The Mechanism Studies.

4.1 TEMPO Trapping Experiment.

In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with **1** (0.20 mmol), **2** (0.30 mmol), NHN **A1** (0.04 mmol), TEMPO (1.0 mmol) and acetone (2.0 mL). The tube was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45 ± 5 °C under blue LED (100 W) irradiation for 12 hours. The adduct of TEMPO and alkyl radical from decarboxylation of cycloketone ester **2** was detected by HRMS. **HRMS** (ESI): m/z [M+Na]⁺ calcd for C₁₃H₂₄N₂ONa⁺: 247.1781; found: 247.1777, unfortunately, we could not isolate it.

4.2 UV/vis Absorption Spectrometry.

Fig. S2 Absorption spectra of NHN **A1** (0.005 M in acetone), **1** (0.025 M in acetone), **2** (0.025 M in acetone) and their mixtures.

4.3 Cyclic Voltammetry Analysis.

Voltammetric experiments were conducted with a computer-controlled Shanghai Chen Hua CHI440E containing glassy carbon electrode serving as the working electrode, saturated Ag/AgCl reference electrode, Pt wire auxiliary electrode. All solutions used for the voltammetric experiments were deoxygenated by purging with high purity nitrogen and measurements were performed in a Faraday cage at room temperature (25 ± 2 °C).

Fig. S3 Cyclic voltammograms of NHN **A1**, NHN **A2**, NHN **B1** and NHN **B2**, in Acetone (0.00625 M), **2** in Acetone (0.0469 M) containing TBAPF₆ (0.0625M). Scan rate: 0.04 V/s. E_{red} (NHN **A1**) = -1.48 V, E_{red} (NHN **A2**) = -1.41 V, E_{red} (NHN **B1**) = -0.92 V, E_{red} (NHN **B2**) = -0.92 V, E_{red} (NHN **B2**) = -0.92 V, E_{red} (2) = -0.95 V.

4.4 Quantum yield determination.

According to the procedure of Xu⁷: To an oven-dried 10 mL glass tubes sealed with rubber septum, the **1** (0.2 mmol), **2** (0.3 mmol), and NHN **A** (0.04 mmol) were combined in acetone (2 mL) under N₂ atmosphere. The reaction mixture was stirred and irradiated (λ = 465 nm, PLS-LED100C) for 2.0 h. After irradiation, the solution was measured the unit area photon

flux (MQ-500 photosynthetic active radiation meter). And the yield of product formed was determined by ¹H NMR using 1-(3,4,5-Trimethoxyphenyl)ethanone as an internal standard. The quantum yield is calculated using the following equation:

$$\phi = \frac{mol \ product}{flux \cdot S \cdot t}$$

Where, Φ is quantum yield, S (m²) is the irradiation area and t (s) is the photoreaction time.

Experiment: the unit photon flux was 391 μ mol·s⁻¹·m⁻² (average of three experiments), the irradiation area was 2.85×10⁻⁴ m², and the product yield was 24% after 2.0 h (7200 s).

Quantum yield calculation:

$$\phi = \frac{mol \ product}{flux \cdot S \cdot t} = \frac{0.24 \times 0.2 \times 10^3}{391 \times 2.85 \times 10^{-4} \times 7200} = 0.060$$

Fig. S4 Placement of PLS-LED100C and MQ-500 photosynthetic active radiation meter.

5. Compound Characterization Data.

6,6-diphenylhex-5-enenitrile (3): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (36.1 mg, 0.146 mmol, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.31 (m,

1H), 7.29 – 7.18 (m, 5H), 7.18 – 7.12 (m, 2H), 6.01 (t, J = 7.4 Hz, 1H), 2.31 – 2.23 (m, 4H), 1.83 – 1.75 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.8, 142.2, 139.7, 129.8, 128.5, 128.3, 127.3, 127.3, 126.7, 119.7, 28.8, 25.8, 16.8. These data are in agreement with those reported previously in the literature.⁸

The large-scale reaction general procedure A: In a nitrogen-filled glovebox, a dry tube equipped with a magnetic stirring bar was charged sequentially with ethene-1,1-diyldibenzene (**1**, 1.0 mmol, 176 μ L), **2** (1.5 mmol, 385.5 mg), and acetone (10.0 mL). The vial was closed and removed from the glovebox. The resulting mixture was allowed to stir at 45±5 °C under blue LED (100 W) irradiation for 12 hours. Upon completion, the solvent was removed under vacuum and the residue was subjected to silica gel chromatography using petroleum ether and ethyl acetate as eluent to afford the desired product **3** (158 mg, 0.64 mmol, 64%).

6,6-bis(4-fluorophenyl)hex-5-enenitrile (4): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (42.3 mg, 0.150 mmol,

75%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.17 – 7.14 (m, 2H), 7.13 – 7.04 (m, 4H), 6.98 – 6.94 (m, 2H), 5.95 (t, *J* = 7.4 Hz, 1H), 2.32 (t, *J* = 7.2 Hz, 2H), 2.28 – 2.24 (m, 2H), 1.83 – 1.77 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.4 (d, *J* = 248.2 Hz), 162.2 (d, *J* = 248.2 Hz), 142.0, 138.3 (d, *J* = 3.4 Hz), 135.4 (d, *J* = 3.4 Hz), 131.4 (d, *J* = 7.9 Hz), 128.9 (d, *J* = 7.9 Hz), 127.0, 119.5, 115.6 (d, *J* = 21.3 Hz), 115.2 (d, *J* = 21.3 Hz), 28.8, 25.8, 16.9. These data are in agreement with those reported previously in the literature.⁹

6,6-bis(4-chlorophenyl)hex-5-enenitrile (5): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (40.1 mg, 0.128 mmol, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.36 (m, 2H), 7.27 – 7.21 (m, 2H), 7.15

-7.05 (m, 4H), 6.01 (t, J = 7.4 Hz, 1H), 2.32 (t, J = 7.2 Hz, 2H), 2.29 -2.23 (m, 2H)., 1.84 -1.77 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.7, 140.3, 137.6, 133.6, 133.5, 131.2, 128.9, 128.58, 128.55, 127.9, 119.5, 28.9, 25.7, 16.9. These data are in agreement with those reported previously in the literature.¹⁰

6,6-bis(4-bromophenyl)hex-5-enenitrile (6): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (56.2 mg,

0.138 mmol, 69%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.06 – 7.01 (m, 4H), 6.02 (t, *J* = 7.4 Hz, 1H), 2.32 (t, *J* = 7.2 Hz, 2H), 2.28 – 2.23 (m, 2H), 1.84 – 1.77 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.8, 140.7, 138.1, 131.9, 131.53, 131.49, 128.9, 127.9, 121.8, 121.7, 119.5, 28.9, 25.7, 16.9. **IR (ATR)**: 2931, 2246, 1729, 1486, 1069,

1008, 816 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for $C_{18}H_{15}Br_2NNa^+$ 423.9443, found 423.9441

6,6-di-*p***-tolylhex-5-enenitrile (7)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (38.1 mg, 0.138 mmol, 69%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (d, *J* = 7.6 Hz, 2H), 7.14 – 7.00 (m, 6H), 5.94 (t, *J* = 7.4 Hz, 1H), 2.38 (s, 3H), 2.32 (s, 3H), 2.30 – 2.21 (m, 4H), 1.82 – 1.75 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 139.7, 137.1, 136.92, 136.87, 129.7, 129.1, 129.0, 127.2, 125.7, 119.8, 28.8, 25.9, 21.4, 21.2, 16.8. These data are in agreement with those reported previously in the literature.^{9,10}

6,6-bis(4-(*tert***-butyl)phenyl)hex-5-enenitrile (8)**: Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (49.6 mg, 0.138 mmol, 69%). ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 5.96 (t, *J* = 7.4 Hz, 1H), 2.31 – 2.24 (m, 4H), 1.81 – 1.75 (m, 2H), 1.35 (s 9H), 1.30 (s 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 150.1, 143.5, 139.6, 136.7, 129.4, 126.9, 125.9, 125.3, 125.2, 119.8, 34.7, 34.6, 31.5, 31.4, 28.8, 26.0, 16.8. **IR (ATR)**: 2960, 2246, 1657, 1268, 1108, 829, 619 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₆H₃₃NONa⁺ 398.2454, found 398.2451.

6,6-bis(4-methoxyphenyl)hex-5-enenitrile (9): Following the general procedure A, the title product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (46.8 mg, 0.152 mmol, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.11 (m, 2H), 7.10 – 7.03 (m, 2H), 6.94 – 6.87 (m, 2H), 6.83 – 6.77 (m, 2H), 5.87 (t, *J* = 7.4 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.30 (t, *J* = 7.3 Hz, 2H), 2.28 – 2.23 (m, 2H), 1.81 – 1.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 158.8, 142.9, 135.4, 132.3, 131.0, 128.5, 124.8, 119.8, 113.8, 113.6, 55.40, 55.36, 28.8, 26.0, 16.8. IR (ATR): 2934, 2246, 1604, 1508, 1241, 1170, 1028, 832 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₀H₂₁NO₂Na⁺ 330.1465, found 330.1461.

(*E*)-*N*-benzyl-*N*-(5-cyano-1-phenylpent-1-en-1-yl)acetamide (10): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (49.3 mg, 0.154 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m,

3H), 7.31 – 7.27 (m, 2H), 7.24 – 7.21 (m, 3H), 7.20 – 7.16 (m, 2H), 5.19 (t, J = 7.6 Hz, 1H), 4.50 (s, 2H), 2.34 – 2.28 (m, 2H), 2.21 (s, 3H), 2.15 (t, J = 7.2 Hz, 2H), 1.67 – 1.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 140.2, 137.6, 134.6, 129.8, 129.1, 128.9, 128.6, 128.4, 127.5, 119.1, 49.0, 27.4, 25.3, 22.4, 16.6. **IR (ATR)**: 2932, 2246, 1641, 1390, 1286, 1126, 777 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₂₂N₂ONa⁺ 341.1624, found 341.1621.

ethyl (*E*)-4-(1-(*N*-benzylacetamido)-5-cyanopent-1-en-1yl)benzoate (11): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (49.2 mg, 0.120 mmol, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.1 Hz, 2H), 7.33 - 7.23 (m, 5H), 7.20 - 7.13 (m, 2H), 5.31 (d, *J* = 7.2 Hz, 1H), 4.51 (s, 2H), 4.44 - 4.38 (m, 2H), 2.35 - 2.29 (m, 2H), 2.21 (s, 3H), 2.17 (t, *J* = 7.1 Hz, 2H), 1.68 - 1.61 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 166.0, 139.5, 139.1, 137.3, 131.3, 131.0, 130.2, 129.1, 128.6, 128.5, 127.6, 119.0, 61.4, 49.2, 27.5, 25.2, 22.4, 16.7, 14.4. IR (ATR): 2932, 2245, 1712, 1643, 1388, 1271, 1103, 868 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₄H₂₆N₂O₃Na⁺ 413.1836, found 413.1826.

(*E*)-*N*-benzyl-*N*-(5-cyano-1-(p-tolyl)pent-1-en-1-yl)acetamide (12): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (50.4 mg, 0.154 mmol, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.26

(m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.20 – 7.16 (m, 2H), 7.13 (d, J = 7.9 Hz, 2H), 5.14 (t, J = 7.6 Hz, 1H), 4.50 (s, 2H), 2.40 (s, 3H), 2.33 – 2.29 (m, 2H), 2.21 (s, 3H), 2.15 (t, J = 7.1 Hz, 2H), 1.66 – 1.60 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 140.2, 139.2, 137.7, 131.6, 129.6, 129.23, 129.15, 128.6, 128.4, 127.5, 119.2, 48.9, 27.5, 25.4, 22.4, 21.4, 16.7. IR (ATR): 2927, 2246, 1640, 1390, 1167, 819 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₄N₂ONa⁺ 355.1781, found 355.1776.

(E)-N-benzyl-N-(1-(3-chlorophenyl)-5-cyanopent-1-en-1-yl)acetamide

(13): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (43.1 mg, 0.122 mmol, 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.33 (m,

2H), 7.32 – 7.27 (m, 3H), 7.20 – 7.16 (m, 3H), 7.14 – 7.10 (m, 1H), 5.25 (t, *J* = 7.6 Hz, 1H), 4.51 (s, 2H), 2.33 – 2.28 (m, 2H), 2.20 (s, 3H), 2.18 (t, *J* = 7.1 Hz, 2H), 1.67 – 1.61 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 170.4, 139.1, 137.4, 136.6, 135.1, 130.9, 130.2, 129.3, 129.1, 128.6, 128.5, 127.6, 126.9, 119.0, 49.2, 27.4, 25.2, 22.4, 16.7. **IR (ATR)**: 2931, 2246, 1644, 1386, 1128, 794 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₂₁ClN₂ONa⁺ 375.1235, found 375.1232.

(E)-N-benzyl-N-(5-cyano-1-(3-methoxyphenyl)pent-1-en-1-

yl)acetamide (14): Following the general procedure, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (43.0 mg, 0.124 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.21 – 7.19 (m, 2H), 6.94 – 6.91 (m, 1H), 6.85 – 6.82 (m, 1H), 6.74 – 6.73 (m, 1H), 5.20 (t, *J* = 7.6 Hz, 1H), 4.52 (s, 2H), 3.81 (s, 3H), 2.37 – 2.32 (m, 2H), 2.21 (s, 3H), 2.16 (t, *J* = 7.2 Hz, 2H), 1.68 – 1.60 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 160.0, 140.1, 137.7, 136.1, 130.0, 129.9, 129.2, 128.5, 127.5, 121.1, 119.2, 114.6, 114.1, 55.5, 49.1, 27.5, 25.3, 22.4, 16.7. IR (ATR): 2934, 2247, 1645, 1389, 1247, 1128, 779 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₄N₂O₂Na⁺ 371.1730, found 371.1725.

Bn∖⊾

Bn___Ac

^{Bn}∖N′

Ac

(*E*)-*N*-benzyl-*N*-(5-cyano-1-phenylpent-1-en-1-yl)propionamide (15): Following the general procedure B, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (44.2 mg, 0.132 mmol, 66%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.37 (m, 3H), 7.32 – 7.27 (m, 2H), 7.24 – 7.18 (m, 5H), 5.18 (t, J = 7.6 Hz, 1H), 4.52 (s, 2H), 2.51 – 2.46 (m, 2H), 2.35 – 2.30 (m, 2H), 2.16 (t, J = 7.1 Hz, 2H), 1.66 – 1.61 (m, 2H), 1.20 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 174.1, 139.7, 137.9, 134.8, 129.6, 129.2, 129.1, 128.9, 128.6, 128.5, 127.5, 119.2, 49.3, 27.5, 27.4, 25.4, 16.7, 10.4. **IR (ATR)**: 2936, 2246, 1683, 1408, 1164, 757 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₄N₂ONa⁺ 355.1781, found 355.1779.

4-(2-oxo-2*H***-chromen-3-yl)butanenitrile (16)**: Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a white solid (32.8 mg,

0.154 mmol, 77%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.56 – 7.44 (m, 2H), 7.37 – 7.27 (m, 2H), 2.76 (t, *J* = 7.0 Hz, 2H), 2.44 (t, *J* = 7.0 Hz, 2H), 2.10 – 2.02 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.6, 153.5, 140.3, 131.3, 127.6, 127.3, 124.7, 119.30, 119.28, 116.7, 30.4, 23.8, 16.9. These data are in agreement with those reported previously in the literature.¹¹

4-(7-methoxy-2-oxo-2*H***-chromen-3-yl)butanenitrile** (17): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1)

as a white solid (27.5 mg, 0.114 mmol, 57%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 6.87 – 6.84 (m, 1H), 6.82 (d, *J* = 2.4 Hz, 1H), 3.87 (s, 3H), 2.70 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.0 Hz, 2H), 2.07 – 2.02 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.4, 161.9, 155.2, 140.5, 128.5, 123.5, 119.4, 112.9, 112.8, 100.6, 55.9, 30.2, 23.9, 16.8. These data are in agreement with those reported previously in the literature.¹¹

4-(6-methyl-2-oxo-2*H***-chromen-3-yl)butanenitrile (18)**: Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a white solid (30.0 mg, 0.132 mmol, 66%). **¹H NMR** (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.32 – 7.30 (m, 1H), 7.28 – 7.20 (m, 2H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.47 – 2.39 (m, 5H), 2.09 – 2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 151.6, 140.3, 134.3, 132.3, 127.4, 127.1, 119.4, 119.0, 116.3, 30.4, 23.8, 20.9, 16.8. These data are in agreement with those reported previously in the literature.¹¹

Eto 4-(7-ethoxy-2-oxo-2*H***-chromen-3-yl)butanenitrile (19): Following the general procedure, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a white solid (31.0 mg, 0.112 mmol, 56%). ¹H NMR (400 MHz, CDCl₃) \delta 7.53 (s, 1H), 7.35 (d,** *J* **= 8.6 Hz, 1H), 6.88 – 6.78 (m, 2H), 4.11 – 4.06 (m, 2H), 2.75 – 2.66 (m, 2H), 2.42 (t,** *J* **= 7.0 Hz, 2H), 2.07 – 2.00 (m, 2H), 1.46 (t,** *J* **= 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) \delta 162.0, 161.9, 155.2, 140.5, 128.4, 123.4, 119.4, 113.2, 112.8, 101.1, 64.3, 30.3, 23.9, 16.8, 14.7. These data are in agreement with those reported previously in the literature.¹¹**

4-(7-ethoxy-4-methyl-2-oxo-2*H*-chromen-3-yl)butanenitrile

(20): Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA =

10:1 – 4:1) as a white solid (27.3 mg, 0.100 mmol, 50%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.9 Hz, 1H), 6.90 – 6.83 (m, 1H), 6.79 (d, *J* = 2.5 Hz, 1H), 4.12 – 4.06 (m, 2H), 2.84 – 2.76 (m, 2H), 2.46 – 2.43 (m, 5H), 1.97 – 1.90 (m, 2H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.1, 161.6, 154.0, 147.8, 125.8, 121.0, 119.7, 113.8, 112.9, 101.1, 64.2, 26.6, 24.5, 17.1, 15.1, 14.7. **IR (ATR)**: 2921, 2244, 1708, 1614, 1289, 1152, 1082, 866, 776 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₇NO₃Na⁺ 294.1101, found 294.1094.

H^O + **4-(7-hydroxy-2-oxo-2***H***-chromen-3-yl)butanenitrile (21)**: Following the general procedure C, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a white solid (24.3 mg, 0.106 mmol, 53%). ¹**H NMR** (400 MHz, CD₃CN) δ 7.75 (s, 1H), 7.61 (s, 1H), 7.40 (d, *J* = 8.5 Hz, 1H), 6.82 – 6.72 (m, 2H), 2.61 – 2.53 (m, 2H), 2.44 (t, *J* = 7.2 Hz, 2H), 1.94 – 1.86 (m, 2H). ¹³**C NMR** (126 MHz, CD₃CN) δ 162.5, 160.6, 155.8, 140.9, 129.8, 124.3, 121.0, 113.6, 113.5, 103.0, 30.4, 24.5, 16.9. These data are in agreement with those reported previously in the literature.¹²

5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-

yl)pentanenitrile (22): Following the general procedure D, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (43.7 mg, 0.162 mmol, 81%). ¹H

NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.3 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.49 – 7.38 (m, 2H), 3.38 (s, 3H), 2.41 – 2.27 (m, 1H), 2.25 – 2.12 (m, 2H), 1.94 – 1.87 (m, 1H), 1.61 (s, 3H), 1.58 – 1.44 (m, 2H), 1.11 – 0.86 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.5, 164.4, 143.1, 134.4, 129.2, 127.7, 125.2, 125.0, 119.3, 47.7, 41.8, 29.8, 27.3, 25.4, 24.6, 16.9. These data are in agreement with those reported previously in the literature.¹³

5-(6-methoxy-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)pentanenitrile (23): Following the general procedure D, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (40.9 mg, 0.136 mmol, 68%). ¹H

NMR (500 MHz, CDCl₃) δ 8.21 (d, *J* = 8.8 Hz, 1H), 6.98 – 6.96 (m, 1H), 6.85 (s, 1H), 3.91 (s, 3H), 3.37 (s, 3H), 2.38 – 2.27 (m, 1H), 2.24 – 2.14 (m, 2H), 1.90 – 1.84 (m, 1H), 1.60 (s, 3H), 1.59 – 1.46 (m, 2H), 1.11 – 0.90 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 176.6, 164.5, 164.0, 145.4, 131.5, 119.4, 118.0, 113.3, 110.5, 55.7, 47.9, 41.9, 29.9, 27.2, 25.4, 24.5, 16.9. These data are in agreement with those reported previously in the literature.¹³

tetrahydroisoquinolin-4-yl)pentanenitrile (24): Following the general procedure D, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a yellow oil (34.6 mg,

0.102 mmol, 51%). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.67 (s, 1H), 3.41 (s, 3H), 2.93 – 2.81 (m, 1H), 2.35 – 2.21 (m, 3H), 1.82 (s, 3H), 1.64 – 1.47 (m, 2H), 1.05 – 0.77 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 162.2, 137.3, 137.0, 134.6, 133.3, 128.7, 119.3, 49.2, 36.8, 28.0, 25.7, 25.3, 25.0, 16.9. **IR (ATR)**: 2940, 2246, 1715, 1665, 1324, 1271, 1117, 775 cm⁻¹.

HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₆Cl₂N₂O₂Na⁺ 361.0481, found 361.0479.

5-(2-benzyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)pentanenitrile (25): Following the general procedure D, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (55.0 mg, 0.160 mmol, 80%). ¹H

NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.49 – 7.37 (m, 4H), 7.33 – 7.26 (m, 2H), 7.25 – 7.21 (m, 1H), 5.26 (d, *J* = 13.4 Hz, 1H), 5.15 (d, *J* = 13.4 Hz, 1H), 2.32 – 2.20 (m, 1H), 2.12 – 1.97 (m, 2H), 1.93 – 1.81 (m, 1H), 1.60 (s, 3H), 1.48 – 1.35 (m, 2H), 0.93 – 0.76 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.1, 164.1, 143.2, 137.2, 134.4, 129.3, 128.9, 128.5, 127.7, 127.6, 125.1, 125.0, 119.3, 47.6, 43.6, 42.1, 29.3, 25.3, 24.3, 16.8. These data are in agreement with those reported previously in the literature.¹³

ČΝ

5-(5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1a]isoquinolin-5-yl)pentanenitrile (26): Following the general procedure E, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil

(45.5 mg, 0.136 mmol, 68%). ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.46 (m, 1H), 7.88 – 7.78 (m, 1H), 7.65 – 7.56 (m, 1H), 7.53 – 7.50 (m, 1H), 7.48 (d, *J* = 3.7 Hz, 1H), 7.47 – 7.41 (m, 3H), 2.51 – 2.43 (m, 1H), 2.25 – 2.10 (m, 2H), 2.10 – 2.00 (m, 1H), 1.73 (s, 3H), 1.61 – 1.48 (m, 2H), 1.16 – 0.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 149.8, 144.2, 141.2, 132.3, 131.4, 128.1, 126.21, 126.17, 126.0, 125.8, 123.1, 120.0, 119.3, 115.8, 49.4, 41.6, 29.5, 25.5, 24.7, 16.9. IR (ATR): 2931, 2245, 1712, 1613, 1583, 1450, 1352, 1166, 962, 742 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₁₉N₃ONa⁺ 352.1420, found 352.1417.

5-(1-bromo-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1a]isoquinolin-5-yl)pentanenitrile (27): Following the general procedure E, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a white solid (47.2

mg, 0.116 mmol, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.34 (m, 1H), 7.95 – 7.92 (m, 1H), 7.85 – 7.82 (m, 1H), 7.49 – 7.45 (m, 3H), 7.40 – 7.36 (m, 1H), 2.51 – 2.39 (m, 1H), 2.27 – 2.08 (m, 2H), 2.08 – 1.96 (m, 1H), 1.73 (s, 3H), 1.63 – 1.44 (m, 2H), 1.05 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 147.2, 144.2, 143.7, 135.5, 131.6, 130.7, 126.6, 126.2, 125.5, 122.5, 121.7, 121.0, 119.3, 115.8, 49.7, 41.9, 29.6, 25.4, 24.5, 16.9. IR (ATR): 2925, 2245, 1704, 1562, 1447, 1329, 1125, 966, 749 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₁₈BrN₃ONa⁺ 430.0526, found 430.0519.

5-(3,5-dimethyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-

a]isoquinolin-5-yl)pentanenitrile (28): Following the general procedure E, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a white solid (33.0

mg, 0.096 mmol, 48%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.40 – 8.27 (m, 2H), 7.84 – 7.77 (m, 1H), 7.49 – 7.35 (m, 2H), 7.35 – 7.29 (m, 1H), 7.25 (s, 1H), 2.49 (s, 3H), 2.47 – 2.37 (m, 1H), 2.28 – 2.10 (m, 2H), 2.07 – 1.99 (m, 1H), 1.72 (s, 3H), 1.60 – 1.45 (m, 2H), 1.15 – 0.94 (m, 2H). ¹³**C**

NMR (126 MHz, CDCl₃) δ 173.3, 150.1, 144.3, 142.9, 141.3, 131.4, 129.2, 126.4, 126.2, 126.1, 125.6, 120.5, 119.8, 119.3, 115.8, 49.3, 41.7, 29.5, 25.5, 24.6, 22.2, 16.9. **IR (ATR)**: 2919, 2245, 1700, 1612, 1556, 1450, 1354, 1155, 958, 769 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₁N₃ONa⁺ 366.1577, found 366.1571.

5-(3-bromo-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1a]isoquinolin-5-yl)pentanenitrile (29): Following the general procedure E, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a white solid (55.5

mg, 0.136 mmol, 68%). ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.33 (m, 2H), 7.85 – 7.78 (m, 1H), 7.66 – 7.63 (m, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.52 – 7.39 (m, 2H), 2.50 – 2.42 (m, 1H), 2.23 – 2.14 (m, 2H), 2.05 – 1.93 (m, 1H), 1.73 (s, 3H), 1.63 – 1.50 (m, 2H), 1.14 – 0.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 148.9, 144.1, 143.1, 131.6, 131.3, 129.2, 127.6, 126.9, 126.4, 126.1, 122.1, 120.1, 119.2, 115.8, 49.4, 41.7, 29.3, 25.4, 24.6, 16.9. IR (ATR): 2934, 2241, 1719, 1578, 1413, 1324, 1273, 1113, 862, 768 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₁₈BrN₃ONa⁺ 430.0526, found 430.0526.

5-(2,4,5-trimethyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1a]isoquinolin-5-yl)pentanenitrile (30): Following the general procedure E, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (53.3

mg, 0.150 mmol, 75%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.37 – 8.30 (m, 2H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.50 – 7.38 (m, 2H), 7.21 (s, 1H), 2.60 (s, 3H), 2.50 – 2.46 (m, 2H), 2.42 (s, 3H), 2.25 – 2.08 (m, 2H), 1.81 (s, 3H), 1.64 – 1.46 (m, 2H), 1.09 – 0.94 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 174.3, 150.6, 144.4, 138.1, 137.9, 136.0, 135.5, 131.4, 126.2, 125.5, 125.4, 123.7, 119.8, 119.3, 115.9, 50.6, 38.0, 26.7, 25.6, 25.2, 23.0, 20.7, 16.9. **IR (ATR)**: 2922, 2245, 1722, 1540, 1450, 1364, 1324, 1121, 863, 772 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]+ calcd. for C₂₃H₂₃N₃ONa+ 380.1733, found 380.1728.

5-(10-bromo-5-methyl-6-oxo-5,6dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-5-

yl)pentanenitrile (31): Following the general procedure E, the title product was obtained after purification by column

chromatography (PE/EA = 10:1 – 4:1) as a white solid (45.0 mg, 0.110 mmol, 55%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 – 8.45 (m, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 1.8 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.55 – 7.49 (m, 2H), 7.48 – 7.47 (m, 1H), 2.48 – 2.42 (m, 1H), 2.25 – 2.10 (m, 2H), 2.08 – 2.02 (m, 1H), 1.73 (s, 3H), 1.64 – 1.45 (m, 2H), 1.13 – 0.95 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 173.0, 150.8, 145.6, 141.4, 132.6, 130.4, 128.7, 128.2, 126.4, 126.0, 123.0, 122.7, 119.2, 116.9, 49.5, 41.6, 29.5, 25.4, 24.6, 16.9. **IR (ATR)**: 2926, 2242, 1705, 1604, 1578, 1445, 1347, 1325, 1157, 969, 776 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₁₈BrN₃ONa⁺ 430.0526, found 430.0522.

ethyl 2-(cyanomethyl)-4-(1,3-dimethyl-2-oxoindolin-3-yl)butanoate (32): Following the general procedure F, the title product was obtained

after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (isolated as an inseparable mixture, dr = 1:1, 55.9 mg, 0.178 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.16 (d, *J* = 7.3 Hz, 2H), 7.10 – 7.07 (m, 2H), 6.86 (d, *J* = 7.8 Hz, 2H), 4.20 – 4.14 (m, 4H), 3.22 (d, *J* = 1.2 Hz, 6H), 2.66 – 2.40 (m, 6H), 1.99 - 1.85 (m, 2H), 1.85 - 1.70 (m, 2H), 1.51 - 1.42 (m, 1H), 1.36 (d, *J* = 2.6 Hz, 6H), 1.34 - 1.24 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 180.07, 180.02, 172.3, 172.2, 143.4, 143.3, 133.21, 133.15, 128.27, 128.25, 122.94, 122.91, 122.60, 122.58, 117.7, 117.6, 108.4, 61.6, 48.1, 48.0, 41.6, 41.5, 35.0, 34.8, 26.5, 26.4, 26.3, 24.02, 23.92, 19.5, 19.1, 14.3. **IR (ATR)**: 2928, 2247, 1700, 1612, 1471, 1421, 1376, 1181, 1125, 935, 755 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₁₈H₂₂N₂O₃Na⁺ 337.1523, found 337.1517.

4-methyl
2-(cyanomethyl)-4-(1,3-dimethyl-2-oxoindolin-3-yl)butanoate (33): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 – 4:1) as a colorless oil (isolated as an inseparable mixture, dr = 1:1, 52.0

mg, 0.174 mmol, 87%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.18 – 7.16 (m, 2H), 7.11 – 7.08 (m, 2H), 6.87 (d, *J* = 7.8 Hz, 2H), 3.71 (d, *J* = 6.1 Hz, 6H), 3.23 (s, 6H), 2.85 – 2.27 (m, 6H), 2.00 – 1.69 (m, 6H), 1.36 (d, *J* = 2.3 Hz, 6H), 1.33 – 1.25 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 180.0, 172.8, 172.7, 143.3, 133.1, 128.3, 123.0, 122.6, 117.63, 117.55, 108.4, 52.6, 48.03, 47.96, 41.4, 41.3, 34.9, 34.8, 26.44, 26.35, 26.2, 24.0, 23.9, 19.4, 19.1. **IR (ATR)**: 2928, 2249, 1701, 1611, 1493, 1453, 1375, 1243, 1172, 735 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₁₇H₂₀N₂O₃Na⁺ 323.1366, found 323.1359.

2-(2-(1,3-dimethyl-2-oxoindolin-3-yl)ethyl)succinonitrile (34): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (isolated as an inseparable mixture, dr = 1:1, 32.1 mg, 0.120

mmol, 60%). ¹**H NMR** (400 MHz, CD₃Cl) 7.33 – 7.30 (m, 2H), 7.23 – 7.18 (m, 2H), 7.15 – 7.08 (m, 2H), 6.88 (d, *J* = 7.8 Hz, 2H), 3.23 (d, *J* = 0.9 Hz, 6H), 2.86 – 2.80 (m, 1H), 2.73 – 2.68 (m, 1H), 2.65 – 2.57 (m, 4H), 2.18 – 2.10 (m, 1H), 2.07 – 2.03 (m, 2H), 1.91 – 1.85 (m, 1H), 1.55 – 1.47 (m, 2H), 1.40 (d, *J* = 1.6 Hz, 6H), 1.39 – 1.24 (m, 2H). ¹³**C NMR** (101 MHz, CD₃Cl) δ 179.7, 179.6, 143.1, 132.8, 132.5, 128.6, 128.5, 123.3, 123.2, 122.6, 118.6, 118.5, 115.5, 115.4, 108.6, 47.9, 47.6, 35.2, 34.6, 28.7, 28.4, 27.0, 26.6, 26.4, 24.2, 23.7, 21.1, 20.8. **IR (ATR)**: 2930, 2246, 1697, 1611, 1493, 1454, 1349, 1125, 1075, 751 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₇N₃ONa⁺ 290.1264, found 290.1259.

5-(1,3-dimethyl-2-oxoindolin-3-yl)-3-phenylpentanenitrile (35): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (isolated as an inseparable mixture, dr = 1:1, 49.2 mg, 0.154

mmol, 77%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 8H), 7.18 – 7.02 (m, 7H), 6.97 – 6.96 (m, 1H), 6.88 – 6.85 (m, 2H), 3.22 (d, *J* = 6.5 Hz, 6H), 2.87 – 2.68 (m, 2H), 2.50 – 2.42 (m, 4H), 1.91 – 1.60 (m, 4H), 1.57 – 1.33 (m, 4H), 1.28 (d, *J* = 11.3 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 180.4, 180.2, 143.3, 143.2, 141.0, 140.8, 133.6, 133.4, 129.03, 129.01, 128.1, 127.64,

127.59, 127.3, 127.2, 122.8, 122.7, 122.5, 122.4, 118.3, 108.2, 48.12, 48.06, 42.3, 42.2, 35.8, 35.7, 29.5, 29.3, 25.5, 25.1, 24.1, 23.9. IR (ATR): 2925, 2245, 1702, 1611, 1492, 1453, 1348, 1066, 753 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₁H₂₂N₂ONa⁺ 341.1624, found 341.1618.

5-(1,3-dimethyl-2-oxoindolin-3-yl)-3-

(phenoxymethyl)pentanenitrile (36): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (isolated as an inseparable mixture, dr = 1:1, 52.2 mg, 0.150 mmol, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.31 - 7.27 (m, 5H), 7.25 - 7.24 (m, 1H), 7.20 (d, J = 7.4 Hz, 1H), 7.17 - 7.04 (m, 3H), 6.99 - 6.92 (m, 2H), 6.87 (d, J = 7.8 Hz, 2H), 6.85 - 6.80 (m, 4H), 3.94 - 3.90 (m, 2H), 3.81 - 3.78 (m, 1H), 3.76 - 3.69 (m, 1H), 3.23 (d, J = 4.7 Hz, 6H), 2.50 - 2.47 (m, 4H), 2.11 - 1.94 (m, 4H), 1.91 -1.79 (m, 2H), 1.37 (d, J = 5.6 Hz, 6H), 1.28 – 1.06 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 180.34, 180.32, 158.5, 158.4, 143.4, 143.3, 133.4, 133.3, 129.7, 128.22, 128.19, 123.0, 122.9, 122.7, 122.6, 121.4, 118.3, 118.1, 114.68, 114.65, 108.4, 68.8, 68.2, 48.25, 48.22, 35.9, 35.8, 35.4, 26.4, 25.6, 25.5, 24.2, 24.0, 19.8, 19.4. IR (ATR): 2926, 2245, 1702, 1611, 1492, 1469, 1238, 1124, 1018, 749 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₄N₂O₂Na⁺ 371.1730, found 371.1723.

5-(1,3-dimethyl-2-oxoindolin-3-yl)-3-(naphthalen-2-

yl)pentanenitrile (37): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a colorless oil (isolated as an inseparable mixture,

dr = 1:1, 53.0 mg, 0.144 mmol, 72%). ¹H NMR (400 MHz, CD₃Cl) δ 7.87 - 7.76 (m, 6H), 7.58 (s, 1H), 7.55 - 7.42 (m, 5H), 7.33 - 7.28 (m, 2H), 7.25 - 7.22 (m, 1H), 7.16 - 7.04 (m, 4H), 6.95 - 6.83 (m, 3H), 3.23 (d, J = 9.8 Hz, 6H), 3.06 - 2.86 (m, 2H), 2.60 - 2.46 (m, 4H), 1.92 - 1.85 (m, 1H), 1.82 – 1.74 (m, 1H), 1.70 – 1.63 (m, 3H), 1.55 – 1.47 (m, 3H), 1.26 (d, J = 16.2 Hz, 6H). ¹³C NMR (126 MHz, CD₃Cl) δ 180.4, 180.3, 143.4, 143.3, 138.4, 138.2, 133.7, 133.5, 133.4, 132.93, 132.89, 129.1, 129.0, 128.1, 128.0, 127.9, 127.8, 126.7, 126.53, 126.46, 126.2, 126.1, 124.8, 124.7, 122.83, 122.78, 122.6, 122.5, 118.4, 118.3, 108.3, 48.2, 48.1, 42.5, 35.9, 35.8, 29.6, 29.4, 26.4, 25.7, 25.2, 24.1, 23.9. IR (ATR): 2924, 2244, 1701, 1611, 1469, 1453, 1375, 1251, 1124, 1017, 748 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₅H₂₄N₂ONa⁺ 391.1781, found 391.1773.

(1-cyano-4-(1,3-dimethyl-2-oxoindolin-3-yl)butan-2*tert*-butyl **yl)carbamate (38)**: Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 -4:1) as a white solid (isolated as an inseparable mixture, dr = 1:1, 54.3

mg, 0.152 mmol, 76%). ¹**H NMR** (400 MHz, CDCl₃) 7.31 – 7.27 (m, 2H), 7.18 – 7.16 (m, 2H), 7.12 – 7.06 (m, 2H), 6.87 (d, J = 8.2 Hz, 2H), 4.68 (d, J = 8.3 Hz, 1H), 4.55 (d, J = 8.3 Hz, 1H), 3.66 (s, 2H), 3.23 (d, J = 2.5 Hz, 6H), 2.71 - 2.52 (m, 2H), 2.47 - 2.32 (m, 2H), 2.13 - 2.00 (m, 1H), 1.96 – 1.90 (m, 1H), 1.83 – 1.74 (m, 2H), 1.44 (s, 18H), 1.37 (s, 6H), 1.32 – 1.10 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 180.3, 180.2, 155.2, 155.1, 143.3, 133.3, 133.2, 128.31, 128.29,

123.1, 123.0, 122.56, 122.52, 117.1, 108.4, 80.3, 48.1, 47.9, 47.5, 34.6, 34.5, 28.7, 28.6, 28.4, 26.4, 24.3, 24.1, 23.9. **IR (ATR)**: 2927, 2247, 1688, 1612, 1525, 1449, 1364, 1254, 1164, 1017, 745 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₀H₂₇N₃O₃Na⁺ 380.1945, found 380.1938.

4-benzyl-5-(1,3-dimethyl-2-oxoindolin-3-yl)pentanenitrile (39): Following the general procedure F, the title product was obtained after purification by column chromatography (PE/EA = 10:1 - 4:1) as a white solid (isolated as an inseparable mixture, dr = 1.3:1, 33.9 mg, 0.102

mmol, 51%). ¹**H NMR** (400 MHz, CDCl₃) 7.36 – 7.32 (m, 1H), 7.31 – 7.27 (m, 1H), 7.23 – 7.11 (m, 8H), 7.01 – 6.97 (m, 1H), 6.93 – 6.90 (m, 2H), 6.87 – 6.78 (m, 3H), 6.77 – 6.73 (m, 2H), 3.25 (d, J = 7.5 Hz, 6H), 2.49 (dd, J = 13.9, 4.1 Hz, 1H), 2.33 – 1.91 (m, 9H), 1.89 – 1.80 (m, 2H), 1.73 – 1.59 (m, 1H), 1.53 – 1.40 (m, 3H), 1.38 (s, 3H), 1.31 (s, 3H), 1.28 – 1.21 (m, 1H), 1.17 – 1.07 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 180.73, 180.68, 143.4, 143.3, 139.7, 139.6, 133.4, 133.0, 129.1, 129.0, 128.6, 128.5, 128.4, 128.2, 126.3, 123.1, 123.0, 122.8, 119.8, 119.5, 108.54, 108.45, 48.2, 47.8, 41.8, 41.7, 41.0, 40.3, 36.3, 36.2, 29.5, 29.4, 26.49, 26.45, 25.8, 25.2, 14.6, 14.5. **IR (ATR)**: 2927, 2247, 1688, 1612, 1525, 1449, 1364, 1254, 1164, 1017, 745 cm⁻¹. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₂₂H₂₄N₂ONa⁺ 355.1781, found 355.1775.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 11 (ppm)

¹H NMR of compound **25** (400 MHz in CDCl₃)

7. Reference.

(1) Onuigbo, L.; Raviola, C.; Di Fonzo, A.; Protti, S.; Fagnoni, M., Sunlight-Driven Synthesis of Triarylethylenes (TAEs) via Metal-Free Mizoroki-Heck-Type Coupling. *Eur. J. Org. Chem.* **2018**, *2018*, 5297-5303.

(2) (a) Zhao, B.; Shi, Z., Copper-Catalyzed Intermolecular Heck-Like Coupling of Cyclobutanone Oximes Initiated by Selective C-C Bond Cleavage. *Angew. Chem. Int. Ed.* **2017**, *56*, 12727-12731; (b) Yu, X. Y.; Chen, J. R.; Wang, P. Z.; Yang, M. N.; Liang, D.; Xiao, W. J., A Visible-Light-Driven Iminyl Radical-Mediated C-C Single Bond Cleavage/Radical Addition Cascade of Oxime Esters. *Angew. Chem. Int. Ed.* **2018**, *57*, 738-743; (c) Lou, J.; Ma, J.; Xu, B. H.; Zhou, Y. G.; Yu, Z., Photoinduced, Copper-Catalyzed Three-Component Annulation of gem-Dialkylthio Enynes. *Org. Lett.* **2020**, *22*, 5202-5206.

(3) Chang, X. H.; Wang, Z. L.; Zhao, M.; Yang, C.; Li, J. J.; Ma, W. W.; Xu, Y. H., Synthesis of Functionalized Vinylsilanes via Metal-Free Dehydrogenative Silylation of Enamides. *Org. Lett.* **2020**, *22*, 1326–1330.

(4) Fan, X.; Lei, T.; Chen, B.; Tung, C.-H.; Wu, L.-Z., Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. *Org. Lett.* **2019**, *21*, 4153–4158.

(5) Ramesh, V.; Gangadhar, M.; Nanubolu, J. B.; Adiyala, P. R., Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with *N*-Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. *J. Org. Chem.* **2021**, *86*, 12908–12921.

(6) Li, C. C.; Yang, S. D., Oxidant-Free Rhodium(I)-Catalyzed Difunctionalization of Acrylamide: An Efficient Approach to Synthesize Oxindoles. *Org. Lett.* **2015**, *17*, 2142–2145.

(7) Wang, C.; Qi, R.; Xue, H.; Shen, Y.; Chang, M.; Chen, Y.; Wang, R.; Xu, Z. Visible-Light-Promoted C(sp³)-H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α -Amino Acids and Late-Stage Modification of Peptides. *Angew. Chem. Int. Ed.* **2020**, *59*, 7461–7466.

(8) Zhao, B.; Shi, Z., Copper-Catalyzed Intermolecular Heck-Like Coupling of Cyclobutanone Oximes Initiated by Selective C-C Bond Cleavage. *Angew. Chem. Int. Ed.* **2017**, *56*, 12727-12731.

(9) Yu, X. Y.; Chen, J. R.; Wang, P. Z.; Yang, M. N.; Liang, D.; Xiao, W. J., A Visible-Light-Driven Iminyl Radical-Mediated C-C Single Bond Cleavage/Radical Addition Cascade of Oxime Esters. *Angew. Chem. Int. Ed.* **2018**, *57*, 738-743.

(10) Xia, P. J.; Hu, Y. Z.; Ye, Z. P.; Li, X. J.; Xiang, H. Y.; Yang, H., O-Perfluoropyridin-4-yl Oximes: Iminyl Radical Precursors for Photo- or Thermal-Induced N-O Cleavage in C(sp²)-C(sp³) Bond Formation. *J. Org. Chem.* **2020**, *85*, 3538-3547.

(11) Yu, Y. Z.; Ye, Z. P.; Xia, P. J.; Song, D.; Li, X. J.; Liu, Z. L.; Liu, F.; Chen, K.; Xiang, H. Y.; Yang, H., Visible-Light-Driven, Photocatalyst-Free Cascade to Access 3-Cyanoalkyl Coumarins from ortho-Hydroxycinnamic Esters. *J. Org. Chem.* **2021**, *86*, 4245–4253.

(12) Gao, P.; Cheng, Y. B.; Yang, F.; Guo, L. N.; Duan, X. H., Iron(II)-catalyzed Direct C-H Cyanoalkylation of 2H-Indazoles and Coumarins via Radical C-C Bond Cleavage. *Tetrahedron Lett.* **2019**, *60*, 150967.

(13) Wang, Z.; Yan, X. Y.; He, X. X.; Yan, X. H.; Li, X. Q.; Xu, X. S., Iminyl-Radical-Mediated Cyanoalkylarylation of Activated Alkenes Enabled by Silver-Catalyzed Decarboxylation of α -Imino Oxy Acids. *Synlett* **2020**, *31*, 809–812.